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Imaginary Kahlerian Killing spinors [

Nicolas Ginoux*and Uwe Semmelmann’

February 24, 2011

Abstract. We describe and to some extent characterize a new family of K&ahler spin manifolds admitting
non-trivial imaginary Kéhlerian Killing spinors.

1 Introduction

Let (M g, J) a Kihler manifold of real dimension 2n and with Kéhler-form Q defined by ﬁ(X JY) =
g(J(X),Y) for all vectors X,Y € TM. We denote by py : TM — T'OM, X 3(X —iJ(X)) and
p_ : TM — TO'M, X — %(X + ¢J(X)) the projection maps. In case M2 s spin, we denote its
complex spinor bundle by M.

Definition 1.1 Let (Mzn,g, J) a spin Kdhler manifold and o« € C. A pair (v, ¢) of sections of SM is

called an o-Kéhlerian Killing spinor if and only if it satisfies, for every X € T(T M),

Vx¢ =—ap (X)-¢
Vx¢ =—apy(X) 9.

An a-Kdahlerian Killing spinor is said to be real (resp. imaginary) if and only if « € R (resp. o € iR*).

If & = 0, then an a-Kéhlerian Killing spinor is nothing but a pair of parallel spinors. The classification of
Kaéhler spin manifolds (resp. spin manifolds) admitting real non-parallel Kéhlerian Killing (resp. parallel)
spinors has been established by A. Moroianu in [I2] (resp. by McK. Wang in [14]).

In this paper, we describe and partially classify those Kéahler spin manifolds carrying non-trivial imag-
inary Kéahlerian Killing spinors. Note first that there is no restriction in assuming o = i: obviously,
changing (v, ¢) into (¢, —¢) changes « into —a; moreover, (1, ®) is an a-Kéhlerian Killing spinor on

(M?",g,J) if and only if it is an S-Kahlerian Killing spinor on (M%, A2g,J) for any constant A > 0.

K.-D. Kirchberg, who introduced this equation (see [d] for references), showed that, if a non-zero i-
Kéhlerian Killing spinor (1), ¢) exists on (]\7 2 g,.J), then necessarily the complex dimension n of M is
odd, the manifold (M 2n_g) is Einstein with scalar curvature —4n(n+ 1), the pair (¢, ¢) vanishes nowhere
and satisfies Q - 1 = —it) as well as Q- ¢ = i¢, see [9] and Proposition below for further properties.
Moreover, he proved in the case n = 3 that the holomorphic sectional curvature must be constant [9
Thm. 16], in particular only the complex hyperbolic space CH? occurs as simply-connected complete
(M 6.g,J) with non-trivial i-Kéhlerian Killing spinors.

We extend Kirchberg’s results in several ways. First, we study in detail the critical points of the length
function |¢| of ¥». We show that, if the underlying Riemannian manifold (M?2", g) is connected and
complete, then || has at most one critical value, which then has to be a (global) minimum and that the
corresponding set of critical points is a K&hler totally geodesic submanifold (Proposition .

As a next step, we describe a whole family of examples of Kéhler manifolds admitting non-trivial -
Kahlerian Killing spinors (Theorem, including the complex hyperbolic space and some Kéhler mani-
folds with non-constant holomorphic sectional curvature (Corollary . All arise as so-called doubly-
warped products over Sasakian manifolds. A more detailed study of the induced spinor equation on

*Fakultat fiir Mathematik, Universitét Regensburg, D-93040 Regensburg, E-mail:
nicolas.ginoux@mathematik.uni-regensburg.de

TInstitut fiir Geometrie und Topologie, Universitit Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, E-mail:
uwe.semmelmann@mathematik.uni-stuttgart.de



that Sasakian manifold allows the complex hyperbolic space to be characterized within the family (The-

orem [3.18)).

In the last section, we show that doubly-warped products are the only possible Kahler manifolds with
non-trivial ¢-Kéhlerian Killing spinors as soon as both components of (1, ¢) have the same length and
are exchanged through the Clifford multiplication by a (real) vector field (Theorem [4.1). This shows
an interesting analogy with H. Baum’s classification [3], [4] of complete Riemannian spin manifolds with
imaginary Killing spinors.

Acknowledgment. This project benefited from the generous support of the universities of Hamburg, Potsdam,
Cologne and Regensburg as well as the DFG-Sonderforschungsbereich 647. Special thanks are due to Christian
Bar and Bernd Ammann. We also acknowledge very helpful discussions with Bogdan Alexandrov, Georges Habib
and Daniel Huybrechts.

2 General integrability conditions

In this section we look for further necessary conditions for the existence of imaginary Kéhlerian Killing
spinors. Consider the vector field V on M defined by

9(V, X) := Sm((p+(X) - ¥, 9)) (1)
for every vector X on M. We recall the following

Proposition 2.1 (see [9]) Let (¢, ¢) be an i-Kihlerian Killing spinor on (M2, g, J) which does not
vanish identically. Then the following properties hold:

i) grad(|y[?) = grad(|¢|*) = 2V
ii) For all vectors X,Y € TM,
9(VxV,Y) = Re ((p—(X) - ¢.p—(Y) - &) + (p+ (X) - 00, p+(Y) - ).
In particular,
Hess([y[*)(X,Y) = Hess(|¢[*) (X, Y) = 2Re ((p—(X) - 6. p—(Y) - ¢) + (p+(X) - ¢, p+(Y) - 9)) -
iii) A([Y1?) = A(|g]?) = =2(n + 1)([¥[* + ||*), where A := —try(Hess).

iv) The vector field V' is holomorphic, i.e., it satisfies: ej(X)V = J(%XV) for every X € TM. In
particular, the vector field J(V') is Killing on M.

v) grad(|[V|?) = 2V V.

Note that, from Proposition the identity A(|¢[2+|¢|2) = —4(n+1)(|1|2+|4|2) holds on M, therefore
M cannot be compact.

Next we are interested in the critical points of || (or of |¢|?, they are the same by Proposition z))
We need a technical lemma:

Lemma 2.2 Under the hypotheses of Proposition [2.1], one has
VaVyV =Ve V+{20(V, X)Y + g(V,Y)X — g(V. J(Y))J(X) + g(X,Y)V + g(J(X),Y)J(V)}
for all vector fields X,Y on M. Therefore,

Hess(|V[*)(X,Y) = 29(VxV, VyV) +2 (3g(X,V)g(Y, V) + |V [*9(X,Y) = g(X, J(V))g(Y, T (V)))



Proof. Using Proposition we compute in a local orthonormal basis {e;}1<;<an of TM:

VxVyV = Z%e( (VxY) - 6.p—(e5) - 8) + (p+ (VY ) - .p(e) - ¥)
+ (- (Y) - Vx6.p-(e;) - &)+ (p-(¥) - 6.p-(¢;) - V)
(P (V) Vxth,pi(e) - ¥) + P4 (Y) - 0.pi(e5) - V) e
= ane( (VxY) - 6.0-(e5) - 8) + (0 (VxY) 04 (e5) - ¥)
—alp—(Y) - p(X) p-(e5) - 6) + alp-(Y) - 6.p—(e;) - p4(X) - ¥)

—alpy(Y) - p_(X) - ¢,pr(ej) - ¥) + alpr (V) -9, pi(ej) - p—(X) - ¢>)6j

Y Sm((p- (V) P (X) v p—(e)) - @) + (P (V) - - (X) - 6,p2(e5) - 1) e

—ng(m(i’) <0, p-(€)) - p+(X) - 9) + (p (V) - ¥, pr(e5) - p—(X) - ¢>)€j~

We compute the second line of the right-hand side of the preceding equation (the treatment of the third
one is analogous). Using (p+(X) -1, ¢) = 2ig(V,p4 (X)), we obtain

P+ (Y) - p(X)-dpyles) ) = (,p_(X)-pr(Y) p_(ej)-¢) +4ig(Y,p_(e;))g(V,p—(X))
+4ig(Y, p—(X))g(V,p-(e;)).
We deduce that, for every j € {1,..., 2n},

(p—(Y) - p(X) - ¥, p—(e5) - &) + (p+(Y) - p—(X) - &, (e5) - ) =2Re (¢, p—(X) - p(Y) - p—(e;) - 9))
+4ig(Y,p-(€;))g(V,p- (X))
+4ig(Y,p—(X))g(V,p—(e;))-

The imaginary part of the right-hand side of the last equality is then given for every j € {1,...,2n} by

ARe (9(Y, p—(€;))9(V,p— (X)) + (Y, p-(X))g(V.p-(¢;))) = g(V,X)g(Y,e;) +g(V, J(X))g(J(Y),e;)

+9(X,Y)g(V,e;) + 9(J(X),Y)g(J(V), ;).

This shows that

Z Sm(<p—(Y) p(X) -, p—(e5) - @) + (p+(Y) - p—(X) - ¢, py(e5) - w>)€j = g(V,X)Y
+g(V, J(X))J(Y)
+9(X, V)V

Similarly, one shows that

2n
S Sm((p- (V) 6,0 (e5) - pe(X) - 0) + B (V) - 04 (e) - p-(X) - 6) ) = —g(V,Y)X
j=1

+9(V, J(Y))J(X)
—g(V, X)Y
+9(V, J(X))J(Y).



Combining the computations above, we obtain

ViVyV = Ve ,V
+ gV, X)Y +g(V, J(X))J(Y) + g(X, V)V + g(J (X),Y) ] (V))
— (=g(V.Y)X +g(V, J(YV))J(X) = g(V, X)Y + g(V, J(X))J (Y))
= Vo,V
+(29(V, X)Y +g(V.Y)X = g(V, J(Y))J(X) + g(X,Y)V + g(J(X),Y) (V) ,

which shows the first identity. We deduce for the Hessian of |[V'|? that, for all vector fields X,Y on M ,

Hess([V[*)(X,Y) = 29(VxVyV,Y)
= 29(Ve, VoY) +2(20(V, X)g(V,¥) + [V g(X,Y) = 0+ (X, V)g(V,Y)

+9(J(X), V)g(J(V),Y))
= 2(VxV,VyV) +2(3g(X,V)g(Y.V) +[VIPg(X.Y) = (X, J(V))g(Y. I (V) ,
which is the second identity. This concludes the proof of Lemma (]

We can now describe more precisely the set of critical values and points of |1|? and |V|%.

Proposition 2.3 Under the hypotheses of Proposition assume furthermore (MQ”,g) to be connected
and complete. Then the following holds:

i) The set {V = 0} of zeros of V coincides with {VyV = 0}. As a consequence, the zeros of V are
the only critical points of the function |V |* on M?".

it) The subset {V = 0} is a (possibly empty) connected totally geodesic Kéhler submanifold of complex

dimension k < n in (M*",g,J). Furthermore, for all x,y € {V = 0}, every geodesic segment
between x and y lies in {V = 0}.

iii) The function || has at most one critical value on M?™, which is then a global minimum of |1)|2.
Furthermore, the set of critical points of [1|? is a connected totally geodesic Kdihler submanifold in

(M2, g,.J).

Proof. The proof relies on simple computations and arguments.

i) Proposition [2.1lv) already implies that {VyV = 0} coincides with the set of critical points of V|2
Every zero of V is obviously a zero of V'V, i.e., a critical point of |V|2. Conversely, let = € {VVV = 0}.
Then 0 = g, (Vv V, V) = [p_(Va) - 62 + o (Va) - 912, 50 that p_(Vy) - 6 = 0 and py (Ve) - ¢ = 0, which,
in turn, implies 0 = Sm ((p4 (V) - ¥, @) = g(Vz, Vi), that is, V, = 0. This shows 7).

1) The subset {V = 0} - if non-empty - is the fixed-point-set in M?" of the flow of the holomorphic
Killing field J(V'), therefore it is a totally geodesic Kéhler submanifold of M2n (see e.g. [10, Sec. IL.5]);

moreover, it cannot contain any open subset of M?2" since otherwise V would identically vanish as a
holomorphic vector field. To show the connectedness of {V = 0}, it suffices to prove the second part of
the statement. Pick any two points zg, 21 in {V = 0} (or, equivalently, any critical points of |V|?) and
any geodesic ¢ in (Mgn, g) with ¢(0) = o and ¢(1) = 1. Consider the real-valued function f(t) := |V|3(t)

defined on R. Then, for any ¢t € R one has f'(t) = g(grad(|V|?),c/(t)) = 29(60/(,5)1/, V) and
F7(t) = Hess(|VI*)(c' (1), ¢ (1))
Lemma [2.2] provides the Hessian of [V/|2: for every X € TM,
Hess(|V[*)(X, X) = 2|VxV|* +2 (39(V, X)* + V]| X]* = g(X, J(V))*) .
By Cauchy-Schwarz inequality, |V |?|X|? — g(X,J(V))? > 0, so that Hess(]V|?)(X, X) > 0 for all X, in
particular f is convex. This in turn implies that, if f/(0) = f/(1) = 0, then necessarily f vanishes on

[0,1]. This proves 7).
iit) Set, for any t € R, h(t) := |1/)\3(t) where c is an arbitrary geodesic on (M?", g). We show again that



h is convex. As before h”(t) = Hess(||?)(c/(t),c/(t)) > 0 for every t € R where Hess([4]?)(X, X) =
2|p—(X) - ¢2 + |p(X) - ¥|2) > 0 for every X € TM (Proposition We already know that, if
V= %grad(|w|2) vanishes at two different points of ¢, then it vanishes on any geodesic segment joining
the two points, therefore |1)|? is constant on it. This proves that |t/|? has at most one critical value. Since
h is convex this critical value is necessarily a minimum. The last part of the statement is a straightforward
consequence of i) since grad(|1)|?) = 2V by Proposition This shows 4i) and concludes the proof. O

3 Doubly warped products with imaginary Kahlerian Killing
spinors

In this section, we describe the so-called doubly-warped products carrying non-zero imaginary Kéahlerian
Killing spinors. Doubly warped products were introduced in the spinorial context by Patrick Baier in his
master thesis [I] to compute the Dirac spectrum of the complex hyperbolic space, using its representation
as a doubly-warped product over an odd-dimensional sphere.

First we recall general formulas on warped products.

Lemma 3.1 Let (]Téf =M x I,§ = g; ® Bdt?) be a warped product, where I C R is an open interval,
gt is a smooth 1-parameter family of Riemannian metrics on M and 3 € C®(M x I,RY). Denote by

M "% M the first projection. Then, for all X,Y € T'(n{TM),

Vam = —9ud, () + p 0
pX = G ~>+$Z€< 5
Vag = o g 0+ 5,0
VxY = V¥ Y—%%(X,Y)%,

where & = 2 X] and VM (resp. V) is the Levi-Civita covariant derivative of (M, g¢) (resp. of (M,3)).

Proof: straightforward consequence of the Koszul identity. 0

From now on we restrict ourselves to the following particular case: the manifold M will be equipped with
a Riemannian flow.

Definition 3.2

i) A Riemannian flow is a triple (M, g, E), where M is a smooth manifold and 2 is a smooth unit
vector field whose flow is isometric on the orthogonal distribution, i.e., g(V Y&, Z') = —g(Z, VI¢)
for all Z,7' € &+, where VM denotes the Levi-Civita covariant derivative of (M,3).

it1) A Riemannian flow (M, g, 2) is called minimal if and only if @i_yg: 0, that is, zfé\ is actually a
Killing vector field on M.

Let (M,g, f) be a minimal Riemannian flow. Let  denote the endomorphlsm field of §J- defined by
n(Z) = VYE for every Z € €L, Let V be the covariant derivative on & defined for all Z € T'(€1) by

v xZ = { E%AZ/[]Z)EL lfi R 2 Alternatively, ¥V can be described by the following formulas: for all
X i

7,7 e T(EY),

vgfz =VeZ+hWZ) and VY Z' =VzZ' -G(WZ), Z")E.
It is important to notice that, if (M,g, Z) is a (minimal) Riemannian flow and g := r? (5257\2@ §£1) for
some constants r, s > 0, then (M, g,& := %SEA) is a (minimal) Riemannian flow with corresponding objects
given by

h=2h and V=W. 2)
T



In this language, a Sasakian manifold is a minimal Riemannian flow (M, g, {A) such that h is a transver-
sal Kahler structure, that is, h? = —Ids, and Vh = 0. Further on in the text we shall need for
normalization purposes so-called D-homothetic deformatwns of a Sasakian structure: a D homothetic
deformation of (M,g,&) is (M, ANz @ ge), 5z €) for some A € R. The identities (2) imply that

~

(M, \2 ()‘295 e ), =€) is Sasakian as soon as (M,g,f) is Sasakian.
We can now make the concept of doubly-warped product precise:

Definition 3.3 A doubly-warped product is a warped product of the form
(M) = (M x I, p(t)2(o (1) ® G ) @ dt2),

where I is an open 1 interval, (M, g, 5) is a mintmal Riemannian flow, p,o : I — Rf_ are smooth functions
and 9e = g'RseBRs’ gfi T Jlerger
As for warped products, it can be easily proved that a doubly-warped product (M ,g) is complete as soon
as I =R and (M, g) is complete.
It is easy to check that, setting g; := p(t)2(0(t)2§g® g1 ), one has %gt’ = 2’) g + & “Zg¢(mz.,-) and the
unit vector field providing the Riemannian flow on (M, g;) is & = p%g . In partlcular, the formulas in

Lemma [3.1] simplify:

-~ 9
%%g =0
= 0z p
V%Z = E+;Z
= 9 _ (po)
Vfat o po §
s, _ (po)o
Vel = po Ot
VeZ = VeZ+h(Z)
0 0
- Lz
vzat p
Vz¢ = h(2)
/
~ , o
VyZ = VZZ’—gt(h(Z),Z’)ﬁ—%gt(Z,Z’)a,

where we have denoted the corresponding objects on (M, g¢, £) without the hat “=”.
Next we look at a possible construction of Kéahler structures on doubly-warped products.

Lemma 3.4 Let (M,§) := (M x I7p(t)2(o(t)2§§® Jeu) © dt?) be a doubly-warped product. Assume the
existence of a tmnsversal Kdhler structure J on (M,g,£) and define the almost complex structure J on
M by J(€) = 2, J( ) o= —¢ and J(Z) == J(Z) for all Z € {&, 23", Then (M>",3,J) is Kihler if
and only if h = f;J on {&, %}J— (in particular %/ must be constant).

Proof. Using the identities above we write down the condition 6} = 0. Denote by h and V the obJects
correspondmg to g on M. Note first that, by definition and one has VJ = 0 on {¢, 8t}J-

J, which does not depend on ¢. Hence we obtain, for all VAVANS F(fl)

|{s,%}i
Vo TN -TTs o) = 0
ng))—J(?%@ =0



VJ@) -7 = 508 D) 0%
VeI~ T(Tes) = 0
Ve(J(€) = J(Vet) = 0
Ve(J(Z) = J(VeZ) = hoJ(Z)—Joh(Z)
VAT - F¥ag) = ~h(2)-La(2)
V2(€) - I¥26) = Lz-son(z)
VAH(2)) - TF22) = ~ah(2).J(Z)E - L2125 + ai(2),2) 5 - 02,2

Therefore, VJ=0 implies h = —%J on &+ which, in turn, implies h o J = J o h. Moreover, implies

that h = %ﬁ, which yields h= f%/J . The reverse implication is obvious. g

Remarks 3.5

1. With the assumptions of Lemma the function p’ vanishes either identically or nowhere on the
interval I. In the former case the vanishing of h is equivalent to M being locally the Riemannian
product of an interval with a Kéhler manifold; in the latter one, we may assume, up to changing o
into |%/|0 (and g into (%)2§§@ g ), that h=—¢cJ and p' = o with € € {+1}.

2. Given a Kahler doubly warped product (M , 3, J ) as in Lemma and a real constant C, the map
(x,t) — (2, £t + C) provides a holomorphic isometry (]T/f, g, j) — (M’,ﬁ’, j’), where (M’,ﬁ’ =
(M x (C+1), girrc ®dt?) and J' is the corresponding complex structure (again as in Lemma
If furthermore M is spin, then this isometry preserves the corresponding spin structures. Thus, in
the case where p’ # 0, we may assume that € = 1, i.e., that h=—J and p=o.

Now we examine the correspondence of spinors. Let the underlying manifold M of some minimal Rieman-
nian flow (M, g, &) be spin and, in case M is the total space of a Riemannian submersion with S!-fibres
over a spin manifold NV, let M carry the spin structure induced by that of N. Let XM denote the spinor
bundle of (M, g) and “M” its Clifford multiplication. Let the doubly warped product M carry the product

spin structure (with Clifford multiplication denoted by “”). Then the transversal covariant derivative V
induces a covariant derivative - also denoted by V - on XM, which is related to the spinorial Levi-Civita
covariant derivative VM on IM via (see e.g. [T} eq. (2.4.7)] or [8, Sec. 4])

2n—2

1
Vep=Vep+ 1 jg_l €; Mh(ej) 0 ? and Vzeo=Vzo+ 2§ i hZ) ¢

for every ¢ € T'(XM), where {e;}1<j<2n_2 is a local orthonormal basis of ¢+ C TM.

Lemma 3.6 Let a minimal Riemannian flow (M, g, E) carry a transversal Kdhler structure J such that
the doubly-warped product (M, g, J) is Kdhler, where J is the almost-complex structure induced by J as
in Lemma . Assume furthermore M to be spin. Let M carry the induced spin structure. Then the

following identities hold for all p € T(XM) and Z € {¢, %}J—:

Vir = o

~ !~ ol 0

Vep = sz—% ¢ 5.8 5 P
~ p’ 0
Vzp = Vz@—%(S-J(Z)JrZ'a)-%

where Q) denotes the Kihler form of (M, g, j)



Proof: Let (e1,...,ean—2,€a,—1 := &, eap 1= %) be a local positively-oriented orthonormal basis of ™M
and (¢4)a the corresponding spinorial frame. It can be assumed that e; = p~'€; with g(é;,éx) = djx

and % = 0 (extend some g-orthonormal basis independently of time). Split ¢ = >  c4tq, then

V%ga = ZCQZ Vaej,ek)ej e - 1/@4—280&

7,k=1
%,_/
—.9¢
ot
a(ﬂ 2n—2
= 51 an > a@e]»ek)ej ek Ya
7,k=1
8 2n—2 66
= af + = an Z {gt J —|— (5Jk}e] ek Vo
7,k=1
_ 9
ot
where we have used V 2 ot = V 5 = 0 and aeJ = —%ej by the above choice of e;. On the other
hand, the Weingarten endomorphlsm field of (M, gt) in M is given by A(E) = —%g% = —('27(;)/5 and
A(Z) = —ﬁzg = f%/Z for all Z € {¢, %}J‘, so that the Gauss-Weingarten formula implies
~ 1 g
Vep = V¥p4+ A = -
3% c¥ts €3] 5 ¢
2n—2
_ (po)' . 0
= VESD"‘Z Z €]Mh(€j)]\-/[<p— 20 5&@
, 2n—2 ( ’
_ s _(po), O
= Vey Z A 2p0 ¢ a7
p’ (po)' . 0
- B o D L2
Vey 2p 7 2p0 7 Ot 4

where  is the 2- form associated to J on {¢, &1+, e, Q(Z,2') = g(J(Z),2') for all Z,Z' € {&, &1+

Since Q = Q + EN m, we deduce that

rg. +(p’ _(00)’) 0

6580 = V£<P—2p 4 % 2p0 ot
= Vstp—g;ﬁ-tp—;;é‘gt-w.
For any Z € {¢, 2}, one has
Voo = VorzA) b
— Voot g€ D) Lo B2 e

/

p J
— J(Z) o — g 2
Vze 2p§ J(Z)- ¢ 5l o ®

which shows the last identity and concludes the proof. O

Later on we shall need to split spinors into different components. Recall that, on any Kahler spin manifold
(M M2, g, T ) the spinor bundle XM of (M M?n, g) splits under the Clifford action of the Kéahler form Q into

YM = é ¥, M,
r=0

where ©,M := = Ker(Q - —i(2r — n)Id). Now if (M2”,§, J) is a doubly-warped product as above, then
any @ € %, M (with » € {0,1,...,n}) can be further split into eigenvectors for the Clifford action of



Q = g(J-,-). Namely, since [£ A gt,Q} = 0, the automorphism & - % of SM leaves ETM invariant; from
(&- %)2 = —1 one deduces the orthogonal decomposition X, M = Ker(¢ - % +iId) ® Ker(¢ - % —1d).
Since both Clifford actions of £ and % are V-parallel, so is the latter splitting. But, for any ¢ € ¥,.M,
one has

@EKer(f-%iild) — Q-p=il2r—n)ptip
= Q-p=i2r—nx1)p,

that is, ,M N Ker(¢ - 2 +ild) = X, M and %, M N Ker(¢ - & —ild) = £,_; M, where by definition
.M = Ker(Q - —i(2r — (n — 1)Id)) for r € {0,1,...,n — 1} and {0} otherwise. Out of dimensional
reasons one actually has .

SM=SM®d%. 1M (3)
for every r € {0,1,...,n}. Beware here that, if r is even, then ETM is a subspace of S+ M hence ETMM
is canonically identified with a subspace of E+M| » = XM, whereas if r is odd then it is a subspace of

Y _M and is also identified as a subspace of XM, but this time with opposite Clifford multiplication.

Lemma 3.7 Under the hypotheses ofLemma let p € F(Z,J\A/Z) for somer € {0,1...,n} and consider
its decomposition p = @, + @r_1 w.T.1. . Then the identities of Lemma read:

6%%« = 8{3@;
6%9%—1 = 6%2_1
Veor = Veor+5(0-202 + D
Vepr1 = Vepro1+ %((n - 27")’;/ - %/)sor—l
Vze = Vo, — [;lp+(Z) : % “or1+Vzor1 — ’:p—(Z) : % "o

for all Z € {¢, %}J—, where, as usual, p+(Z) = 3(Z FiJ(Z)).
Proof The first two identities follow from V 2 (&N %) =0 and %—‘t] = 0. For the third and fourth ones,

note that 65 (&N %) =0, so that

> Z'O_/

Vepr +Vepr—1 = Vepr+ Veprq — %(27" —n)(pr +pr-1) — %(‘Pr—l — %)
1 oo 7 o
= “((n-2nt 4+ = i+ =((n—2rE - Dy,
v&@r"" 2((” ’I“) P + J)‘pr+v590r 1+ 2((” ’I“) o J)‘Pr 1,
which is the result. As for the last identity, one does not have v z(EN %) = 0, however
0 0 0 0
(f'J(Z)‘*‘Z'E)"P = (_J(Z)'a‘f‘a‘f'z'&)'@
0 0
= —iJ(Z) = (or- r Z - r r
W(Z) gy (oro1 =) + 2 o (or 1)
0 0
= 2+(2) 5+ 20-(2) - 5
for all Z € {5,%}J—. This concludes the proof. O

We now have all we need to rewrite the imaginary Kéahler Killing spinor equation on doubly warped
products.

Lemma 3.8 Let a spin minimal Riemannian flow (M?"~1 g, {) carry a transversal Kahler structure J
such that the doubly- warped pmduct (M g, J) ts Kahler, where J is the almost- complez structure induced
by J as in Lemma | Let M carry the induced spin structure and assume n > 3 to be odd. Then a pair



(1, @) is an i-Kdhlerian Killing spinor on (M?*",q,J) if and only if the following identities are satisfied
by the components ¢ = (ZSnTH + ¢an1 and P = 1/1% + ”([Jans w.T.t. lj :

O0nps 0
8¢2t71 9

[ = i Yns
Onrt v

ot - Za ¢n;1
awn;fj

ot :Q , ,
V§¢n;1 %(% - %/)(]Sn;»l
Vebnn = 5(5+F)6np — g7 Yo (4)
Vetnos :f%(%f%)m;l +%¢>n51
Vens =—5(5 - %)1/171;3
VZ¢n+1 :p_i_(Z)'(%%'(ﬁn;l 7an;1)
Vzpn =ELp (2) & “Qupr —ipi(Z)  Yuss
Vzpua =Epi(2Z) & Yuzs —ip(Z) - dup

_ "9 :

Vatbas =p(2)- (54 tans —idus)

for every Z € {€, %}J—.

Proof: Since py (&)1 = 2(Z +i€) =1 2 (14i¢- &)W = g-m% and similarly p_ ()¢ = %qsn%,
the i-Kéhlerian Killing spinor equation is satisfied by (¢, ¢) for X = % if and only if

8¢"T+1 a(banl ) 0 .0
T T v T A TR
ot | Ofase o (2 0
at g () o= i den

which gives the first four identities (use [, 2] = 0).

From p4 (§) -4 = —ip+(%) “p = —i% "l/]n;l and p_(§) -9 = ip,(%) = i% ~q5nT_1 we deduce that the

i-Kéhlerian Killing spinor equation is satisfied by (¢, ¢) for X = & if and only if

Vebogs + 52+ Dhoup = 0
Vebus - ;<Z F D = 2 s
Vebss + 35+ Dhons = g odun
Vetas + ;<’; ~ s = 0,

which implies the next four equations.
Let Z € {¢, %}J-, then the i-Kéhlerian Killing spinor equation is satisfied by (¢, ¢) for X = Z if and
only if

/ 0

—ipp(Z) - Yus = Vizun — %m(z) o Pzt
7Z‘p+(Z) . Q/Jn,73 = quﬁnfl — ﬂlp_(Z) : Q . ¢n+1
2 2 P ot 2
—ip(Z) pntn = Vzghn_r — g/p_~_(Z) . g “Yn-s
e Tz p ot Tz
ip(2)-bams = Votpua —Lp (2) 2 g
= ) ot =z’
which concludes the proof. O

Next we want to describe all doubly warped products with non-zero imaginary Kéhlerian Killing spinors.
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Theorem 3.9 Forn > 3 odd let (MQ”,@ j) be a Kdhler spin doubly warped product as in Lemma .
If there exists a non-zero i-Kdihlerian Killing spinor (1, ¢) on (M?",g,J), then

iii)

~

the minimal Riemannian flow (M?*"~1,g,€) is Sasakian,

up to changing t into —t, applying a D-homothety and translating the interval I by a constant, one
has either p = et or p = sinh or p = cosh,

the components ¥, and ¢, of (¢, P) w.r.t. satisfy:

L ) )
In case p = e': Then o = €' and, setting Ynos =g Yns and pua = et(anTfl +i%y - 1/)”;1),
one has

gifmps =0

o7 _

ortagr =0

gt =0

Vgdop =0

Vepuzs =0

Vipur =0

= n+1 ~
Vzpnpn = (=1)= P+(Z)M‘P"T—1
= 7 ntl ~
Vztus =(=1)72p-(2) pur.

If furthermore Pno1 = 0, then for q/ﬁ\% = e‘tqﬁ% one has %(gngl =0 and

%nf =0

ﬁin;?x == 0

Vebap =0

~ o~ n41 —~ ~ 7
Vzgna =(=1)2 (p-(2) dupr +pi(Z) - ns).

In particular, the manifold (M>*"~1,3, E) admits a non-zero transversally parallel spinor. Con-
versely, every mon-zero transversally parallel spinor (bn;l € F(Zn;l M) provides a non-zero i-

~

Kahlerian Killing spinor by setting ¢nT+1 = wnT_s =0 and ¢nT—l = €t¢n2;1, wnT_l = —eti% (EWT_l
Moreover, for any i-Kdhlerian Killing spinor (¥, ¢) on that doubly warped product (Mzn,ﬁ, j), the

~

component ¢% is transversally parallel on (M, g, €) if and only ifi% = —¢.

In case p = sinh: One has o = cosh on I = R} and there is a one-to-one correspondence between the
space of i-Kdihlerian Killing spinors on (M?",g,J) and that of sections (Q%ﬂ,@%,&%ﬂ,{ﬁ%)
OfEnTﬂM@ ZanlMGB EanlM@ ZansM — M satisfying

Vo'W, = Fe-mE 9,
97 = a-mE P, 5
V.9 = cuome; B ?
V2P = @7 P,

on (M?"~1 g, E), for every Z € fAJ- (this means that (QﬁnT-H,QOnT—l) must satisfy 1D forr = "TH and
(@%,ﬁ%s) must satisfy Jorr="251).

In case p = cosh: One has o = sinh on I = R and there is a one-to-one correspondence between the

space of i-Kdhlerian Killing spinors on (]/\\4/2", g, j) and that of sections ((pnTﬂ ) Pni, @%1 , §5an3)

11



OfEnTﬁ»lM@ZanlM@EnT—lM@Zan?:M — M satisfying

Ve, = -Fe-miz
ﬁg(@)r 1 = (_2})7.(”_27")?\; (;’)r—l 6
V. @ = 0@ v
V.G = o2 @,

on (M?"=1 g, f) for every Z € §l (this means that (¢ a1, Pt 1) must satisfy @) forr =" and
(cpn 1,g0n 3) must satzsfy@forr* 1)

Proof: We first show p” = p on I. In order to express all equations of in an intrinsic way, we
have to compare all objects on (M 9t,€) With the corresponding ones on (M,q,¢). Recall that g, =
p(t)2(a(t)%g, Je D Yg.) and § = 1 § As for , it is elementary to check the following relations:

~

V=V, &¢=¢& S =8 Z-=pZ, zZ, =pZ,
for all Z € €+, Applying % onto

ﬁzaﬁ%l = p+(Z2)(p G - $ns —iptpnr)
Vs =p_(Z)(p' G Ynr —ippa_i)

N

0P ni1 0Yn_s

and using —7— = —5;7— = 0, one obtains
b 0 8¢ 3wn 1
== A //7 . n—1 —1 / n—1 —
0 0 0 .0
= 1 (p) = - pn- — (== - — n- 1 — cPn-1
= (2" 5 bnsa 0 g (g Yn) —ipns —ip(—igy - dusr))

.0
(" - P)IM(Z)'a “Pna

and analogously (p”—p)p_ (Z)/'\%'d}anl =0forall Z € EL. Fix a local g-orthonormal basis (e;)1<j<2n—2 of

SAJ-. Putting Z = e;, Clifford-multiplying by e; and summing over j gives (p”fp)cbanl = (p” p)i/m 1 =0.

el n-1 oY n-1
On the other hand, both equations involving —2— and —;2— provide the existence of Smooth sections

Aﬂﬁ L ofEn 1 M (independent of t) such that ¢n 1 = etAn ) —l—e_tA; . and wnfl = —¢t ’at AJ,C )
A_ We deduce that (p” — )A'ﬁ: L, = (p —p)An , = 0. If both AT nt and An ) Vanlbhed

i 8t
identically on M, then so would ¢n 1 and wn 1 and the 1dent1t1es involving v Z¢n  and V an 1 would
provide (after contracting with the Clifford multlphcatlon just as above) ¢nT+1 = '(/JnT3 = O so that
(1, @) = 0, which is a contradiction. Therefore p”’ — p =10 on I.

It follows in particular that p’ = 0 on [ cannot hold, so we may assume that h=—J (hence (M?1.73, E)

is Sasakian) and p’ = o (see Remarks . Furthermore, in the case where the constant (p’)? —p? does not
vanish, up to replacin b which is equivalent to performing a D-homothetic deformation
P placing p by W ( q p g

of the Sasakian structure), we may assume that (p’?) — p? =1 or —1 on I. Next we rewrite the equations
from Lemma 3.8 considering the new sections @1, 1, @ a1, ) a-a defined by

(p% —(bn+1
Pn —pd)n 1 +zp8t ¢%
. i _
Puct =ipgy Gua + PP
Pugs = YPugs.

Note that the linear transformation (¢nT+l,¢anl,’l/Janl,wnT—3) > (SOnTH,QDanl,SBanl,@nT%) is invertible
if and only if (p')2 — p? # 0. From (4) we have, for all Z € £

0
acp

n4+1 = O

12



gifrt = Y

o

3Pt = 0

o

A

S . (_1)";1 n+1 N2 2\F~
Vepnn = 5 (=25 =)((P) = p7)E | pnin
& _ (_1)";1 n+1 N2 2\ £~
Vepny = ————n=2(=—=))((p)" = p7)E ns
~ (- S S
Vepna = 5 (= 2(=5=)((p")" = p)E P
~ 1)z n—1 A~
Vepos = o)) - IE f
~ n+1 ~

Vzgup = (1) pi(2) g

~ nt1 ~

Vapua = (1) ((0) = p"p-(2) [ pupa

Vifna = (-1)2 (") = P")P+(2) Gucs

Vzpus = (=1) 7 p(2) @ns.

If (p')2 — p? # 0 on I, then the required equations directly follow from the above ones. Moreover, since
in that case the correspondence (¢nT+l7¢nT—l,'l/JnT—17wnT—3) — (SDnT-H7SDnT—1,@nT—17S’5nT—3) is bijective, the
“If” in the assumptions is actually an “if and only if”. If now (p')2 — p? = 0, then p’ = £p on I; since we
have assumed p’ > 0 (up to changing ¢ into —t), we only have to consider p’ = p, hence p = Ce® for some
positive constant C. Since translating ¢ provides a holomorphic isometry (again see Remarks [3.5)), one
may assume that C =1, i.e., p = e’. In that case, one has 690%1 =0 on M, hence Pn vanishes either
identically or nowhere on M (and on M since it is constant in t). If ¢ no1 # 0, then all right members in
the equations listed just above vanish except

ﬁz@%l = (D)= pe(2)-pna
Vifns =(-1)"F

which together with gn_1 = i% Pnoa gives the result. If pno1 = 0 on M, then coming back to the
equations from Lemma one has @gﬁ np1 = 61& n_s = 0 and $ n1 satisfies the required equations. [

Remark 3.10 In Theorem z) not every i-Kéhlerian Killing spinor on M must come from a transver-
sally parallel spinor on M. For instance, consider the complex hyperbolic space CH" (for n odd) endowed
with its Fubini-Study metric of constant holomorphic sectional curvature —4 and its canonical spin struc-
ture. Then CH"™ (possibly with a suitable submanifold removed) can be viewed as a doubly warped
product in several ways. For example, CH" is a doubly-warped product over the Heisenberg group M,

. . -1 . . . . e
which admits a ( nn_l >—d1men310nal space of transversally parallel spinors lying pointwise in ZanlM
2

(see below). However, CH" carries a 2 ( & )—dimensional space of i-Kéhlerian Killing spinors [9] Sec.
2

3]. Therefore there exists at least one non-zero Kéhlerian Killing spinor on CH™ which does not come
from any transversally parallel spinor on M.

As an example for Theorem i), any Heisenberg manifold of dimension 4k 4+ 1 (with k& > 1) has a spin
structure for which the corresponding spinor bundle is trivialized by transversally parallel spinors. This
follows from three facts: every Heisenberg manifold is an S'-bundle with totally geodesic fibres over a
flat torus; every S'-bundle over a manifold carrying parallel spinors carries transversally parallel spinors
for the induced spin structure, see e.g. [0, Prop. 3.6]; the whole spinor bundle of any flat torus endowed

13



with its so-called trivial spin structure is trivialized by parallel spinors. Note that, as a consequence of
Lemma below, the doubly warped product arising from a (2n — 1)-dimensional Heisenberg manifold
M choosing p = ¢ = e’ has constant holomorphic sectional curvature —4, therefore it is holomorphically
isometric to CH™ as soon as it is simply-connected and complete.

Examples for Theorem [3.9]4) with non-constant holomorphic sectional curvature can be constructed out
of the following lemma:

Lemma 3.11 For each integer n = 1 (4), let (N?>"2 gn,J) be any simply-connected closed Hodge
hyperkdhler manifold. Then there exists an St-bundle M over N carrying an S'-invariant metric § for
which (M*"=1,G. &) is Sasakian and for which there exists a parallel spinor lying pointwise in EanlM.

Proof: Recall first that every hyperkahler manifold is spin (this follows from the structure group Sp(”T*l)
being simply-connected). McK. Wang’s classification [14] of manifolds with parallel spinors provides the
existence of exactly "T_l + 1 linearly independent parallel spinors on N, one of which lies pointwise in
YaaN if and only if 2 is even [I4} (ii) p.61]. Now, for any Hodge Kéhler manifold (N, g, J) (“Hodge”
meaning that its Kéhler class is proportional to an integral class), there exists an S'-bundle M " N
carrying an S'-invariant metric g for which (M?"~1, 3, E) is Sasakian with h = —J, see [13, Prop. 2] (as
usual EA denotes the fundamental vector field of the St-action). By [6, Prop. 3.6], the lift of the non-zero
parallel spinor in 271,2;1 N to M gives a non-zero transversal parallel spinor on (M?"~! g, E ) provided the

spin structure on M is induced by the one on 7*(T'N) and the trivial covering of S!; because of h=—J ,
this spinor lies pointwise in ¥ -1 M. O
2

Kodaira’s embedding theorem states that a closed Kéhler manifold is Hodge if and only if it is projective,
i.e., if and only if it can be holomorphically embedded in some complex projective space. Therefore
projective hyperkdhler manifolds of complex dimension 4k (with k& > 1) provide examples for N in
Lemma [3.11] For instance, simply connected hyperkéihler manifolds can be constructed as the Hilbert
scheme of a K3-surface (cf. [5]). Indeed, let X be a K3-surface, then the Hilbert scheme Hilb2*(X), which
is the blow-up along the diagonal of the 2k-th symmetric product of X, is a compact, simply-connected
hyperkahler manifold of complex dimension 4k. If X is projective, e.g. a quartic, then Hilek(X ) is
projective too and thus has an integer Kéahler class.

In order to decide whether the doubly warped product we construct is the complex hyperbolic space

o~

or not, the transversal holomorphic curvature of (M,g,£) and the holomorphic sectional curvature of
(M?™,g,J) have to be compared:

Lemma 3.12 Let (MQ", G, J) be a Kihler doubly warped product as in Lemma with p”" = p, o0 = p’ and
h = —J. Then the holomorphic sectional curvature Kno(Z) of (M, g, J) and the transversal holomorphic
sectional curvature Ky (Z) of (M,q,€) are related by

[?hol(Z) = piz(f?hol(z) - 4(/)/)2)7

for all Z € {¢, 234\ {0}. In particular, the doubly warped product (M?2",G,J) has constant holomor-

~

phic sectional curvature —4 if and only if the transversal holomorphic sectional curvature of (M,q,¢&) is
constant equal to 4((p')? — p?).

Proof. Recall that IN{hol(Z ) and I/(\'hol(Z ) are defined by

R(Z,JZ2)Z,]Z)
9(z,2)*

R(Z,J2)Z,]Z)
9(Z,2)? ’

Knoi(2) := 9 and Kuol(Z) = 9
where EX,Y = %[X’y] — [%X, %y} and }Aiz,zl = ﬁ[zyz/] - [ﬁz, §Z/] are the curvature tensors associated
to V and ¥V on TM and EJ- respectively. The following identities can be deduced from the formulas in
Lemma taking into account p’ = o and p” = p:

N
g(Rg,%gv Gt) - = po =-—4

I(R(2,02)2,02) = §(R(2,J2)Z,JZ) — 4([:)2§(Z, Z)?,
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for every Z € {£, 234\ {0}. Using §(Z,-) = p*3(Z,-), we obtain

J(R(Z2,J2)2,02Z) ¢

I?hol(z) = ~(Z 2)2 _4(;)2
1 §(R(2,J2)2,7Z) 4(3’)2
2 9(Z,2)? p’’

which gives the first statement. Since by the computation above Kpo(€) = —4 (independently of §), the
second follows from the first (note that (p’)? — p? is constant by the assumption p” = p). a

As a consequence of Theorem [3.9/7), Lemma and Lemma we obtain:

Corollary 3.13 For an integer n = 1 (4), let (N*""2,gn,J) be any simply-connected closed Hodge
hyperkdhler manifold. Let (M*"~1,3g, E) be constructed from N as in Lemma and (M%,@ j) be
the Kdhler spin doubly warped product constructed from M as in Lemma (3.6 m wzth p=o0=c¢c'. Then
(MQ",E, J) carries a mon-zero i-Kdhlerian Killing spinor but has non-constant holomorphic sectional

curvature.

Proof: The existence of a non-zero i-Kéhlerian Killing spinor follows from Theorem |3 -z and Lemma
In case p = 0 = ¢!, Lemma implies that the holomorphic sectional curvature of the doubly warped
product (M mg,J ) is —4 if and only if the transversal holomorphic sectional curvature of (M, g, 5) van-
ishes, that is, if and only if its transversal curvature vanishes (see e.g. [II, Prop. 7.1 p.166]). Now
for any S'-bundle as in Lemma the transversal (holomorphic) sectional curvature of M and the
(holomorphic) sectional curvature of N coincide. Since simply-connected closed hyperkéhler manifolds

cannot be flat, the Kdhler manifold (M 3, J ) cannot have constant holomorphic sectional curvature.
O

Corollary [3.13] provides the first family of examples of Kéhler spin manifolds of non-constant holomorphic
sectional curvature carrying non-zero imaginary Kéhlerian Killing spinors.

The two other subcases (p')? — p? = 1 and (p')? — p? = —1 are geometrically more simple to describe.
We do it in separate lemmas.

Lemma 3.14 Let (M?"~1, g,&) be a Sasakian spin manifold with h = —J and firr € {0,1,...,n}. Then
a section (Yp,r_1) of 2o M &3._1 M satisfies if and only if Y =Y, +r_1 is a (_21) -Killing spinor
on (M, g).

Proof: Let Q be the 2-form associated to J on &4, ie., U(Z,2") = g(J(Z),Z') for all Z,Z' 1 ¢. Using
Q - zp, = (-1 (2r —n+ 1)§ Y, (for all r) we have on the one hand

1
Vep = Vé‘/[w+§Qqu
(-1)"
2

(="
2

e wria. v
a )

( 1)T
2

= Vey— g vt

(2r—n+1)§]\~/lwr

+ﬂ(2(r —1)—n+1)¢ v Yr_1

2
[

_ M,
= Ve¢ 2 "M 2

e - e+ @0~ 1)~ 2)e v,

which implies

Vewr = (V-G 0+

(TL - 2T)§ "/)r

Ve = (V¥ — #f IV VY)r—1 — (_gl)r(“ —2r)§ IV Yr—1.
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On the other hand, for every Z € £ one has,

Vou = VY€ h(Z) v
= vy -2 v v li e w
= w70 © )Z L SI(Z) () (1))
= wye- 2 s %(ZHJ(Z)) ot Sz a2 v,

which implies

Vavr = (V- 557 L 0) 4 (-)a(2) o
Ve = (VYo — 552 - )+ (-1)p-(2) -4

Therefore the pair (¢,.,1,_1) satisfies if and only if ¥ := 1, + 1, _1 satisfies Vi =

all X € TM, that is, if and only if ¥ is a _T—Killing spinor on (M, g). O

The case (p')? — p? = —1 is analogous to the case (p')? — p? = 1 up to a Lorentzian detour. We call @
the following system of equations:

Vepr == m-2)E - Wy

Vevror =155 (n—2r)¢ - o ©)
Vzir = (-1)"ep4(Z) o Y-t

Vi =—(-0'ep(2) [ ¥,

for all Z, 7' € ¢+, where € € {£1}.

Lemma 3.15 Let (M?"~ 1, g,&) be a Sasakian spin manifold with h = —J and fix r € {0,1,...,n} as
well as € 6 {:l:l} Then a section (Vp,¥r—1) of B, M ®X,_1 M satisfies @ if and only if ¥ 1= Y, +ie,_q

js g L0 ) *-Killing spinor on the Lorentzian manifold (M, —ge @ GeL).
Proof: First, there exists the analog of Riemannian flow in the Lorentzian context. A Lorentzian flow is
given by a trlple (M,g, f) where (M g) is a Lorentzian manifold and f a smooth tangent vector field on

M with g(f 5) = —1 and g(VM§ VAES fg(V <, Z) forall Z,Z' € ﬁl‘ Note that (M g) is necessarily

time-oriented because of the existence of £. Setting Vx Z := [EA’ ] ~ X = é for all Z € I‘(fL)
(VMZ)E  ifX L¢

and h = VM é, one obtains a metric connection V and a skew-symmetric endomorphism-field h on fﬁ

such that R
VMZ = VAZ+ h( ) Jrg(VMf Z)§

VMZ/ - VZZ’ +3(h(2), Z')E

for all Z,7' € F(gl). Moreover, in case M is spin, the corresponding Gauss-type formula for spinors
reads

Vs UM, _ 107 lengMen

YE@ _YE L4 Q?M:‘O+ 2 MVE EMSO
- VM LV INAID

Vzp =Vgze+38 M2) ¢

for all ¢ € T(SM) and Z € &+, where Q(Z, Z’) .= G(h(Z),Z'). In case (M,§,£) is Lorentzian Sasakian,
i.e., if furthermore Vé\ff =0, h? = —1d and Vh = 0, then we still have the V-parallel decomposition
M = @' )%, M with %, M := Ker(ﬁj\j{ —i(2r — (n — 1)Id)). This time one has E;/Pr = (=1)""gp, for
all o, € X, M.

Assume now (M, g, 5) to be Lorentzian Sasakian and pick a section ¢ = ¥, + 9,1 of X, M & X, 1M,
then the formulas above imply

~  eum 1~
Ve = VEy -0y
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= @gfgb 9 .Ml/)-&- 5 .Mz/)—5((2r—(n—1))¢r+(2(r—1) (n—1))thr—1)
R (—1)T+1iAA (_1)T+1Z”'\,\
= Vevo TG

SV o e gz - E 0 1) - - D)y

. _1\r+1,; r+1,; N r+1 -
= oy - T ey 0 ooy, - T oy,

that is,
@gﬂ)r (VM,l/) )+1 f&w)7-+%(n_2r)§;[wqﬂ

)+1

Vo = (VHy - 1Ey), S - 2n)E .

M

This is still valid for r = 0 or r = n (setting ¥_1 := 1, := 0). Similarly, for all Z € {-'AJ-,

~ N 1~
_ M -
Vev = VYu+sER(Z) Ty
e, (CDTN (=N (<R (2L
= Vz R I WZ) o+ > h(Z) [ o
= o= e )i (D) + () i (2) 5
A 9 M r M r—1,
that is,
V z, (VMw ENTige w) + (1) lipy (Z)J\//\I'L/Jrfl
Votyr = (Vg — 07 ),y (C)ip(Z) -y
If one changes the Lorentzian metric g into g := — ggEB Jeu then one obtains a smooth Riemannian metric

g on M and the triple (M, g,¢ := fA) is a Riemannian flow with

vile =-Vie

h =—h
\Y =V.
Moreover, the Clifford multiplications are related by
Si TR
zZ . =2Z-,
M M

for all Z € ¢+ = EJ-. Therefore the equations above become on (M, g, &)

Ve = (VMy - CTIEy) ) <n — )¢ -
Ve = (VMp— EU0E0y) 4 500 - e e
Vo = (V¥ E5z0y) + (—1>r+1zp+<z> ; e
Vot = (V- E250) 4+ (—1) ip(2) -
Therefore, 1, — i€, satisfies @) if and only if ¢ is a (71)2T+1i—Killing spinor on (M, g, E) d

Round spheres provide examples of spin Sasakian manifolds where is fulfilled for the right r.

Lemma 3.16 For any odd n > 3, the (2n — 1)-dimensional round sphere M with its canonical Sasakian

and spin structures admits a 2 & -dimensional space of sections of Z%M@ E%M &) EanM &)
2

E%M satisfying .

17



Proof. Consider the standard embedding S?*~! C C", with unit normal v, = r and hence Weingarten-
endomorphism field A = —Idry. Set & := —iv. It is well-known that (S?"~!, g,¢) is a Sasakian spin
manifold with h = —J on &+ € TM, where J is the standard complex structure induced from C". Let

¢ € £,C" with r € {0,1...,n} (ie., Q-1 = i(2r —n)y where Q is the standard Kihler form of C™). If
r is even then ¢ € ¥TC". In that case the spinorial Gauss formula reads

n 1
Ve =V§ o= 5AX) ;@

so that the restriction of ¢ on S?"~! satisfies V1) = 1 X i ¥, ie., is a 2-Killing spinor. If r is odd,
then ¢ € ¥_C™. The spinorial Gauss formula for a section ¢ € E_sznq’ which can be identified with
8?7~ provided we change the sign of the Clifford multiplication, reads then

n 1
VX =VX o+ 5AX) [ @

for every X € TM. We deduce that V1) = —%X IV 1 for every X € T'M, that is, the restriction of ¢ to

S?"~1is a —$-Killing spinor. To sum up, the restriction of a constant section ¢ € £,C" to M := §*"~*

isa & ) -Killing spinor on M. Decompose such a 1 into ¢ = 1, +,._1, see |) From Lemma and
rkC(ET(C”) = ( Z ) we conclude. O

SQn—l

The analog of in the Lorentzian context is the Anti-deSitter spacetime H2"~!, that can be defined

by

n—1
H2 = {2 € C"| — |20 + ) |z[* = -1},
j=1
Lemma 3.17 For any odd n > 3, the (2n — 1)-dimensional Anti-deSitter spacetime M = H?"~1 with
its induced Lorentzian Sasakian structure (with fr =iz and h = J) and induced spin structure admits
an ( : )—dimensional space of %—Kﬁ'llmg spinors lying pointwise in .M & ¥,._1 M. In particu-

lar, if one considers the (Riemannian) Sasakian metric given by —§§@ §@, where § is the canonical

. ) . _ . n ) )
Lorentzian metric of sectional curvature —1, then H?"~1 admits a 2 ;1 |-dimensional space of sec-

2
tions OfE%M@ZnT—lM@EnT—lM@ZnT—SM satisfying @

Proof: First recall that M is a Lorentzian Sasakian manifold and simultaneously an S'-bundle with totally
geodesic fibres over CH"~!. Just as for the sphere, one can restrict spinors from C"™ onto M so that the
following Gauss-Weingarten-formula holds for all ) € C*°(C",Xy,) and all X € TM:

AX
VXU = —%w-w
B . ify(e) €5, Va

—EE b i) €3y, Y,

where A(X) := Vyv is the Weingarten endormorphism of M in C". Moreover, there still exists a V-
parallel splitting X5, = ®I'_yX2,,» where g, , = Ker(ﬁ - —i(2r — n)Id) (with dimension < Z )) and

Q is the Kihler form associated to the standard complex structure J on M. Choosing v, := —z as unit
normal on M, one has A = —Idrp, so that the restriction of any constant section of C” x Xy, , onto

M provides a (GO 1) *_Killing spinor. Since again X, M, I = 2rM @31 M, the first statement follows.
The second statement is a consequence of the first one together with Lemma [3.17] a

The doubly warped product of Theorem u) corresponding to M = S?»~! is the complement of a point
in the complex hyperbolic space CH™ with its canonical Fubini-Study metric of constant holomorphic
sectional curvature —4 (compare with [I, Satz 5.1]). Therefore we obtain a new description of the ima-
ginary Kahlerian Killing spinors on CH" after the explicit one by K.-D. Kirchberg [9, Sec. 3]. Actually
CH™ is essentially the only example occurring in Theorem zz)
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Theorem 3.18 Forn > 3 odd let (MQ”,ﬁ, J) be a Kahler doubly warped product as in Lemma with
(M?"=1 73, f) complete, Sasakian, simply-connected, spin, I =R, p = sinh and o = cosh. Let M carry
the induced spin structure and assume (Mzn, g, J) admits a non-zero i—thlerz'an Killing spinor (¢, ¢).
Then (MQ”,@ j) is holomorphically isometric to CH™ \ {z} for some x € CH™.

Proof: Tt suffices to show that (M?"~1 g, E) is S?"~! with its standard Sasakian structure. By assumption
(-1
2

and Lemma [3.14] the section Png1 + pns is a -Killing spinor on (M?"=1g E) lying pointwise

in Xuos M @ Xaoi M and the section $u_s + Gus is a _=n 2 1) —Kllhng spinor on (M?7~1, G, &) lying
pomtvvlse in En 1 M & En s M. At least one of them does not vanish. Now C. Bér’s classification (see

in particular [2] Thm. 3]) lmpheb that either M = S?"~! or M is a compact Einstein-Sasakian manifold
with exactly one non-zero %— and one non-zero f%—Killing spinor. Moreover, each Killing spinor induces
a parallel spinor on the Riemannian cone M over M [2]. But coming back to McK. Wang’s classification
of simply-connected complete Riemannian spin manifolds with parallel spinors, it turns out that, in the
latter case, the reduced holonomy of M is SU,, (where n is its complex dimension) and the parallel spinors

lie in oM and X, M (see [14} (i) p.61]), in particular not in EnTilM. Thus only S?"~1 occurs. O

In case M = H?"~! is equipped with its associated Riemannian Sasakian structure, the corresponding
doubly warped product with p = cosh and ¢ = sinh has again constant holomorphic sectional curvature
—4 by Lemma[3.12] It is actually the complement in CH" of some submanifold. We conjecture that, up
to covering, H?"~! is the only Lorentzian Sasakian manifold having non-zero imaginary Killing spinors
lying pointwise in the “middle” eigenspaces ¥, M (with r € {%, e ”TH}) of the Clifford action of the
transversal Kéhler form. If this happens, then only the complex hyperbolic space can occur as (simply-
connected complete) example of doubly warped product in Theorem m)

4 Classification in a particular case

In this section, we show that the structure of a doubly warped product can be recovered from the length
function of a non-zero imaginary Kahlerian Killing spinor satisfying certain supplementary assumption
on the Kéhler manifold M. The following result can be seen as analogous to H. Baum’s one [3] about
imaginary Killing spinors of so-called type I. Recall for the next theorem that V' was defined by .

Theorem 4.1 Let (Mgn,g7 J) be a connected complete Kahler spin manifold carrying a non-zero i-
Kahlerian Killing spinor (1, ¢). Assume |¢| = |@| and the existence of a real vector field W on M

together with a non-identically vanishing continuous function p : M — C such that W - ¢ = pg.
Then the vector field V has no zero, the Kdihler manifold (M?",g,J) is a doubly warped product as in

Theorem. and (¥, ) comes from a transversally parallel spinor on (M,g,§).

Proof: We construct a holomorphic isometry between (M n g, J) and some doubly warped product. This
isometry is provided by the flow of some vector field associated to the Kéhlerian Killing spinor (compare
with the case of imaginary Killing spinors [3]).

First note that, if [1)| = |¢|, then both ¢ and ¢ have no zero on M. Because of (W] |¢| = |W 9| = |u|-]9],
this already implies |W| = | on M. Fix a neighbourhood U of a point x with p(z) # 0 for all € U.
It follows from the definition of V' that

_ Z.g(p+(W),V)
HE TR

on U, in particular W (z) # 0 and V(x) # 0 for all € U. Now Cauchy-Schwarz inequality with X =V
in (1)) gives |[V| < |¢] - |¢| on M. With we deduce that

(10)

V|2 \%4 J(V
= e (o + a0 T02)
VI2|W|?
<
< (WP
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on U, which together with |u| = |W| provides |V| = |¢|?. By the equality case in Cauchy-Schwarz
inequality, we obtain V - ¢ = i|V|¢ and V - ¢ = i|[V | on U. This identity holds on M because of the
analyticity of all objects involved (by definition, ¢ is anti-holomorphic and ¢ is holomorphic). This in
turn implies |V| = |¢|? on M, in particular {V=0}=g and % <1 = 1i¢ as well as % ¢ =i on M.
Next we look at the level hypersurfaces M, = {z € M, |¢(z)| = r} (with r € R7Y) which, if non-empty,
are smooth because of {V = 0} = & and Proposition A unit normal to M, is given by v := % and
the associated Weingarten endomorphism field is

AX) = —Vxv

1 (= = V. .V
= i (Fxv -V )
i V'V

for every X € vt. Setting ¢ := —J(v) (note that the vector field ¢ is pointwise tangent to M,.), using
v -1 = i¢ and Proposition ii), we compute, for all X,Y € v+,

(AX),Y) = —ﬁgﬁxv, Y)

B _ﬁ%e(@f(X)mpf(Y)-¢>+<p+(X)'¢7P+(Y)'¢>)

- —ﬁ%e(@,()()~y~z/1,p,(Y)-I/~1/)>+<P+(X)'1/)ap+(y)'1/)>)
— _ﬁ%e(—(p_(X)~1/~1/),V~p_(Y)-1/J>—2m<p—(X)'V'¢’¢>

(P4 (X) 0 p4 (Y) - 1)
= e ()b p (V) ) + 200 p- (X)) -2 (V) )

= 2900, (D)o (X) v, 8) + (p4 (X) - 6,1 (V) - )

~ e (XY ) g T - p=(¥) )+ (v T - (X) v - 1))
1
VI

(129, Y) + g0, T OO)Re(( p— (V) - ) = (v, T (V) Re((p—(X) - 6.14)))

_ fﬁ(wuq(x,yug(v, J())g(I(X),V))

= —(9(X,Y) +g(& X)g(&,Y)),

that is, A = —Idry, — € ® £ In particular, the GauB-Weingarten formula for the inclusion M, C M
reads VyY = VAX4"Y —(g(X,Y) 4+ g(&, X)g(&,Y))v for all vector fields X, Y tangent to M,.

We begin with the reconstruction of the doubly warped product structure of Theorem z) From
A(€) = —2¢, we deduce that A(J(V)) = —2J(V), hence %J(V)V = 2J(V). Proposition u) gives

gy = SV IWVD L g 0 (V) 6 po(J(V)) - 6) + (s (V) -, ps (J(V)) - ) = 0.

V] Vi
Therefore %J(V)V = 2|V[J(V), that is, ViV = 2|V |V using %J(X)V = J(VxV) for all X. This implies
for the commutator of £ and v (which we need later for the identification of the metric and of the Sasakian
structure)

6] =~
RGNS
vV
_ 1 1o, 1JV)
= /WY eV



1 1 1
mv(m)«](v) - W[J(V),V]
_9(6\/‘/7 V).V 1

T ()~ YD)

VR
0

= 2 (11)

We show now that each (non-empty) (M., g|,, ,§|,, ) is Sasakian. For every X € T'M,, one has

Vx§ = =Vx(J(¥)

—J(Vxv)

= J(A(X))
—J(X) = g(& X)v,

so that %55 = —2v, from which vé‘“g = 0 follows and, for every Z € {£, v}, the identity %ZE =—-J(Z)
implies V"¢ = —J(Z). In particular, ¢, ~defines a minimal Riemannian flow on (M,,g,, ) and
h = —J is an almost Hermitian structure on &+ C T'M,.. It remains to show that h - or, equivalently, J -
is transversally parallel on ¢+. Recall that, from the definition of the transversal covariant derivative V
one has, for all sections Z, Z’ of ¢+,
VeZ = VIZ—n(2)
= VeZ - g(A(€), Z)v + J(2)
= VeZ+J(2)

and

VzZ = VyZ +g9(h2),2)¢
= VzZ - g(AZ), 2w —g(J(2),Z')¢
- 6ZZ/_|_g(ZaZ/)V_g(‘](Z)7Z/)§7

from which one deduces that

(Ve)(2) = Ve(J(2)) - J(VeZ)
= Ve(J(2)-Z—-J(NeZ)+ Z
0
and
(VzI)(Z) = Vz(J(Z) - I(VzZ')

= Vz(J(Z2)+
—J(V2Z")
= 0,

(Z, J(Z"))w — g(J(Z),(Z))§
(Z2,2)§ + 9(J(2), Z")v

Q@ «

i.e., VJ =0, which proves that (M, g),, ,&,, ) is Sasakian.

We come to the holomorphic isometry. Denote M := My, g := g|,, and fA:: §),- Up to rescaling (¢, ¢)
by a positive constant (this does not influence both conditions on (¢, ¢)), we may assume that M # &.

Let FY be the flow of v on M. The vector field v is complete since v is bounded and (M, g) is complete.
Consider the map

F:MxR — M
(x,t) — F/(x).

We first show that F' is a diffeomorphism. If F/(x) = F}/(2') for some t,t' € R and x,2’ € M, then z

and 2’ lie on the same integral curve of v. Let now ¢ be any integral curve of v on M with ¢(0) € M and
set f(t) := [V]cu) (note that f a priori depends on the curve and in particular on the chosen starting
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point). Then f is smooth with first derivative given by f'(t) = %(c(t)) = 2|Vcry = 2f(t) for all

t, so that f = f(0)e?" = e*. This has several consequences. On the one hand, f is injective, so that c
meets M at most once, hence x = z’ and ¢ = ¢, which proves the injectivity of F. On the other hand, f
does a posteriori not depend on the chosen starting point on M, in particular F} preserves the foliation
by the level hypersurfaces M, of |¢| and hence the orthogonal splitting T'M,. & Rv. Together with the
surjectivity of f : R — R}, we obtain that of F' and the pointwise invertibility of the differential of F.
Therefore F' is a diffeomorphism.

Next we determine the metric F*g. The map F' sends % onto v, so that obviously F *g(%7 %) = 1. The
preceding considerations also yield F *g(%7 X)=0forallteRand X € TM. Since

0 0
R8s = (F e (V)8 = (FY) 16 v @ 2Py ).,

Js Jds
we have
(FY)«€ = e*¢ (12)
for every t € R. Moreover, the Lie derivative of ¢ in direction of v is given for all X,Y € v+ by
(Log)(X,Y) = g(Vxv,Y)+g(Vyr,X)
= —29(A(X),Y)

= 2(9(X,Y) +g(§, X)g(&,Y)),

that is, (£,g)| , = 2(g9 + £ @ £°). The identity %(F:)*g‘szt = (FY)*L,g provides, for any X, Y € TM
andt € R

TR XN = (e (F) g )(XY)

= {(F) Logh(X,Y)
= Log((F)X, (FY)Y) o FY

2(g((F) X, (FY).Y) + (6, (FY). X)g(&, (F).Y) ) o FY
() g((F20).6 X) (B ) g((FY,).6,Y))

() g(x,7)
2((FY) 90X, Y) + e () gle X)(FY'g(€,Y)). (13)

= 2

Since (FY)*g(&,€) = g((FY) &, (FY) &) o FY (e*g(&,€)) o FY = e, we deduce from 1} that, for
X =g,

(9 v\ * v *

75 (F)9(6,Y)) o = 4(F)"9(&,Y),
from which (F})*g(£,Y) = e*g(&,Y) follows. In particular, (FY)*g(£,Y) = 0 for every Y € {&,v}+. For
X,Y € {¢, v}t the identity (13) becomes

d

S (F) (X V), = 20F) (X, 1),

which implies (F}Y)*g(X,Y) = €?'g(X,Y). To sum up, the pull-back metric on M x R is given by
F*g — eZt(th/g\E@ ./g\EJ_) ) dtQ7

where fq\g = Eb ® Eb = fq\(g, J® ?]({A, -) and, as in the beginning of this section, /g\@ denotes the restriction
of g onto the subspace {E, %}L C TM. Hence the map F' provides an isometry with the doubly warped

product of Theorem z) This isometry pulls the spin structure of M back onto the product spin
structure of M x R, where M carries the spin structure induced by its embedding in M. Tt remains to
show that F identifies the complex structures. This follows from the definition of the complex structure
on the doubly warped product M x R (see Lemma , from (F}).v = v, (Ft”)*(e_thA) = ¢ and from
[J(Z),v] = %J(Z)V —V,J(Z2) = —A(J(Z2)) = J(N,Z) = J(Z) — J(V,Z) = J([Z,v]) for every section Z
of {¢,v}+ (use the computation of A above).

Last but not the least, the identity v - ¢ = i¢ implies that ¢ (or, equivalently, 1) is transversally parallel
on (M,g, E) by Theorem mz) This concludes the proof of Theorem O
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It is important to note that only the condition W - ¢ = u¢ for some real vector field W is restrictive,
since by [0, Thm. 11] the identity |¢)| = |¢| can always be assumed.

We conjecture that the examples of Section [3] describe all Kahler spin manifolds admitting non-trivial
imaginary Kéahlerian Killing spinors. This will be the object of a forthcoming paper.
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