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Control Synthesis using Dynamic [)-Scales:

Part II — Gain-Scheduled Control

Carsten W. Scherer and I. Emre Kose

Abstract

The gain-scheduled controller design problem for linear parameter-varying systems is consid-
ered. Parameter dependence in the plant is described in the standard linear fractional form familiar
from robust control theory. It is assumed that the parameters take values within known bounds,
but are constant in time. The controller reflects the structure of parametric dependence of the plant
and thus has an LFT structure as well. In contrast to the existing results in the literature, dynamic
(frequency-dependent) D-scales are used in obtaining sufficient conditions for robust stability of the
closed-loop system in the form of frequency-dependent inequalities. Following the transformation to
finite dimensions through the use of the Kalman-Yakubovich-Popov Lemma, the controller matrices
are eliminated from the resulting matrix inequalities. The main result of the paper is given in terms
of convex linear matrix inequalities for the existence of robustly stabilizing controllers. A numerical

example highlights the advantages of frequency dependence in the D-scales.

I. INTRODUCTION

Gain-scheduled control synthesis has attracted considerable attention in the last two decades.
Following a rigorous investigation of classical gain-scheduling techniques by Shamma and
Athans [21], research efforts have concentrated on developing parameter-varying control
synthesis methods for linear parameter-varying (LPV) systems. Two different approaches have
become prominent in the literature. In the first approach, the system matrices are expressed in
terms of parameters explicitly and Lyapunov techniques are used in synthesizing parameter-
dependent controller matrices. The existence conditions for such controllers are commonly

expressed as parameter-dependent LMIs, where the parameters are allowed to take values
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inside convex polytopes. Several relaxation methods have been proposed for reducing these
problems to finite-dimensional LMIs, mostly involving solutions at extreme points of the

parameter sets using multi-convexity arguments [6], [22], [23], [1].

A second line of research is based on the representation of parameter variations in the system
through the feedback interconnection of the nominal system, (=, and a perturbation operator,
A, which represents parameter variations from their nominal values. In this setting, a controller
is sought which has the same structure as that of the perturbed plant. The closed-loop system
comprises the feedback interconnection of the nominal closed-loop system, namely G, :=

G % K, and a combined perturbation block, A, := diag(A, Ak) as in Figure 1.
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Fig. 1. Gain-scheduled control system.

The properties of A, (such as norm bounds, time-variations, efc.) are characterized by integral
quadratic constraints (IQCs) defined through self-adjoint multipliers ([11]). The objective in
this approach is to eliminate the controller matrices from the stability conditions for the
closed-loop system and thus to obtain convex existence conditions for the controller. The first

solutions to gain-scheduling problems in this framework were reported in [12] and [2] using

D 0
static (i.e., frequency-independent) multipliers of the form with D = DT = 0.

0 —D
In [20], the multipliers were extended to , where G = —G7T, thus reducing
GT -D
: R : . e
conservatism. A more general form was proposed in [15] with no positivity or
RT S

skew-symmetry constraints on (), R or S, resulting in even less conservatism. Yet none
of these results take advantage of the reduction in conservatism offered by dynamic (i.e.,

frequency-dependent) multipliers.

So far, very few convex synthesis results have appeared employing dynamic multipliers. The

solutions of two types of problems are worth mentioning. First, solutions were given in [3]
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and [9] to the disturbance attenuation problem against uncertainties belonging to a class of
signals described by dynamic IQCs. Secondly, the problems of robust estimator design and
robust feedforward control were solved in [17] and [10] using general dynamic multipliers
and in [19] using dynamic D/G-scales only. It was recently shown that these two types of

problems can be cast as special cases of a single framework in [16].

The use of dynamic multipliers in the gain-scheduling problem poses some technical diffi-
culties not encountered in the case of static multipliers. These difficulties are partly related
to the fact that the multipliers have to be factorized as ¢* M1 into a static core, M, and a
dynamic outer factor, ¢/, and its adjoint. In the search for a suitable overall multiplier, v is
specified as a tall matrix consisting of basis functions and M is treated as a free variable.
However, the nature of the gain-scheduling problem necessitates the use of the inverse of
the multiplier ¢)* M+, which has the simple expression ¢~ M~1¢)=* only if M and /) are
both square and invertible. Hence, it is essential that one should be able to go back and forth

between tall factorizations and square factorizations without losing equivalence.

An additional difficulty arises due to the elimination procedure that results in the disappearance
of all portions of the multipliers related to the controller. Once the existence conditions for
the controller are satisfied, the first step towards obtaining the controller is the construction
of the full multiplier from portions of itself and its inverse. In the case of static multipliers,
this procedure involves no difficulties. However, when the multipliers are dynamic, a straight-
forward application of the same procedure introduces additional dynamics not found in the
solvability conditions. This makes it necessary to re-solve the existence conditions involving

multipliers with new dynamics, leading to even more complications.

Here, we propose a solution to the gain-scheduled control design problem using dynamic
D-scales. Our main result consists of convex conditions for the existence of a robustly
stabilizing controller. In this setting, the difficulty with tall/square factorizations described
above is circumvented in the proofs through the solution of AREs. The Lyapunov certificates
in the existence conditions can be shifted back and forth, resulting in certificates for tall
and square outer factors. Thus, we can take advantage of both tall (for basis functions) and
square (for inverse operations) outer factors. Moreover, instead of extending the dynamic
multipliers in a way similar to the static case, we propose a novel extension that precludes
any additional dynamics. These findings can be seen as a preliminary step towards a general
solution involving dynamic multipliers with no structural constraints. A numerical example

highlights the application of our results to a mechanical control system.
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The paper is organized as follows: In Section II, we introduce the problem setting and remind
the reader of dynamic D-scales. The main result is given in Section III, and its proof follows in
Section IV. The numerical example in Section V demonstrates the application of the findings
of the paper. A summary of the main result and a discussion of possible future directions are

given in Section VI. The Appendix contains some technical results used in the paper.

Notation: The space of matrix-valued functions with entries that are essentially bounded on
the imaginary axis is denoted by £.. The symbol C° is used for the extended imaginary axis
iR U {oo}. The inertia of a Hermitian matrix M is in(M) = (n4,n_,ng), where ny,n_, ng
denote the number of positive, negative and zero eigenvalues of M. For any matrix A, we

denote by A, a basis matrix of the orthogonal complement of the image of A. The Kronecker

A|B
product of A and B is represented by A ® B. For a transfer matrix G = , We
C|D
—-AT|CT
denote G*(s) = G(—s)T. We always use the realizations G* = and G~ =
-BT| DT

A—BD7'C|BD™!

if D is invertible. In expressions like G*MG we address M as
-D~IC D!
middle term and G as outer term/factor (not to be confused with outer transfer matrices), and

we also use such a convention for LMIs like the one above. We represent the product A*BA

A B A B
as (x)*BA and the matrix as whenever convenient. Lastly, we employ
B* C * C
0 X 0

J(M) :=diag(M,—M) and M(X,M):=| X 0 0

0 0 M
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II. GAIN-SCHEDULED CONTROL SYNTHESIS WITH DYNAMIC D-SCALES

A. System Configuration

Consider the gain-scheduled system in Figure 1. Let the nominal plant and controller be

realized as
A| B, B,
|
Cq qp | un
+ —_ — =

and K = OKU DKuy ‘ DKuPK

Then, the nominal closed-loop system is

A 4 BUKC® | BY+ BUKD?
c = )
Cy + DZUKC';} Dy, + Dg, KDy,

where the superscript “a” stands for “augmented” and

A, By : ;
PRl Il RSt R e

' Ma a
Cy 1 D5, Dy
A 0: B, 0 B, 00
: DKuy DupK OKu
00, 00 0 01
= ———f: 77777 +l------ Dayy Dapre Cax
Cq 01Dgp 0 Dgu 0.0
: BKy BPK AK
0 70

The uncertainty blocks A and Ay are structured as

A = diag (0,1;) and Ay = diag (3l )

i=1 i=1

where [|0;]lcc <1Vi=1:mand )" d; =:dand ) " dg, =: dg.
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B. D-scales and bases for RH .

It is well-known [24] that robust stability of the interconnection in Figure 1 is guaranteed if

G, 1s internally stable and if there exists a 1, € RH, such that

*

gcl 1/}:1 1/}cl 0 gcl

I 0 - w:l wcl 1

<0 3)

on C°, where 94 = <¢G Vi ),
Ve = diag (Vig), and Yy = diag (Vix) -
The term 977 is commonly referred to as a D-scale in the robust control literature.

In searching for appropriate scalings, it is desirable to use a basis of suitable functions in

RH .. Toward this end, we choose any p > 0 and introduce
2 v T
= s=p (s=p s=p
bu(s) 1 s+p (s+p> (S-I—p) @
with input-balanced (minimal) realization b, = for any v € IN. Moreover we

use the notation

I;® Ay, | Ig @ By, I;® Al |1, CF

and

I;® Gy,

I; ® Dy,

I ® B} |I;® Df

or

respectively, through an appropriate choice of U? and V¢ and a sufficiently large v [14].

IIT. MAIN RESULT

In what follows, we define

0 0
0 0
U .= and V=
cr B,
D;;) | D, .
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where the row-dimension of the zero blocks in the definitions of ¢/ and V are equal to those

of A} and A} respectively.

Theorem 1: There exists a gain-scheduled controller as in (2) that renders G internally
stable and satisfies (3) for some structured oy € RH. if and only if there exist some
positive integer v and symmetric matrices X, Y, R = diag]", (R;), M = diag]", (M;) and
N = diag", (N;) such that

I 0 0 , 0
|

o I 0 .+ 0
|

O 0 I 1 0
|

KT M (X, J(M)) | U <0, (5)
O A/lde O : B’[CZYV
|
0 0 A ! B,
,,,,,,,,,,, A
C’g 0 szu Cy | fojy Dy,
|
d ‘ d
0 ¢y, 0 . Dy
T ! T
- (a2)) 0 0 o (cd)
T | T
o —(45) -(45) B (i) O,
0 0 —AT T
,,,,,,,,,,,,,,,,,,,,, T
I 0 0 ! 0
*T 5T M (Y, J(N)) | V-0, (©6)
0 I 0 \ 0
|
0 0 I | 0
T T T T T 777777777777777 ‘ 777777 T ~ T
-(B2) o o 1 (ps)
T T
o —(8y) -(p) Bglf(zg ) o,
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I 0 .0 0
|
0 I 10 0
S T - .
| d; ! d;
M; 0100 AL 0 IBE 0
0 N0 0 0 —(4%)" 0 (ct)T
Y VE D E— - - - e Zo =0 7
! d; d;
0 O:OI C% 0 Dy 0
T B4)" D& y"
0 0,10 0 —(Bg) | 0 (Dg)
,,,,,,,,,, SR I
0 o 'I 0
|
0 0 0 I
fori=1:m and
Xu—-Ru X X —Ri 0 0
|
Xo1 Xoo + Ry X23: 0 —Ri9 0
|
Xa1 X32 X33: 0 0 I
77777777777777777 T ) (8)
|
—Ro 0 0 1Yy — Ry Yio Yis
|
0 —Ro 0 : Yo Yoo + Rog Yo
|
0 0 I Yy Yo Y33

Note that, for reasons of computational complexity, one can impose different lengths of the
basis vectors (4) for different sub-blocks of the uncertainty A. Actually, the “if” statement
in Theorem 1 remains true for arbitrary vectors of transfer functions replacing b, for each

uncertainty block, as long as they are all proper and stable.

Remark 2: Based on solutions of the synthesis LMIs one can construct a controller that has
dynamic order dim(A) + 2vd, which is reduced in case that the left-hand side of (8) loses
rank. Similarly, the dimension dg, of the scheduling block 5i[d}(i is determined by the rank
of the left-hand side of (7); if the rank is full the dimension equals d;(1 + 2v) which leads

to the overall dimension d(1 + 2v) of Ag.

Remark 3: When external disturbances (w) and controlled outputs (z) are present in the

system, the problem of designing robustly stabilizing controllers that achieve a closed-loop
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Ho-gain less than 7 can be solved if replacing the plant by

B, B, B,

A
Cq D‘]P qu D‘I“
Oz sz Dzw Dzu

Cy|Dyp Dy 0

the multiplier diag (v} M;1);, —)} ]\;[zwz) by
diag (7 Mypi, v, =7 My, —1)
and diag (¢; N;¢F, —¢;N;¢}) by
diag (¢ N:d}, /1, — 6 Nis, —7 1) .

In this formulation, v can be treated as a variable which, after taking the Schur-complement,
enters the LMIs linearly. The minimization of the upper bound of the robust H.,-norm is

then cast as an SDP.

IV. PROOF OF THEOREM 1
A. Necessity

Suppose that there exists a K that nominally stabilizes G, and satisfies (3) for some structured
Vg € RHs. Our goal is to apply Part (ii) of Theorem 3 in [18]. For this purpose we
parameterize 151, as follows. The sub-blocks of 1), are described with free coefficient

matrices U;, and U;, —as

respectively. If

(UGU Uk, ) = (diag?;1 (Uic,,) diag", (UiKy) )

then ¢ is parameterized as

didy
Bwy
b

d+dg
Di/h/

A
Ve, Uk, d+d
Cwu "

August 24, 2010 DRAFT



10

which leads to the description of 171 as

d+di d+di d+dg d+di
Awu B% o Awy B%
d+dr | rd+dx d+dg | yd+dx
Cwu Dwu Cwu Dwu
in which
T
. . L . dc
Similarly, the inverse of %1, is written as ¢, ¢}, with stable ¢, = and
Px

be = d,ijalg (big), K = d,imalg (ire) -

1=

The diagonal sub-blocks of ¢, are approximated with V;, and V;, = as

| dg
Ay’ | Bo,
V;GV and de. | —~dx. ViKV
Co," | Dy,
Then the approximation of ¢.¢}; is described as
didy | pdtdy didy | pdtdy
Ad)u B¢V ]\7 A¢V B¢u
d+dg d+dg d+dg d+dg
C¢u D o C(bu D o
where
Ve, diag”, (Vi,, )
Vi, diag”, (Vi)
and T
. Va, Va,
N =
Vk, Vk,

Recall that G, in Figure 1 can be viewed as the interconnection of G° realized as

A\B; B,Z Cq\qu 0 ‘un O
- - = - - — - | I
e‘ e e frg ! !
Cq:qu Dg, 797:79770,4‘707,{/)5,
6‘ € ! ‘
¢, Dy, 0 Cy1Dyp 0 | 0 0

with the controller (2). Then LPV-synthesis boils down to robust controller synthesis for this

extended system against diag(A, Ak) as shown in Figure 2.
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(o)

Ge

'y

Fig. 2. Equivalent robust control synthesis problem.

Despite the fact that the multiplier structure is somewhat different, we can hence apply

Theorem 3, Part (ii) in [18] and conclude that, for some sufficiently large v and with the

annihilators
0 0
0 0
Ue = . and V¢ .=
(€5) B
T
D¢ D¢
( yp) n qu n
for the extended system, the LMIs
I 0 0 .+ 0
|
0 I 0 1 0
|
0 0 I 0
Y L L . ____\Y_______
|
. Adrdre g pdtdr e, gpdtdx pe
5T M <X, J(M)) v R 7 9)
0 AGT 0 B
|
0 0 A B
,,,,,,,,,,,,,,,, LT
d+d d+dg el Myd+di e
Cwy " 0 D% KquDwu Kqu

d+dg | d+dg
0 Cy 0 v Dy

* T %M (Y, J(N))
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() o o ()
0 (agr) = (carm) )" = (csr™) (Dg)"
fffff L. N B ) M
I 0 0 1 0
| Ve -0 (10)
0 I 0 i 0
0 0 I 1 0
(o) 0 o ()"
0 (Bir™) = (g) (Bp)" = () (03,)"
I 0 0 0
0 I 0 0
A I
M 010 0 Atrds 0 B0
VL S B A O €S I G0 1 IR
0 0,01 Cidtdx 0 DY 0
0 070 0 - B;fde) 0 (ngdK)T
0 0 T‘ I 0
0 0 0 I
Xll - R611 XlZ dei _R12 O 0
X21 Xoo + éll Xzai 0 —R12 0
Xs1 Xz Xz O 0 I
Xa Xo Xgl 0 0 0 >0 (12)
77777777777777777 [ S
_}%21 0 O if/ll - RQQ }A/IQ 1713
0 —Rm 0 i A21 5722 + RQQ 1723
0 0 I : Vi Yis Vi

are feasible. Exploiting the structure of the realization of G° and that induced for /¢, V°, the

inequalities (9) and (10) simplify to

T M (X J(M))

August 24, 2010
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[ ‘
0
0 0 3 0
]_ |
0 0 | 0
77777777 0 I ‘ 0
7777777 |
Ad ,,,,,,,, — — 1 _ R
a0 ; B! g\
) v [
0 Azp}; 0 CCIE qu
0
|
d
; Al 1 d
) 0 | B%
o | 0 U=<0 (13)
|
77777 o 0 A 1
N i
) Dd | -
0 Uy [ Dd
0 dK C wl/
C’wy 0 q: qu
Lo
. cd o0 : D
0 ‘ i
0 O |
and N | :
. .
M (Y,J(N))
. T
Al o ‘
0 Al ’ ’ | .
. |
Al 0 : : O
|
(. (e (e
0 AdK Bg:_ %) z
s 0 | qu
0 | O
- |
7777777777777777 077777 _AT I T
: R . G
0 | -
0 I | O
0 ‘ V= 0.
B 0 0 : O
S o I 1 0
N
pE— ¢V O : 77777777777
0 B 0 0 | P
: |
B ' : O
O |
(= (o (o)
d BT‘— ¢u)
- T, DT
s 0 ‘ "
| 0
(14)

August 24, 2010
DRAFT



1
By defining F :=
0

I

14

of appropriate dimensions, these imply, by canceling

0

the columns of the outer terms related to uncontrollable modes of the multiplier dynamics,

the inequalities (5) and (6) where
X :=diag (E, E,I)" X diag (E,E,I),
Y :=diag (F, F,I)" Y diag (F,F, 1),
M:=E'ME and N:=F'NF

The congruence transformation 77 (x)T" with T := diag (E, E, I, F, F,I) on (12) yields (8)
with the definition R := diag (E, F)" Rdiag (E, F). Now delete columns from (11) to

obtain
I 0 L0 0
|
0 I L0 0
,,,,,,,,,,,,,,,,,,,,, | — —- — e
d ! d
45, 0 0 [ B 0
d |
0 Awf | 0
T, T
d d
| 0 RE i 0 Co.
M 0,00 0 A )| 0
1t -—---—-—-x--—-—------ R e el
| o NooO clo0 [ DA
VN i 0 1 0 - 0.
0 0,01 0 Cox A\ 0
! 7! T
0 070 Bl o\ D
' 0 _ ¢V | O ¢u
o Nos) U 0 )
|
(1
0 0 | 0
| 0
: I
0 0 L0
| 0
August 24, 2010 DRAFT



By uncontrollability again, we have

M 0,00
|

0 N,0O 0

T M R
0 0,01
| 0

0 0,10

Simplification yields (7). This proves necessity.

B. Sufficiency

0 0
0 0
d
Bl 0
0 (cd)"
Dd
hy 0
0
T
Dd
0 o
0
I
0
0
I
0
0

= 0.

15

Step 1: Squaring of tlle outer factors. Note that the inequalities (5) and (7) involve the

multiplier

with an outer factor that is typically tall; a similar

observation can be made for (6) and (7) and the dual multiplier. For technical reasons, we

need to work with square outer factors in inequalities (5), (6) and (7). This can be achieved

by shifting X and Y using solutions of AREs related to the spectral factorizations of the

multiplier sub-blocks ¥} M;1); and ¢; N;¢;.

Primal Inequality. Suppose inequalities (5)-(8) are satisfied. Let Z; represent the stabilizing

solution of

~ ~ T . ~
(A5)" Zi+ Ziays + ()" gy — (x) a7 ((By) " Ziw (D) MiCy ) =0,

where M; := (DZ’U)T M,JDZZIV In that case, we have ¢} M;1y; = ;;, where

August 24, 2010
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with Cy, == N /2 <(BZZ)T Zi+ (D))" MiCZi) . Let Z := diag”,(Z;) and

(2

A\ By || dinglt, (Ay,)|ding?, (B,,)

Co|Dy || dingrz, (Cy,) |dinglZ, (D)

As in the proof of Lemma 1 in [18], inequality (5) can now be rewritten as

00 I 1 o0
S
Ay 0 ByC, ByD
R VIE 00)] R PN} (15)
0 Ay 0 ' By
|
0 0 A ' B

Cy 0 DyCq DyDyy
|

0 Cy 0 | Dy
where X := X + diag (—Z, Z,O).
Dual Inequality. Similarly, let WW; represent the stabilizing (smallest) solution of

7

AW (A7) = BN (By) "+ (W (03)" = B, N (D5)") N (+) =0

where N, := DgiNi (DZ )T. Then, ¢;N;¢; = b}, where

T
v

with By, = — (W (cm)" = BN, (D;};)T) N7Y2 Let W = diag™, (W) and

A\ By || diagit, (44,)|dingit, (8y,)

Cy | Dy diag;", (Cy,) |diagi™, (Dy,)
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Hence, inequality (6) can be rewritten as

|
_AdT; 0 0 i C’g
|
0 —A} —CIBI-CIDE,
0 0 —AT . —CT
R
|
- 1 0 0o 0
* & MY, J(I)) | V=0,
0 1 0 0
|
0 0 r 0
,,,,,,,,,,,,, S
T ! T
T T RT! T HT
0 Bd> _Dthp ]_DdDqu
where ) := Y + diag <—W, W, 0).
Multiplier Coupling. Also inequality (7) can now be rewritten as
I 0.0 0
|
0 I 0 0
,,,,,,, B
|
I 0\0 0 Aﬂ)z‘ 0 ‘Bll’i 0
01,00 0 —ATvr o0 CE
EIVE N I S I 1 0 Co |y
00017 Cy, 0 Dy, O
|
00,170 0 —qui} 0 D;—Ci
,,,,,,, Lo o
0 0 I 0
|
0o 0 ,0 I

for i = 1:m, where R; := R; + diag <—Z, —WZ)

X-Y Coupling: Trivially the coupling condition can be expressed as

17

(16)

7)

Step 2: Coordinate transformation on \; and ¢,. Observe that R, , are square fori =1 :m

and that they can be rendered non-singular by perturbation. With an appropriate coordinate

transformation on the states of either \; or ¢;, we obtain R;, = RL = —I for each

August 24, 2010
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1 =1 :m. Let the transformed realizations for 1{; and ¢; be denoted by

and define

Cy | D

Conditions (5)-(8) can now be rewritten as

*T % M (z’\?,J(I))

August 24, 2010

JJM@JW

I 0 0 .0
0.1 0 1 0
o0 o
Ay 0 ByC, ByD, o
0 A, 0 ' By
00 A B
Cy 0 DyC,DyDy
0 Cy 0 | Dy
—-AT 0 0 | cT
0 -A} -CyB-CiD],
0 0 —AT . —cf
roo 0o
0 I 0 0
0 0 I
I e,
By 00 1 D
0 -B} —DIBT-DIDL

V= 0.

18

(18)

(19)
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I 0,0 0
|
0O I 10 0
,,,,,, 1 _ _ _ _ _
N [N
1000 Ay 0 1By 0
|
~ ~ | ~
. Ru —I 07,00 0 —ALro0 CF
T M ) N £ T oY Y (20)
~1 Ray 00,01 Cp 0 'Dy 0
‘ |
00170 0 —-BI'o DI
,,,,,, DT
0o 0 '7I 0
|
0 0,0 I
X — Ru Xis X3, 1 0 0
|
KXoy Koy 4+ Ri1 Ao, 0 1 0
|
Xy o Xz, 0 0 I
77777777777777777 A ) (21)
- . . .
I 0 0 Vi1 —Roo V1o Vi3
|
0 I 0: A21 3}22+7A322 3>13
|
0 0 I, 5731 3>32 3>33

where X', )V, Rq; and Rqs are obtained by congruence transformations in accordance with

the performed coordinate changes.

Step 3. Construction of the extended multiplier. In this key step which gracefully ex-

ploits (20) (as a diagonal combination of inequalities similar to (17)), we now extend each
All’i ‘ Bll’i Asz: ‘Bdh

, pair as in Lemma 7. When the extended multipliers are placed

Cy, ‘f)m Co: | Do,
block-diagonally, we obtain Ay, By, By, Cyes Cprs Dyoes Dyer and Ag, By, Bes Cos

Cox> Doger Doy such that

I Ay | Byg Ay | Byg
. v| By v | By
(i) - N N - Cwa D¢GG ch chc )
Cy | Dy, Cy | Dy
- CwK 0 CwK 0
iy |2 Pe| |2 By | | As| Bsa Bor | | As| Boo Box
| Co|Dy »| Do Coc|Doce Docr | | Coc|Psce Doax
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Ay | Bye By
(iii) Cwe DlZ)GG DlZJGK
Cyul 0 T

1
Ay | By Boy
- C¢G D¢GG D¢GK
Coul O T
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Step 4. Construction of the controller. Recall from Lemma 7 that (i) and (ii) are certified

by Ryp and Ras respectively. We can then apply the Gluing Lemma ([18, Lemma 6]) to infer

that conditions (18) and (19) become

and

I %I M

T T $ > > ] 0
LM | X diag (—RH,RH,O) J
01
I 0 0
0 I 0
0 0 I
Ay 0 By Cy
0 A, 0
0 0 A
C 0 D
Y (ele] Cq
Oy 0 0
0 Oy 0
0 Con 0
o . 10
Y+ diag (~Roz, R22,0) . J
01
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T ! T
T T pT ! T NT
0 _A¢ _C¢GBP | _C¢0qu
0 0 —AT —Cr
,,,,,,,,,,,,,,,,,,,,,,,,,,, L - - -
I 0 0 i 0
|
0 I 0 ! 0
l V=0 (23)
0 0 I : 0
L -
T T
B¢G 0 0 : D¢GG
- |
Bj, 0 0 o\ Db
|
T T ! T
0 . B¢G . D¢>GG BZ : . D¢GG DZ;)
T T ! T
0 B¢‘K D¢GK ! D¢GK
X1 —Rn ?221 )813 ‘)elc
] N N 9\?21 XAzz + 7%11 )323 ‘)220
respectively. Due to (21), we can expand X as X* := ) X o -
AXsy X3 Xsz As,
')ecl 2802 A?CB -)E‘cc

~ o\ 1 “
0, so that (Xa) =: Y* has the form

3}11 — 7%22 3>12 j’13 ylc
N 5721 5722 + 7322 5723 j@e
Yo = ) ) o =0
Va1 Vi3 Vs Vs
:)A;cl j)c2 :)>c3 j)cc
We can now expand inequalities (22) and (23) as
I 0 0 1 0
|
o I 0 . 0
|
o 0 I 1 0
,,,,,,,,,,,, l_ _ _ _ __
|
R A 0 By, C“'B, D*
4T M (X“, J(J)) v vaa e e g
0 Ay 0 | By,
|
0 0 AT Bg
,,,,,,,,,,,, RS
sz 0 chlcg:DiﬁczDgp
|

O chl 0 : chl
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and ‘
|
|

T T
_A¢ 0 0 | C¢cl
| 0T
0 _Ag —C’;{clBZ : _qubpcqup
0 0  —AT . —coT
,,,,,,,,,,,,,,,, l_ - _ __
|
- R I 0 0 ! 0
AT M (ya, J(I)> i Ve -0,
0o I 0o ' 0
|
0 0 I 0
,,,,,,,,,,,,,,,, -
T I T
_B¢cl 0 0 : Dd)cl
T T aT! T aT
O _Bd)cl _D¢cl Bp 1 _D¢cl qu
0 0
0 0
where U® = . , V= and
(e B;
a T a
(Dyp) n un n
Ay | By By Ay | Bog By
- C¢G DwGG chx ’ and - C¢G D¢GG D¢GK ’
C’wK 0 I C¢K 0 I

just because the left-hand sides of the respective inequalities turn out to be identical.

Now the controller construction is relatively routine. In fact, by Lemma 4, we arrived at the

conditions for the existence of K such that

(UA + Z/{BKUC)TH(UA + Z/{BKUC) <0,
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whmeII::A4<Ah,Juj>and

I 0 0 . 0 0
|
0 I 0 1 0 0
|
0o 0 I i 0 0
,,,,,,,,,,,, S o
A, 0 By, C* B, D° By, D?.,
Z/{A — w wcl q : wcl qp : Z/{B — wcl q ’ UC - <0 0 CgDZp) )
0 Ay, 0 ' By, 0 ‘
|
0 0 A* ! B¢ B¢
,,,,,,,,,,,, T o De
Owcl O decl Cg : D'chl D((]lp chl Dgu
|
O chl O : decl O

For clarity, let o x 8 and k x A be the dimensions of /4 and K, respectively. Since

0 x° 10
in(Il) =in | +in ,
xXe 0 0 -1

it is easily verified that in(Il) = (oo — 3, 3, 0). The desired K can now be obtained as follows.

T
Defining © := (UA Ug ) II (z,{A Ug ) of dimension [ + k, we can rewrite

T
Blel o <o
KU KU
Hence, n_(©) > (5. However, since © is obtained by restricting II to a certain subspace, we
also have n_(©) < n_(II) = 8. The conclusion is that in(0) = (k, 3,0). Then, by [15], the

inequality above can be written as

T T
TKT TKT T T T
I, I, 0 I 0 I I,
Q
S
Similarly, we can also conclude that in(2) = (x, A,0). Now choose a matrix €
S
R*EHVXE with S, invertible such that
T T
S S S8y ! S8y !
Q =0 — Q = 0.
82 82 L{ [H
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Then, can take K = (885 1)T. Finally, nominal stability of the closed-loop system is
guaranteed by the fact that X = 0.

Generically X' has a dimension equal to that of the left-hand side of (21), which is 2(dim(A)+
2dim(Ay)) = 2dim(A) +4vN. Hence the dynamic order of the controller is dim(A) +2vN.
The size of the scheduling block is determined by the numbers of added rows/columns in
the extended primal/dual multipliers, i.e., the row/colum dimension of Cy, /By, respectively.
According to Lemma 7 this equals n; + 2n,;v for each individual block, which sums up to

the dimension N (1 + 2v) for Ag.

This completes the proof.

V. NUMERICAL EXAMPLE

Consider the mechanical system shown in Figure 3.

x x
R
w—»me—»F

@) @) e @)

Fig. 3. Mechanical system with uncertain spring and damper.

We assume that the values of k£ and c are constant, but they vary around their nominal values,
ko and co, as k = ko(1 + k*9;) and ¢ = ¢o(1 + ¢*6.), where [d] < 1 and |6, < 1. Take x,

as the measured output and 2 as the controlled output. We can now express the system as

0 0 1 0 0 0 10,0
| |
0 0 0 1 0 0 100
| |
_ko ko _a o |_ Jkk _ [Jeet| gL
m m m m m m‘ ‘m
1 ke _k @  _a kok* cct |1 P
(/A R 0 0 0 '0'0
y . . L u
0 0 j/%g-—,ﬁ% 0 0 '0'0
N m I R gt gl
0 1 0 0 0 0 '0'0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, g
1 0 0 0 0 0 ,0,0
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O O
and p = q. For the numerical values mg = 10 kg, kg = 10 N/m, ¢y = 10 Ns/m and

0 0.
k* = ¢* = 0.75, we calculate the minimum achievable L,-gains for different dynamic orders

(v), and we obtain the figures shown in the following table:

¥ 421045{044 | 044 | 0.44

The rows below the v values indicate the dynamic order of the resulting controller (i.e., .4, )
and the sizes of the §, and d. blocks in Ag (i.e., nK,, and ng; ). Simulation results in
response to a step disturbance of magnitude 10 are shown for different v values in Figure 4.

The results are given for ¢, = o, = 0.75.

0.9 -
0.8 -
0.7 -

v=0
0.6 v=1 -

€ v=2
= O05f v=3 i

:f\‘ v=4
0.4 -
0.3F -
0.2 -
01f N R

0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time (s)

Fig. 4. Responses to a step disturbance for different v values.

VI. SUMMARY AND DISCUSSION

We have given necessary and sufficient conditions for the existence of robustly stabilizing
gain-scheduled controllers for uncertain LFT systems using dynamic D-scales. The existence

conditions consist of finite-dimensional LMIs where the specific structure of the D-scales
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allows us to search for suitable multipliers with arbitrary accuracy. The application of the
main result to a numerical example shows significant reduction in conservatism as the dynamic

order of the D-scales is increased.

The extension of the proposed method to the general setting of IQCs with dynamic multipliers
is still an open problem. The range of applications of such techniques is large. On the one
hand, one can systematically reduce conservatism for the synthesis of controllers that are
scheduled with non-linearities [13], delays [5], or any other uncertainty blocks for which
IQC-results are available. On the other hand, since the design of distributed controllers in [4]
is based on static IQC techniques, our results are expected to have impact for the reduction

of conservatism in structured controller synthesis.
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APPENDIX

A. Quadratic Elimination

Lemma 4: [8] Let A € RETxn B c REtMxm 0 c RPX™ gpd 1 = [17 € RET*E+n) pe

given. Assume in(II) = (k,n,0). Then, there exists a K € R™*? such that

(A4 BKC)'TI(A+ BKC) < 0 (24)
if and only if
(€T) ATIA(CT) <0 (25a)
T
(A B) H—l(A B) = 0. (25b)
1 1

B. Multiplier Extension

Before proceeding to the main result of this section, Lemma 7, let us first formulate two

elementary auxiliary facts.
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-1

. A|lB
Lemma 5: If D = D~! then =

C\D

cT'c (A-A)T ¢T™pD -C7
x BBT —B —BDT

* * DD I

* * * DDT

Proof: After elimination of the blocks C* D and DT C by congruence, the inequality is

equivalent to

0(A-—A+BD'C) 0 —(C+D'C)"
* BBT -B —BDT
=0
* * DTD I
* * * DDT

This holds iff A = A — BD™'C, C = —D~'C and (if exploiting D = D~' and taking the

Schur complement)

T
BBT —-B -B —B
— = 0.
—BT DD DT DT
The latter is, in turn, equivalent to B = BD = BD!. [ |

Lemma 6: Let B and C have full column and row rank and suppose that

crc AT
= 0. (26)
A BBT
Then A = BLC with some (unique) L satisfying ||L|| < 1. If (26) is strict then L is a strict

contraction.

Proof: By (26), 2'B = 0 and Cy = 0 imply 274 = 0 and Ay = 0. Hence there
exists a solution L of the equation A = BLC. With the left- and right-inverses B and
CT, it is actually given by L = BTAC™. Right-multiplying (26) with diag(C*, B™) and

I (BTACH)T
left-multiplying the transpose implies >~ 0 which reveals that L is
BTACT I
a contraction. A strict inequality leads to a strict contraction.
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Lemma 7: Suppose that

for some R = RT and R = R”. Then, there exist extensions such that

- q * A|B A|B
_|4|B| | AlB
(1) =|C|D Ci|D

C|\D C

B - CQ 0 CQ 0
o 142 Al ilB B | |4 B B
1 =

— -1 B 5

A|B B, Al By B
(111) Cl D D12 = C ,Dll ,[)12

(G| 0 1 Cl 0 1

29

with square and non-singular D and D satisfy

ATR+ RA+CTC (A— AT RB+C'™D  -CT
A—A —AR—-RAT+BBT —-B  RCT—-BDT
=0. (27)
BTR+ DTC —BT DTD I
e CR— DBT I DDT

The factorizations (i) and (ii) are certified by R and R respectively. If (27) is strict, the

dimension of the extended outer factors in (iii) is dim(A) + rowdim(C') plus dim(A) +

rowdim(C').

Proof: Motivated by (iii) and the inversion formula for realizations we choose

2511 = D_l and Bl = Blbl_ll = BD_I.

(28)

By congruence let us eliminate all off-diagonal blocks in the third row/column of (27). For

this purpose define C; uniquely by solving the equation

RB+CTD=C{D (29)
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and note that B(DTD)™! = B, DL, B(DTD)*BT = BB and (DTD)~' = D;;DY,. We

then arrive at
ATR+ RA+CTC — Cchl
A— A+ BD™'¢4

0

—é — D’1C1

(A— AT +cfDTBY

0

CR— DB + Dy B!

0

DTD

0

—CT —Crp-T

0

~AR - RAT + BB" - BBl 0 RCT - BD" + B,D},

DO — By, DY,

(30)

Since the left-upper block is positive semi-definite, we can solve for a full-row-rank matrix

Cy, such that

Cr ey = ATR+ RA+CTC —CTey.

We then obtain

ATR+RA+CTC =CTc, +Cle,,

for any C, that is given by

Cy, =UCy,, where

UTu = 1.

Note that U can be tall. Clearly (29) and (31) certify ().

€1y

(32)

Canceling the first and third column in (30) reveals that the left-hand side of (33T) is positive

semi-definite. We can thus determine a full-column-rank matrix ( — BzTO f)lTQO ) such that

_AR-RAT ReT\ [ -B
_I_

CR 0 D

T
for all ( —BT DT, ) given by

- B,
D1y
Observe that (33) certifies (ii).

R T
-B
b
e,
D120

_Bl

1511

where

B T
—B;
Z~)11

Vv = I.

(34)

For the subsequent step we note that we can cancel the third block row/column in (30) and

exploit (31), (32) and (33), (34) to arrive at

CL Cy,
(A— A)+ BD'¢,
—é — D’1C1

August 24, 2010

(A— AT +CI'BTDT —CT —CI'DT

B,,BY

> _T
_D120 820

2 DT
_BQODIQO

N ~NT
D12, D1y,

= 0.

(35)
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Let us finally consider (iii). By Lemma 5 and using (28), this relation is enforced by

at
cre, x 10 cr —CT —CTD-T _CF
| |
A—A+BD'C, BBY | 0 —By+BD Dy —B,DL, By
777777777777777777 e e B R
0 0 DTD 0 l 0 0
\ \ =0
Cy x .0 I . =DLDT I
,,,,,,,,,,,,,,,,,, L TTer
—-C - D¢ —15125’;: 0 —D'Dyy D121~>{2 Dis
| |
—C, —-Bf | 0 I l DY, I

cre, +cle, (A—A)T : CiD C{Dis+C5 —C3
A-A  B(D'D)'B + nggi -B  -B, 3 —B(D"D)™! - B,Df, —B,
o g o'p p'py | 1 0
‘ ‘
DLC, + C, —BY EDED I +DIL,D, + 0 I
o * 3 I 0 E(DTDyJ—%ﬁubﬂ D1y
—C, BT l 0 I l D7, I

i o

Subtracting the last row/column from the fourth and dropping the trivial third row/column

leads to the equivalent inequality

cre, T s M B ot
A—A+BD7'C;, B,BT : —B, + BD™'Dy, + 821 B,DY, —B,
,,,,,,,,,,,,,,,,,, A S S
Co+Cy * 3 0 E—D{QD*T—QBITQ 0 | =0
~C-DC,  —Dy,Bl 3 —D"'Dyy — Dy, 3 Dy, DY, Diy
—Cy —BI l 0 l DL, I
This inequality is guaranteed to hold if we choose
Co = —Cy, Dig=—DDiy, By=BD 'Dyy+ B,
and if
T
,,,,, GG ok x G [ &
A—A+BD4QEBJE B,DL | — | -B, -B, | =0. (36)
~C— D, | ~DuBf DuD, D ) \ Do
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Since the diagonal blocks of (36) in the given partition vanish, the inequality is enforced
through
A — A+ BD_lcl —Bg
. — . Co = 0. (37)
—C - D_lcl D12
As the very last step it remains to show that we can indeed adjust U and V to render (37)

valid. By Lemma 6 and (35) we infer the existence of some L with ||L|| < 1 such that
121 — A+ BD_1C1 —Bgo
—é — D_lcl 25120

It then suffices to choose the partial isometries such that VIU = L (whose existence is
guaranteed since L is a contraction) and to recall (32), (34) in order to conclude that (37)

holds.

Suppose that (27) is strict. Then the left-hand side of (33) is positive definite which implies

that the row dimension r of L is equal to that of . Similarly, since the left-upper block

C

of (30) is positive definite, the column dimension ¢ of L is dim(A). Moreover L is a strict

contraction. We can then take

L 1
U= and V=
(I—-L"L)? 0
of dimension (r + ¢) X ¢ and (r 4 ¢) X r respectively. |
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