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Orthogonal Polar Spaces and Unitals

Markus Stroppel

April 19, 2011

Abstract
We use the fact that certain classical unitals contain affine parts of orthogonal polar spaces
in order to determine their full groups of automorphisms.

We investigate a connection between suitable unitals and quadrics. This connection helps to
determine the full group of automorphisms for hermitian unitals over commutative fields,
or over quaternion fields if the form is trace-valued and the involution is the standard one,
see Theorem 7.1 below. Thus our present approach extends the results in [14], where the
characteristic two case and some of the non-commutative cases have been left open.

One of our tools will be the reconstruction of a hermitian form on a vector space V from
its restriction to the diagonal {(v, v) | v ∈ V}, cf. Section 3; here we extend an old result by
Jacobson [8], see 3.4.

1 Hermitian Forms and Unitals

Let K be a (not necessarily commutative) field, and let σ : K → K : x → x be an involution:
that is, an additive map with the properties xy = yx and x = x. In general, the set of fixed
points of σ is not closed under multiplication. However, we will consider a special case:

1.1 General Assumptions. We will assume throughout that the norm N(x) := xx and trace
T(x) := x + x are contained in the center Z of K, for each x ∈ K. Then the norms and traces lie
in the subfield F := {z ∈ Z | z = z} of Z, and the degree of the extension Z/F is at most 2. We
also assume σ , id.

Let k be a non-degenerate σ-hermitian form of Witt index 1 on some left vector space W of
dimension 3 over K. Moreover, assume that k is trace-valued (“tracique” in the sense of [4,
I § 10]), i.e., k (v,w) is a trace (and thus lies in F by our assumption) for all v,w. By a suitable
choice of coordinates we identify W with the space K3 of rows with 3 entries from K such
that k is given by k

(
(a, b, c), (x, y, z)

)
= ay + bx + cz , see 1.5 below.

1.2 Definition. We put U :=
{
Kv

∣∣∣ v ∈ K3 r {0}, k(v, v) = 0
}
. For each secant ` (i.e., each

line ` of the projective plane over K meeting U in more than one point) we call the trace
b` :=

{
X ∈ U | X lies on `

}
a block of U and denote by B the set of all these blocks. The

incidence geometry (U,B) is called the (hermitian) unital corresponding to σ.

1.3 Example. The line S joining K(1, 0, 0) and K(0, 1, 0) induces on U the block

bS =
{
K(x, 1, 0)

∣∣∣ x = −x
}
∪ {K(1, 0, 0)} .
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1.4 Remark. The norm N(x) := xx is a multiplicative quadratic form over F: in fact, using
N(y) ∈ F ≤ Z we compute N(xy) = (xy)(xy) = xyyx = xxyy = N(x)N(y). Thus (K,N) is an
associative composition algebra over F, cf. [9, Thm. 7.5, p. 444]. By the generalized Hurwitz
Theorem (see [9, p. 447, p. 450]), the field K is either commutative, or a quaternion field
over F, and the involution σ is the standard involution of the composition algebra (fixing F
pointwise, and inducing −id on Pu(K) := 1⊥). If K is commutative, we deal with a separable
quadratic extension K/F, and σ generates the Galois group.

1.5 Remarks. The assumption on the explicit formula for k means no loss of generality: in fact,
there exists a non-trivial vector u with k(u,u) = 0 because k has Witt index 1, we find v such that
k(u, v) , 0 because the form is non-degenerate, and we may pick w ∈ {u, v}⊥ to obtain a basis
u, v,w for the vector space. With respect to this basis, we have k

(
(a, b, c), (x, y, z)

)
= ay+bx+csz,

with s = k(w,w) , 0. Our assumption that k is trace-valued yields s ∈ F.
Since we are only interested in geometries described by the orthogonality relation defined

by k, we may (and will) replace k by ks−1 (and v by s−1v) to obtain that k has the form that we
assume in 1.1. Note that the form ks−1 is still σ-hermitian, because s is fixed by σ and belongs
to the center of K.

Our assumption that norms and traces lie in the center is a weaker form of the condition
that the fixed points of σ lie in the center of K. The latter condition would exclude non-
commutative fields with characteristic 2.

If char K , 2 or if K is commutative then every hermitian form is trace-valued. Over each
quaternion field with characteristic 2 suitable choices of s in 1.5 yield hermitian forms (with
respect to the standard involution) that are trace-valued and also forms that are not; see [5,
p. 73]. The set U defined in 1.2 is contained in a line if the form is not trace-valued.

2 Semi-similitudes

Let D ≤ E be (not necessarily commutative) fields, and assume that there exists an anti-
automorphism ϕ of D such that ϕ2 = id (we allow ϕ = id here). Let V be a left vector
space over E; we denote by DV the vector space over D obtained by restricting the choice of
scalars. Consider a semilinear map α : V → V with companion µ ∈ Aut (E), i.e., such that
(xv + w)α = xµxα + wα holds for all x ∈ E and all v,w ∈ V. Note that α will be a semilinear
endomorphism of DV only if D is invariant under µ.

Consider a non-degenerateϕ-hermitian form d : DV×DV → D. The mapα : V → V is called
a semi-similitude of d if there exist γ ∈ Aut (D) and s ∈ D× such that d(vα,wα) = d(v,w)γs
holds for all v,w ∈ V. Using non-degeneracy of d one easily sees that α is additive.

2.1 Lemma. Let α : V → V be semilinear with companion µ ∈ Aut (E). If there exist γ ∈ Aut (D)
and s ∈ D× such that d(vα,wα) = d(v,w)γs holds for all v,w ∈ V (i.e., if α is a semi-similitude of
d : DV × DV → D) then Dµ = D and the restriction of µ to D equals γ.

Proof. Pick v ∈ V r {0}. The semi-similitude α maps Dv = v⊥⊥ onto (vα)⊥⊥ = Dvα. Now
xµvα = (xv)α ∈ Dvα yields xµ ∈ D for each x ∈ D. Comparing d((xv)α,wα) = d(xv,w)γs =
xγd(v,w)γs and d((xv)α,wα) = d(xµvα,wα) = xµd(vα,wα) = xµd(v,w)γs we obtain xγ = xµ. �
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3 Recovering Hermitian Forms

We will study affine polar spaces later on; these will be obtained by an interpretation of K2 as
affine space over a subfield of K. For a discussion of the extendibility of automorphisms of
the affine polar space to the unital, we need some basic information about hermitian forms
over quaternion fields or separable quadratic extensions. The core of our method dates back
to [8], see 3.4.

The results 3.2 and 3.3 of the present section will be used in 4.9 below in order to reconstruct
the hermitian form k.

3.1 Lemma. Let K be either a quaternion field or a separable quadratic extension over F. For each
c ∈ K r F with T(c) = 1 we have c − c , 0. Putting jc := (c − c)−1 we obtain that ϕ : x 7→
T(x)− jc c T(x) + jc T(c x) describes the orthogonal projection from K onto F⊕Fc. If K is commutative
this means ϕ = id. If K is not commutative we choose p ∈ {1, c}⊥ r {0} and obtain xϕ + p−1(p x)ϕ = x
for each x ∈ K.

Proof. The polar form βN is not degenerate on C := F + Fc, and K is the orthogonal direct sum
of C and C⊥. For any p ∈ C⊥ r {0} we have C⊥ = pC = Cp. The relations c = 1 − c and p ⊥ C
imply pu = up for each u ∈ C. Now straightforward computations yield the formulae, as
claimed. �

3.2 Proposition. Let V be a vector space over a quaternion field H, and let h : V × V → H be a
non-degenerate σ-hermitian form. Consider the quadratic map1 v 7→ h(v, v) and the corresponding
polar form f (v,w) = h(v,w) + h(w, v) = h(v,w) + h(v,w) = T(h(v,w)). As in 3.1 we choose c ∈ H
with T(c) = 1 and p ∈ {1, c}⊥ r {0}, and put jc := (c − c)−1.

a. For all v,w ∈ V we have

h(v,w) = f (v,w) − jc c f (v,w) + jc f (c v,w)
+ p−1 (

f (p v,w) − jc c f (p v,w) + jc f (c p v,w)
)
.

b. The form f is non-degenerate.

c. Every H-semilinear semi-similitude α ∈ ΓO
(

f
)

is a semi-similitude of h.

Explicitly, assume that there exist γ ∈ Aut (F) and s ∈ F× such that f (vα,wα) = f (v,w)γs and
let µ be the companion automorphism of α. Then µ induces γ on F and h(vα,wα) = h(v,w)µs.

Proof. The first assertion follows from 3.1 and the observation

h(v,w) = h(v,w)ϕ + p−1(p h(v,w))ϕ

= f (v,w) − jc c f (v,w) + jc f (c v,w)
+ p−1 (

f (p v,w) − jc c f (p v,w) + jc f (c p v,w)
)
.

If f were degenerate we would find w ∈ Vr {0} such that f (v,w) = 0 holds for all v ∈ V. Then
f (c v,w) = 0 = f (p v,w) = f (c p v,w) yields h(v,w) = 0 for all v ∈ V, contradicting the fact that
h is non-degenerate.

In order to prove assertion c let α ∈ ΓO
(

f
)

be H-semilinear. The companion µ leaves F
invariant and restricts to γ on F, see 2.1. Using 3.1 together with the fact that the pair (cµ, pµ)
satisfies the conditions imposed on (c, p) we see that h(vα,wα) = h(v,w)µs, as claimed. �

1 In general, the range of this quadratic map will consist of the set of fixed points of σ, and will not be contained
in the center of H. However, the values of the polar form lie in F by 1.1.
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3.3 Lemma. Let G be a commutative field, and let g : V × V → G be a σ-hermitian form. Consider
the quadratic form v 7→ g(v, v) and the corresponding polar form f (v,w) = g(v,w) + g(w, v). As
in 3.1 we choose c ∈ G r F with c = 1 + c and put jc := (c − c)−1.

a. For all v,w ∈ V, we have g(v,w) = f (v,w) − jc c f (v,w) + jc f (c v,w).

b. Every G-semilinear semi-similitude α of f is a semi-similitude of g: explicitly, we have
g(vα,wα) = g(v,w)γs if f (vα,wα) = f (v,w)γs.

Proof. The first assertion follows from 3.1 and the observation that g(v,w)ϕ = f (v,w) −
jc c f (v,w) + jc f (c v,w).

The companion automorphism γ of α is an automorphism of G that leaves F invariant,
thus it normalizes (and then centralizes) the Galois group {id, σ} of the extension G/F. Now
another straightforward calculation yields the last assertion, in each one of the cases. �

3.4 Remarks. Let H be a quaternion field with char H , 2. Then [8, p. 266] contains an
alternative to 3.1 and 3.3, as follows.

For every nontrivial pure element p1 and every p2 ∈ {1, p1}
⊥ r {0}, we have p1p2 = −p2p1

and p1p2 ∈ {1, p1, p2}
⊥ r {0}. We call (p1, p2) a Hamilton pair.

If a ∈ Pu(H)r {0} then the F-linear endomorphism σa : x 7→ a−1xa of H is the reflection with
axis a⊥. For each Hamilton pair (p1, p2), we obtain −2 idH = σ1 − σp1 − σp2 − σp1p2 . Finally, we
have for all v,w ∈ V:

2 h(v,w) = f (v,w) + p−1
1 f (p1 v,w) + p−1

2 f (p2 v,w) + (p1p2)−1 f (p1 p2 v,w) .

4 Affine Quadrics

We resume notation from 1.1 and consider the affine plane obtained by deleting the points
on some line S from the projective plane over K; we want to take a secant for S. By Witt’s
Theorem the unitary group PU (k) acts two-transitively on U. Thus it acts transitively on the
set B of blocks and we may without loss of generality assume S = K(1, 0, 0) + K(0, 1, 0) as
in 1.3.

Passing to inhomogeneous coordinates, we will identify the point K(x, y, 1) with (x, y) ∈ K2.
This affine plane also carries the richer structure of an affine space

A :=
(
K2,

{
a + Fv

∣∣∣ a ∈ K2, v ∈ K2 r {0}
})

over the smaller (and commutative) field F, which will be utilized in the sequel. The dimen-
sion of this affine space is dimF(K2) = 2 dimF K ∈ {4, 8}, see 1.4.

The projective hull P of A may be described by homogeneous coordinates F(x, y, s), with
x, y ∈ K and s ∈ F. We will identify the hyperplaneA∞ := PrA at infinity with the projective
space consisting of all F-subspaces of S.

We interpret the affine part U r bS of the unital in terms ofA:

4.1 Lemma. a. The set A := U r bS =
{
(x, y)

∣∣∣ xy + yx + 1 = 0
}

is the affine part of the quadric
Q described by the quadratic form

q : K2
× F→ F : (x, y, s) 7→ k

(
(x, y, s), (x, y, s)

)
= xy + xy + s2 = xy + yx + s2 ,

with polar form βq
(
(x, y, s), (u, v, t)

)
= xv + vx + yu + uy + 2st.
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b. For all v,w ∈ K2
× F, we obtain q(v) = k(v, v) and

βq (v,w) = k(v,w) + k(w, v) = k(v,w) + k(v,w) .

The restriction q|S is non-degenerate; its Witt index is dimF K. �

4.2 Lemma. Every block b of the unital that meets bS induces an affine subspace Xb of A such that
the completion of Xb in P is totally singular with respect to q. That subspace either is a line (if K is
commutative) or has dimension 3 (if K is a quaternion field).

Proof. Let K(a, b, 1) and K(x, y, 1) be affine points on a block of the unital; then ab + ba + 1 =
0 = xy + yx + 1. The joining line K(a, b, 1) ⊕ K(x, y, 1) meets S in the point K(a − x, b − y, 0).
This point belongs to the unital precisely if 0 = (a − x)(b − y) + (b − y)(a − x) = ab + ba +

xy + yx − (ay + ya + bx + xb). This yields ay + ya + bx + xb = ab + ba + xy + yx = −2, and
βq

(
(a, x, 1), (b, y, 1)

)
= ay + ya + bx + xb + 2 = 0.

We have thus proved that any two affine points on the considered block are orthogonal
with respect to βq. Since points on the unital are singular, this means that the affine part of the
block is contained in a totally singular subspace. Conversely, the affine part of this subspace
is contained in the quadric (and thus in the unital), and coincides with the affine part of the
block. �

In general, only a partial converse of 4.2 is true:

4.3 Lemma. Let T be a line of P that is totally singular with respect to q. Then the intersection of T
withA is contained in a unique block of the unital that meets the block bS.

Proof. Let (a, b) and (x, y) be two affine points that span T. Then we have ab + ba + 1 =
q(a, b, 1) = 0 = q(x, y, 1) = xy + yx + 1 and 0 = q(a − x, b − y, 0) because the space T is totally
singular. The line K(a, b, 1) ⊕ K(x, y, 1) joining the two points in the projective plane over K
meets the line S in the point K(a − x, b − y, 0). This point belongs to the unital, and all affine
points of T lie in the block induced by K(a, b, 1) + K(x, y, 0), as claimed. �

4.4 Definitions. We use the polar space Q (consisting of all totally singular subspaces of
K2
× F, with respect to q) in order to gain a deeper understanding of the unital. The affine

part of Qwill be denoted byA.
If (and only if) K is commutative, this affine part of the quadric forms an affine quadrangle

with respect to a full weak subquadrangle: the maximal singular subspaces are lines. See [11]
for an axiomatization of that class of geometries; cf. also [13] and [12]. We will denote the
set of nonempty affine traces of maximal totally singular subspaces (with respect to q) byM.

4.5 Remarks. The lines in Q are maximal totally singular subspaces if, and only if, the
field K is commutative (i.e., if dimF K = 2). In that case (A,BS) is equal to (A,M). If K is
not commutative, pick two affine points a, b ∈ Q that span a totally singular line `. Then
the orthogonal space `⊥ has F-dimension greater than 3, and contains affine points of Q
that do not belong to the block of the unital that joins a and b. This shows that, in the
non-commutative case, not every element ofM is induced by a block of the unital.

We collect our results so far:
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4.6 Theorem. a. The quadratic form q is non-degenerate; its Witt index equals dimF K ∈ {2, 4}.

b. The stabilizer Aut (U,B)bS
acts faithfully by automorphisms of (A,M).

c. If K is commutative then the affine part A of Q consists of the affine subspaces (in A) of the
blocks of U that meet the block S.

d. If K is not commutative then there are totally singular subspaces whose affine part is not
contained in any block of the unital.

Proof. The quadratic form q is non-degenerate because no point belongs to every totally
singular subspace. From 4.2 and 4.3 we know that each element of the stabilizer induces a
permutation of the point set A ∩ U of the affine polar spaceA such that collinearity inA is
preserved. The elements ofM are just the maximal sets of pairwise collinear points in A.
This proves b; the rest is clear from 4.1, 4.2, 4.3 and 4.5. �

4.7 Remark. The result 4.6 has been known in the finite (and necessarily commutative) case.
In fact, Buekenhout [1] used the converse, observing that an affine quadric in a suitable finite
projective space could be interpreted as a unital in a translation plane.

We want to apply 3.2 and 3.3 in order to reconstruct the hermitian form k. To this end, we
have to extend the forms from K2

× F or K2
× {0} to K3.

4.8 Definition. For v := (a, b, c) and w := (x, y, z) ∈ K3 we put q̃(v) := k(v, v) = ab + ba + cc and
obtain the polar form βq̃ : (v,w) 7→ k(v,w) + k(w, v) = ay + yā + bx + xb + cz + zc.

Writing q′(a, b) := q(a, b, 0) and k′((a, b), (x, y)) := k((a, b, 0), (x, y, 0)), we find q(v) = q′(a, b)+cc
and k(v,w) = k′((a, b), (x, y)) + cz.

4.9 Lemma. The forms q, q′ and βq, βq′ are restrictions of q̃ and βq̃, respectively.

a. Each semi-similitude of q leaving S invariant induces a semi-similitude of q′.

b. Let α′ be a semi-similitude of q′, satisfying q′(uα
′

) = q′(u)γs. The formula (u, z)α := (uα
′

, zγt)
defines a semi-similitude α of q if, and only if, we have t ∈ F and t2 = s. In this case, the formula
defining α (for z ∈ F) extends to the definition of a semi-similitude α̃ of q̃.

c. In particular, the factor s is a square in F whenever α′ is obtained as the restriction of a
semi-similitude of q or of q̃.

d. If the restriction α′ of a semi-similitude α is K-semilinear then α allows a unique extension to
a semi-similitude α̃ of k, and α̃ leaves K(0, 0, 1) and (0, 0, 1)⊥ = K2

× {0} invariant.

Proof. The first assertion is obvious, the second one is checked by comparing q(u, z)γs =
q′(u)γs + (zz)γs and q(uα

′

, zγt) = q′(u)γs + zγ t t zγ = q′(u)γs + zγ zγ t2: we use that σ centralizes
every automorphism of K that leaves F invariant. Now the third assertion is clear, and the
last assertion follows by an application of 3.2 and 3.3. �
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5 Automorphisms of Affine Polar Spaces

The following is shown in [2, 2.7]:

5.1 Proposition. Every isomorphism between affine partsA j = Q jrH j of polar spacesQ1 andQ2 of
rank at least 2 (obtained by deleting geometric hyperplanesH1 andH2, respectively) extends uniquely
to an isomorphism between the polar spaces. �

By 5.1 every automorphism of A extends to a unique element of Aut (Q). If K is not
commutative then the polar space Q can be recovered from the system M of all affine
maximal totally singular subspaces:

5.2 Lemma. Every automorphism of (A,M) extends uniquely to an automorphism of the polar space
Q defined by q.

Proof. We claim that for each totally singular subspace T of Q there is a set MT of maximal
totally singular subspaces such that A ∩ T =

⋂
X∈MT

(A ∩ X).
In order to see this, choose first2 a subspace V ≤ K2

× F such that K2
× F = (K2

× F)⊥ ⊕ V
and T ≤ V; this is possible because the quadratic form is not degenerate. Now one may take
MT as the set of all maximal totally singular subspaces contained in T⊥ ∩ V. The radical
of T⊥ ∩ V is just T, and MT/T :=

{
X/T | X ∈MT

}
is the set of all maximal totally singular

subspaces of Z := (T⊥ ∩ V)/T, with respect to the induced quadratic form q|Z. As the polar
form βq|Z is non-degenerate, we have {0} = rad

(
βq|Z

)
≥

⋂
X∈MT

X/T, and T =
⋂

X∈MT
X follows.

Consequently, every automorphism of (A,M) is an automorphism of the affine polar spaceA.
The extension to Q exists by 5.1. �

Consider a non-degenerate quadratic or hermitian form of Witt index at least 2 on a vector
space V with 5 ≤ dim V < ∞. Then every automorphism of the corresponding polar space is
induced by a semi-similitude, cf. [6, 8.1.5]. Therefore, we have:

5.3 Corollary. Every automorphism of (A,M) is induced by a semi-similitude of q that leaves A∞
invariant. �

6 Extending Automorphisms of the Quadric

The points at infinity for the affine plane over K are obtained by identifying those points
that belong to the same orbit under multiplication (from the left) with elements of K×. Let Σ
denote the group of automorphisms of the projective space P induced by maps of the form
(x, y, z) 7→ (mx,my, z), with m ∈ K×. Then the Σ-orbits are the classes [X]∼ with respect to the
equivalence relation ∼ given by F(a, b, 0) ∼ F(x, y, 0) ⇐⇒ ∃m ∈ K× : F(a, b, 0) = F(mx,my, 0) .

6.1 Theorem. An element γ ∈ Aut (A) induces an automorphism of the unital (U,B) if, and only if,
it normalizes Σ. In particular, not every automorphism of (U r bS,BS) extends to an automorphism
of (U,B).

Proof. Recall from 5.1 and 5.3 that γ is induced by a semi-similitude of q, that is, by an element
of ΓO

(
q
)
. Assume first that γ normalizes Σ. Then γ respects the relation ∼ onA∞. Thus the

2 This precaution is necessary if char K = 2 because then βq is degenerate; cf. [4, § 16].
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action of γ extends to an action on the projective plane over K, induced by a K-semilinear
map in ΓO

(
q̃
)
. According to 3.2, this semilinear map is a semi-similitude of the hermitian

form f . Thus it leaves U invariant, and respects the blocks because these (apart from bS) are
obtained by joining a point of A with [X]∼ < A∞, for some X ∈ Q ∩A∞.

Now assume thatγ induces an automorphism of the unital. Thenγpreserves the relation∼.
This means that the group γ−1Σγ has the same orbits as Σ on K2

× {0}. We also know that
γ−1Σγ is induced by a subgroup of O

(
q′
)
× {id} because the latter is a normal subgroup of

Aut (A), cf. 5.3. Looking at the images of F(1, 0, 0), F(0, 1, 0) and F(1, y, 0) under an arbitrary
elementϕ ∈ γ−1Σγwe find thatϕ is induced by a map of the form (x, y, z) 7→ (xα, yβ, z), where
α and β are F-linear bijections of K such that

∀s ∈ K× ∀y ∈ K∃t ∈ K× : (sα, (sy)β) = (t, ty) .

Specializing y = 1, we find α = β. Considering the general case again, we obtain sαt = (st)α

for all s, t ∈ K. This means that α centralizes the multiplications by elements of K from the
right. Thus α is contained in the group of multiplications by elements of K× from the left,
see [10, 4.4, Lemma 2]. We have proved that γ normalizes Σ. �

6.2 Examples. There is no chance to reconstruct the relation ∼ inside the affine part of the
polar space: Let α be an F-linear bijection of K. Since K × {0} × {0} and {0} ×K × {0} are totally
singular subspaces of S, there exists a unique F-linear bijection α̂ such that (x, y, 0) 7→ (xα, yα̂, 0)
gives an element α′ ∈ O

(
q′
)
. For a suitable choice of α, we find that α′ does not preserve the

equivalence relation ∼. We give explicit examples:
Let G be commutative with char G , 2, and pick j ∈ G× with j = − j (for instance, consider

G = C and F = R, with j2 = −1). Then the map α given by (u + vj)α = u + v + vj is a linear
bijection, we have (u + vj)α̂ = u + uj−1 + vj, and (1, 1, 0)α

′

= (1, 1 + j−1, 0) ∼ ( j, j, 0)α
′

= (1 + j, j, 0)
would imply j−1 = −2, contradicting the fact that j does not belong to F.

Consider a quaternion field H with char H , 2, and pick a Hamilton pair (p1, p2), cf. 3.4.
Put (x0 +x1p1 +x2p2 +x3p1p2)α := x0 +x1 +x1p1 +x2p2 +x3p1p2, then (x0 +x1p1 +x2p2 +x3p1p2)α̂ =
x0 + x0p−1

1 + x1p1 + x2p2 + x3p1p2, and α′ does not preserve the relation ∼, as before.

7 Automorphisms of the Unital

From 4.6.b we know that every automorphism ϕ of (U,B) that leaves bS invariant induces an
automorphism of (A,M). Since the action of ϕ onA extends to a unique action on (U,B) and
to a unique action on the polar space Q (cf. 5.2), we have an injective group homomorphism
ϕ 7→ ϕ̂ from the stabilizer Aut (U,B)bS

into the stabilizer Aut (Q)Q∞ .
From 5.3 we know that Aut (Q)Q∞ is induced by the stabilizer of S in the group ΓO

(
q
)
, which

in turn induces the group ΓO
(
q′
)

on S. According to 6.1, the image of Aut (U,B)bS
under the

homomorphism ̂ induces the normalizer of Σ in ΓO
(
q′
)
. This normalizer consists of the

K-semilinear semi-similitudes of q′, and these extend to semi-similitudes of the hermitian
form k by 3.3, cf. 4.9.

Since the group of (semi-)similitudes of the hermitian form k acts transitively on the set
B of blocks of the unital, the full group of automorphisms of the unital is obtained as the
product of PU (k) and the stabilizer of bS. As we have just seen, this stabilizer is induced by
semi-similitudes, and we have proved the following.
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7.1 Theorem. Every automorphism of the unital is induced by a semi-similitude of the hermitian
form; we have Aut (U,B) = PΓU (k). �

A translation with center p of a unital is an automorphism fixing every block through p. The
group T generated by all translations is called the little projective group of the unital.

7.2 Corollary. The little projective group T is normal in Aut (U,B), and the latter acts faithfully by
conjugation on T. Thus Aut (U,B) is embedded in Aut (T). �

7.3 Remark. Once we know Aut (U,B) = PΓU (k) it is easy to compute the translations with
center p; they form a subgroup of the (abelian) group of elations with center p and axis p⊥

in the projective plane over K. Thus T is the group generated by all transvections in PU (k).
One knows (see [3, Thm. 1]) that T is a simple group. If char K , 2 then a direct argument
(cf. [14, 3.2, 1.5]) yields that T is perfect, and an application of Iwasawa’s Lemma [7] shows
that T is a simple group.
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[4] J. A. Dieudonné, La géométrie des groupes classiques, Ergebnisse der Mathematik und
ihrer Grenzgebiete (N.F.) 5, Springer-Verlag, Berlin, 1955. MR 0072144 (17,236a). Zbl
0221.20056.
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2010/010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression
function

2010/009 Geisinger, L.; Laptev, A.; Weidl, T.: Geometrical Versions of improved Berezin-Li-Yau
Inequalities

2010/008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
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2010/006 Höllig, K.; Hörner, J.; Hoffacker, A.: Finite Element Analysis with B-Splines: Weighted
and Isogeometric Methods

2010/005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function
estimates for the regularization of inverse problems

2010/004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary

2010/003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for
stationary and ergodic data

2010/002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric,
and Automorphisms of Heisenberg Algebras

2010/001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity
one



2009/008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED

2009/007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant
n-polaron systems

2009/006 Demirel, S.; Harrell II, E.M.: On semiclassical and universal inequalities for eigenvalues
of quantum graphs
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