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Control Synthesis using Dynamic D-Scales:

Part II – Gain-Scheduled Control

Carsten W. Scherer and I. Emre Köse

Abstract

The gain-scheduled controller design problem for linear parameter-varying systems is consid-

ered. Parameter dependence in the plant is described in the standard linear fractional form familiar

from robust control theory. It is assumed that the parameters take values within known bounds,

but are constant in time. The controller reflects the structure of parametric dependence of the plant

and thus has an LFT structure as well. In contrast to the existing results in the literature, dynamic

(frequency-dependent) D-scales are used in obtaining sufficient conditions for robust stability of the

closed-loop system in the form of frequency-dependent inequalities. Following the transformation to

finite dimensions through the use of the Kalman-Yakubovich-Popov Lemma, the controller matrices

are eliminated from the resulting matrix inequalities. The main result of the paper is given in terms

of convex linear matrix inequalities for the existence of robustly stabilizing controllers. A numerical

example highlights the advantages of frequency dependence in the D-scales.

I. INTRODUCTION

Gain-scheduled control synthesis has attracted considerable attention in the last two decades.

Following a rigorous investigation of classical gain-scheduling techniques by Shamma and

Athans [21], research efforts have concentrated on developing parameter-varying control

synthesis methods for linear parameter-varying (LPV) systems. Two different approaches have

become prominent in the literature. In the first approach, the system matrices are expressed in

terms of parameters explicitly and Lyapunov techniques are used in synthesizing parameter-

dependent controller matrices. The existence conditions for such controllers are commonly

expressed as parameter-dependent LMIs, where the parameters are allowed to take values
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inside convex polytopes. Several relaxation methods have been proposed for reducing these

problems to finite-dimensional LMIs, mostly involving solutions at extreme points of the

parameter sets using multi-convexity arguments [6], [22], [23], [1].

A second line of research is based on the representation of parameter variations in the system

through the feedback interconnection of the nominal system, G, and a perturbation operator,

∆, which represents parameter variations from their nominal values. In this setting, a controller

is sought which has the same structure as that of the perturbed plant. The closed-loop system

comprises the feedback interconnection of the nominal closed-loop system, namely Gcl :=

G ? K, and a combined perturbation block, ∆cl := diag(∆,∆K) as in Figure 1.




∆ 0

0 ∆K




Gcl



q

qK






p

pK




∆

G

K

∆K

qp

yu

pKqK

Fig. 1. Gain-scheduled control system.

The properties of ∆cl (such as norm bounds, time-variations, etc.) are characterized by integral

quadratic constraints (IQCs) defined through self-adjoint multipliers ([11]). The objective in

this approach is to eliminate the controller matrices from the stability conditions for the

closed-loop system and thus to obtain convex existence conditions for the controller. The first

solutions to gain-scheduling problems in this framework were reported in [12] and [2] using

static (i.e., frequency-independent) multipliers of the form


 D 0

0 −D


 with D = DT � 0.

In [20], the multipliers were extended to


 D G

GT −D


, where G = −GT , thus reducing

conservatism. A more general form


 Q R

RT S


 was proposed in [15] with no positivity or

skew-symmetry constraints on Q, R or S, resulting in even less conservatism. Yet none

of these results take advantage of the reduction in conservatism offered by dynamic (i.e.,

frequency-dependent) multipliers.

So far, very few convex synthesis results have appeared employing dynamic multipliers. The

solutions of two types of problems are worth mentioning. First, solutions were given in [3]
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and [9] to the disturbance attenuation problem against uncertainties belonging to a class of

signals described by dynamic IQCs. Secondly, the problems of robust estimator design and

robust feedforward control were solved in [17] and [10] using general dynamic multipliers

and in [19] using dynamic D/G-scales only. It was recently shown that these two types of

problems can be cast as special cases of a single framework in [16].

The use of dynamic multipliers in the gain-scheduling problem poses some technical diffi-

culties not encountered in the case of static multipliers. These difficulties are partly related

to the fact that the multipliers have to be factorized as ψ∗Mψ into a static core, M , and a

dynamic outer factor, ψ, and its adjoint. In the search for a suitable overall multiplier, ψ is

specified as a tall matrix consisting of basis functions and M is treated as a free variable.

However, the nature of the gain-scheduling problem necessitates the use of the inverse of

the multiplier ψ∗Mψ, which has the simple expression ψ−1M−1ψ−∗ only if M and ψ are

both square and invertible. Hence, it is essential that one should be able to go back and forth

between tall factorizations and square factorizations without losing equivalence.

An additional difficulty arises due to the elimination procedure that results in the disappearance

of all portions of the multipliers related to the controller. Once the existence conditions for

the controller are satisfied, the first step towards obtaining the controller is the construction

of the full multiplier from portions of itself and its inverse. In the case of static multipliers,

this procedure involves no difficulties. However, when the multipliers are dynamic, a straight-

forward application of the same procedure introduces additional dynamics not found in the

solvability conditions. This makes it necessary to re-solve the existence conditions involving

multipliers with new dynamics, leading to even more complications.

Here, we propose a solution to the gain-scheduled control design problem using dynamic

D-scales. Our main result consists of convex conditions for the existence of a robustly

stabilizing controller. In this setting, the difficulty with tall/square factorizations described

above is circumvented in the proofs through the solution of AREs. The Lyapunov certificates

in the existence conditions can be shifted back and forth, resulting in certificates for tall

and square outer factors. Thus, we can take advantage of both tall (for basis functions) and

square (for inverse operations) outer factors. Moreover, instead of extending the dynamic

multipliers in a way similar to the static case, we propose a novel extension that precludes

any additional dynamics. These findings can be seen as a preliminary step towards a general

solution involving dynamic multipliers with no structural constraints. A numerical example

highlights the application of our results to a mechanical control system.
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The paper is organized as follows: In Section II, we introduce the problem setting and remind

the reader of dynamic D-scales. The main result is given in Section III, and its proof follows in

Section IV. The numerical example in Section V demonstrates the application of the findings

of the paper. A summary of the main result and a discussion of possible future directions are

given in Section VI. The Appendix contains some technical results used in the paper.

Notation: The space of matrix-valued functions with entries that are essentially bounded on

the imaginary axis is denoted by L∞. The symbol C0 is used for the extended imaginary axis

iR ∪ {∞}. The inertia of a Hermitian matrix M is in(M) = (n+, n−, n0), where n+, n−, n0

denote the number of positive, negative and zero eigenvalues of M . For any matrix A, we

denote by A⊥ a basis matrix of the orthogonal complement of the image of A. The Kronecker

product of A and B is represented by A ⊗ B. For a transfer matrix G =



A B

C D


, we

denote G∗(s) = G(−s)T . We always use the realizations G∗ =



−AT CT

−BT DT


 and G−1 =



A−BD−1C BD−1

−D−1C D−1


 if D is invertible. In expressions like G∗MG we address M as

middle term and G as outer term/factor (not to be confused with outer transfer matrices), and

we also use such a convention for LMIs like the one above. We represent the product A∗BA

as (?)∗BA and the matrix




A B

B∗ C


 as



A B

? C


 whenever convenient. Lastly, we employ

J(M) := diag(M,−M) and M(X,M) :=




0 X 0

X 0 0

0 0 M



.
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II. GAIN-SCHEDULED CONTROL SYNTHESIS WITH DYNAMIC D-SCALES

A. System Configuration

Consider the gain-scheduled system in Figure 1. Let the nominal plant and controller be

realized as

G =




A Bp Bu

Cq Dqp Dqu

Cy Dyp 0




(1)

and K =




AK BKy BKpK

CKu DKuy DKupK

CKqK DKqKy
DKqKpK



. (2)

Then, the nominal closed-loop system is

Gcl :=



Aa +Ba

uKC
a
y Ba

p +Ba
uKD

a
yp

Ca
q +Da

quKC
a
y Da

qp +Da
quKD

a
yp


 ,

where the superscript “a” stands for “augmented” and


Aa Ba

p

Ca
q Da

qp


+




Ba
u

Da
qu


K

(
Ca
y Da

yp

)

:=




A 0 Bp 0

0 0 0 0

Cq 0 Dqp 0

0 0 0 0




+




Bu 0 0

0 0 I

Dqu 0 0

0 I 0







DKuy DupK CKu

DqKy DqKpK CqK

BKy BpK AK







Cy 0 Dyp 0

0 0 0 I

0 I 0 0



.

The uncertainty blocks ∆ and ∆K are structured as

∆ =
m

diag
i=1

(δiIdi) and ∆K =
m

diag
i=1

(
δiIdKi

)
,

where ‖δi‖∞ ≤ 1 ∀i = 1 : m and
∑m

i=1 di =: d and
∑m

i=1 dKi =: dK .
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B. D-scales and bases for RH∞

It is well-known [24] that robust stability of the interconnection in Figure 1 is guaranteed if

Gcl is internally stable and if there exists a ψcl ∈ RH∞ such that


Gcl

I




∗

ψ∗clψcl 0

0 −ψ∗clψcl






Gcl

I


 ≺ 0 (3)

on C0, where ψcl =

(
ψG ψK

)
,

ψG =
m

diag
i=1

(ψiG) , and ψK =
m

diag
i=1

(ψiK ) .

The term ψ∗clψcl is commonly referred to as a D-scale in the robust control literature.

In searching for appropriate scalings, it is desirable to use a basis of suitable functions in

RH∞. Toward this end, we choose any p > 0 and introduce

bν(s) :=

(
1 s−p

s+p

(
s−p
s+p

)2

· · ·
(
s−p
s+p

)ν )T
(4)

with input-balanced (minimal) realization bν =



Abν Bbν

Cbν Dbν


 for any ν ∈ N. Moreover we

use the notation

Adψν Bd

ψν

Cd
ψν

Dd
ψν


 :=



Id ⊗ Abν Id ⊗Bbν

Id ⊗ Cbν Id ⊗Dbν


 and



Adφν Bd

φν

Cd
φν

Dd
φν


 :=



Id ⊗ ATbν Id ⊗ CT

bν

Id ⊗BT
bν
Id ⊗DT

bν


 .

Then, any element in RHd×d
∞ can be C0-uniformly approximated to arbitrary accuracy by

Ud
ν



Adψν Bd

ψν

Cd
ψν

Dd
ψν


 or



Adφν Bd

φν

Cd
φν

Dd
φν


V d

ν ,

respectively, through an appropriate choice of Ud
ν and V d

ν and a sufficiently large ν [14].

III. MAIN RESULT

In what follows, we define

U :=




0

0

CT
y

DT
yp



⊥

and V :=




0

0

Bu

Dqu



⊥

August 24, 2010 DRAFT
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where the row-dimension of the zero blocks in the definitions of U and V are equal to those

of ANψν and ANφν respectively.

Theorem 1: There exists a gain-scheduled controller as in (2) that renders Gcl internally

stable and satisfies (3) for some structured ψcl ∈ RH∞ if and only if there exist some

positive integer ν and symmetric matrices X , Y , R = diagmi=1 (Ri), M = diagmi=1 (Mi) and

N = diagmi=1 (Ni) such that

?T ?T M (X, J(M))




I 0 0 0

0 I 0 0

0 0 I 0

Adψν 0 Bd
ψν
Cq B

d
ψν
Dqp

0 Adψν 0 Bd
ψν

0 0 A Bp

Cd
ψν

0 Dd
ψν
Cq D

d
ψν
Dqp

0 Cd
ψν

0 Dd
ψν




U ≺ 0, (5)

?T ?T M (Y, J(N))




−
(
Adφν

)T
0 0

(
Cdφν

)T

0 −
(
Adφν

)T
−
(
Adφν

)T
BT
p −

(
Cdφν

)T
DT
qp

0 0 −AT −CTq

I 0 0 0

0 I 0 0

0 0 I 0

−
(
Bd
φν

)T
0 0

(
Dd
φν

)T

0 −
(
Bd
φν

)T
−
(
Dd
φν

)T
BT
p −

(
Dd
φν

)T
DT
qp




V � 0, (6)
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?TM




Ri,




Mi 0 0 0

0 Ni 0 0

0 0 0 I

0 0 I 0










I 0 0 0

0 I 0 0

Adiψν 0 Bdi
ψν

0

0 −
(
Adiφν
)T

0
(
Cdi
φν

)T

Cdi
ψν

0 Ddi
ψν

0

0 −
(
Bdi
φν

)T
0
(
Ddi
φν

)T

0 0 I 0

0 0 0 I




� 0 (7)

for i = 1 : m and



X11 −R11 X12 X13 −R12 0 0

X21 X22 +R11 X23 0 −R12 0

X31 X32 X33 0 0 I

−R21 0 0 Y11 −R22 Y12 Y13

0 −R21 0 Y21 Y22 +R22 Y23

0 0 I Y31 Y32 Y33




� 0. (8)

Note that, for reasons of computational complexity, one can impose different lengths of the

basis vectors (4) for different sub-blocks of the uncertainty ∆. Actually, the ”if” statement

in Theorem 1 remains true for arbitrary vectors of transfer functions replacing bν for each

uncertainty block, as long as they are all proper and stable.

Remark 2: Based on solutions of the synthesis LMIs one can construct a controller that has

dynamic order dim(A) + 2νd, which is reduced in case that the left-hand side of (8) loses

rank. Similarly, the dimension dKi of the scheduling block δiIdKi is determined by the rank

of the left-hand side of (7); if the rank is full the dimension equals di(1 + 2ν) which leads

to the overall dimension d(1 + 2ν) of ∆K .

Remark 3: When external disturbances (w) and controlled outputs (z) are present in the

system, the problem of designing robustly stabilizing controllers that achieve a closed-loop

August 24, 2010 DRAFT
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H∞-gain less than γ can be solved if replacing the plant by



A Bp Bw Bu

Cq Dqp Dqw Dqu

Cz Dzp Dzw Dzu

Cy Dyp Dyw 0




,

the multiplier diag (ψ∗iMiψi,−ψ∗iMiψi) by

diag
(
ψ∗iMiψi, γ

−1I,−ψ∗iMiψi,−γI
)

and diag (φiNiφ
∗
i ,−φiNiφ

∗
i ) by

diag
(
φiNiφ

∗
i , γI,−φiNiφ

∗
i ,−γ−1I

)
.

In this formulation, γ can be treated as a variable which, after taking the Schur-complement,

enters the LMIs linearly. The minimization of the upper bound of the robust H∞-norm is

then cast as an SDP.

IV. PROOF OF THEOREM 1

A. Necessity

Suppose that there exists a K that nominally stabilizes Gcl and satisfies (3) for some structured

ψcl ∈ RH∞. Our goal is to apply Part (ii) of Theorem 3 in [18]. For this purpose we

parameterize ψ∗clψcl as follows. The sub-blocks of ψcl are described with free coefficient

matrices UiGν and UiKν as

UiGν



Adiψν Bdi

ψν

Cdi
ψν

Ddi
ψν


 and UiKν



A
dKi
ψν

B
dKi
ψν

C
dKi
ψν

D
dKi
ψν




respectively. If
(
UGν UKν

)
:=

(
diagmi=1

(
UiGν

)
diagmi=1

(
UiKν

) )

then ψcl is parameterized as

(
UGν UKν

)


Ad+dK
ψν

Bd+dK
ψν

Cd+dK
ψν

Dd+dK
ψν


 ,
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which leads to the description of ψ∗clψcl as


Ad+dK
ψν

Bd+dK
ψν

Cd+dK
ψν

Dd+dK
ψν




∗

M̂



Ad+dK
ψν

Bd+dK
ψν

Cd+dK
ψν

Dd+dK
ψν




in which

M̂ :=

(
UGν UKν

)T (
UGν UKν

)
.

Similarly, the inverse of ψ∗clψcl is written as φclφ∗cl with stable φcl =



φG

φK


 and

φG =
m

diag
i=1

(φiG) , φK =
m

diag
i=1

(φiK ) .

The diagonal sub-blocks of φcl are approximated with ViGν and ViKν as


Adiφν Bdi

φν

Cdi
φν

Ddi
φν


ViGν and



A
dKi
φν

B
dKi
φν

C
dKi
φν

D
dKi
φν


ViKν .

Then the approximation of φclφ∗cl is described as


Ad+dK
φν

Bd+dK
φν

Cd+dK
φν

Dd+dK
φν


 N̂



Ad+dK
φν

Bd+dK
φν

Cd+dK
φν

Dd+dK
φν




∗

where 

VGν

VKν


 :=




diagmi=1

(
ViGν

)

diagmi=1

(
ViKν

)




and

N̂ :=



VGν

VKν






VGν

VKν




T

.

Recall that Gcl in Figure 1 can be viewed as the interconnection of Ge realized as




A Be
p Be

u

Ce
q D

e
qp D

e
qu

Ce
y D

e
yp 0




:=




A Bp 0 Bu 0

Cq Dqp 0 Dqu 0

0 0 0 0 IρK

Cy Dyp 0 0 0

0 0 IµK 0 0




with the controller (2). Then LPV-synthesis boils down to robust controller synthesis for this

extended system against diag(∆,∆K) as shown in Figure 2.
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 ∆ 0

0 ∆K




Ge

K


 y

pK





 u

qK





 q

qK





 p

pK




Fig. 2. Equivalent robust control synthesis problem.

Despite the fact that the multiplier structure is somewhat different, we can hence apply

Theorem 3, Part (ii) in [18] and conclude that, for some sufficiently large ν and with the

annihilators

U e :=




0

0

(
Ce
y

)T
(
De
yp

)T



⊥

and Ve :=




0

0

Be
u

De
qu



⊥

for the extended system, the LMIs

?T ?T M
(
X̂, J(M̂)

)




I 0 0 0

0 I 0 0

0 0 I 0

Ad+dK
ψν

0 Bd+dK
ψν

Ce
q Bd+dK

ψν
De
qp

0 Ad+dK
ψν

0 Bd+dK
ψν

0 0 A Be
p

Cd+dK
ψν

0 Dd+dK
ψν

Ce
q D

d+dK
ψν

De
qp

0 Cd+dK
ψν

0 Dd+dK
ψν




U e ≺ 0 (9)

?T ?TM
(
Ŷ , J(N̂)

)
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−
(
Ad+dK
φν

)T
0 0

(
Cd+dK
φν

)T

0 −
(
Ad+dK
φν

)T
−
(
Cd+dK
φν

)T (
Be
p

)T −
(
Cd+dK
φν

)T (
De
qp

)T

0 0 −AT −
(
Ce
q

)T

I 0 0 0

0 I 0 0

0 0 I 0

−
(
Bd+dK
φν

)T
0 0

(
Dd+dK
φν

)T

0 −
(
Bd+dK
φν

)T
−
(
Dd+dK
φν

)T (
Be
p

)T −
(
Dd+dK
φν

)T (
De
qp

)T




Ve � 0 (10)

?TM




R̂,




M̂ 0 0 0

0 N̂ 0 0

0 0 0 I

0 0 I 0










I 0 0 0

0 I 0 0

Ad+dK
ψν

0 Bd+dK
ψν

0

0 −
(
Ad+dK
φν

)T
0

(
Cd+dK
φν

)T

Cd+dK
ψν

0 Dd+dK
ψν

0

0 −
(
Bd+dK
φν

)T
0

(
Dd+dK
φν

)T

0 0 I 0

0 0 0 I




� 0, (11)




X̂11 − R̂11 X̂12 X̂13 −R̂12 0 0

X̂21 X̂22 + R̂11 X̂23 0 −R̂12 0

X̂31 X̂32 X̂33 0 0 I

X̂c1 X̂c2 X̂c3 0 0 0

−R̂21 0 0 Ŷ11 − R̂22 Ŷ12 Ŷ13

0 −R̂21 0 Ŷ21 Ŷ22 + R̂22 Ŷ23

0 0 I Ŷ31 Ŷ32 Ŷ33




� 0 (12)

are feasible. Exploiting the structure of the realization of Ge and that induced for U e, Ve, the

inequalities (9) and (10) simplify to

?T ?TM
(
X̂, J(M̂)

)
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I 0 0 0

0 I 0 0

0 0 I 0

Adψν 0

0 AdKψν


 0



Bd
ψν

0


Cq



Bd
ψν

0


Dqp

0



Adψν 0

0 AdKψν


 0



Bd
ψν

0




0 0 A Bp

Cd
ψν

0

0 CdK
ψν


 0



Dd
ψν

0


Cq



Dd
ψν

0


Dqp

0



Cd
ψν

0

0 CdK
ψν


 0



Dd
ψν

0







U ≺ 0 (13)

and

?T ?TM
(
Ŷ , J(N̂)

)




−



Adφν 0

0 AdKφν




T

0 0



(
Cd
φν

)T

0




0 −



Adφν 0

0 AdKφν




T

−



(
Cd
φν

)T

0


BT

p −



(
Cd
φν

)T

0


DT

qp

0 0 −AT −CT
q

I 0 0 0

0 I 0 0

0 0 I 0

−



Bd
φν

0

0 BdK
φν




T

0 0



(
Dd
φν

)T

0




0 −



Bd
φν

0

0 BdK
φν




T

−



(
Dd
φν

)T

0


BT

p −



(
Dd
φν

)T

0


DT

qp




V � 0.

(14)
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By defining E :=



I

0


, F :=



I

0


 of appropriate dimensions, these imply, by canceling

the columns of the outer terms related to uncontrollable modes of the multiplier dynamics,

the inequalities (5) and (6) where

X := diag (E,E, I)T X̂ diag (E,E, I) ,

Y := diag (F, F, I)T Ŷ diag (F, F, I) ,

M := ETM̂E and N := F T N̂F.

The congruence transformation T T (?)T with T := diag (E,E, I, F, F, I) on (12) yields (8)

with the definition R := diag (E,F )T R̂diag (E,F ) . Now delete columns from (11) to

obtain

?TM




R̂,




M̂ 0 0 0

0 N̂ 0 0

0 0 0 I

0 0 I 0










I 0 0 0

0 I 0 0

Adψν 0

0 AdKψν


 0



Bd
ψν

0


 0

0 −



Adφν 0

0 AdKφν




T

0



Cd
φν

0




T



Cd
ψν

0

0 CdK
ψν


 0



Dd
ψν

0


 0

0 −



Bd
φν

0

0 BdK
φν




T

0



Dd
φν

0




T

0 0



I

0


 0

0 0 0



I

0







� 0.
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By uncontrollability again, we have

?TM




R,




M̂ 0 0 0

0 N̂ 0 0

0 0 0 I

0 0 I 0










I 0 0 0

0 I 0 0

Adψν 0 Bd
ψν

0

0 −
(
Adφν
)T

0
(
Cd
φν

)T


Cd
ψν

0


 0



Dd
ψν

0


 0

0 −



Bd
φν

0




T

0



Dd
φν

0




T

0 0



I

0


 0

0 0 0



I

0







� 0.

Simplification yields (7). This proves necessity.

B. Sufficiency

Step 1: Squaring of the outer factors. Note that the inequalities (5) and (7) involve the

multiplier



Adψν Bd

ψν

Cd
ψν

Dd
ψν




∗

M



Adψν Bd

ψν

Cd
ψν

Dd
ψν


 with an outer factor that is typically tall; a similar

observation can be made for (6) and (7) and the dual multiplier. For technical reasons, we

need to work with square outer factors in inequalities (5), (6) and (7). This can be achieved

by shifting X and Y using solutions of AREs related to the spectral factorizations of the

multiplier sub-blocks ψ∗iMiψi and φiNiφ
∗
i .

Primal Inequality. Suppose inequalities (5)-(8) are satisfied. Let Ẑi represent the stabilizing

solution of
(
Aniψν

)T
Ẑi + ẐiA

ni
ψν

+
(
Cni
ψν

)T
MiC

ni
ψν
−
(
?
)T
M̂−1

i

((
Bni
ψν

)T
Ẑi +

(
Dni
ψν

)T
MiC

ni
ψν

)
= 0,

where M̂i :=
(
Dni
ψν

)T
MiD

ni
ψν

. In that case, we have ψ∗iMiψi = ψ∗iψi, where

ψi =



Aψi Bψi

Cψi Dψi


 =:



Aniψν Bni

ψν

Cψi M̂
1/2
i
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with Cψi := M̂
−1/2
i

((
Bni
ψν

)T
Ẑi +

(
Dni
ψν

)T
MiC

ni
ψν

)
. Let Ẑ := diagmi=1(Ẑi) and



Aψ Bψ

Cψ Dψ


 :=



diagmi=1 (Aψi) diagmi=1 (Bψi)

diagmi=1 (Cψi) diagmi=1 (Dψi)


 .

As in the proof of Lemma 1 in [18], inequality (5) can now be rewritten as

?T ?T M (X , J(I))




I 0 0 0

0 I 0 0

0 0 I 0

Aψ 0 BψCq BψDqp

0 Aψ 0 Bψ

0 0 A Bp

Cψ 0 DψCq DψDqp

0 Cψ 0 Dψ




U ≺ 0, (15)

where X := X + diag
(
−Ẑ, Ẑ, 0

)
.

Dual Inequality. Similarly, let Ŵi represent the stabilizing (smallest) solution of

AniφνŴi + Ŵi

(
Aniφν
)T −Bni

φν
Ni

(
Bni
φν

)T
+
(
Ŵi

(
Cni
φν

)T −BφνNi

(
Dni
φν

)T)
N̂−1
i

(
?
)

= 0,

where N̂i := Dni
φν
Ni

(
Dni
φν

)T . Then, φiNiφ
∗
i = φiφ

∗
i , where

φi =



Aφi Bφi

Cφi Dφi


 =:



Aniφν Bφi

Cni
φν

N̂
1/2
i




with Bφi := −
(
Ŵi

(
Cni
φν

)T −Bni
φν
Ni

(
Dni
φν

)T)
N̂
−1/2
i . Let Ŵ := diagmi=1

(
Ŵi

)
and



Aφ Bφ

Cφ Dφ


 :=



diagmi=1 (Aφi) diagmi=1 (Bφi)

diagmi=1 (Cφi) diagmi=1 (Dφi)


 .
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Hence, inequality (6) can be rewritten as

?T ?T M (Y , J(I))




−ATφ 0 0 CT
φ

0 −ATφ −CT
φB

T
p −CT

φD
T
qp

0 0 −AT −CT
q

I 0 0 0

0 I 0 0

0 0 I 0

−BT
φ 0 0 DT

φ

0 −BT
φ −DT

φB
T
p −DT

φD
T
qp




V � 0, (16)

where Y := Y + diag
(
−Ŵ , Ŵ , 0

)
.

Multiplier Coupling. Also inequality (7) can now be rewritten as

?TM







Ri,




I 0 0 0

0 I 0 0

0 0 0 I

0 0 I 0













I 0 0 0

0 I 0 0

Aψi 0 Bψi 0

0 −ATφi 0 CT
φi

Cψi 0 Dψi 0

0 −BT
φi

0 DT
φi

0 0 I 0

0 0 0 I




� 0 (17)

for i = 1 : m, where Ri := Ri + diag
(
−Ẑi,−Ŵi

)
.

X-Y Coupling: Trivially the coupling condition can be expressed as


X + diag (−R11,R11, 0) diag (−R12,−R12, I)

diag (−R12,−R12, I) Y + diag (−R22,R22, 0)


 � 0.

Step 2: Coordinate transformation on ψi and φi. Observe thatRi12 are square for i = 1 : m

and that they can be rendered non-singular by perturbation. With an appropriate coordinate

transformation on the states of either ψi or φi, we obtain Ri12 = RT
i21

= −I for each

August 24, 2010 DRAFT



18

i = 1 : m. Let the transformed realizations for ψi and φi be denoted by


Âψi B̂ψi

Ĉψi D̂ψi


 and



Âφi B̂φi

Ĉφi D̂φi




and define 

Âψ B̂ψ

Ĉψ D̂ψ


 :=



diagmi=1

(
Âψi

)
diagmi=1

(
B̂ψi

)

diagmi=1

(
Ĉψi

)
diagmi=1

(
D̂ψi

)


 ,



Âφ B̂φ

Ĉφ D̂φ


 :=



diagmi=1

(
Âφi

)
diagmi=1

(
B̂φi

)

diagmi=1

(
Ĉφi

)
diagmi=1

(
D̂φi

)


 .

Conditions (5)-(8) can now be rewritten as

?T ?T M
(
X̂ , J(I)

)




I 0 0 0

0 I 0 0

0 0 I 0

Âψ 0 B̂ψCq B̂ψDqp

0 Âψ 0 B̂ψ

0 0 A Bp

Ĉψ 0 D̂ψCq D̂ψDqp

0 Ĉψ 0 D̂ψ




U ≺ 0 (18)

?T ?T M
(
Ŷ , J(I)

)




−ÂTφ 0 0 ĈT
φ

0 −ÂTφ −ĈT
φB

T
p −ĈT

φD
T
qp

0 0 −AT −CT
q

I 0 0 0

0 I 0 0

0 0 I 0

−B̂T
φ 0 0 D̂T

φ

0 −B̂T
φ −D̂T

φB
T
p −D̂T

φD
T
qp




V � 0. (19)
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?TM






R̂11 −I

−I R̂22


 ,




I 0 0 0

0 I 0 0

0 0 0 I

0 0 I 0










I 0 0 0

0 I 0 0

Âψ 0 B̂ψ 0

0 −ÂTφ 0 ĈT
φ

Ĉψ 0 D̂ψ 0

0 −B̂T
φ 0 D̂T

φ

0 0 I 0

0 0 0 I




� 0 (20)




X̂11 − R̂11 X̂12 X̂13 I 0 0

X̂21 X̂22 + R̂11 X̂23 0 I 0

X̂31 X̂32 X̂33 0 0 I

I 0 0 Ŷ11 − R̂22 Ŷ12 Ŷ13

0 I 0 Ŷ21 Ŷ22 + R̂22 Ŷ13

0 0 I Ŷ31 Ŷ32 Ŷ33




� 0, (21)

where X̂ , Ŷ , R̂11 and R̂22 are obtained by congruence transformations in accordance with

the performed coordinate changes.

Step 3. Construction of the extended multiplier. In this key step which gracefully ex-

ploits (20) (as a diagonal combination of inequalities similar to (17)), we now extend each




Âψi B̂ψi

Ĉψi D̂ψi


 ,



Âφi B̂φi

Ĉφi D̂φi





 pair as in Lemma 7. When the extended multipliers are placed

block-diagonally, we obtain Aψ, BψG , BψK , CψG , CψK , DψGG , DψGK and Aφ, BφG , BφK , CφG ,

CφK , DφGG , DφGK such that

(i)



Âψ B̂ψ

Ĉψ D̂ψ




∗ 

Âψ B̂ψ

Ĉψ D̂ψ


 =




Aψ BψG

CψG DψGG

CψK 0




∗ 


Aψ BψG

CψG DψGG

CψK 0



,

(ii)



Âφ B̂φ

Ĉφ D̂φ






Âφ B̂φ

Ĉφ D̂φ




∗

=



Aφ BφG BφK

CφG DφGG DφGK






Aφ BφG BφK

CφG DφGG DφGK




∗

,
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(iii)




Aψ BψG BψK

CψG DψGG DψGK

CψK 0 I




−1

=




Aφ BφG BφK

CφG DφGG DφGK

CφK 0 I



.

Step 4. Construction of the controller. Recall from Lemma 7 that (i) and (ii) are certified

by R̂11 and R̂22 respectively. We can then apply the Gluing Lemma ([18, Lemma 6]) to infer

that conditions (18) and (19) become

?T ?TM


X̂ + diag

(
−R̂11, R̂11, 0

)
, J



I 0

0 I










I 0 0 0

0 I 0 0

0 0 I 0

Aψ 0 BψGCq BψGDqp

0 Aψ 0 BψG

0 0 A Bp

CψG

CψK







0

0






DψGG

0


Cq



DψGG

0


Dqp




0

0






CψG

CψK







0

0






DψGG

0







U ≺ 0 (22)

and

?T ?TM


Ŷ + diag

(
−R̂22, R̂22, 0

)
, J



I 0

0 I







August 24, 2010 DRAFT



21




−ATφ 0 0 CT
φG

0 −ATφ −CT
φG
BT
p −CT

φG
DT
qp

0 0 −AT −CT
q

I 0 0 0

0 I 0 0

0 0 I 0

−



BT
φG

BT
φK







0

0







0

0






DT
φGG

DT
φGK







0

0


 −



BT
φG

BT
φK


 −



DT
φGG

DT
φGK


BT

p −



DT
φGG

DT
φGK


DT

qp




V � 0 (23)

respectively. Due to (21), we can expand X̂ as X̂ a :=




X̂11 − R̂11 X̂21 X̂13 X̂1c

X̂21 X̂22 + R̂11 X̂23 X̂2c

X̂31 X̂32 X̂33 X̂3c

X̂c1 X̂c2 X̂c3 X̂cc




�

0, so that
(
X̂ a
)−1

=: Ŷa has the form

Ŷa =




Ŷ11 − R̂22 Ŷ12 Ŷ13 Ŷ1c

Ŷ21 Ŷ22 + R̂22 Ŷ23 Ŷ2c

Ŷ31 Ŷ33 Ŷ33 Ŷ3c

Ŷc1 Ŷc2 Ŷc3 Ŷcc




� 0.

We can now expand inequalities (22) and (23) as

?T ?T M
(
X̂ a, J(I)

)




I 0 0 0

0 I 0 0

0 0 I 0

Aψ 0 BψclC
a
q BψclD

a
qp

0 Aψ 0 Bψcl

0 0 Aa Ba
p

Cψcl 0 DψclC
a
q DψclD

a
qp

0 Cψcl 0 Dψcl




Ua ≺ 0,
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and

?T ?T M
(
Ŷa, J(I)

)




−ATφ 0 0 CT
φcl

0 −ATφ −CT
φcl
BT
p −CT

φcl
Da
qp
T

0 0 −AaT −Ca
q
T

I 0 0 0

0 I 0 0

0 0 I 0

−BT
φcl

0 0 DT
φcl

0 −BT
φcl
−DT

φcl
Ba
p
T −DT

φcl
Da
qp
T




Va � 0,

where Ua :=




0

0

(
Ca
y

)T
(
Da
yp

)T



⊥

, Va :=




0

0

Ba
u

Da
qu



⊥

and



Aψ Bψcl

Cψcl Dψcl


 =




Aψ BψG BψK

CψG DψGG DψGK

CψK 0 I



, and



Aφ Bφcl

Cφcl Dφcl


 =




Aφ BφG BφK

CφG DφGG DφGK

CφK 0 I



,

just because the left-hand sides of the respective inequalities turn out to be identical.

Now the controller construction is relatively routine. In fact, by Lemma 4, we arrived at the

conditions for the existence of K such that

(UA + UBKUC)TΠ(UA + UBKUC) ≺ 0,
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where Π :=M
(
X̂ a, J(I)

)
and

UA :=




I 0 0 0

0 I 0 0

0 0 I 0

Aψ 0 BψclC
a
q BψclD

a
qp

0 Aψ 0 Bψcl

0 0 Aa Ba
p

Cψcl 0 DψclC
a
q DψclD

a
qp

0 Cψcl 0 Dψcl




, UB :=




0

0

0

BψclD
a
qu

0

Ba
u

DψclD
a
qu

0




, UC :=

(
0 0 Ca

y Da
yp

)
.

For clarity, let α× β and κ× λ be the dimensions of UA and K, respectively. Since

in(Π) = in




0 X̂ a

X̂ a 0


+ in



I 0

0 −I


 ,

it is easily verified that in(Π) = (α− β, β, 0). The desired K can now be obtained as follows.

Defining Θ :=

(
UA UB

)T
Π

(
UA UB

)
of dimension β + κ, we can rewrite




Iβ

KUC




T

Θ




Iβ

KUC


 ≺ 0.

Hence, n−(Θ) ≥ β. However, since Θ is obtained by restricting Π to a certain subspace, we

also have n−(Θ) ≤ n−(Π) = β. The conclusion is that in(Θ) = (κ, β, 0). Then, by [15], the

inequality above can be written as


−UTCKT

Iκ




T

Θ−1



−UTCKT

Iκ


 = ?T



−UTC 0

0 Iκ




T

Θ−1



−UTC 0

0 Iκ




︸ ︷︷ ︸
Ω




KT

Iκ


 � 0.

Similarly, we can also conclude that in(Ω) = (κ, λ, 0). Now choose a matrix



S1

S2


 ∈

IR(κ+λ)×κ with S2 invertible such that


S1

S2




T

Ω



S1

S2


 � 0 ⇐⇒



S1S−1

2

Iκ




T

Ω



S1S−1

2

Iκ


 � 0.
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Then, can take K =
(
S1S−1

2

)T . Finally, nominal stability of the closed-loop system is

guaranteed by the fact that X̂a � 0.

Generically X̂ a has a dimension equal to that of the left-hand side of (21), which is 2(dim(A)+

2 dim(Âψ)) = 2 dim(A)+4νN . Hence the dynamic order of the controller is dim(A)+2νN .

The size of the scheduling block is determined by the numbers of added rows/columns in

the extended primal/dual multipliers, i.e., the row/colum dimension of CφK /BφK respectively.

According to Lemma 7 this equals ni + 2niν for each individual block, which sums up to

the dimension N(1 + 2ν) for ∆K .

This completes the proof.

V. NUMERICAL EXAMPLE

Consider the mechanical system shown in Figure 3.

mm

x1
k

F

x2

w
c

Fig. 3. Mechanical system with uncertain spring and damper.

We assume that the values of k and c are constant, but they vary around their nominal values,

k0 and c0, as k = k0(1 + k∗δk) and c = c0(1 + c∗δc), where |δk| ≤ 1 and |δc| ≤ 1. Take x1

as the measured output and x2 as the controlled output. We can now express the system as




q

z

y




=




0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−k0
m

k0
m

− c0
m

c0
m

−
√

k0k∗

m
−
√

c0c∗

m
0 1

m

k0
m

−k0
m

c0
m

− c0
m

√
k0k∗

m

√
c0c∗

m
1
m

0
√

k0k∗

m
−
√

k0k∗

m
0 0 0 0 0 0

0 0
√

c0c∗

m
−
√

c0c∗

m
0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0







p

w

u




August 24, 2010 DRAFT



25

and p =



δk 0

0 δc


 q. For the numerical values m0 = 10 kg, k0 = 10 N/m, c0 = 10 Ns/m and

k∗ = c∗ = 0.75, we calculate the minimum achievable L2-gains for different dynamic orders

(ν), and we obtain the figures shown in the following table:

ν 0 1 2 3 4

γ 4.2 0.45 0.44 0.44 0.44

nAK 4 8 12 16 20

nKδk 1 3 5 7 9

nKδc 1 3 5 7 9

The rows below the γ values indicate the dynamic order of the resulting controller (i.e., nAK )

and the sizes of the δk and δc blocks in ∆K (i.e., nKδk and nKδc ). Simulation results in

response to a step disturbance of magnitude 10 are shown for different ν values in Figure 4.

The results are given for δk = δc = 0.75.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

x 2(t
) 

(m
)

 

 

ν=0
ν=1
ν=2
ν=3
ν=4

Fig. 4. Responses to a step disturbance for different ν values.

VI. SUMMARY AND DISCUSSION

We have given necessary and sufficient conditions for the existence of robustly stabilizing

gain-scheduled controllers for uncertain LFT systems using dynamic D-scales. The existence

conditions consist of finite-dimensional LMIs where the specific structure of the D-scales
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allows us to search for suitable multipliers with arbitrary accuracy. The application of the

main result to a numerical example shows significant reduction in conservatism as the dynamic

order of the D-scales is increased.

The extension of the proposed method to the general setting of IQCs with dynamic multipliers

is still an open problem. The range of applications of such techniques is large. On the one

hand, one can systematically reduce conservatism for the synthesis of controllers that are

scheduled with non-linearities [13], delays [5], or any other uncertainty blocks for which

IQC-results are available. On the other hand, since the design of distributed controllers in [4]

is based on static IQC techniques, our results are expected to have impact for the reduction

of conservatism in structured controller synthesis.
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APPENDIX

A. Quadratic Elimination

Lemma 4: [8] Let A ∈ IR(k+n)×n, B ∈ IR(k+n)×m, C ∈ IRp×n and Π = ΠT ∈ IR(k+n)×(k+n) be

given. Assume in(Π) = (k, n, 0). Then, there exists a K ∈ IRm×p such that

(A+ BKC)TΠ(A+ BKC) ≺ 0 (24)

if and only if

(
CT
)T
⊥A

TΠA
(
CT
)
⊥ ≺ 0 (25a)

(
A B

)T

⊥
Π−1

(
A B

)

⊥
� 0. (25b)

B. Multiplier Extension

Before proceeding to the main result of this section, Lemma 7, let us first formulate two

elementary auxiliary facts.
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Lemma 5: If D = D̃−1 then



A B

C D




−1

=



Ã B̃

C̃ D̃


 iff




CTC (Ã− A)T CTD −C̃T

? B̃B̃T −B −B̃D̃T

? ? DTD I

? ? ? D̃D̃T




� 0.

Proof: After elimination of the blocks CTD and DTC by congruence, the inequality is

equivalent to



0 (Ã− A+BD−1C)T 0 −(C̃ +D−1C)T

? B̃B̃T −B −B̃D̃T

? ? DTD I

? ? ? D̃D̃T




� 0.

This holds iff Ã = A − BD−1C, C̃ = −D−1C and (if exploiting D = D̃−1 and taking the

Schur complement)


B̃B̃T −B

−BT DTD


−



−B̃

DT






−B̃

DT




T

� 0.

The latter is, in turn, equivalent to B = B̃D = B̃D̃−1.

Lemma 6: Let B and C have full column and row rank and suppose that


CTC AT

A BBT


 � 0. (26)

Then A = BLC with some (unique) L satisfying ‖L‖ ≤ 1. If (26) is strict then L is a strict

contraction.

Proof: By (26), xTB = 0 and Cy = 0 imply xTA = 0 and Ay = 0. Hence there

exists a solution L of the equation A = BLC. With the left- and right-inverses B+ and

C+, it is actually given by L = B+AC+. Right-multiplying (26) with diag(C+, B+) and

left-multiplying the transpose implies




I (B+AC+)T

B+AC+ I


 � 0 which reveals that L is

a contraction. A strict inequality leads to a strict contraction.
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Lemma 7: Suppose that



A B

C D


 and



Ã B̃

C̃ D̃


 with square and non-singular D and D̃ satisfy




ATR +RA+ CTC (Ã− A)T RB + CTD −C̃T

Ã− A −ÃR̃− R̃ÃT + B̃B̃T −B R̃C̃T − B̃D̃T

BTR +DTC −BT DTD I

−C̃ C̃R̃− D̃B̃T I D̃D̃T




� 0. (27)

for some R = RT and R̃ = R̃T . Then, there exist extensions such that

(i)



A B

C D




∗ 

A B

C D


 =




A B

C1 D

C2 0




∗ 


A B

C1 D

C2 0




(ii)



Ã B̃

C̃ D̃






Ã B̃

C̃ D̃




∗

=



Ã B̃1 B̃2

C̃ D̃11 D̃12






Ã B̃1 B̃2

C̃ D̃11 D̃12




∗

(iii)




A B B2

C1 D D12

C2 0 I




−1

=




Ã B̃1 B̃2

C̃ D̃11 D̃12

C̃2 0 I




.

The factorizations (i) and (ii) are certified by R and R̃ respectively. If (27) is strict, the

dimension of the extended outer factors in (iii) is dim(A) + rowdim(C) plus dim(Ã) +

rowdim(C̃).

Proof: Motivated by (iii) and the inversion formula for realizations we choose

D̃11 = D−1 and B̃1 := B1D̃
−1
11 = BD−1. (28)

By congruence let us eliminate all off-diagonal blocks in the third row/column of (27). For

this purpose define C1 uniquely by solving the equation

RB + CTD = CT1 D (29)
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and note that B(DTD)−1 = B̃1D̃T11, B(DTD)−1BT = B̃1B̃T1 and (DTD)−1 = D̃11D̃T11. We

then arrive at


ATR +RA+ CTC − CT1 C1 (Ã− A)T + CT1 D−TBT 0 −C̃T − CT1 D−T

Ã− A+BD−1C1 −ÃR̃− R̃ÃT + B̃B̃T − B̃1B̃T1 0 R̃C̃T − B̃D̃T + B̃1D̃T11

0 0 DTD 0

−C̃ −D−1C1 C̃R̃− D̃B̃T + D̃11B̃T1 0 D̃D̃T − D̃11D̃T11




� 0.

(30)

Since the left-upper block is positive semi-definite, we can solve for a full-row-rank matrix

C20 such that

CT20C20 = ATR +RA+ CTC − CT1 C1.

We then obtain

ATR +RA+ CTC = CT1 C1 + CT2 C2, (31)

for any C2 that is given by

C2 = UC20 , where UTU = I. (32)

Note that U can be tall. Clearly (29) and (31) certify (i).

Canceling the first and third column in (30) reveals that the left-hand side of (33) is positive

semi-definite. We can thus determine a full-column-rank matrix
(
−B̃T20 D̃T120

)T
such that



−ÃR̃− R̃ÃT R̃C̃T

C̃R̃ 0


+



−B̃

D̃






−B̃

D̃




T

−



−B̃1

D̃11






−B̃1

D̃11




T

=



−B̃2

D̃12






−B̃2

D̃12




T

(33)

for all
(
−B̃T2 D̃T12

)T
given by



−B̃2

D̃12


 =



−B̃20

D̃120


VT , where VTV = I. (34)

Observe that (33) certifies (ii).

For the subsequent step we note that we can cancel the third block row/column in (30) and

exploit (31), (32) and (33), (34) to arrive at



CT20C20 (Ã− A)T + CT1 BTD−T −C̃T − CT1 D−T

(Ã− A) +BD−1C1 B̃20B̃T20 −B̃20D̃T120

−C̃ −D−1C1 −D̃120B̃T20 D̃120D̃T120



� 0. (35)
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Let us finally consider (iii). By Lemma 5 and using (28), this relation is enforced by



CT1 C1 + CT2 C2 (Ã− A)T CT1 D CT1 D12 + CT2 −C̃T −C̃T2
Ã− A B(DTD)−1BT + B̃2B̃T2 −B −B2 −B(DTD)−1 − B̃2D̃T12 −B̃2

DTC1 −BT DTD DTD12 I 0

DT12C1 + C2 −BT2 DT12D I +DT12D12 0 I

−C̃ ? I 0 (DTD)−1 + D̃12D̃T12 D̃12

−C̃2 −B̃T2 0 I D̃T12 I




� 0.

Again, we eliminate all off-diagonal blocks in the third row/column by congruence to arrive

at 


CT2 C2 ? 0 CT2 −C̃T − CT1 D−T −C̃T2
Ã− A+BD−1C1 B̃2B̃T2 0 −B2 +BD−1D12 −B̃2D̃T12 −B̃2

0 0 DTD 0 0 0

C2 ? 0 I −DT12D
−T I

−C̃ −DC1 −D̃12B̃T2 0 −D−1D12 D̃12D̃T12 D̃12

−C̃2 −B̃T2 0 I D̃T12 I




� 0.

Subtracting the last row/column from the fourth and dropping the trivial third row/column

leads to the equivalent inequality



CT2 C2 ? CT2 + C̃T2 −C̃T − CT1 D−T −C̃T2
Ã− A+BD−1C1 B̃2B̃T2 −B2 +BD−1D12 + B̃2 −B̃2D̃T12 −B̃2

C2 + C̃2 ? 0 −DT12D
−T − D̃T12 0

−C̃ −DC1 −D̃12B̃T2 −D−1D12 − D̃12 D̃12D̃T12 D̃12

−C̃2 −B̃T2 0 D̃T12 I




� 0.

This inequality is guaranteed to hold if we choose

C̃2 = −C2, D12 = −DD̃12, B2 = BD−1D12 + B̃2,

and if



CT2 C2 ? ?

Ã− A+BD−1C1 B̃2B̃T2 −B̃2D̃T12

−C̃ −D−1C1 −D̃12B̃T2 D̃12D̃T12



−




CT2
−B̃2

D̃12







CT2
−B̃2

D̃12




T

� 0. (36)
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Since the diagonal blocks of (36) in the given partition vanish, the inequality is enforced

through 

Ã− A+BD−1C1

−C̃ −D−1C1


−



−B̃2

D̃12


 C2 = 0. (37)

As the very last step it remains to show that we can indeed adjust U and V to render (37)

valid. By Lemma 6 and (35) we infer the existence of some L with ‖L‖ ≤ 1 such that


Ã− A+BD−1C1

−C̃ −D−1C1


−



−B̃20

D̃120


LC20 = 0.

It then suffices to choose the partial isometries such that VTU = L (whose existence is

guaranteed since L is a contraction) and to recall (32), (34) in order to conclude that (37)

holds.

Suppose that (27) is strict. Then the left-hand side of (33) is positive definite which implies

that the row dimension r of L is equal to that of



Ã

C̃


. Similarly, since the left-upper block

of (30) is positive definite, the column dimension c of L is dim(A). Moreover L is a strict

contraction. We can then take

U =




L

(I − LTL)
1
2


 and V =



I

0




of dimension (r + c)× c and (r + c)× r respectively.
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2008/005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed
problems in Banach spaces: convergence and applications to parameter identification
problems

2008/004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale
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