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HORO-TIGHTNESS AND TOTAL (ABSOLUTE) CURVATURES IN
HYPERBOLIC SPACES

G. SOLANES AND E. TEUFEL

Abstract. We prove Gauß-Bonnet-type and Chern-Lashof-type formulas for immersions
in hyperbolic space. Moreover we investigate the notion of tightness with respect to
horospheres introduced by T.E. Cecil and P.J. Ryan. We introduce the notions of top-set
and drop-set, and we prove fundamental properties of horo-tightness in hyperbolic spaces.

1. Introduction

For a smooth immersion f : M → Rn of a closed manifold M into euclidean space,
there are strong relations between the topology of M and the total (absolute) Lipschitz-
Killing curvature of f . Firstly, the formula of Gauß-Bonnet relates the Euler characteristic
χ(M) with the total curvature of the immersion. Secondly, the Chern-Lashof inequality
states that the total absolute curvature is bigger or equal than β(M), the sum of the Betti
numbers of M . In case of equality the immersion is called tight. Tightness has been studied
by N.H. Kuiper and many others till nowadays, cf. [Kui84], [Kui97], [CR85], [CC97].
Recent developments in this context deal with non-compact manifolds and manifolds with
boundary (cf. [DK05],[KS11]).

For M smoothly immersed in hyperbolic space Hn, the topology of M and total (abso-
lute) curvatures of the immersion are not so closely related. Neither the total Lipschitz-
Killing curvature of M is equal to the Euler characteristic of M , nor the total absolute
Lipschitz-Killing curvature of M is in general bounded by the sum of the Betti numbers
of M (cf. [LS03],[Sol07]). Despite of this, the following facts are known. For curves in
hyperbolic spaces there are generalizations of the Fenchel inequality, cf. [Sze68], [BH74]
[Tsu74]. For compact immersed submanifolds M lying inside a ball of radius R, there
are lower bounds for the total absolute Lipschitz-Killing curvature in terms of β(M) and
the radius R, cf. [Teu82], [Teu88], [Oka98]. The Gauß-Bonnet theorem in hyperbolic
spaces, especially for hypersurfaces, contains not only the Lipschitz-Killing curvature but
also the other mean curvatures of M , cf. [San76], [Sol06]. In recent years there have been
investigations on differential geometric quantities on M , other than the Lipschitz-Killing
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2 G. SOLANES AND E. TEUFEL

curvature, in order to obtain Gauß-Bonnet-type theorems and Chern-Lashof-type inequal-
ities respectively, cf. [Koi03], [BISR10], [IRF06]. Concerning tightness there have been
generalizations to hyperbolic spaces by T.E. Cecil and P.J. Ryan ([CR79, CR85]), and
others (cf.[Bol82],[Sol07],[BIR10]).

In this paper we continue along these lines by using horospheres in hyperbolic space
Hn. Our basic construction is the support map (see Definition 2.1) assigning to each
submanifold M ⊂ Hn the set of its enveloping horospheres. This set lies inside the space
H of horospheres which has a conical structure. We show Gauß-Bonnet-type formulas and
Chern-Lashof-type inequalities, and we investigate tightness with respect to horospheres.

In section 3 we use Morse theory applied to height functions defined by pencils of parallel
horospheres. This leads to Chern-Lashof-type formulas (Propositions 3.1 and 3.2) and a
Gauß-Bonnet-type formula (Proposition 3.3). By different methods these results were
obtained in [Koi03], [IRF06] and [BISR10]. Moreover, we get other Gauß-Bonnet-type
formulas involving integral geometric terms (Propositions 3.4 and 3.5).

In section 4, motivated by a question of T.E. Cecil and P.J. Ryan in [CR85], we study
horo-tightness in hyperbolic spaces. This notion is again based on height functions defined
by pencils of parallel horospheres. A smooth immersion f : M → Hn of a closed manifold
is called horo-tight if almost every such height function has β(M) critical points along
the immersion (see Definition 4.1 and Proposition 4.2). In parts, we follow along the
euclidean line in [CR85]. Firstly, we look at the horospherical two-piece property h-TPP
(see Definition 4.3). This is an analogue of the euclidean two-piece-property introduced
by T.F. Banchoff in [Ban71]. Our main result here is Proposition 4.5: if a k-dimensional
manifold M is immersed in Hn with the h-TPP and k(k + 3) < 2n, then the image of
M lies in a euclidean sphere in a horosphere. Then we introduce the notions of top-sets
and drop-sets. For every height function, the associated top-set (resp. drop-set) is the
set of points in M where the height function attains its maximum (resp. minimum). In
contrast with the euclidean case, a drop-set must not coincide with the top-set of any
height function. The reason is that at each point of the immersion there are two different
tangent horospheres. One result here is Proposition 4.8: if an immersion is horo-tight,
then top-sets and drop-sets are euclidean tight in the respective horospheres.

Next we focus on horo-tight surfaces in H3. Each point of such a surface is critical for
exactly two height functions. For each non-degenerate critical point we have the following
possibilities: either it is a relative maximum and a relative minimum (max/min-type),
either it is a relative minimum and a saddle point(min/saddle-type), or it is a saddle point
for both functions (saddle/saddle-type). In these terms, using the notions of top-cycle and
drop-cycle (similar to the euclidean case) the description of horo-tight surfaces is rather
complete (cf. Proposition 4.10). For instance, for an embedded horo-tight surface M ⊂ H3

the picture is the following. An open region Ut ⊆ M is the boundary of the so-called h-
convex hull of M (see Definition 4.2) with several disks removed. These disks are contained
in horospheres and are euclidean convex there. The points of max/min-type are contained
in Ut. A bigger region Ud with Ut ⊆ Ud ⊆ M is contained in the boundary of the so
called h-concave hull of M with several convex (in the sense above) disks removed. The



HORO-TIGHTNESS AND TOTAL (ABSOLUTE) CURVATURES IN HYPERBOLIC SPACES 3

min/saddle-type points are contained in Ud \ Ut. The points of saddle/saddle-type are
contained in M \ Ud.

Finally, we complete the discussion of the relations between the different notions of
tightness appearing in the literature ([CR79, CR85], [BIR10], [Sol07]). These notions
come from several geometric height functions, namely those defined by pencils of parallel
horospheres, or pencils of equidistants to a geodesic hyperplane, or pencils of hyperplanes
orthogonal to a geodesic. We show that horo-tightness does not imply any of the other
notions of tightness.

2. Preliminaries

We use the Lorentz space model for the Hyperbolic Geometry. The model lives in the
Lorentz space Rn+1

1 with its Lorentz product

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn − xn+1yn+1 .

Therein the n-dimensional hyperbolic space Hn is realized as

Hn = {x ∈ Rn+1
1 : 〈x, x〉 = −1 ∧ xn+1 > 0} ,

which is the upper half of a two-sheeted hyperboloid with the light cone Cn = {x ∈ Rn+1
1 :

〈x, x〉 = 0} as asymptotic cone. The group G of hyperbolic motions of Hn is given by the
subgroup of the Lorentz group leaving invariant Hn.

The infinite or ideal boundary Hn
∞ of Hn is realized as the boundary of the projective

closure of Hn, or equivalently the boundary of the projective closure of Cn in the projective
enlargement of Rn+1

1 . It is a (n−1)-dimensional sphere and it inherits a conformal structure
invariant with respect to G.

Horospheres in Hn may be seen as limits of distance spheres through some given point
the centers of which run on a geodesic towards infinity. In the model, distance spheres are
realized by intersections of Hn with space-like affine hyperplanes. Therefore horospheres
are realized by intersections of Hn with affine hyperplanes parallel to tangent hyperplanes
of Cn.

The space H of horospheres of Hn is represented by the upper half of the light cone, i.e.

H = Cn+ = {x ∈ Rn+1
1 : 〈x, x〉 = 0 ∧ xn+1 > 0 .}

Indeed, given θ ∈ Cn+, the affine hyperplane Θ = {x ∈ Rn+1
1 : 〈x, θ〉 = −1} is parallel

to the tangent hyperplane TθCn+ = {x ∈ Rn+1
1 : 〈x, θ〉 = 0} of Cn+ at θ. Therefore Θ

intersects Hn in a horosphere which we also denote by Θ. Vice versa, given a horosphere
Θ as the intersection of Hn with an affine hyperplane Θ parallel to a hyperplane tangent
to Cn+ along a half light-ray, there exists exactly one θ in this half light-ray such that
Θ = {x ∈ Rn+1

1 : 〈x, θ〉 = −1}. (In the following we shall always denote horospheres
in Hn, or the underlying affine hyperplanes respectively, by capital Greek letters and the
vectors in Cn+ representing them by the corresponding small Greek letters. Moreover, for a
horosphere Θ the closed horoball bounded by Θ will be denoted BΘ.) The correspondence
between θ and the hyperplane Θ comes exactly from the polarity relation with respect to
the quadric ±Hn ⊂ Rn+1

1 . The Lorentz product of Rn+1
1 induces a degenerated product
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(isotropic metric) on Cn+. Despite the degeneracy of the product, there exists an invariant
volume form ω on Cn+ (cf. [San67, San68]). This form is unique up to constant factors.
We use the normalization such that the measure of horospheres containing a given point
is equal to On−1/(n− 1) (here and in the following On−1 denotes the (n− 1)−dimensional
volume of the unit sphere Sn−1 ⊂ Rn).

The light-rays in the cone Cn+ represent the pencils of “parallel” horospheres. Two
parallel horospheres Θ1 and Θ2 touch one another at a point at infinity, and they lie in
constant hyperbolic distance to each other. A little computation in the model shows that
this distance is equal to | lnλ|, where λ ∈ R+ is given by θ2 = λθ1. The signed distance
from Θ1 to Θ2 is given by

d(Θ1,Θ2) = − lnλ . (2.1)

For fixed Θ1, as λ → +∞ the horospheres Θ2 “shrink” to the common point at infinity
whereas the signed distance d(Θ1,Θ2) → −∞. On the other side, if λ → 0, then Θ2

expands over the whole Hn and d(Θ1,Θ2)→ +∞.
As geometric objects in Hn, we take smooth (i.e. C∞-differentiable) immersions f : M →

Hn of smooth closed (i.e. connected, compact and without boundary) manifolds M .
Our bridge between the point space Hn and the space of horospheres Cn+ is the following.

Let N1f denote the unit normal bundle of the immersion f (i.e. (x, ξ) ∈ N1f , iff x ∈ M
and ξ ∈ Tf(x)Hn with ξ ⊥ df(TxM) and ||ξ|| = 1).

Definition 2.1. We call the map

θ : N1f −→ Cn+ , (x, ξ) 7→ f(x) + ξ (2.2)

the support map of f .

Then θ(x, ξ) represents the horosphere Θ(x, ξ) which is tangent to f(M) at f(x) such
that ξ is the inner unit normal of Θ(x, ξ), i.e. ξ points into its convex side.

Remark 2.1. Our definition of support maps corresponds to the notions in [Sch02] and in
[IPS03], [IPRFT05] (“hyperbolic Gauss indicatrix”).

The link to the topology of M comes up by Morse theory using height functions. Our
height functions are based on pencils of parallel horospheres. In detail: For u ∈ Hn

∞,
let hu : Hn → R be the height function with level hypersurfaces given by the parallel
horospheres of the pencil through u. As a measuring rod one may use any geodesic through
u. In terms of Cn+, and if we fix a zero-level horosphere θ0 in the pencil through u, the
height of a level horosphere Θ is given by hu(Θ) = − lnλ, where θ = λθ0 (cf. (2.1)). In
the following, we use the height functions hu ◦ f : M → R, which generically are Morse
functions, and we apply Morse theory to hu ◦ f .

3. Total (absolute) curvatures, Gauß-Bonnet type theorems and
Chern-Lashof type inequalities

Let f : M → Hn be a smoothly immersed closed hypersurface in Hn. In this section, we
consider relations between total (absolute) curvatures of f and the topology of M .
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In order to see the connections between critical points of the height functions, their index
and the curvature, let us first consider a general height function h on Hn, i.e. a submersion
h : Hn → R (defined at least locally). Let p ∈M be a critical point of the induced height
function h ◦ f , then some level hypersurface S of h is tangent to f(M) at f(p), and hence
gradh(f(p)) = λ(p) ξ(p), where ξ(p) is a unit normal vector of f at p. We have

Lemma 3.1.
hess (h ◦ f)(p) = λ(p) IIf (p)− |λ(p)| f ∗IIS(p) (3.1)

where IIf (p) is the second fundamental form of f at p with respect to the unit normal
ξ(p), and IIS(p) is the second fundamental form of S with respect to its unit normal
gradh(f(p))/|gradh(f(p))| at f(p).

Proof. At least locally, we can write df(grad (h ◦ f)) = gradh − λ ξ with an appropriate
function λ. Then, for X, Y ∈ TpM ,

hess (h ◦ f)(p)(X, Y ) = g(∇Xgrad(h ◦ f), Y )|p =

= 〈Ddf(X)gradh, df(Y )〉|f(p) − dλ(X) 〈ξ, df(Y )〉|f(p) −
−λ(p) 〈Ddf(X)ξ, df(Y )〉|f(p) =

= −|λ(p)| IIS(df(X), df(Y )) + λ(p) IIf (X, Y )

with g = f ∗〈., .〉 = induced first fundamental form on M , ∇ = Levi-Civita connection of
g, and D = usual derivative in Rn+1

1 . �

If v1, . . . , vn−1 is a principal basis in TxM with respect to (x, ξ) ∈ N1M , we have dθ(vi) =
(1− ki) df(vi) where ki = ki(x, ξ) is the corresponding principal curvature. Then the area
element of θ(N1M) is

dAθ = |1− k1| · · · |1− kn−1|dA(x,ξ) (3.2)

where dA(x,ξ) denotes the area element of N1M at (x, ξ). This shows that the support map
is an immersion if and only if f has no principal curvature (with respect to any ξ) which
is equal to one. Moreover∫

N1M

|1− k1| · · · |1− kn−1|dA(x,ξ) =

∫
θ(N1M)

dAθ . (3.3)

Proposition 3.1. Let f : M → Hn be a smoothly immersed closed hypersurface. Assume
that M is contained in some ball of radius r. Then∫

N1M

|1− k1| · · · |1− kn−1|dA(x,ξ) > e−(n−1)rOn−1β(M) . (3.4)

Proof. Assume that M is contained in the ball Bp(r) with radius r > 0 and center p ∈ Hn.
Each horosphere Θ tangent to M is interior to some parallel horosphere tangent to Bp(r)
leaving it to the convex side. Therefore we have 〈θ,−p〉 ≥ e−r; i.e. θ lies above the plane
{〈θ,−p〉 = e−r}, which intersects Cn+ in a sphere S(r) of radius e−r. Hence the support
image θ(N1M) of N1M lies above S(r).
We take into account the following fact: Let S1, S2 be two hypersurfaces in the cone Cn+
with θ2 = λθ1, θi ∈ Si. Then the projection π : S2 → S1 (along the generators of Cn+) has
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Jacobian λ1−n.
In particular, π : θ(N1M)→ S(r) locally reduces area.
Therefore, applying the co-area formula, cf. [How93], to π gives∫

θ(N1M)

dAθ ≥
∫
S(r)

#(π−1(θ)) dS(r)θ (3.5)

Now, we use Differential Topology in particular Morse theory, cf. [Hir94]: For θ ∈ S(r),
the associated pencil of parallel horospheres defines a height function hθ. Because of the
construction of the support map, the number of critical points of hθ ◦ f is just the number
#(π−1(θ)) of intersection points of R+θ with θ(N1M). Generically hθ ◦ f is a Morse
function. Therefore, by the Morse inequalities we have

#(π−1(θ)) ≥ β(M) (3.6)

where β(M) is the sum of the Betti numbers of M . This shows that π covers S(r) at least
β(M) times. Finally, bringing together (3.3), (3.5) and (3.6), we arrive at (3.4). �

Remark 3.1. Equality in (3.4) can never occur: In the proof we used two estimations, first
the area-decreasing property of π and secondly the Morse inequalities. Although we may
have equality in the second estimation (e.g. for horo-tight immersions, cf. Section 4), we
never have equality in the first estimation. Note that for every x ∈M not both of the two
tangent horospheres can lie in S(r).

Remark 3.2. Proposition 3.1 was obtained with different methods in [Koi03].

To define a support function of f with respect to horospheres, we fix a point p ∈ Hn. The
signed distance ρ(x, ξ) from p to the tangent horosphere Θ(x, ξ), represented by θ(x, ξ) =
f(x) + ξ, defines the support function ρ : N1f → R of f based at p. In terms of Cn+, the
picture is as follows: TpHn ∩ Cn+ represents the pencil of horospheres through p. Some
θ(x, ξ)p ∈ TpHn ∩ Cn+ represents the horosphere Θ(x, ξ)p through p which is parallel to
Θ(x, ξ). Then θ(x, ξ) = λ(x, ξ) θ(x, ξ)p and ρ(x, ξ) = d(Θ(x, ξ)p,Θ(x, ξ)) = − lnλ(x, ξ) (cf.
(2.1)). Moreover ρ(x, ξ) ≥ 0 iff p is in the convex side of Θ(x, ξ). (Cf. [San67], [San68],
[Fil70].)

Proposition 3.2. Let f : M → Hn be a smoothly immersed closed hypersurface. Let ρ be
the support function of f based at a fixed point p. Then∫

N1M

e(n−1)ρ|1− k1| · · · |1− kn−1|dA(x,ξ) ≥ On−1β(M). (3.7)

Proof. Horospheres through p are represented by the section S = TpHn∩Cn+. The projection

π : θ(N1M) → S has Jacobian e(n−1)ρ, where ρ = ρ(x, ξ) is the signed distance from p to
the horosphere Θ(x, ξ) (positive when p is interior).
Therefore, the co-area formula applied to π ◦ θ : N1M → S gives∫

N1M

e(n−1)ρ|1− k1| · · · |1− kn−1|dA(x,ξ) =

∫
S

#(π−1(θ)) dSθ.



HORO-TIGHTNESS AND TOTAL (ABSOLUTE) CURVATURES IN HYPERBOLIC SPACES 7

Again, by Morse inequalities we have

#(π−1(θ)) ≥ β(M).

Altogether we get (3.7). �

Remark 3.3. For horo-tight hypersurfaces (cf. Section 4), we have equality in (3.7) with
β(M) being the Betti number with respect to Z2.

Remark 3.4. Proposition 3.2 was obtained with different methods in [Koi03] and [BISR10].

Remark 3.5. When M is oriented by a unit normal field ν(x), x ∈M , then its unit normal
bundle N1M splits into two copies of M , say M+ with normals ν and M− with normals

ν̂ = −ν. Also its support map splits into two maps θ with θ(x) = f(x) + ν(x) and θ̂ with

θ̂(x) = f(x) + ν̂(x) = f(x)− ν(x) respectively. Then (3.7) writes∫
M

(
e(n−1)ρ|1− k1| · · · |1− kn−1| + e(n−1)ρ̂|1 + k1| · · · |1 + kn−1|

)
dAx ≥ On−1β(M) (3.8)

where k1, . . . , kn are the principal curvatures of M with respect to ν, and ρ, ρ̂ are the two
support functions with base point p associated to θ, θ̂.

Next we bring signs into game. First, we orient TxHn through x, and similarly we
orient Cn+ through any vector x ∈ Hn. Given a subspace V ⊂ TθC

n
+ transverse to Rθ we

orient it through θ. For (x, ξ) ∈ N1f , we choose principal directions v1, . . . , vn−1 in TxM
with respect to ξ such that {df(v1), . . . , df(vn−1), ξ} is a positive basis of Tf(x)Hn. Then
dθ(vi) = (1− ki)df(vi), and {df(v1), . . . , df(vn−1), θ = f(x) + ξ} is a positive basis of TθCn+.
Thus, θ preserves orientations if and only if (1− k1) . . . (1− kn−1) > 0. Hence, the signed
area of θ(N1M) is

A+(θ(N1M)) =

∫
N1M

(1− k1) · · · (1− kn−1)dA(x,ξ). (3.9)

Proposition 3.3. Let f : M → Hn be a smoothly immersed closed hypersurface, oriented
through a unit normal vector field ν. Let θ be the associated support map, i.e. θ(x) =
f(x) + ν(x), x ∈ M . And let ρ be its support function based at a fixed point p. Then, if n
is odd ∫

M

e(n−1)ρ(1− k1) · · · (1− kn−1)dAx =
On−1

2
χ(M). (3.10)

For general n, assume that f is an embedding, so that f(M) = ∂Q for some compact
domain Q. If ν points into Q, then

(−1)n−1

∫
M

e(n−1)ρ(1− k1) · · · (1− kn−1)dAx = On−1χ(Q). (3.11)

Proof. The projection π : Cn+ → S, S = TpHn ∩ Cn+, along the generators of Cn+ preserves
orientations when restricted to hypersurfaces transverse to the light rays. In particular
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π : θ(M)→ S preserves orientation, and it has Jacobian e(n−1)ρ. Therefore, application of
the co-area formula to π ◦ θ : M → S gives∫

M

e(n−1)ρ(1− k1) · · · (1− kn−1)dAx =

∫
S

µf (θ)dSθ, (3.12)

where µf (θ) is the algebraic intersection number of θ(M) with R+θ.
For θ ∈ S, let hθ : Hn → R be the height function with level hypersurfaces built by the
pencil of horospheres parallel to Θ (i.e. represented by the light-ray R+θ in Cn+), and with
heights given by the signed distance of these horospheres to the point p (positive when p
lies in the convex side). Then, because of the construction of the support map θ,

µf (θ) =
∑

∇hθ(f(x))=−ν(x)

(−1)i (3.13)

where i = i(x, θ) is the index of x as a critical point of hθ ◦ f . Indeed, Lemma 3.1 gives

(−1)i = sign det hess(hθ ◦ f)|x = sign det(Id− IIf )|x =

= sign(1− k1) · · · (1− kn−1)|x. (3.14)

Alternatively, we compute µf (θ) by using a diffeomorphism Ψ : Hn → Rn such that
hθ = −xn ◦ Ψ (for instance, we can take the half-space model with Θ horizontal). Here,
Lemma 3.1 gives

sign det hess(hθ ◦ f)|x = sign det hess(−xn ◦Ψ ◦ f)|x =

= sign det(−IIeΨ◦f )|x = (−1)n−1signKe(x), (3.15)

being IIeΨ◦f the euclidean second fundamental form (in the model), and Ke the euclidean
Gauß curvature of Ψ ◦ f in Rn with respect to the normal Ψ∗ν(x). From (3.13), (3.14) and
(3.15) we conclude that (−1)n−1µf (θ) is the degree of the euclidean Gauß map of Ψ ◦ f .
In case n is odd we get

µf (θ) = χ(M)/2.

This follows from

On−1 µf (θ) =

∫
M

Ke dA
′ =

On−1

2
χ(M),

where dA′ is the area element of Ψ ◦ f . Here the first equality comes by application of
the co-area formula to the euclidean Gauß map, and the second one is just the formula of
Gauß-Bonnet (cf. [CL57], [CL58]).

For general n, if f(M) = ∂Q we have

µf (θ) = (−1)n−1χ(Q),

see e.g. [Mor29]. Altogether this proves the result. �

Remark 3.6. Proposition 3.3 was obtained with different methods in [Koi03],[IRF06] and
[BISR10].
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Remark 3.7. In case M is not orientable, one can apply the previous proposition to the
unit normal bundle, which is oriented. If M is orientable, this is equivalent to taking two
copies of M , each with a different orientation. In this case, we get for n odd∫

M

[
e(n−1)ρ(1− k1) · · · (1− kn−1)

+ e(n−1)ρ̂(1 + k1) · · · (1 + kn−1)
]
dAx = On−1χ(M), (3.16)

where ρ̂ is the support function induced by θ̂(x) = f(x)− ν(x).

3.1. Gauß-Bonnet-type theorems and Integral Geometry. Let f : M → Hn be a
smoothly immersed closed hypersurface, oriented by a unit normal vector field ν. Let θ be
the associated support map, i.e. θ(x) = f(x) + ν(x), x ∈M .

Given any θ ∈ Cn+ \ θ(M), we define µ+
f (θ) as the algebraic intersection number of the

ray (1,∞)θ = {λθ|λ > 1} with θ(M). Let hθ : Hn → R be the height function with level
hypersurfaces built by the pencil of horospheres parallel to Θ, and normalized such that
hθ(Θ) = 0. According to (2.1), hθ gives the signed distance of the points of Hn to Θ,
negative in the convex side of Θ. Now, we consider the (signed) number of critical points
of hθ ◦ f that occur inside f−1(BΘ) and such that ∇hθ = ν (BΘ = closed convex horoball
bounded by Θ); i.e.

µ+
f (θ) =

∑
(∇hθ)(f(x)) = ν(x)

hθ(f(x)) < 0

sign det hess(hθ ◦ f)|x.

Integrating with respect to θ over Cn+ we get∫
Cn+
µ+
f (θ)ωθ =

∫
Sn−1

∫ ∞
0

µ+
f (θ)yn−2

n+1dyn+1dSn−1
v =

=

∫
Sn−1

∑
y∈R+(v,1)∩θ(M)

(−1)i
(yn+1)n−1

n− 1
dSn−1

v =

=
(−1)n−1

n− 1

∫
M

(1− k1) · · · (1− kn−1)dAx. (3.17)

Indeed, the first equality is just rewriting the density ωθ of horospheres (cf. [San67],
[San68]), θ = yn+1(v, 1), v ∈ Sn−1 = T 1

(0,...,0,1)Hn). For the second equality we carry out the

integration with respect to yn+1 for fixed v ∈ Sn−1. This integration runs along the gener-
ator R+(v, 1) of Cn+. Note that along the generator the function µ+

f (θ) is locally constant

with jumps exactly at the intersection points of R+(v, 1) and θ(M). The magnitude of the
jump at a θ(x) is equal to (−1)i = sign det hess(hθ ◦ f)|x by definition of µ+

f . The third

equality follows with (3.2), (3.3), taking into account (3.13) and (yn+1)n−1 dSn−1
v = dAθ

(θ = (yn+1)(v, 1) = θ(x)).
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The following question appears: is the number µ+
f (θ) determined by the topology of

M ∩ f−1(BΘ)? We can answer this question in positive assuming M is embedded, or
alternatively replacing M by its oriented cover, cf. (3.19).

Proposition 3.4. Let f : M → Hn be a smoothly embedded closed hypersurface, bounding
a domain Q and oriented by its inner normals ν. Then,

(−1)n−1

∫
M

(1− k1) · · · (1− kn−1)dAx = (n− 1)

∫
Cn+

(χ(Q ∩BΘ)− χ(Θ ∩Q))ωθ. (3.18)

Proof. Consider the domain BΘ∩Q, which has piecewise smooth boundary (M∩BΘ)∪(Θ∩
Q). We can deform S = Θ∩Q to a new hypersurface S ′ so that ∂S = ∂S ′, and (M∩BΘ)∪S ′
is a regular hypersurface bounding a domain R homotopic to BΘ∩Q. Moreover, S ′ can be
constructed so that the unit normal ν ′ on S ′ (obtained by transporting the orientation of S
to S ′) fulfills 〈ν ′,∇hθ〉 ≤ 0 everywhere on S. Let us consider the situation in the Poincaré
half-space model. We can assume Θ is horizontal in the model, so that ∇hθ is vertical and
points downwards. Then, the degree of the Gauß map γ of ∂R (in the model) is χ(R).
On the other hand, this degree can be computed as the signed number of preimages of the
vector (0, . . . , 0, 1) ∈ Sn−1. Then we have

χ(BΘ ∩Q) = χ(R) = deg γ = χ(S ′) + µ+
f (θ) = χ(Θ ∩Q) + µ+

f (θ). (3.19)

We finish by applying equation (3.17). �

Remark 3.8. For horo-convex Q (see Example 1 in 4.1), we have that χ(Q∩BΘ)−χ(Θ∩Q)
is equal to 1 if f(M) ⊂ BΘ, otherwise it is equal to 0. Hence (3.18) gives

(−1)n−1

∫
M

(1− k1) · · · (1− kn−1)dAx = (n− 1)

∫
f(M)⊂BΘ

ωθ = (n− 1)mf (3.20)

where mf is the measure of horospheres having f(M) entirely in their convex sides.

Proposition 3.5. Let f : M → Hn be a smoothly embedded closed hypersurface. Then∫
M

(1 + σ2 + · · ·+ σ2k)dAx =
n− 1

2

∫
Cn+
χ(f(M) ∩BΘ)ωθ (3.21)

where σi =
∑

1≤j1≤···≤ji≤n−1 kj1 · · · kji, and 2k ≤ n− 1 ≤ 2k + 1.

Proof. To prove the formula, we consider M ′ = N1f . Then

µ+
f ′(θ) =

∑
i

(−1)ic+
i (hθ ◦ f)

where c+
i (hθ◦f) is the number of critical points of index i of hθ◦f restricted toM∩ f−1(BΘ).

By Morse theory we know

µ+
f ′(θ) = χ(f(M) ∩BΘ),

and we get formula (3.21) by using equation (3.17). �



HORO-TIGHTNESS AND TOTAL (ABSOLUTE) CURVATURES IN HYPERBOLIC SPACES 11

Remark 3.9. If n is even, then χ(f(M)∩BΘ) = χ(f(M)∩Θ)/2 and formula (3.21) coincides
with a result of [GNS04].
If n is even and Q is horo-convex, then formula (3.21) writes∫

M

(1 + σ2 + · · ·+ σn−2)dAx =
n− 1

2

∫
Cn+
χ(f(M) ∩BΘ)ωθ =

n− 1

2
(m2 +m1)

where m2 is the measure of horospheres containing Q in the interior, and m1 denotes the
measure of the horospheres intersecting Q. This together with (3.20) gives∫

f(M)∩Θ6=∅
ωθ =

2

n− 1

∫
M

(σ1 + σ3 + · · ·+ σn−2) dAx,

which coincides with one of the results in [GNS04].

Remark 3.10. For an immersion f , Proposition 3.5 remains true with the integrand on the
right-hand side of (3.21) replaced by χ(f−1(f(M) ∩BΘ)).

4. Horo-tightness

Let f : M → Hn be a smooth immersion of a closed manifold M . In this section, we
investigate the horo-tightness of f by applying Morse theory (e.g. [Hir94]) to the height
functions hu ◦ f , u ∈ Hn

∞.

Proposition 4.1. For almost all u ∈ Hn
∞ the height function hu ◦ f is a Morse function.

Proof. We take the hyperbolic Gauß map ν : N1f → Hn
∞ which assigns to (x, ξ) ∈ N1f

the endpoint of the geodesic half ray emanating form f(x) in direction ξ. Then x ∈ M is
a critical point of hu ◦ f if and only if u = ν(x, ξ) for some (x, ξ) ∈ N1f . Moreover in this
case, x is non-degenerate if and only if ν is regular at (x, ξ). Then the assertion follows by
application of the Theorem of Morse-Sard to ν. �

Remark 4.1. For the notion hyperbolic Gauß map ν : N1f → Hn
∞ and its applications, cf.

[Eps86], [Bry87], [Kob89], [IPS03].

We begin with some nomenclature and data from Morse theory. Let ϕ be a Morse
function on M , let µk(ϕ) denote the number of critical points of ϕ of index k and µ(ϕ) the
number of critical points of ϕ. If βk(M ;F ) is the k-th Betti number of M with respect to
a field F , then there are the Morse inequalities ([MC69])

βk(M ;F ) ≤ µk(ϕ). (4.1)

Let γ(M) be the Morse number ofM , i.e. γ(M) = min{µ(ϕ) : ϕ is a Morse function on M},
then

dim M∑
k=0

βk(M ;F ) =: β(M ;F ) ≤ γ(M).

If µ(ϕ) = γ(M), then ϕ is polar, i.e. ϕ has exactly one local maximum and one local
minimum ([Mor60]).
In particular, if M is a closed 2-dimensional surface, then γ(M) = β(M ;Z2) = 4 − χ(M)
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([Kui62]). Moreover, if M is a closed 2-dimensional surface and ϕ a Morse function on M ,
then µ(ϕ) = γ(M) iff ϕ is polar ([CR85] Prop. 5.6).
Let ϕ be a Morse function on a closed manifold M . For a given field F , µk(ϕ, r) =
βk(ϕ, r;F ) for all r ∈ R and all integers k if and only if the map on homologyH∗(M≤r(ϕ);F )→
H∗(M ;F ) induced by inclusion is injective for all r ∈ R ([MC69]), where µk(ϕ, r) is the
number of critical points of ϕ of index k which lie in M≤r(ϕ) = {x ∈ M : ϕ(x) ≤ r} and
βk(r, ϕ;F ) is the kth Betti number of M≤r(ϕ) over F .

Definition 4.1. The smooth immersion f : M → Hn is called horo-tight if for every closed
horoball BΘ, the induced homomorphism

H∗(f
−1(BΘ)) −→ H∗(M)

in Cech homology with Z2 coefficients is injective.

Remark 4.2. Equivalent to this definition of horo-tightness is the property that

H∗(f
−1(Hn \ int BΘ)) −→ H∗(M)

in Cech homology with Z2 coefficients is injective for every closed horoball BΘ.

Remark 4.3. The use of Cech homology is motivated by its continuity property which is
necessary to eliminate the requirement that the horoball be determined by a non-degenerate
height function. For smooth manifolds, Cech homology agrees with singular homology,
[CR85].

Through Morse theory, Definition 4.1 is equivalent to

Proposition 4.2. A smooth immersion f : M → Hn of a closed manifold M is horo-tight
if and only if µ(hu ◦ f) = β(M ;Z2) for almost all u ∈ Hn

∞.

Proof. Analogous the euclidean case, [CR85] Theorem 5.4. �

4.1. Examples. Ex. 1. A subset Q ⊂ Hn is called horo-convex if every point p ∈
∂Q belongs to a horosphere bounding a closed horoball containing Q. Boundaries of
compact horo-convex bodies in Hn are horo-tight. Every smooth horo-tight hypersurface
homeomorphic to a sphere is of this type (cf. [BIR10]).

Ex. 2. Let M be homeomorphic to Sk×Sn−1−k, embedded in Hn as rotation-symmetric
hypersurface as follows: We fix a (n − 1 − k)-dimensional hyperbolic plane L as axis of
rotation. In a (n − k)-dimensional hyperbolic plane through L we choose the boundary
of an horo-convex body not intersecting L as (n − 1 − k)-dimensional meridian surface.
Rotating around L, with k-dimensional distance spheres in (k+ 1)-dimensional hyperbolic
planes orthogonal and complementary to L as orbits, we get the embedded M . Then M
is horo-tight in Hn.
To this: Let u ∈ Hn

∞, then x ∈ M is a critical point of hu|M if and only if there exists
ξ ∈ N1

xM such that u ∈ ν(x, ξ). M is rotation-symmetric, therefore any normal geodesic
of M intersects the axis of rotation L or is parallel to it in the common (n−k)-dimensional
hyperbolic plane. This shows that the critical points of hu|M are exactly the critical points
of hu|M∩E, where E is the (n − k)-dimensional hyperbolic plane determined by L and
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u. Now M ∩ E consists of two copies of the horo-convex meridian surface. Therefore
hu|M∩E generically has exactly 4 critical points, and hence hu generically has exactly 4
critical points. The non-vanishing Betti numbers of M with respect to the field R are
β0 = 1, βk = 1, βn−1−k = 1 and βn−1 = 1. Therefore hu|M generically has exactly γ(M) = 4
critical points, namely one minimum point, one maximum point and two saddle points,
hence M is horo-tight.
Specially, a rotation-symmetric embedded torus in H3 with horo-convex meridian curve is
horo-tight.

Ex. 3. Orientable closed surfaces Mg of genus g ≥ 1, horo-tightly immersed in H3.
First we construct a horo-tightly embedded torus by starting with a distance sphere, re-
moving two opposite disk caps and connecting their boundary circles by a cylinder type
“wormhole”. More precisely, we start with a geodesic line ` and fix a point O ∈ `. Then we
choose a hyperbolic plane E through `. Inside E we draw the distance circle of hyperbolic
radius r and center O. Moreover inside E we draw a horocycle with endpoint on a geodesic
half-ray emanating from O orthogonal to `, and with distance ε to ` , 0 < ε < r. These two
curves intersect in two points, and rounding near them produces a closed h-convex curve
in E, which we use as meridian curve for a rotational surface in H3 with rotational axis
`. This way we get a horo-tightly embedded torus depending on the parameters r and ε.
The entrances to the wormhole, i.e. essentially the removed disk caps, behave in terms of
r and ε as follows: If r and ε decrease, then the apex angle at O of the cone of geodesic
half-rays from O through the disk caps becomes smaller and smaller. If r increases, then
the apex angle becomes bigger and bigger.
Second, using the above “wormhole” construction for g properly chosen geodesics through
O as axis of rotation, and keeping r and ε sufficiently small, we get an orientable closed
surface Mg horo-tightly immersed in H3.

Ex. 4. Veronese manifolds. The embedding of the n-dimensional real projective space

into the unit sphere of RN (N = n(n+3)
2

) as Veronese manifold is substantial, tight and
taut, cf. [CR85] Chpt. 1.7. Example 7.3 and Chpt. 1.9.. Therefore, in view of Proposition
4.9, embedding the euclidean unit sphere or spheres of arbitrary radii isometrically into
HN as distance spheres (or as horospheres in the limit), yields horo-tight and substantial
Veronese manifolds in hyperbolic spaces.

Definition 4.2. (1) The h-convex hull of f(M) in Hn is defined as

H+f(M) =
⋂

f(M)⊂BΘ

BΘ.

(2) The h-concave hull of f(M) in Hn is defined as

H−f(M) =
⋂

f(M)⊂Hn\int(BΘ)

(Hn \ int(BΘ)).

Direct consequences are

• f(Mmax) ⊆ ∂H+f(M)
• f(Mmin) ⊆ ∂H−f(M)
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• Mmax ⊆Mmin

• f(Mmin) ∩ ∂H+f(M) = f(Mmax),

where Mmax, andMmin ⊂ M are the points which appear as a maximum point resp. a
minimum point for some hu ◦ f .

4.2. The horospherical two-piece property.

Definition 4.3. A smooth immersion f : M → Hn of a closed manifold M is said to have the
horospherical two-piece property (h-TPP) if f−1(BΘ) is connected for every closed horoball
BΘ.

Remark 4.4. Taking into account Proposition 4.3 and Morse theory, equivalent to this
definition of the h-TPP is the property that f−1(Hn \ intBΘ) is connected for every closed
horoball BΘ.

Proposition 4.3. (1) Let f : M → Hn be a smooth immersion of a closed manifold
M . If f is horo-tight, then f has the h-TPP.

(2) Let f : M → Hn be a smooth immersion of a closed manifold M . Then f has the
h-TPP if and only if every non-degenerate height function hu ◦ f is polar.

(3) A h-TPP immersed 2-dimensional closed surface M in H3 is horo-tight.
(4) Let f : M → Hn be a smooth immersion of a closed manifold M . Then the h-TPP

is equivalent to ( f(Mrelmax) ⊆ ∂H+f(M) ∧ f(Mrelmin) ⊆ ∂H−f(M) ).

Proof. The proofs run similar to the the euclidean situation. In particular, cf. [CR85]
Thm. 5.9, Thm. 5.11 and Cor. 5.12 for (1), (2) resp. (3). The proofs of the euclidean
case use Prop. 5.13 and Lemma 5.14, which hold in our hyperbolic situation just as in the
euclidean one. Finally, (4) is just a reformulation of (2). �

Proposition 4.4. Let f : M → Hn be a smooth immersion of a closed manifold M . Then
the following are equivalent.

(1) f has the h-TPP.
(2) every local support horosphere of f(M) is a global support horosphere of f(M).
(3) every local extremum of a non-degenerate height function hu ◦ f is an absolute

extremum.

Proof. The proofs run similar to the euclidean case, cf. [CR85] Thm. 5.17. �

Proposition 4.5. Let f : M → Hn be a smooth immersion of a closed k-dimensional

manifold M in Hn with the h-TPP. If k(k+3)
2

< n, then f(M) lies in a euclidean sphere
in a horosphere, or equivalent, f(M) lies in a distance sphere in a hyperbolic hyperplane.
In particular, f(M) is not substantial in Hn with respect to horospheres or hyperbolic
hyperplanes respectively.

Proof. Let us fix a p ∈ M with f(p) ∈ ∂H+f(M). Then p is an absolute maximum point
of some, w.l.o.g non-degenerate, hv ◦ f . Hence there exists a ξ ∈ N1

pf with v = ν(p,−ξ).
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Moreover p is an absolute minimum point of hu ◦ f , w.l.o.g. non-degenerate, with u =
ν(p, ξ). Therefore,

hess(hu ◦ f)(p) = −IIf (p, ξ) + f ∗IIh(p, ξ) = −IIf (p, ξ) + If (p)

is positive definite, cf. Lemma 3.1 (3.1) (note: λ(p) = −1), where IIf (p, ξ) is the second
fundamental form of f at p with respect to the unit normal ξ, and IIh(f(p), ξ) is the
second fundamental form of the critical level horosphere at f(p) with respect to its inner
unit normal ξ, i.e. IIh(f(p), ξ) = f∗If (p).
Let V be the vector space of symmetric bilinear forms on TpM . Consider the linear map
osc : Npf → V , defined by

osc(ζ)(X, Y ) = IIf (p, ζ)(X, Y ) = If (p)(AζX, Y ) , X, Y ∈ TpM,

where Aζ is the shape operator of f at p with respect to the normal ζ. The dimension of

Npf is n− k, while the dimension of V is k(k+1)
2

. Because

k(k + 3)

2
< n , i.e.

k(k + 1)

2
< n− k ,

the kernel of osc is non-trivial. Hence there exists η ∈ N1
pf with Aη = 0. (W.l.o.g. we can

assume Aξ 6= 0.) (W.l.o.g we can assume ξ ⊥ η, otherwise a positive normalization factor
comes into game which however does not disturb the relevant positive definiteness.) Then,
for ζ(t) = cos t · ξ + sin t · η ∈ N1

pM , (t ∈ [−π, π]), we get

Aζ(t) = cos t · Aξ + sin t · Aη = cos t · Aξ .
Because p is a non-degenerate absolute minimum point for hu◦f , the eigenvalues of hess(hu◦
f)(p) are positive, hence the principal curvatures of Aξ are less than one. Therefore,
hu(t) ◦ f with u(t) = ν(f(p), ζ(t)) has a non-degenerate relative minimum at p for all
t ∈ (−π/2, π/2). Because f has the h-TPP, p is the absolute minimum point of hu(t) ◦ f
for all t ∈ (−π/2, π/2). Therefore, f(M) does not intersect the open horoballs intBΘ(t)

for t ∈ (−π/2, π/2), where Θ(t) is the horosphere through p with inner normal ζ(t). On
the other hand, p is the absolute maximum point of hv ◦ f = hu(−π) ◦ f . Hence f(M) is
contained in the horoball BΘ(−π). All in all, we have

f(M) ⊂ D := BΘ(−π) \
⋃

−π/2<t<π/2

int BΘ(t).

Now, the families of horospheres {Θ(t)} with −π ≤ t ≤ −π/2 resp. π/2 ≤ t ≤ π induce
two foliations of D by parts of horospheres. We claim, that f(M) must be contained
in one of the leaves of each of these two foliations. Otherwise there exists some t0, say
−π < t0 < −π/2, such that f(M) lies on both sides of Θ(t0). At the point p, we have the
shape operators Aη = 0, and A−ξ with principal curvatures bigger than one (maximum
point). Moreover −ξ points into BΘ(t0). Therefore, through a small geodesic parallel
translation of Θ(t0) along the geodesic ray from f(p) in direction −ξ we get a horosphere
Θ′ such that f−1(Hn \BΘ′) is not connected. But this is contrary to the h-TPP, and hence
proves the claim. Altogether, f(M) lies in the intersection of two horospheres, hence f(M)
lies in a euclidean sphere in a horosphere. �
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4.3. Horo-tight immersions. Let f : M → Hn be a smooth immersion of a closed
manifold M .

Definition 4.4. (1) For u ∈ Hn
∞ the top-set Ω(u) is defined as

Ω(u) = {x ∈M : (hu ◦ f)(x) = max{(hu ◦ f)(y) : y ∈M} } .
(2) For u ∈ Hn

∞ the drop-set ω(u) is defined as

ω(u) = {x ∈M : (hu ◦ f)(x) = min{(hu ◦ f)(y) : y ∈M} } .

Proposition 4.6. If f : M → Hn is a horo-tight immersion, then

Mrelmax = Mmax , f(Mrelmax) = f(Mmax) ⊆ ∂H+f(M) , and

Mrelmin = Mmin , f(Mrelmin) = f(Mmin) ⊆ ∂H−f(M) .

Proof. f is supposed to be horo-tight, therefore hu ◦ f is polar for almost all u ∈ Hn
∞.

Hence Mrelmax = Mmax and Mrelmin = Mmin. �

Lemma 4.1. Let f : M → Hn be a smooth immersion of a closed manifold M .

(1) Suppose Ω(u) is a top-set of f and Σ is a closed euclidean half-space in the maximum-
level horosphere Θmax(u) of hu ◦f , such that Ω(u)∩f−1(Σ) is contained in an open
set U in M . Then there exists a v ∈ Hn

∞ and a real number r such that

Ω(u) ∩ f−1(Σ) ⊂M>r(v) ⊂M≥r(v) ⊂ U.

Moreover, the same holds for all v′ sufficiently near v.
(2) Suppose ω(u) is a drop-set of f and Σ is a closed euclidean half-space in the

minimum-level horosphere Θmin(u) of hu ◦ f , such that ω(u) ∩ f−1(Σ) is contained
in an open set U in M . Then there exists a v ∈ Hn

∞ and a real number r such that

ω(u) ∩ f−1(Σ) ⊂M<r(v) ⊂M≤r(v) ⊂ U.

Moreover, the same holds for all v′ sufficiently near v.

Proof. The top-set case. In the Poincaré half-space model we see the following euclidean
picture: Θmax(u) is a euclidean sphere tangent at a point u to the euclidean hyperplane
representing Hn

∞. In the model, the (n−2)-dimensional euclidean hyperplane ∂Σ in Θmax(u)
is represented by a (n−2)-dimensional sphere in Θmax(u) through u. Therefore the tangent
cone of Θmax(u) along ∂Σ is a euclidean rotational-symmetric cone which lies tangent to
the hyperplane representing Hn

∞. Thus, picking an enveloping sphere of this cone nearby
Θmax(u) on the proper side, we get a horosphere Θv through some v ∈ Hn

∞ such that Θv

separates the compact sets f(Ω(u)∩f−1(Σ)) and f(M \U). Moreover (f(Ω(u)∩f−1(Σ)))∩
BΘv = ∅ and f(M \ U) ⊂ int BΘv . Then, hv ◦ f with r = hv(Θv) leads to the assertion in
the top-set case.
The proof in the drop-set case runs analogously. �

Proposition 4.7. Let f : M → Hn be a smooth immersion of a closed manifold M . If f
has the h-TPP, then every top-set and drop-set of f has the euclidean TPP with respect to
its immersion f into its respective level horosphere.
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Proof. The top-set case. Suppose that a top-set Ω(u) of f has not the euclidean TPP
with respect to the immersion f into its respective level horosphere Θmax(u). Then there
exists a closed euclidean half-space Σ in Θmax(u) such that Ω(u)∩f−1(Σ) is not connected.
Moreover, there are disjoint open sets U1 and U2 in M with U1 ∪ U2 ⊇ Ω(u) ∩ f−1(Σ),
each having non-empty intersection with Ω(u) ∩ f−1(Σ). According to Lemma 4.1 with
U = U1 ∪ U2, there exists a v ∈ Hn

∞ and a real number r such that

Ω(u) ∩ f−1(Σ) ⊂M≥r(v) ⊂ U .

Thus M≥r(v) ∩ Ui is non-empty for i = 1, 2, hence M≥r(v) is not connected. This implies
that hv ◦ f has at least two local maxima. Hence it is not polar, contradicting according
to Proposition 4.3 the assumption that f has the h-TPP.
The proof in the drop-set case runs analogously. �

Proposition 4.8. Let f : M → Hn be a smooth immersion of a closed manifold M . If
f is horo-tight, then every top-set resp. drop-set of f is euclidean tight with respect to its
immersion f into the respective level horosphere.

Proof. Similar to the euclidean case, [CR85] Theorem 7.11. �

Let Un−1 denote a complete totally-umbilical (n − 1)-dimensional submanifold in Hn,
i.e. either a distance sphere, a horosphere, or an equidistant to a hyperbolic hyperplane
(which is a hyperbolic space with curvature between 0 and −1), or an Hn−1.

Proposition 4.9. Let f : M → Un−1 ⊂ Hn be a smooth immersion of a closed manifold
M . Then f is horo-tight in Hn if and only if f is taut in Un−1 (w.r.t. distance functions
to points).

Proof. We use the Poincaré model where the involved Un−1 etc. are euclidean spheres in
the model space. Then we see: For p ∈ Un−1 the geodesic γ in Hn through p orthogonal to
Un−1 intersects Hn

∞ in u, ū. Then because of the rotation symmetry around γ, hu|Un−1 and
hū|Un−1 are the distance function in Un−1 to p. On the other hand, for u ∈ Hn

∞ there exists
a geodesic γ starting at u and intersecting Un−1 orthogonally in q. Then hu|Un−1 is the
distance function in Un−1 to q. From this the assertion follows directly by the definitions
of horo-tight and taut. �

4.4. Horo-tight surfaces. Let f : M → H3 be a smooth immersion of a closed 2-
dimensional manifold M . For every p ∈ M there are two opposite horospheres tangent
to f in f(p). Generically, we see the following types of non-degenerate critical points, or
equivalently the contact-types with the two tangent horospheres there, and their relations
to the principal curvatures ki, kj (i, j ∈ {1, 2} , i 6= j) of the surface there.

max/min-contact ( ki, kj < −1 ) ∨ (1 < ki, kj)
min/min-contact −1 < ki, kj < 1

min/saddle-contact (ki < −1 < kj < 1) ∨ (−1 < ki < 1 < kj)
saddle/saddle-contact ki < −1 < 1 < kj
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Remark 4.5. If f has the h-TPP, then there are no points of type min/min-contact. To this,
let x ∈ M be a relative minimum point of hu ◦ f (wlog. non-degenerate) with associated
minimum level horosphere Θmin(u). The geodesic g in H3 through f(x) orthogonal to
Θmin(u) has the endpoints u and say v in H3

∞. Suppose now that x is of type min/min-
contact, then x is a relative minimum point also of hv ◦ f . Because of the h-TPP, x is the
absolute minimum point for both, hu ◦ f and hv ◦ f . Hence f(x) is the only intersection
point of g and f(M). But M is closed, hence a generic geodesic has an even number of
intersection points with f(M). Therefore there exists an x′ ∈ M with f(x) = f(x′) and
such that the immersed surface touches itself at f(x) orthogonal to g. But then hu ◦ f has
at least two minimum points, namely x and x′, violating the h-TPP of f .

Lemma 4.2. Let f : M → H3 be a horo-tight smooth immersion of a closed surface M .

(1) For any top-set Ω(u),
(a) if the euclidean convex hull Hef(Ω(u)) of f(Ω(u)) in its respective maximum

level horosphere Θmax(u) is 0-dimensional or 1-dimensional, then f is an em-
bedding of Ω(u) onto Hef(Ω(u)).

(b) if Hef(Ω(u)) is 2-dimensional, then ∂Hef(Ω(u)) ⊂ f(Ω(u)), and f is an em-
bedding on Γ = f−1(∂Hef(Ω(u))). Further, if Γ separates M , then Ω(u) is the
closure of one of the components of M \ Γ, and f embeds Ω(u) onto the disk
Hef(Ω(u)).

(2) For any drop-set ω(u),
(a) if the euclidean convex hull Hef(ω(u)) of f(ω(u)) in its respective minimum

level horosphere Θmin(u) is 0-dimensional or 1-dimensional, then f is an em-
bedding of ω(u) onto Hef(ω(u)).

(b) if Hef(ω(u)) is 2-dimensional, then ∂Hef(ω(u)) ⊂ f(ω(u)), and f is an em-
bedding on γ = f−1(∂Hef(ω(u))). Further, if γ separates M , then ω(u) is the
closure of one of the components of M \ γ, and f embeds ω(u) onto the disk
Hef(ω(u)).

Proof. The top-set case (1). Ad (a). If Hef(Ω(u)) is 0-dimensional, then f(Ω(u)) is a
point. If Hef(Ω(u)) is 1-dimensional, then it is a segment [Q1, Q2] ⊂ Θmax(u). Now f is
horo-tight, hence it has the h-TPP, so [Q1, Q2] = f(Ω(u)) (cf. proof of Proposition 4.7).
In both cases, f is a continuous map of Ω(u) into Θmax(u) with the euclidean TPP (cf.
Proposition 4.7), and such that f(Ω(u)) is euclidean convex. Hence, by [CR85] Lemma
7.13, f is injective on Ω(u).
Ad (b). Every support line ` of Hef(Ω(u)) in the euclidean plane Θmax(u) is also a support
line of f(Ω(u)). For such a support line `, the set f(Ω(u))∩` has dimension 0 or 1. If it has
dimension 0, then f(Ω(u)) ∩ ` ∈ f(Ω(u)). If it has dimension 1, then the boundary points
Q1, Q2 of the compact interval f(Ω(u)) ∩ ` are in f(Ω(u)). Moreover, because f(Ω(u))
has the euclidean TPP in Θmax(u) (cf. Proposition 4.7), we claim that all of [Q1, Q2] is
in f(Ω(u)) . To see this, assume there is a point P ∈ (Q1, Q2) but P /∈ f(Ω(u)). By
the compactness of f(Ω(u)) there exists an open neighborhood of P disjoint to f(Ω(u)).
Therefore, an appropriate line parallel to ` cuts f(Ω(u)) in at least three pieces, but this
contradicts the TPP of f(Ω(u)); hence the claim is proved. All in all ∂Hef(Ω(u)) ⊂
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f(Ω(u)).
By the proof of the first part of [CR85] Lemma 7.15, we see that f is an embedding on Γ.
Finally, suppose Γ separates M . Then, because f has the h-TPP, one of the components
of M \ Γ, call it V , is mapped into the convex disk Hef(Ω(u)). For otherwise, M<r(u),
r = max(hu ◦ f), is disconnected in violation of the h-TPP. Since f is an immersion, f(V )
is an open subset of intHef(Ω(u)). We claim that f(V ) is also closed in intHef(Ω(u)).
To prove the claim, let y be a limit point of f(V ) in intHef(Ω(u)), and let y1, y2, ... be a
sequence in f(V ) converging to y. Choose xi ∈ V such that f(xi) = yi. The sequence xi
has a limit point x in the compact set V̄ = V ∪ Γ. By continuity, f(x) = y, and x cannot
be in Γ, since f(Γ) is disjoint from intHef(Ω(u)). Thus x ∈ V , and so y ∈ f(V ) and f(V )
is closed in intHef(Ω(u)). Therefore f(V ) = intHef(Ω(u)), and f(Ω(u)) is a convex set in
Θmax(u). Again by [CR85] Lemma 7.13, f embeds V̄ onto Hef(Ω(u)).

The proof in the drop-set case (2) runs analogously. �

Remark 4.6. At horo-tight surfaces in H3 we see the following picture: We can close a
“wormhole” by an euclidean convex horospherical cap tangent to ∂H+f(M) along the re-
spective boundary component of f(Mmax). Moreover, in the entrance area of a “wormhole”
it is possible to put in a horospherical drop tangent to the wormhole along the respective
boundary component of f(Mmin).

We see from Lemma 4.2 that if Hef(Ω(u)) is 2-dimensional and Hef(Ω(u)) 6= f(Ω(u)),
then Γ = f−1(∂Hef(Ω(u))) does not separate M . Such a curve Γ is called a top-cycle
of M . Accordingly, if Hef(ω(u)) is 2-dimensional and Hef(ω(u)) 6= f(ω(u)), then γ =
f−1(∂Hef(ω(u))) does not separate M . Such a curve γ is called a drop-cycle of M .

Lemma 4.3. Let M be a closed smooth surface horo-tightly immersed in H3. Then the
numbers of top-cycles and drop-cycles are finite.

Proof. Analogous to the euclidean case, [CR85] Lemma 7.17. �

Lemma 4.4. Let M be a closed smooth surface, horo-tightly immersed in H3. Then, for
any drop-set ω(u), f−1(∂Hef(ω(u))) does not separate M .

Proof. Let’s assume that Hef(ω(u)) is 2-dimensional and f−1(∂Hef(ω(u))) separates M .
Then, by Lemma 4.2 we have f(ω(u)) = Hef(ω(u)). Pick a point x ∈ intω(u). The
geodesic in H3 through f(x) orthogonal to Θmin(u) has the endpoints u and say v in H3

∞.
Then, the height function hv ◦ f (wlog. non-degenerated) has a relative minimum at x.
M is closed, hence the geodesic half-ray from f(x) to v intersects f(M) in a further point
different from f(x) (cf. Remark 4.5). Therefore, x is not the absolute minimum point for
hv ◦f , hence hv ◦f is not polar. But, by Proposition 4.3 this contradicts the horo-tightness
of f . �

Lemma 4.5. Let M be a closed smooth surface, horo-tightly immersed in H3. Then

αt(M) ≤ αd(M), (4.2)

where αt(M) and αd(M) are the numbers of top-cycles and drop-cycles of M respectively.
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Proof. Let Γ be a top-cycle of M . Then f(Γ) bounds a euclidean convex disk D in the
respective maximum level horosphere Θmax(u). For y ∈ D let v(y) denote the endpoint of
the geodesic through y orthogonal to Θmax(u) different from u. Then v(.) maps D bijective
onto a disk D′ in H3

∞. We consider the set-valued map w from D′ into f(M), defined by
w(u′) = Hef(ω(u′)), u′ ∈ D′. Suppose now that there are no drop-cycles for u′ ∈ D′.
Then, taking into account Lemma 4.2, w(D′) is a disk in f(M) bounded by f(Γ). Hence
Γ separates M , contradicting the property of being a top-cycle. �

Proposition 4.10. Let f : M → H3 be a smooth horo-tight immersion of a closed surface
M not homeomorphic to the sphere S2. Then

(1) M is the union of two non-empty disjoint open sets Ut and Vt and a finite number
of top-cycles Γ1, ...,Γk such that: The set Ut is embedded onto the complement
in ∂H+f(M) of a finite number of horospherical-plane closed euclidean convex
disks D1, ..., Dk, where Γi = f−1(∂Di) for 1 ≤ i ≤ k. Moreover, the points of
type max/min-contact are contained in Ut, and the points of type min/saddle- or
saddle/saddle-contact respectively are contained in Vt.

(2) M is the union of two non-empty disjoint open sets Ud and Vd and a finite number
of drop-cycles γ1, ..., γ` such that: The set Ud is embedded onto the complement in
∂H−f(M) of the intersection of ∂H−f(M) with a finite number of horospherical-
plane closed euclidean convex disks D1, ..., D`, where γi = f−1(∂Di) for 1 ≤ i ≤ `.
Moreover, the points of type max/min- or min/saddle-contact are contained in Ud,
and the points of type saddle/saddle-contact are contained in Vd.

Proof. Ad (1). There must exist some top-cycles, for otherwise f embedsM onto ∂H+f(M),
and M is a sphere. Let Γ1, ...,Γk be the finite number of top-cycles, and let D1, ..., Dk be
the associated horospherical-plane closed euclidean convex disks such that Γi = f−1(∂Di)
for 1 ≤ i ≤ k. We know that ∂H+f(M) is the union of the Hef(Ω(u) as Ω(u) ranges over
the top-sets of M . If a point y is in the set

Wt = ∂H+f(M) \ (D1 ∪ ... ∪Dk) ,

then by Lemma 4.2, y ∈ f(Ω(u)) = Hef(Ω(u)) for an appropriate u ∈ H3
∞, such that

Hef(Ω(u)) has dimension 0 or 1, or such that Hef(Ω(u)) is 2-dimensional and f embeds
Ω(u) onto Hef(Ω(u)). Thus f is an embedding on the open set Ut = f−1(Wt). With

Vt = M \ (Ut ∪ Γ1 ∪ ... ∪ Γk) ,

we get the first part of the assertion.
Now, let x ∈ Ut. Then x is the absolute maximum point of some hu ◦ f . Let v denote the
endpoint of the geodesic in H3 through f(x) and orthogonal to Θmax(u) different from u.
Then x is an absolute minimum point of hv ◦ f . By Proposition 4.3 any height function is
polar, hence all relative maximum points lie in Ut. By Remark 4.5, there are no points of
type min/min-contact. This shows the second part of the assertion.

Ad (2). There must exist some drop-cycles, for otherwise M is a sphere. Let γ1, ..., γ` be
the finite number of drop-cycles, and let D1, ..., D` be the associated horospherical-plane
closed euclidean convex disks such that γi = f−1(∂Di) for 1 ≤ i ≤ `. We know that
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∂H−f(M) is contained in the union of the Hef(ω(u)) as ω(u) ranges over the drop-sets of
M . If a point y is in the set

Wd = ∂H−f(M) \ ((D1 ∩ ∂H−f(M)) ∪ ... ∪ (D` ∩ ∂H−f(M))) ,

then by Lemma 4.2, y ∈ f(ω(u)) = Hef(ω(u)) for an appropriate u ∈ H3
∞, such that

Hef(ω(u)) has dimension 0 or 1, or such that Hef(ω(u)) is 2-dimensional and f embeds
ω(u) onto Hef(ω(u)). Thus f is an embedding on the open set Ud = f−1(Wd). With

Vd = M \ (Ud ∪ γ1 ∪ ... ∪ γ`) ,
we get the first part of the assertion.
Now, let x ∈ Ud. Then x is the absolute minimum point of some some hu ◦ f , hence
f(x) ∈ ∂H−f(M). By Proposition 4.3 any height function is polar. Therefore all relative
minimum points are absolute minimum points. Hence all relative minimum points lie in
Ud. By Remark 4.5, there are no points of type min/min-contact. This shows the second
part of the assertion. �

Lemma 4.6. Let f : M → H3 be a smooth horo-tight immersion of a closed surface M .

(1) If for a top-set Ω(u), the euclidean convex hull Hef(Ω(u)) is 2-dimensional, then f
embeds Ω(u) onto a horospherical-plane closed euclidean convex disk with k disjoint
open euclidean convex disks removed, where 0 ≤ k ≤ β1(M ;Z2).

(2) If for drop-set ω(u), the euclidean convex hull Hef(ω(u)) is 2-dimensional, then f
embeds ω(u) onto a horospherical-plane closed euclidean convex disk with k disjoint
open euclidean convex disks removed, where 0 ≤ k ≤ β1(M ;Z2).

Proof. Ad (1). By Proposition 4.8 the top-set Ω(u) of f is euclidean tight with respect to
its immersion f into the respective level horosphere. Hence, f(Ω(u)) is a closed euclidean
convex disk in Θmax with a possibly infinite number of disjoint open euclidean convex
disks removed. The boundary of each disk removed carries a generator for H1(Ω(u)). By
horo-tightness, the homomorphism H1(Ω(u))→ H1(M) is injective, and so the number of
disks removed satisfies 0 ≤ k ≤ β1(M ;Z2).

Ad (2). The proof runs as in the top-set case. �

Proposition 4.11. Let f : M → H3 be a smooth horo-tight immersion of a closed surface
M not homeomorphic to the sphere S2.

(1) Let αt(M) be the number of top-cycles of M . Then

2 ≤ αt(M) ≤ 2− χ(M). (4.3)

Moreover, if αt(M) = 2− χ(M), then the top-cycles come in pairs, each joined by
a topological cylinder.

(2) Let αd(M) be the number of drop-cycles of M . Then

2 ≤ αd(M) ≤ 2− χ(M). (4.4)

Moreover, if αd(M) = 2 − χ(M), then the drop-cycles come in pairs, each joined
by a topological cylinder.
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Proof. Ad (1). Similar to the euclidean case, [CR85] Theorem 7.20.
Ad (2). The proof runs as in the top-cycle case. �

4.5. Height functions in hyperbolic spaces. We compare some species of height func-
tions in hyperbolic spaces relating to tightness. Firstly, we take our hu, i.e. height func-
tions defined by pencils of parallel horospheres. Secondly, we look at height functions
defined by the signed distance to a hyperbolic hyperplane (i.e. with equdistants as level
hypersurfaces). And thirdly, we look at height functions defined by pencils of hyperplanes
orthogonal to a geodesic. These sets of height function are homogeneous spaces with re-
spect to G, and their dimensions are n − 1, n and 2(n − 1) respectively. The associated
concepts of tightness, according to Definition 4.1 or Proposition 4.2 we call horo-tightness,
e-tightness and g-tightness respectively. (In [CR79], [CR85], [BIR10], e-tightness is called
H-tightness.) The relations between these concepts are as follows.
By an approximation argument, namely through equidistants to horospheres, [CR79],
[CW72] showed

e− tightness⇒ horo-tightness. (4.5)

Similar, by approximating hyperbolic hyperplanes through equidistants, one gets

e− tightness⇒ g − tightness. (4.6)

Now, geodesically convex bodies are not necessarily horo-convex. Also, geodesically convex
bodies in H2 having some geodesic segment contained in their boundaries are not e-tight.
Hence

g − tightness 6⇒ horo− tightness (4.7)

g − tightness 6⇒ e− tightness. (4.8)

Moreover

horo− tightness 6⇒ g − tightness, (4.9)

which can be seen by the following counterexample: We start with a geodesic ` in a
hyperbolic plane E in H3. We choose a distance circle c in E with c ∩ ` = ∅, and a point
p ∈ c such that the tangent geodesic t of c at p separates c and the reflection image c′ of c
at `, and moreover such that c and c′ both lie in the concave side of the horocycle σ which
is tangent to c at p. Then, rotating c around ` in H3, we obtain a horo-tightly embedded
torus M in H3 (cf. Ex. 2). By the construction, p ∈ ∂H−M and p /∈ ∂H+M . By an
appropriate choice of the distance of c to `, we can arrange the principal curvature of M
along the rotation orbit at p with respect to the outer unit normal ξ to be greater than 0
but near 0. Now, we dent M around p in direction ξ to an embedded torus M̃ such that
in the dented part, the two principal curvatures with respect to the outer unit normals
remain less than -1 and between 1 and -1 respectively, and such that at some p̃, the second
principal curvature becomes negative. Then, in the dented part, the points of M̃ have
contact with tangent horospheres of type min/saddle. Hence M̃ is horo-tight. At p̃, there
is elliptic contact of M̃ and its hyperbolic tangent plane Tp̃M̃ . By the construction, M̃ lies
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on both sides of Tp̃M̃ , hence M̃ cannot be g-tight.
At last

horo− tightness 6⇒ e− tightness, (4.10)

because otherwise (4.6) implies g-tightness, which contradicts (4.9).
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no. 154-155, 12, 321–347, 353 (1988), Théorie des variétés minimales et applications (Palaiseau,
1983–1984).

[CC97] Thomas E. Cecil and Shiing-shen Chern (eds.), Tight and taut submanifolds, Mathematical
Sciences Research Institute Publications, vol. 32, Cambridge University Press, Cambridge,
1997, Papers in memory of Nicolaas H. Kuiper, Papers from the Workshop on Differential
Systems, Submanifolds and Control Theory held in Berkeley, CA, March 1–4, 1994.

[CL57] Shiing-shen Chern and Richard K. Lashof, On the total curvature of immersed manifolds,
Amer. J. Math. 79 (1957), 306–318.

[CL58] , On the total curvature of immersed manifolds. II, Michigan Math. J. 5 (1958), 5–12.
[CR79] Thomas E. Cecil and Patrick J. Ryan, Tight and taut immersions into hyperbolic space, J.

London Math. Soc. (2) 19 (1979), no. 3, 561–572.
[CR85] T. E. Cecil and P. J. Ryan, Tight and taut immersions of manifolds, Research Notes in Math-

ematics, vol. 107, Pitman (Advanced Publishing Program), Boston, MA, 1985.
[CW72] Sheila Carter and Alan West, Tight and taut immersions, Proc. London Math. Soc. (3) 25

(1972), 701–720.
[DK05] Franki Dillen and Wolfgang Kühnel, Total curvature of complete submanifolds of Euclidean

space, Tohoku Math. J. (2) 57 (2005), no. 2, 171–200.
[Eps86] Charles L. Epstein, The hyperbolic Gauss map and quasiconformal reflections, J. Reine Angew.

Math. 372 (1986), 96–135.
[Fil70] Jay P. Fillmore, Barbier’s theorem in the Lobachevski plane, Proc. Amer. Math. Soc. 24 (1970),

705–709.
[GNS04] E. Gallego, A. M. Naveira, and G. Solanes, Horospheres and convex bodies in n-dimensional

hyperbolic space, Geom. Dedicata 103 (2004), 103–114.
[Hir94] Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-

Verlag, New York, 1994, Corrected reprint of the 1976 original.
[How93] Ralph Howard, The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math.

Soc. 106 (1993), no. 509, vi+69.
[IPRFT05] S. Izumiya, D. Pei, M. C. Romero Fuster, and M. Takahashi, The horospherical geometry of

submanifolds in hyperbolic space, J. London Math. Soc. (2) 71 (2005), no. 3, 779–800.
[IPS03] Shyuichi Izumiya, Donghe Pei, and Takasi Sano, Singularities of hyperbolic Gauss maps, Proc.

London Math. Soc. (3) 86 (2003), no. 2, 485–512.



24 G. SOLANES AND E. TEUFEL
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[Tsu74] Yôtarô Tsukamoto, On the total absolute curvature of closed curves in manifolds of negative
curvature, Math. Ann. 210 (1974), 313–319.



HORO-TIGHTNESS AND TOTAL (ABSOLUTE) CURVATURES IN HYPERBOLIC SPACES 25

G. Solanes
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