Universität Stuttgart

Fachbereich Mathematik

Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations

Jens Wirth

Preprint 2011/009

Universität Stuttgart

Fachbereich Mathematik

Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations

Jens Wirth

Preprint 2011/009

Fachbereich Mathematik Fakultät Mathematik und Physik Universität Stuttgart Pfaffenwaldring 57 D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints

ISSN 1613-8309

@ Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors. $\mbox{\sc ET}_{\mbox{\sc EX}}$ Style: Winfried Geis, Thomas Merkle

ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

JENS WIRTH

ABSTRACT. This paper provides a survey on recent results about the long-time behaviour of solutions to hyperbolic partial differential equations with variable coefficients. Particular emphasis is given to questions about the sharpness of estimates.

The selection of materials is based on a mini-course taught by the author at Aalto University, Helsinki, in June 2011.

Contents

1. Introduction	2
1.1. Energy and dispersive estimate	2
1.2. Equations with constant coefficients	2
1.3. Stationary phase estimates	4
2. Some interesting model cases	6
2.1. Scale invariant weak dissipation	6
2.2. Scale invariant mass terms	9
3. Hyperbolic systems	10
3.1. Symbol classes	12
3.2. Uniformly strictly hyperbolic systems	13
3.3. Diagonalisation	14
3.4. Solving the diagonalised system	16
3.5. Examples and resulting representations of solutions	20
3.6. Dispersive estimates	22
4. Effective lower order perturbations	26
4.1. The diffusion phenomenon	26
4.2. Diagonalisation for small frequencies	28
5. Examples and counter-examples	31
5.1. Parametric resonance phenomena	32
5.2. Construction of coefficients and initial data	33
6. Related topics	36
References	36

Date: July 11, 2011.

²⁰⁰⁰ Mathematics Subject Classification. Primary 35B40; Secondary 35B45, 35L05, 35L40.

Key words and phrases. hyperbolic partial differential equations, a priori estimates, asymptotic formulae. Part of the work reported here was supported by EPSRC grant EP/E062873/1.

1. INTRODUCTION

In this introductory section we want to recall some well-known estimates for the wave equation and their relation to Fourier integrals and restriction theorems. This shall serve as motivation to study similar estimates for perturbations of the wave equation by lower order terms and outline strategies to be pursued.

1.1. Energy and dispersive estimate. We will recall some well-known properties of solutions to the Cauchy problem for the wave equation

(1.1)
$$u_{tt} - \Delta u = 0, \quad u(0, \cdot) = u_0, \quad u_t(0, \cdot) = u_1$$

in $\mathbb{R} \times \mathbb{R}^n$. We assume for simplicity that data belong to $C_0^{\infty}(\mathbb{R}^n)$. A simple integration by parts argument allows to show that solutions possess a cone of dependence property and are therefore also compactly supported for all fixed times t. We will not make this argument rigorous, but point out that by the same reason the total energy defined as

(1.2)
$$\mathbb{E}(u;t) = \frac{1}{2} \int (|\nabla u|^2 + |u_t|^2) \mathrm{d}x$$

is preserved,

(1.3)
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}(u;t) = \operatorname{Re}\int(\overline{u}_t u_{tt} + \nabla\overline{u}\cdot\nabla u_t)\mathrm{d}x = \operatorname{Re}\int\overline{u}_t(u_{tt} - \Delta u)\mathrm{d}x = 0.$$

This preserved energy is spread out (uniformly) over a region increasing in time. Dispersive estimates due to von Wahl [51], Brenner [4], Pecher [31] and more generally Strichartz estimates [46] describe this effect. See also Keel–Tao [20] for the precise interrelation between Strichartz and dispersive estimates.

We denote by $L_r^p(\mathbb{R}^n)$ the Bessel potential space of order r over $L^p(\mathbb{R}^n)$ defined in terms of the Fourier transform as

(1.4)
$$L^p_r(\mathbb{R}^n) = \langle \mathcal{D}_x \rangle^{-r} L^p(\mathbb{R}^n) = \mathscr{F}^{-1}[\langle \xi \rangle^{-r} \mathscr{F} L^p(\mathbb{R}^n)].$$

Then the following statement contains the essence of the above cited papers.

Theorem 1.1. Solutions to (1.1) satisfy the dispersive estimates

(1.5)
$$\|u(t,\cdot)\|_{L^{\infty}} \le C_r t^{-\frac{n-1}{2}} \left(\|u_0\|_{L^1_r} + \|u_1\|_{L^1_{r-1}} \right)$$

(1.6)
$$\|\nabla u(t,\cdot)\|_{L^{\infty}} + \|u_t(t,\cdot)\|_{L^{\infty}} \le C_r t^{-\frac{n-1}{2}} \left(\|u_0\|_{L^1_{r+1}} + \|u_1\|_{L^1_r} \right)$$

for $r > \frac{n+1}{2}$.

Dispersive estimates are much harder to prove than energy estimates as they encode structural information about the representation of solutions. We will collect some of the crucial ingredients of their proof in this introductory section.

1.2. Equations with constant coefficients. Of particular importance for us are equations with constant coefficients as they can be solved explicitly in terms of the Fourier transform and serve as important model examples. We keep it as simply and sketchy as possible to not extend the exposition too much. Later we will discuss variable coefficient versions of the wave equation

$$(1.7) u_{tt} - \Delta u = 0$$

the damped wave equation

$$(1.8) u_{tt} - \Delta u + u_t = 0$$

and the Klein–Gordon equation

$$(1.9) u_{tt} - \Delta u + u = 0.$$

Natural questions to ask for these problems are:

- (1) What are reasonable energies to estimate? While for the damped wave equation $\mathbb{E}(u;t)$ is a good candidate, we need to include u itself into the energy term for the Klein–Gordon equation. Then the Klein–Gordon energy is preserved, while for the damped wave equation we obtain $\partial_t \mathbb{E}(u;t) \leq 0$ and the (wave) energy decreases.
- (2) What are sharp (decay) rates for the energy? This is of interest for the damped wave equation and the answer is by no means trivial. It heavily depends on the assumptions made for data, see e.g. the work of Ikehata [15], [16], [18] for some examples of this. The obvious estimate

(1.10)
$$\mathbb{E}(u;t) \le \mathbb{E}(u;0)$$

is sharp for the damped wave equation with arbitrary data from the energy space. On the other hand there is the estimate of Matsumura [25]

(1.11)
$$\mathbb{E}(u;t) \lesssim (1+t)^{-1-\frac{n}{2}} \left(\|u_0\|_{H^1 \cap L^1}^2 + \|u_1\|_{L^2 \cap L^1}^2 \right)$$

- (3) How do dispersive estimates for the above models look like? Here we will just point out that the decay rate for the Klein–Gordon model ist $t^{-n/2}$ in contrast to the rate $t^{-(n-1)/2}$ for the free wave equation. There exist uniform estimates for solutions to the damped wave equation, but they are not dispersive in nature.
- (4) Are there other asymptotic representations for solutions? As example we refer to Nishihara [30] for an asymptotic description of solutions to the damped wave equation in terms of solutions of an associated heat equation and some exponentially decaying free waves.

We will come back to some of these questions for more general hyperbolic models in the subsequent sections of this paper. An extensive study of higher order hyperbolic equations with constant coefficients and their dispersive estimates was done in Ruzhansky–Smith [43], we restrict ourselves here in this informal introductory part to the wave equation (1.7). Solutions in $C^2(\mathbb{R}; \mathscr{S}'(\mathbb{R}^n))$ can be studied in terms of the partial Fourier transform with respect to the *x*-variable. This gives the parameter-dependent ordinary differential equation

$$\widehat{u}_{tt} + |\xi|^2 \widehat{u} = 0$$

with solutions explicitly given as

(1.13)
$$\widehat{u}(t,\xi) = \cos(t|\xi|)\widehat{u}_0(\xi) + \frac{\sin(t|\xi|)}{|\xi|}\widehat{u}_1(\xi).$$

Estimates in L^2 -scale can be obtained immediately from Plancherel identity. We will only give the following lemma stating higher order energy estimates for the free wave equation. The proof is straightforward from (1.13).

Lemma 1.2. The solutions to the Cauchy problem (1.1) satisfy the a priori estimate

(1.14)
$$\|u(t,\cdot)\|_{L^2} \le \|u_0\|_{L^2} + t\|u_1\|_{L^2}$$

together with

(1.15)
$$\|\mathbf{D}_t^k \mathbf{D}_x^{\alpha} u(t, \cdot)\|_{L^2} \le C_{k,\alpha} \left(\|u_0\|_{H^{k+|\alpha|}} + \|u_1\|_{H^{k+|\alpha|-1}}\right)$$

for all $k \in \mathbb{N}_0$ and $\alpha \in \mathbb{N}_0^n$, $|\alpha| \ge 1$.

The proof of the dispersive estimates of Theorem 1.1 are based on the representation of solutions as sum of Fourier integrals

(1.16)
$$\int e^{i(x \cdot \xi \pm t|\xi|)} a_{j,\pm}(t,\xi) u_j(\xi) d\xi$$

with amplitudes $a_{j,\pm}(t,\xi)$ supported in $t|\xi| \gtrsim 1$ and an (easy to obtain) better estimate for the remainder term localised to $t|\xi| \lesssim 1$. A dyadic decomposition of frequency space is used to reduce this to integrals over spherical shells in ξ and they are treated by means of usually stationary phase estimates.

1.3. Stationary phase estimates. We will conclude this introductory section by reviewing some estimates for Fourier transforms of surface carried measures and relate them to estimates for Fourier integrals. Such estimates have a rather long history and go back to the original work of van der Corput [6], [7], Hlawka [13], [14], Randol [33] and in particular for applications in hyperbolic partial differential equations Strichartz [46], [48] and Littmann [23]. We will follow mainly the generalisations due to Sugimoto, [49], [50] and Ruzhansky [42].

Let Σ be a smooth closed hypersurface embedded in \mathbb{R}^n . We assume first that Σ encloses a convex domain of \mathbb{R}^n , which is in particular the case if the Gaussian curvature of Σ is non-vanishing. Let further $f \in C^{\infty}(\Sigma)$ be a smooth function defined on the surface Σ . In a first step we are interested in decay properties of the inverse Fourier transform

(1.17)
$$\check{f}(x) = \int_{\Sigma} e^{ix \cdot \xi} f(\xi) d\xi$$

the integral taken with respect to the surface measure induced from the ambient Lebesgue measure. Before stating the result, we introduce the contact index $\gamma(\Sigma)$ of the surface Σ to be the maximal order of contact between Σ and hyperplanes H containing the normal of the surface

(1.18)
$$\gamma(\Sigma) = \max_{p \in \Sigma} \max_{H: N_p \Sigma \subset H} \gamma(\Sigma; p, H);$$

 $\gamma(\Sigma; p, H)$ denotes the order of contact between the tangent $T_p \Sigma \cap H$ and the curve $\Sigma \cap H$ in the point p. Then the following result is valid.

Lemma 1.3. Assume Σ is convex. Then the estimate

(1.19)
$$|\check{f}(x)| \lesssim \langle x \rangle^{-\frac{n-1}{\gamma(\Sigma)}} \|f\|_{C^k(\Sigma)}$$

is valid for all $f \in C^k(\Sigma), \ k \ge \frac{n-1}{\gamma(\Sigma)} + 1.$

This result is closely related to the following multiplier theorem due to Sugimoto [49]. We formulate it in the improved form due to Ruzhansky [42] and Ruzhansky–Smith [43]. Let $\chi \in C^{\infty}(\mathbb{R}^n)$ be an excision function, i.e., we assume it is equal to 1 for large $|\xi|$ and vanishes near the origin. We then consider the operator

(1.20)
$$T_{\phi,r}: u(x) \mapsto \int_{\mathbb{R}^n} e^{i(x \cdot \xi + \phi(\xi))} |\xi|^{-r} \chi(\xi) \widehat{u}(\xi) d\xi$$

for a given real-valued phase function $\phi(\xi) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ being positively homogeneous $\phi(\rho\xi) = \rho\phi(\xi), \rho > 0$. The $L^{p}-L^{p'}$ -boundedness of such an operator is related to the geometry of the Fresnel surface / level set

(1.21)
$$\Sigma = \{\xi \in \mathbb{R}^n : \phi(\xi) = 1\}.$$

It is sufficient to prove the limit case for p = 1, boundedness between dual Lebesgue spaces follows by interpolation with the (obvious) boundedness in $L^2(\mathbb{R}^n)$. First we recall the definition of Besov spaces. Let $\phi \in C_0^{\infty}(\mathbb{R}_+)$ define a Littlewood–Paley decomposition, i.e., be such that $\sum_{j \in \mathbb{Z}} \phi(2^{-j}\tau) = 1$ for any $\tau \neq 0$. Then the homogeneous Besov norm of regularity $s \geq 0$ and with Lebesgue-indices $p, q \in [1, \infty]$ is defined by

(1.22)
$$\|v\|_{\dot{B}^{s}_{p,q}}^{q} = \sum_{j \in \mathbb{Z}} \left(2^{js} \|\mathscr{F}^{-1}\phi(2^{-j}|\xi|)\widehat{v}(\xi)\|_{L^{p}} \right)^{q},$$

while the Besov space $B_{p,q}^s(\mathbb{R}^n)$ contains all functions with

(1.23)
$$\|v\|_{B^{s}_{p,q}}^{q} = \|\mathscr{F}^{-1}\psi(\xi)\widehat{v}(\xi)\|_{L^{p}}^{q} + \sum_{j=1}^{\infty} \left(2^{js}\|\mathscr{F}^{-1}\phi(2^{-j}|\xi|)\widehat{v}(\xi)\|_{L^{p}}\right)^{q} < \infty,$$

where $\psi(s) = 1 - \sum_{j=1}^{\infty} \phi(2^{-j}s)$. It follows $B_{p,2}^{s}(\mathbb{R}^{n}) = \dot{B}_{p,2}^{s}(\mathbb{R}^{n}) \cap L^{p}(\mathbb{R}^{n})$ and there are continuous embeddings $L^{p}(\mathbb{R}^{n}) \hookrightarrow B_{p,2}^{0}(\mathbb{R}^{n})$ for $1 and similarly <math>B_{p',2}^{0}(\mathbb{R}^{n}) \hookrightarrow L^{p'}(\mathbb{R}^{n})$ for $2 \leq p' < \infty$. The opposite embeddings require to pay a small amount of regularity (see Runst-Sickel [41] for more details).

Lemma 1.4. Assume that Σ defined by (1.21) is convex. Then $T_{\phi,r}$ is a bounded operator mapping $\dot{B}^{0}_{1,2}(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)$ for all $r \geq n - \frac{n-1}{\gamma(\Sigma)}$.

The statement of this lemma immediately implies dispersive type estimates for Fourier integral representations of the form

(1.24)
$$u(t,x) = (2\pi)^{-n} \int e^{i(x \cdot \xi + t\phi(\xi))} \widehat{u}_0(\xi) d\xi.$$

Indeed, by rescaling $\eta = t\xi$, y = x/t, we see that

(1.25)
$$\|u(t,\cdot)\|_{L^{\infty}} \lesssim t^{-\frac{n-1}{\gamma(\Sigma)}} \|u_0\|_{\dot{B}^r_{1,2}}$$

for $r = n - \frac{n-1}{\gamma(\Sigma)}$. The above estimate (1.25) is of interest to us because (1.24) solves the Cauchy problem

(1.26)
$$u_{tt} + \phi^2(\mathbf{D}_x)u = 0, \quad u(0, \cdot) = u_0, \quad u_t(0, \cdot) = 0$$

generalising (1.1). Here and later on we use the notation $\phi(\mathbf{D}_x) : u \mapsto \mathscr{F}^{-1}[\phi(\xi)\hat{u}(\xi)]$ for Fourier multipliers.

In general there is no reason for the Fresnel surface of a phase to be convex. Of particular importance for the study of hyperbolic systems arising in crystal acoustics or elasticity theory or for higher order scalar equations are generalisations of the Lemmata 1.3 and 1.4 to non-convex surfaces. To consider this situation, we define the non-convex contact index

(1.27)
$$\gamma_0(\Sigma) = \max_{p \in \Sigma} \min_{H: N_p \Sigma \subset H} \gamma(\Sigma; p, H)$$

as maximal order of minimal contact. The replacement to Lemma 1.3 is

Lemma 1.5. For general (non-convex) surfaces Σ the estimate

(1.28)
$$|\check{f}(x)| \lesssim \langle x \rangle^{-\frac{1}{\gamma_0(\Sigma)}} \|f\|_{C^1(\Sigma)}$$

is valid for all $f \in C^1(\Sigma)$.

Again we obtain a multiplier theorem for the operator $T_{\phi,r}$ defined in (1.20).

Lemma 1.6. The operator $T_{\phi,r}$ is bounded $\dot{B}^0_{1,2}(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)$ for $r \ge n - \frac{1}{\gamma_0(\Sigma)}$.

Later on in Section 3.6 we will generalise the above estimates to include phase functions depending on both t and x-variables suitable for the treatment of more general hyperbolic equations.

2. Some interesting model cases

In a second section we will review two scale invariant model cases, which can be treated by means of special functions. They both highlight a structural change in the behaviour of solutions when lower order terms become effective.

2.1. Scale invariant weak dissipation. We follow the treatment in [54] and consider the wave model

(2.1)
$$u_{tt} - \Delta u + \frac{2\mu}{t}u_t = 0, \qquad u(1, \cdot) = u_0, \quad u_t(1, \cdot) = u_1$$

for data $u_0, u_1 \in \mathscr{S}'(\mathbb{R}^n)$. By partial Fourier transform the above problem reduces to the ordinary differential equation

(2.2)
$$\widehat{u}_{tt} + |\xi|^2 \widehat{u} + \frac{2\mu}{t} \widehat{u}_t = 0$$

parameterised by $|\xi|^2$. We will proceed in two steps, first we construct a fundamental system of solutions to this equation and after this use it to provide a Fourier multiplier representation to solutions of (2.1).

Reduction to special functions. Equation (2.2) can be reduced to Bessel's differential equation. Let $\rho = \frac{1}{2} - \mu$. If we look for particular solutions of the form $\hat{u}(t,\xi) = (t|\xi|)^{\rho} v(t|\xi|)$, a short calculation reduces (2.2) to

(2.3)
$$\tau^2 v'' + \tau v' + (\tau^2 - \rho^2)v = 0,$$

which is Bessel's differential equation of order ρ . For large values of τ we will use the fundamental system of solutions given by the Hankel functions \mathcal{H}^{\pm}_{ρ} . In order to get a precise description of its solutions for small τ , we have to distinguish between integral ρ and nonintegral ρ . In the first case, solutions can be represented by the fundamental system \mathcal{J}_{ρ} , \mathcal{Y}_{ρ} , while in the latter we use $\mathcal{J}_{\pm\rho}$.

Lemma 2.1. Any solution to (2.2) can be represented in the form

(2.4)
$$\widehat{u}(t,\xi) = C_{+}(\xi)(t|\xi|)^{\rho}\mathcal{H}^{+}_{\rho}(t|\xi|) + C_{-}(\xi)(t|\xi|)^{\rho}\mathcal{H}^{-}_{\rho}(t|\xi|),$$

(2.5)
$$= A(\xi)(t|\xi|)^{\rho} \mathcal{J}_{-\rho}(t|\xi|) + B(\xi)(t|\xi|)^{\rho} \mathcal{J}_{\rho}(t|\xi|), \qquad \rho \notin \mathbb{Z},$$

(2.6)
$$= \tilde{A}(\xi)(t|\xi|)^{\rho} \mathcal{J}_{-\rho}(t|\xi|) + \tilde{B}(\xi)(t|\xi|)^{\rho} \mathcal{Y}_{-\rho}(t|\xi|), \qquad \rho \in \mathbb{Z}$$

with coefficients depending linearly on the Cauchy data

(2.7)
$$C_{\pm}(\xi) = C_{\pm,0}(\xi)\widehat{u}_0(\xi) + C_{\pm,1}(\xi)\widehat{u}_1(\xi)$$

and similarly for $A(\xi)$ and $B(\xi)$.

FIGURE 1. Decomposition of the phase space into zones

Explicit expressions for $C_{\pm,j}(\xi)$, $A_j(\xi)$ and $B_j(\xi)$ can be obtained from these formulas and known expressions for derivatives and Wronskians of Bessel functions. We will not go into these details here and refer to the reader to the original paper [54]. Of greater importance for us are consequences about structural properties of solutions. They are based on elementary properties of the Bessel functions. We collect some of them in the following proposition. They are taken from the treatise of Watson, [52, Sections 3.52, 10.6 and 7.2].

Proposition 2.2. (1) The functions $\mathcal{H}^{\pm}_{\rho}(\tau)$ possess an asymptotic expansion

(2.8)
$$\mathcal{H}^{\pm}_{\rho}(\tau) \sim \mathrm{e}^{\pm \mathrm{i}\tau} \sum_{j=0}^{\infty} a_j^{\pm} \tau^{-\frac{1}{2}-j}$$

- as $\tau \to \infty$ which can be differentiated term by term;
- (2) the function $\tau^{-\rho} \mathcal{J}_{\rho}(\tau)$ is entire and non-vanishing in $\tau = 0$;
- (3) while

(2.9)
$$\mathcal{Y}_n(\tau) = \frac{2}{\pi} \mathcal{J}_n(\tau) \log \tau + \mathcal{A}_n(\tau)$$

with $\tau^n \mathcal{A}_n(\tau)$ entire and nonvanishing in $\tau = 0$.

If we want to derive properties of solutions, we have to distinguish between large $t|\xi|$ and small $t|\xi|$. This distinction will later on lead to the introduction of zones and will also play a crucial rôle in the definition of symbol classes and in the more general consideration of hyperbolic systems.

High frequency asymptotics. The asymptotic expansion for Hankel functions immediately yield that

(2.10)
$$\widehat{u}(t,\xi) \sim C_{\pm}(\xi) e^{\pm it|\xi|} \left(a_0^{\pm} t^{-\mu} |\xi|^{-\mu} + \text{l.o.t.} \right)$$

as $t|\xi| \to \infty$. A more precise look at the terms $C_{\pm}(\xi)$ gives a representation

(2.11) $C_{\pm,j}(\xi) \approx |\xi|^{\mu-j} + \text{l.o.t.}, \quad j = 0, 1,$

such that if $|\xi| \gtrsim 1$ and $t|\xi| \gtrsim 1$ both can be combined to the following (very rough) description. The appearing Fourier multipliers have a uniform decay rate $t^{-\mu}$ which corresponds to the high frequency energy estimate of the following lemma.

Lemma 2.3. Assume $0 \notin \operatorname{supp} \widehat{u}_0$ and $0 \notin \operatorname{supp} \widehat{u}_1$. Then the solutions to the weakly damped wave equation (2.1) satisfy

(2.12)
$$\|u(t,x)\|_{L^2} \lesssim t^{-\mu} \left(\|u_0\|_{L^2} + \|u_1\|_{H^{-1}} \right)$$

and the energy estimate

(2.13)
$$\mathbb{E}(u;t) \lesssim t^{-2\mu} \mathbb{E}(u;0).$$

The constants in these estimates do in general depend on the distance of 0 to the Fourier support of the data.

We can be slightly more precise than the above lemma. If we multiply $\hat{u}(t,\xi)$ by t^{μ} the main term reduces to a representation of a free wave while lower order terms decay at least as t^{-1} . This gives a description of the large-time asymptotic behaviour of weakly damped waves in terms of free waves, see also [55].

Lemma 2.4. Assume $0 \notin \operatorname{supp} \hat{u}_0$ and $0 \notin \operatorname{supp} \hat{u}_1$. Then there exists a free wave w, i.e., a solution to the free wave equation

(2.14)
$$w_{tt} - \Delta w = 0, \qquad w(1, \cdot) = w_0, \quad w_t(1, \cdot) = w_1$$

to appropriate data, such that solutions to the weakly damped wave equation (2.1) satisfy

(2.15)
$$\|t^{\mu}u(t,\cdot) - w(t,\cdot)\|_{L^2} \lesssim t^{-1} \left(\|u_0\|_{L^2} + \|u_1\|_{H^{-1}}\right)$$

The operator assigning the data w_0 , w_1 to u_0 and u_1 is bounded on $L^2 \times H^{-1}$.

Proof. The proof is based on the elementary expression of $\widehat{w}(t,\xi)$ in terms of the initial data,

(2.16)
$$2\widehat{w}(t,\xi) = e^{it|\xi|} \left(\widehat{w}_0(\xi) - |\xi|^{-1}\widehat{w}_1(\xi)\right) + e^{-it|\xi|} \left(\widehat{w}_0(\xi) + |\xi|^{-1}\widehat{w}_1(\xi)\right)$$

Therefore, we relate the initial data w_0 and w_1 to u_0 and u_1 by the system of linear equations

(2.17)
$$\widehat{w}_0(\xi) \mp |\xi|^{-1} \widehat{w}_1(\xi) = 2|\xi|^{-\mu} \big(C_{\pm,0}(\xi) \widehat{u}_0(\xi) + C_{\pm,1}(\xi) \widehat{u}_1(\xi) \big).$$

When forming now the difference (2.15) this cancels the main terms of (2.10) and we are left with terms decaying like t^{-1} or faster. Note that (2.17) determines the data w_0 and w_1 and yields the desired boundedness property.

Low frequency asymptotics. The situation for low frequencies is completely different. We restrict ourselves to the case of non-integral ρ (and except for $\mu = \frac{1}{2}$ this will not alter any estimates we provide here). Solutions are represented by (2.5). Crucial point is that we get no decay in time for the multiplier $(t|\xi|)^{\rho}\mathcal{J}_{-\rho}(t|\xi|)$, while the behaviour of $(t|\xi|)^{\rho}\mathcal{J}_{\rho}(t|\xi|)$ depends on whether $\rho > 0$ or $\rho < 0$, i.e., whether $\mu < \frac{1}{2}$ or $\mu > \frac{1}{2}$. In the first case, estimates of solutions are in general increasing in time (similar to (1.14)). In the second case or when estimating higher derivatives of solutions $(t|\xi|)^{\rho}\mathcal{J}_{-\rho}(t|\xi|)$ will become the dominant part. Then any form of decay in time has to come from the behaviour of $A(\xi)$ near $\xi = 0$. If $A(\xi)$ vanishes to order k, we get an estimate by t^{-k} uniform in $t|\xi| \leq 1$ and if k is not too large also uniform in $|\xi| \leq 1$. This can be used to deduce the following kind of higher order energy estimates for solutions to (2.1).

Lemma 2.5. Let $\mu > \frac{1}{2}$ and $k \in \mathbb{N}$ satisfy $k \leq \mu$. Then the following higher order energy estimate

(2.18)
$$\|\mathbf{D}_x^{\alpha}u(t,\cdot)\|_{L^2} \lesssim t^{-k} \left(\|u_0\|_{H^k} + \|u_1\|_{H^{k-1}}\right) \qquad |\alpha| = k,$$

is satisfied by any solution of (2.1).

Sketch of proof. We will omit some of the details here, for the full argument we refer to [54, Sect. 3.1]. As mentioned above, the decay rate for high frequencies is $t^{-\mu}$, while the decay for small frequencies has to be related to a certain zero-behaviour of the coefficient $A(\xi)$ in $\xi = 0$. This is done by taking H^k -norms on the right-hand side and estimating just homogeneous \dot{H}^k -norms on the left-hand side. This gives an additional factor of $|\xi|^k$ for small $|\xi|$ and in turn a uniform estimate by t^{-k} within the zone $t|\xi| \lesssim 1$. Note, that the second term in (2.5) decays faster, as there is an additional $t^{1-2\mu}$ factor.

It remains to discuss the intermediate part where $t|\xi|$ is large and $|\xi|$ remains bounded. Here we will estimate the multiplier by $|\xi|^k (t|\xi|)^{-\mu} \leq t^{-k}$, which is true whenever $k \leq \mu$. \Box

We remark that the proof from [54] also yields a similar statement involving both t and ξ -derivatives of solutions. We decided to omit this, because then more detailed arguments involving recursing formulae for Bessel functions would have been needed here.

Notions of sharpness. There are different ways to measure the sharpness of a priori estimates. We will mention two of them and explain their importance related to the further considerations. If we are given an energy estimate of the form

(2.19)
$$\mathbb{E}(u;t) \lesssim f(t)$$

it should always be equipped with a class of data. A first question should be: Can we find data from this class, such that the energy really does behave in this way? This is clearly the case of the high frequency energy estimate of Lemma 2.3. In fact, for all data with frequency support away from zero this happens. If $\mu < 1$ then this happens even for all data from $H^1 \times L^2$, see [55].

On the other hand, if we cannot find such data we may ask whether we can improve the estimate to $\mathbb{E}(u;t) \leq g(t)$ for some g(t) = o(f(t)). If this can be done, the estimate clearly was not sharp. However, if we do not find data with the prescribed rate but also can not improve the rate, a different kind of sharpness appears. This is seen in the low frequency asymptotics. For any $\mu > 1$ the estimate

(2.20)
$$\|\nabla u(t,\cdot)\|_{L^2} + \|u_t(t,\cdot)\|_{L^2} \lesssim t^{-1} \left(\|u_0\|_{H^1} + \|u_1\|_{L^2}\right)$$

is of this form.

2.2. Scale invariant mass terms. This situation was studied recently by Del Santo–Kinoshita–Reissig [8] and in the PhD thesis of C. Böhme, [3], following along similar lines to the treatment in the previous section. We will only sketch the major differences and the conclusions to be drawn from them.

The model under consideration is the Cauchy problem

(2.21)
$$u_{tt} - \Delta u + \frac{\kappa^2}{4t^2}u = 0, \qquad u(1, \cdot) = u_0, \quad u_t(1, \cdot) = u_1$$

for a Klein–Gordon equation with time-dependent mass. Again we assume data to belong to $\mathscr{S}'(\mathbb{R}^n)$ and we reduce the problem by a partial Fourier transform to the ordinary differential

equation

(2.22)
$$\widehat{u}_{tt} + |\xi|^2 \widehat{u} + \frac{\kappa^2}{4t^2} \widehat{u} = 0.$$

This differential equation can be related to Kummer's confluent hypergeometric equation. Let $2\rho = 1 + \sqrt{1 - \kappa^2}$. If we look for particular solutions of the special form

(2.23)
$$\widehat{u}(t,\xi) = \mathrm{e}^{\mathrm{i}t|\xi|}(t|\xi|)^{\rho}v(t|\xi|)$$

we obtain with $\tau = 2it|\xi|$

(2.24)
$$\tau v'' + (2\rho - \tau)v' + \tau v = 0.$$

Solutions to this equation are given by confluent hypergeometric functions. A system of linearly independent solutions is given in terms of Kummer's functions by

(2.25)
$$\Theta_0(\rho, 2\rho; 2it|\xi|), \qquad \Theta_0(1-\rho, 2-2\rho; -2it|\xi|)$$

for

(2.26)
$$\Theta_0(\alpha,\beta;\tau) = \begin{cases} \Phi(\alpha,\beta;\tau), & \beta \notin \mathbb{Z}, \\ \Psi(\alpha,\beta;\tau), & \beta \in \mathbb{Z}. \end{cases}$$

In combination with known statements about these functions we can again describe the Fourier multipliers appearing in the representation of solutions. They behave different in different zones of the phase space, the decomposition is the one depicted in Figure 2.1. Furthermore, we have to distinguish between small values of κ and large values.

The case $\kappa \leq 1$. In this case the parameter $\rho \in [1/2, 1)$ is real and a solutions to (2.22) show the following behaviour. If $t|\xi| \leq 1$, the main terms of the fundamental solution behave like t^{ρ} and $t^{1-\rho}$ (and with improvement of one order for any *t*-derivative or multiplication by $|\xi|$), except for $\kappa = 1$ and $\rho = 1/2$ where an additional log-term appears. The large-frequency behaviour on $t|\xi| \gtrsim 1$ is described again by the oscillatory terms $\exp(\pm it\xi)$ similar to the high-frequency expansion (2.10) for the scale invariant weak dissipation case.

The case $\kappa > 1$. Now the parameter ρ is complex with real part equal to 1/2. When $t|\xi| \leq 1$, solutions to (2.22) grow like $t^{1/2}$ but also exhibit an oscillatory behaviour like $\exp(\pm i\sqrt{\kappa^2 - 1}\log t)$. For $t|\xi| \gtrsim 1$ the solutions are bounded and oscillating. The high-frequency expansion will have a changed phase.

3. Hyperbolic systems

In this section we will provide a diagonalisation based approach to obtain the high-frequency asymptotic properties of the representation of solutions for more general uniformly strictly hyperbolic systems. The exposition is based on ideas from [44].

Motivating examples. The motivation to consider systems in this framework is two-fold. On the one hand, the treatment of wave models and more general higher order hyperbolic equations naturally leads to a reformulation as pseudo-differential hyperbolic systems. This was key ingredient for Reissig–Smith [40] to treat wave equations with bounded time-dependent propagation speed. In [56], [57], the author considered time-dependent dissipation terms and discussed their influence on energy and dispersive type estimates for their solutions. The treatment of the non-effective case fits to the considerations presented here. On the other

10

hand, systems are of interest on their own. Recently, D'Abbico–Lucente–Taglialatela [1] studied general time-dependent strictly hyperbolic systems of the form

(3.1)
$$D_t U = \sum_{j=1}^n A_j(t) D_{x_j} U + B(t) U, \qquad U(0, \cdot) = U_0$$

where as usual $D = -i\partial$ and the matrices $A_j(t), B(t) \in \mathbb{C}^{d \times d}$ satisfy natural symbolic and structural assumptions. Besides guaranteeing a form of uniform strict hyperbolicity up to $t = \infty$ it is of importance to control the amount of oscillations in coefficients. In this setting this is usually done by assuming

(3.2)
$$A_j(t) \in \mathcal{T}_{\nu}\{0\}, \qquad B(t) \in \mathcal{T}_{\nu}\{1\},$$

where

(3.3)
$$\mathcal{T}_{\nu}\{\ell\} = \left\{ f \in C^{\infty}(\mathbb{R}_{+}) : |\mathbf{D}_{t}^{k}f(t)| \leq C_{k} \left(\frac{(\log(e+t))^{\nu}}{1+t}\right)^{\ell+k} \right\}$$

and $\nu \in [0, 1]$. We will concentrate on the case $\nu = 0$ here; this simplifies the consideration without omitting most of the main ideas.¹ Key assumption will always be that the characteristic roots, i.e. the solutions $\lambda_j(t, \xi)$, $j = 1, \ldots, d$ of the polynomial equation

(3.4)
$$\det\left(\lambda(t,\xi) - \sum_{j=1}^{n} A_j(t)\xi_j\right) = 0$$

are real and uniformly separated from each other for $t \ge 0$ and $|\xi| = 1$.

The approach also applies to higher order scalar hyperbolic equations with purely timedependent coefficients of the form

(3.5)
$$D_t^m u + \sum_{j=0}^{m-1} \sum_{|\alpha| \le m-j} a_{j,\alpha}(t) D_t^j D_x^{\alpha} u = 0, \qquad D_t^j u(0, \cdot) = u_j, \ j = 0, 1, \dots, m-1$$

where

(3.6)
$$a_{j,\alpha}(t) \in \mathcal{T}_{\nu}\{m-j-|\alpha|\},$$

provided the roots of the homogeneous polynomial

(3.7)
$$\lambda^m + \sum_{j=0}^{m-1} \sum_{|\alpha|=m-j} a_{j,\alpha}(t) \lambda^j \xi^{\alpha} = 0$$

are real and again uniformly separated for $t \ge 0$ and $|\xi| = 1$.

Note, that our approach uses a high regularity of coefficients (resulting in sharp conditions on the decay behaviour). There is an alternative approach due to Matsuyama–Ruzhansky [26] based on an asymptotic integration argument applicable to homogeneous higher order equations of the form (3.5) with $a'_{j,\alpha}(t) \in L^1(\mathbb{R}_+)$ for $j + |\alpha| = m$ and $a_{j,\alpha}(t) = 0$ otherwise. This yields uniform bounds on the energy of solutions as well as it allows for the derivation of dispersive estimates. Main difference is that one has to use a higher regularity of the data to compensate the low regularity of coefficients in order to obtain sharp dispersive decay rates.

¹We omit the index ν if $\nu = 0$.

3.1. Symbol classes. The following calculations are based on a decomposition of the phase space into different zones. They correspond to the distinction between small and large frequencies used in the previous section, see Figure 2.1. We denote

(3.8)
$$\mathcal{Z}_{hyp} = \{(t,\xi) : (1+t)|\xi| \ge 1\}$$

as the hyperbolic zone and set $\mathcal{Z}_{pd} = (\mathbb{R}_+ \times \mathbb{R}^n) \setminus \mathcal{Z}_{hyp}$. This decomposition was inspired by the treatment of Yagdjian, [59]. We denote the common boundary between both regions by t_{ξ} and use the notation $\chi_{\text{hyp}}(t,\xi) = \chi((1+t)|\xi|)$ for a smooth excision function supported inside \mathcal{Z}_{hyp} and being equal to one for $(1+t)|\xi| \geq 2$.

We denote by $\mathcal{S}\{m_1, m_2\}$ the set of all time-dependent Fourier multipliers $a(t, \xi) \in C^{\infty}(\mathbb{R}_+ \times$ \mathbb{R}^n) satisfying the symbol estimates

(3.9)
$$|\mathbf{D}_{t}^{k}\mathbf{D}_{\xi}^{\alpha}a(t,\xi)| \leq C_{k,\alpha} \left(\max\left\{ |\xi|, \frac{1}{1+t} \right\} \right)^{m_{1}-|\alpha|} \left(\frac{1}{1+t} \right)^{m_{2}+k}$$

for all k and multi-indices α . The set $\mathcal{S}\{m_1, m_2\}$ possesses a natural Fréchet space structure. Furthermore, the classes behave well under forming products, taking derivatives and certain integrations. The excision function χ_{hyp} belongs to $\mathcal{S}\{0,0\}$.

position 3.1. (1) $S\{m_1 - k, m_2 + k'\} \subseteq S\{m_1, m_2\}$ whenever $k' \ge k$; (2) $S\{m_1, m_2\} \cdot S\{m'_1, m'_2\} \subseteq S\{m_1 + m'_1, m_2 + m'_2\};$ Proposition 3.1.

- (3) $\mathrm{D}_t^k \mathrm{D}_\varepsilon^\alpha \mathcal{S}\{m_1, m_2\} \subseteq \mathcal{S}\{m_1 |\alpha|, m_2 + k\}.$
- (4) If $a(t,\xi) \in \mathcal{S}\{-1,2\}$ satisfies supp $a(t,\xi) \subset \mathcal{Z}_{hyp}$, then

(3.10)
$$b(t,\xi) = \int_t^\infty a(\tau,\xi) \mathrm{d}\tau, \qquad \xi \neq 0$$

satisfies $\chi_{\text{hyp}}(t,\xi)b(t,\xi) \in \mathcal{S}\{-1,1\}.$

Proof. We only explain how to prove the last statement, the others are obvious. From the symbol estimates we get for $t \ge t_{\xi}$

(3.11)
$$|b(t,\xi)| \le C \int_t^\infty \frac{1}{(1+\tau)^2 |\xi|} \mathrm{d}\tau = \frac{C}{(1+t)|\xi|}$$

and the uniform bound by C for $t \leq t_{\xi}$. As derivatives with respect to t clearly satisfy the right estimates, we are left with ξ -derivatives. For them we obtain in a similar fashion

$$|\mathbf{D}_{\xi}^{\alpha}b(t,\xi)| \le C \int_{t}^{\infty} \frac{1}{(1+\tau)^{2}|\xi|^{1+|\alpha|}} \mathrm{d}\tau = \frac{C}{(1+t)|\xi|^{1+|\alpha|}}$$

whenever $t \ge t_{\xi}$. Combining this with support properties of $\chi_{hvp}(t,\xi)$ and its symbol estimates the desired statement follows. Π

Of particular importance for us will be the embedding $\mathcal{S}\{m_1 - k, m_2 + k\} \hookrightarrow \mathcal{S}\{m_1, m_2\}$. It is customary to denote the residual class of this hierarchy by

(3.12)
$$\mathcal{H}\{\ell\} = \bigcap_{m_1+m_2=\ell} \mathcal{S}\{m_1, m_2\}.$$

We will also need a certain homogeneous version of these classes allowing for singluraties in $\xi = 0$. We write $\mathcal{S}_*\{m_1, m_2\}$ to denote the class of all functions $a(t,\xi) \in C^{\infty}(\mathbb{R}_+ \times (\mathbb{R}^n \setminus \{0\}))$ satisfying

(3.13)
$$|\mathbf{D}_{t}^{k}\mathbf{D}_{\xi}^{\alpha}a(t,\xi)| \leq C_{k,\alpha}|\xi|^{m_{1}-|\alpha|} \left(\frac{1}{1+t}\right)^{m_{2}+k}$$

uniform in $(1+t)|\xi| \ge c_0$ for some constant $c_0 > 0$.

3.2. Uniformly strictly hyperbolic systems. We collect our main assumptions now. We use the notation $S\{m_1, m_2\}$ also for matrix-valued multipliers and denote operators corresponding to such multipliers by $a(t, D_x)$, i.e., we define

(3.14)
$$a(t, \mathbf{D}_x)f = \mathscr{F}^{-1}[a(t, \xi)\widehat{f}(\xi)]$$

Then we consider the Cauchy problem

(3.15)
$$D_t U = A(t, D_x)U, \qquad U(0, \cdot) = U_0 \in \mathscr{S}'(\mathbb{R}^n; \mathbb{C}^d)$$

for a $d \times d$ matrix $A(t,\xi) \in \mathcal{S}\{1,0\}$ satisfying suitable conditions.

(A1): There exists a positively ξ -homogeneous matrix function $A_1(t,\xi) \in \mathcal{S}_*\{1,0\}$ satisfying $A_1(t,\rho\xi) = \rho A_1(t,\xi), \rho > 0$, such that

(3.16)
$$A(t,\xi) - A_1(t,\xi) \in \mathcal{S}_*\{0,1\}.$$

(A2): The eigenvalues $\lambda_j(t,\xi)$ of $A_1(t,\xi)$ are real and uniformly distinct in the sense that

(3.17)
$$\inf_{t,\xi} \frac{|\lambda_i(t,\xi) - \lambda_j(t,\xi)|}{|\xi|} > 0$$

for all $i \neq j$.

We call (3.15) uniformly strictly hyperbolic if both of these assumptions are satisfied. The symbolic calculus of Proposition 3.1 allows to draw several conclusions. Statements and proofs are taken from [44].

Lemma 3.2. (1) The eigenvalues $\lambda_j(t,\xi)$ of $A_1(t,\xi)$ satisfy the symbol estimates (3.18) $\lambda_j(t,\xi) \in \mathcal{S}_*\{1,0\}$

together with

(3.19)
$$\left(\lambda_i(t,\xi) - \lambda_j(t,\xi)\right)^{-1} \in \mathcal{S}_*\{-1,0\}$$

- (2) The spectral projection $P_j(t,\xi)$ associated to the eigenvalue $\lambda_j(t,\xi)$ satisfies $P_j(t,\xi) \in S_*\{0,0\}$.
- (3) There exists an invertible matrix $M(t,\xi) \in \mathcal{S}_*\{0,0\}$ with inverse satisfying $M^{-1}(t,\xi) \in \mathcal{S}_*\{0,0\}$ such that

(3.20)
$$A_1(t,\xi)M(t,\xi) = M(t,\xi)\mathcal{D}(t,\xi)$$

holds true for $\mathcal{D}(t,\xi) = \text{diag}(\lambda_1(t,\xi),\ldots,\lambda_d(t,\xi))$ the diagonal matrix with entries $\lambda_j(t,\xi)$.

Proof. 1. The properties of the characteristic roots follow from the spectral estimate $\lambda_j(t,\xi) \leq ||A_1(t,\xi)||$ together with the symbol properties of the coefficients of the characteristic polynomial and the uniform strict hyperbolicity. Indeed, differentiating the characteristic polynomial

(3.21)
$$0 = \sum_{k=0}^{d} I_{d-k}(t,\xi) \left(\lambda_j(t,\xi)\right)^k, \qquad I_k(t,\xi) \in \mathcal{S}_*\{k,0\}$$

yields the linear equation

(3.22)
$$D_t \lambda_j(t,\xi) \sum_{k=1}^d k I_{d-k}(t,\xi) \left(\lambda_j(t,\xi)\right)^{k-1} = -\sum_{k=0}^d \left(D_t I_{d-k}(t,\xi) \right) \left(\lambda_j(t,\xi)\right)^k$$

for the t-derivatives. The assumption of uniform strict hyperbolicity (A2) is equivalent to a uniform bound for the inverse of the sum on the left-hand side, indeed it follows from Vieta's formula that

(3.23)
$$\sum_{k=1}^{d} k I_{d-k}(t,\xi) \left(\lambda_j(t,\xi)\right)^{k-1} = \prod_{i \neq j} \left(\lambda_j(t,\xi) - \lambda_i(t,\xi)\right)$$

holds true for any fixed j. This yields the desired estimate for $D_t \lambda_i(t,\xi)$. Iterating this procedure gives expressions for higher time-derivatives in terms of lower ones and implies corresponding estimates. On the other hand, smoothness alone together with the homogeneity implies the symbolic estimates with respect to ξ .

Finally, the symbolic estimates for the inverse of the difference follow from differentating the identity $(\lambda_i(t,\xi) - \lambda_j(t,\xi))^{-1} (\lambda_i(t,\xi) - \lambda_j(t,\xi)) = 1.$ 2. The eigenprojections can be expressed in terms of the characteristic roots as

(3.24)
$$P_j(t,\xi) = \prod_{i \neq j} \frac{A_1(t,\xi) - \lambda_i(t,\xi)}{\lambda_j(t,\xi) - \lambda_i(t,\xi)},$$

such that the symbol estimates for $P_j(t,\xi)$ follow directly from the symbolic calculus of Proposition 3.1.

3. A symmetriser of the matrix $A_1(t,\xi)$, i.e., a matrix $H(t,\xi)$ such that $H(t,\xi)A_1(t,\xi)$ is self-adjoint, is given by

(3.25)
$$H(t,\xi) = \sum_{j=1}^{d} P_j^*(t,\xi) P_j(t,\xi)$$

and therefore satisfies $H(t,\xi) \in \mathcal{S}_*\{0,0\}$. We can express the inverse of the diagonaliser in terms of this symmetriser. Let $\nu_j(t,\xi)$ be a (smoothly chosen) unit vector from the onedimensional *j*th eigenspace ran $P_j(t,\xi)$ and $M^{-1}(t,\xi)\zeta$ for any fixed $\zeta \in \mathbb{C}^d$ be the vector with the inner products $(\nu_j, P_j(t,\xi)\zeta) = (\nu_j, H(t,\xi)\zeta)$ as entries. Since $\nu_j(t,\xi)$ is unique up to sign locally in t and ξ , it is expressible as $P_j(t,\xi)\zeta/||P_j(t,\xi)\zeta||$

for some fixed vector $\zeta \in \mathbb{C}^d$ chosen away from the complement of the eigenspace. Then differentiating this expression directly implies $\nu_i(t,\xi) \in S_*\{0,0\}$. This implies $M^{-1}(t,\xi) \in$ $\mathcal{S}_{*}\{0,0\}$ by the above definition of $M^{-1}(t,\xi)$. Furthermore, $M(t,\xi)$ has the vectors $\nu_{i}(t,\xi)$ as columns and again $M(t,\xi) \in \mathcal{S}_*\{0,0\}$ follows.

3.3. Diagonalisation. As next step we want to diagonalise the system (3.15) within the $S\{\cdot,\cdot\}$ hierarchy modulo remainders from $\mathcal{H}\{1\}$ and terms supported within \mathcal{Z}_{pd} .

Initial step. We first diagonalise the main part $A_1(t,\xi)$ using the matrix family $M(t,\xi) \in$ $\mathcal{S}_{*}\{0,0\}$. We denote

(3.26)
$$V^{(0)}(t,\xi) = M^{-1}(t,\xi)\widehat{U}(t,\xi),$$

within \mathcal{Z}_{hyp} , such that a short calculation yields

(3.27)
$$D_t V^{(0)} = (\mathcal{D}(t,\xi) + R_0(t,\xi)) V^{(0)}$$

with

$$R_{0}(t,\xi) = M^{-1}(t,\xi)(A(t,\xi) - A_{1}(t,\xi)M(t,\xi) + (D_{t}M^{-1}(t,\xi))M(t,\xi) \in \mathcal{S}_{*}\{0,1\}.$$

We will use (3.27) as starting point for a further (sequence) of transformations applied to the system.

The diagonalisation hierarchy. We will construct matrices $N^{(k)}(t,\xi) \in \mathcal{S}_{*}\{-k,k\}$ and $F^{(k)}(t,\xi) \in \mathcal{S}_{*}\{-k,k+1\}$ such that with

(3.28)
$$N_K(t,\xi) = \mathbf{I} + \sum_{k=1}^K N^{(k)}(t,\xi), \qquad F_{K-1}(t,\xi) = \sum_{k=0}^{K-1} F^{(k)}(t,\xi)$$

the operator identity

(3.29)
$$B_{K}(t,\xi) = (D_{t} - \mathcal{D}(t,\xi) - R_{0}(t,\xi))N_{K}(t,\xi) - N_{K}(t,\xi)(D_{t} - \mathcal{D}(t,\xi) - F_{K-1}(t,\xi)) \in \mathcal{S}_{*}\{-K,K+1\}$$

is valid. The construction is done recursively. The identity (3.29) will yield commutator equations for the matrices $N^{(k)}(t,\xi)$ and the matrices $F^{(k)}(t,\xi)$ are determined by their solvability condition. The strict hyperbolicity of the system is crucial for this construction.

First step, K = 1. We collect all terms from (3.29) which do not a priori belong to $S_*\{-1, 2\}$ and require their sum to vanish. This yields the condition

(3.30)
$$[\mathcal{D}(t,\xi), N^{(1)}(t,\xi)] = -R_0(t,\xi) + F^{(0)}(t,\xi)$$

Because $\mathcal{D}(t,\xi)$ is diagonal, the diagonal entries of the commutator vanish and we must have

(3.31)
$$F^{(0)}(t,\xi) = \operatorname{diag} R_0(t,\xi)$$

for solvability. Furthermore, the strict hyperbolicity assumption (A2) implies that the solution is unique up to diagonal matrices and the entries of the matrix $N^{(1)}(t,\xi)$ must be given by

(3.32)
$$\left(N^{(1)}(t,\xi)\right)_{i,j} = \frac{\left(R_0(t,\xi)\right)_{i,j}}{\lambda_i(t,\xi) - \lambda_j(t,\xi)}, \quad i \neq j$$

The diagonal entries will be set as $(N^{(1)}(t,\xi))_{i,i} = 0$. It is evident that $F^{(0)}(t,\xi) \in \mathcal{S}_*\{0,1\}$, while $N^{(1)}(t,\xi) \in \mathcal{S}_*\{-1,1\}$ follows from Lemma 3.2.

Recursion $k \mapsto k+1$. If we assume that all terms up to order k are already constructed and satisfy the symbolic inequalities then the conditions for the next terms follow from the requirement

(3.33)
$$B_{k+1}(t,\xi) - B_k(t,\xi) \in \mathcal{S}_*\{-k-1,k+2\}.$$

Indeed, collecting again just the terms which do not a priori belong to this symbol class and setting their sum to zero yields the commutator equation

(3.34)
$$[\mathcal{D}(t,\xi), N^{(k+1)}(t,\xi)] = B_k(t,\xi) + F^{(k)}(t,\xi).$$

The solution is again given by

(3.35)
$$(N^{(k+1)}(t,\xi))_{i,j} = -\frac{(B_k(t,\xi))_{i,j}}{\lambda_i(t,\xi) - \lambda_j(t,\xi)}, \quad i \neq j,$$

provided we set

(3.36)
$$F^{(k)}(t,\xi) = -\operatorname{diag} B_k(t,\xi).$$

The diagonal entries will again be fixed as $(N^{(k+1)}(t,\xi))_{i,i} = 0$. Clearly, the diagonal terms satisfy $F^{(k)}(t,\xi) \in \mathcal{S}_*\{-k,k+1\}$ as consequence of the assumption $B_k(t,\xi) \in \mathcal{S}_*\{-k,k+1\}$, and $N^{(k+1)}(t,\xi) \in \mathcal{S}_*\{-k-1,k+1\}$ again follows from Lemma 3.2. Furthermore, this choice of matrices implies $B_{k+1}(t,\xi) \in \mathcal{S}_*\{-k-1,k+2\}$ and the recursion step is completed.

Zone constants and invertibility. If we consider only the part of the phase space defined by $(1+t)|\xi| \ge c$ for large c, the matrix-norm of $I - N_k(t,\xi) \in \mathcal{S}_*\{-1,1\}$ is of size $\mathcal{O}(c^{-1})$ and choosing c large enough implies invertibility of the matrix family $N_k(t,\xi)$ with $N_k^{-1}(t,\xi) \in \mathcal{S}_*\{0,0\}$. Hence, the problem (3.27) is equivalent to considering

(3.37)
$$D_t V^{(k)} = \left(\mathcal{D}(t,\xi) + F_{k-1}(t,\xi) + R_k(t,\xi) \right) V^{(k)}$$

for $V^{(k)}(t,\xi) = N_k^{-1}(t,\xi)V^{(0)}(t,\xi)$ and with remainder term

(3.38)
$$R_k(t,\xi) = -N_k^{-1}(t,\xi)B_k(t,\xi) \in \mathcal{S}_*\{-k,k+1\}$$

within the smaller hyperbolic zone $\mathcal{Z}_{hyp}(c_k) = \{(t,\xi) : (1+t)|\xi| \ge c_k\}.$ We collect the main result in the following lemma.

Lemma 3.3. Let $k \in \mathbb{N}$, $k \geq 1$. Then there exist matrices $N_k(t,\xi) \in \mathcal{S}_*\{0,0\}$, diagonal matrices $F_{k-1}(t,\xi) \in \mathcal{S}_*\{0,1\}$ and a remainder $R_k \in \mathcal{S}_*\{-k,k+1\}$, such that

(3.39)
$$(D_t - \mathcal{D}(t,\xi) - R_0(t,\xi))N_k(t,\xi) = N_k(t,\xi)(D_t - \mathcal{D}(t,\xi) - F_{k-1}(t,\xi) - R_k(t,\xi))$$

holds true within $Z_{hyp}(c_k)$ for sufficiently large zone constant depending on k. The matrices $N_k(t,\xi)$ are uniformly invertible within $\mathcal{Z}_{hyp}(c_k)$ with $N_k^{-1}(t,\xi) \in \mathcal{S}_{*}\{0,0\}$.

3.4. Solving the diagonalised system. It remains to asymptotically solve (3.37) as $(1 + t)|\xi| \to \infty$. This will be done in two main steps. We always assume that we are indeed working inside the hyperbolic zone $\mathcal{Z}_{hyp}(c_k)$ for sufficiently large constant c_k .

Treating the diagonal terms. The fundamental matrix of the diagonal part of (3.37), i.e., the matrix-valued solution $\mathcal{E}_k(t, s, \xi)$ of

(3.40)
$$D_t \mathcal{E}_k(t, s, \xi) = \left(\mathcal{D}(t, \xi) + F_{k-1}(t, \xi) \right) \mathcal{E}_k(t, s, \xi), \qquad \mathcal{E}_k(s, s, \xi) = I \in \mathbb{C}^{d \times d},$$

is just given by integration and taking exponentials

(3.41)
$$\mathcal{E}_k(t,s,\xi) = \exp\left(\mathrm{i}\int_s^t \left(\mathcal{D}(\tau,\xi) + F_{k-1}(\tau,\xi)\right)\mathrm{d}\tau\right).$$

Here we essentially used that diagonal matrices commute with each other. By assumption, the entries of $\mathcal{D}(t,\xi)$ are real and yield a unitary matrix after exponentiating. Similarly, $F^{(j)}(t,\xi) \in \mathcal{S}_{*}\{-j, j+1\}$ is integrable over the hyperbolic zone for all $j \geq 1$. This yields that the actual large time asymptotic behaviour of $\mathcal{E}_{k}(t,s,\xi)$ is encoded in the term $F^{(0)}(t,\xi)$ and we can show that

(3.42)
$$|\mathcal{E}_k(t,s,\xi)| \approx \exp\left(-\int_s^t \operatorname{Im} F^{(0)}(\tau,\xi) \mathrm{d}\tau\right)$$

holds true for all individual diagonal entries of $\mathcal{E}_k(t, s, \xi)$ as two-sided estimate with constants depending on k but not on s, t and ξ . From $F^{(0)}(t,\xi) \in \mathcal{S}_*\{0,1\}$ we can only conclude

polynomial bounds on the right hand side, thus there exists exponents K_1 and K_2 such that for t > s the estimate

(3.43)
$$\left(\frac{1+s}{1+t}\right)^{K_1} \lesssim \|\mathcal{E}_k(t,s,\xi)\| \lesssim \left(\frac{1+t}{1+s}\right)^{K_2}$$

is valid within $\mathcal{Z}_{hyp}(c_k)$. The exponents are independent of k and a similar estimate is true for t < s where the exponents are switched.

Generalised energy conservation. We will speak of generalised energy conservation for the system (3.15), if its fundamental solution (given as solution to)

(3.44)
$$D_t \mathcal{E}(t, s, \xi) = A(t, \xi) \mathcal{E}(t, s, \xi), \qquad \mathcal{E}(s, s, \xi) = \mathbf{I} \in \mathbb{C}^{d \times d}$$

satisfies

$$(3.45) \|\mathcal{E}(t,s,\xi)\| \lesssim 1$$

uniformly in $(t,\xi), (s,\xi) \in \mathcal{Z}_{hyp}(c)$ for some c (regardless of their order). The generalised energy conservation property can be fully characterised by the term $F^{(0)}(t,\xi) = \text{diag } R_0(t,\xi)$ constructed within the diagonalisation procedure.

Theorem 3.4. The system (3.15) has the generalised energy conservation property if and only if

(3.46)
$$\sup_{(t,\xi),(s,\xi)\in\mathcal{Z}_{hyp}(c)} \left\| \int_{s}^{t} \operatorname{Im} F^{(0)}(\tau,\xi) \mathrm{d}\tau \right\| < \infty$$

holds true for some zone constant c.

Sketch of proof. The matrices $M(t,\xi) \in \mathcal{S}_*\{0,0\}$ and $N_k(t,\xi) \in \mathcal{S}_*\{0,0\}$ have uniformly bounded inverses $M^{-1}(t,\xi), N_k^{-1}(t,\xi) \in \mathcal{S}_*\{0,0\}$, the generalised energy conservation property of system (3.15) is equivalent to that of system (3.37). We exploit this fact in combination with the polynomial bounds (3.43) which are also valid (with the same exponents) for the fundamental matrix $\tilde{\mathcal{E}}_k(t, s, \xi)$ of (3.37).

The main idea now is, that when choosing k large enough, the polynomial decay of the remainder term $R_k(t,\xi)$ compensates the increasing behaviour and we can use the Duhamel representation

(3.47)
$$\widetilde{\mathcal{E}}_k(t,s,\xi) = \mathcal{E}_k(t,s,\xi)\mathcal{Z}_k(s,\xi) - \mathrm{i}\int_t^\infty \mathcal{E}_k(t,\theta,\xi)R_k(\theta,\xi)\widetilde{\mathcal{E}}_k(\theta,s,\xi)\mathrm{d}\theta$$

for $k \ge K_1 + K_2$ with

(3.48)
$$\mathcal{Z}_k(s,\xi) = \mathbf{I} + \mathbf{i} \int_s^\infty \mathcal{E}_k(s,\theta,\xi) R_k(\theta,\xi) \widetilde{\mathcal{E}}_k(\theta,s,\xi) d\theta$$

as integral equation relating $\widetilde{\mathcal{E}}_k(t,s,\xi)$ to $\mathcal{E}_k(t,s,\xi)$. Indeed,

(3.49)
$$\|\mathcal{Z}_k(s,\xi) - \mathbf{I}\| \lesssim |\xi|^{-k} \int_t^\infty \left(\frac{1+\theta}{1+s}\right)^{K_1} \frac{1}{(1+s)^{k+1}} \left(\frac{1+\theta}{1+s}\right)^{K_2} \mathrm{d}\theta \approx \left((1+s)|\xi|\right)^{-k}$$

and similar for

(3.50)
$$\left\|\int_{t}^{\infty} \mathcal{E}_{k}(t,\theta,\xi) R_{k}(\theta,\xi) \widetilde{\mathcal{E}}_{k}(\theta,s,\xi) \mathrm{d}\theta\right\| \lesssim |\xi|^{-k} (1+t)^{K_{1}-k} (1+s)^{-K_{2}}.$$

Therefore choosing k and s large implies that the difference $\mathcal{E}_k(t,s,\xi) - \widetilde{\mathcal{E}}_k(t,s,\xi)$ can be estimated in terms of $(1+t)^{K_2}(1+s)^{-K_2-k}|\xi|^{-k}$ (coming from \mathcal{Z}_k) and $(1+t)^{K_1-k}(1+s)^{-K_2}|\xi|^{-k}$ (coming from the integral) and we can treat $\widetilde{\mathcal{E}}_k(t,s,\xi)$ as small perturbation of $\mathcal{E}_k(t,s,\xi)$.

The statement now follows from the observation that (3.46) is equivalent to a uniform bound on both $\mathcal{E}_k(t, s, \xi)$ and its inverse.

It should be clear from the statement of the previous theorem, but we will in particular point out that the integral condition (3.46) is indepent of the choice of the diagonaliser $M(t,\xi)$ of $A_1(t,\xi)$ as long as it satisfies the symbol conditions $M(t,\xi), M^{-1}(t,\xi) \in \mathcal{S}_*\{0,0\}$. Condition (3.46) does depend on the lower order terms $A(t,\xi) - A_1(t,\xi)$ modulo $\mathcal{S}_*\{-1,2\}$ and on the time-evolution of the system of eigenspaces of $A_1(t,\xi)$.

We will give an example. If we consider the damped wave equation

$$(3.51) u_{tt} - \Delta u + 2b(t)u_t = 0.$$

it can be rewritten as a system of first order in $(|\xi|\hat{u}, D_t\hat{u})^{\top}$ with coefficient matrix

(3.52)
$$A(t,\xi) = \begin{pmatrix} 0 & |\xi| \\ |\xi| & 2ib(t) \end{pmatrix} \in \mathcal{S}_*\{1,0\}$$

Applying the diagonalisation scheme of Section 3.3 to this symbol yields terms $\mathcal{D}(t,\xi) = \text{diag}(|\xi|, -|\xi|) \in \mathcal{S}_*\{1, 0\}$ and $F_0(t, \xi) = F^{(0)}(t, \xi) = ib(t)I \in \mathcal{S}_*\{0, 1\}$. Hence, the generalised energy conservation property holds for (3.51) if and only if the integral

(3.53)
$$\int_0^t b(\tau) \mathrm{d}\tau$$

remains bounded. In case that $b(t) \ge 0$, this just means $b \in L^1(\mathbb{R}_+)$ and solutions are even asymptotically free in this case. If the above integral is not uniformly bounded, we obtain the two-sided estimate

(3.54)
$$|\mathcal{E}_k(t,s,\xi)| \approx \exp\left(\int_s^t b(\tau) \mathrm{d}\tau\right).$$

This is consistent with the observations of Section 2.1 for the scale invariant model case. The equation (3.51) was studied by the author in [56] under similar assumptions.

Perturbation series arguments. For the following we assume that (3.46) is valid such that in particular

$$(3.55) ||\mathcal{E}_k(t,s,\xi)|| \approx 1$$

for all $k \ge 1$ uniformly on $(t,\xi), (s,\xi) \in \mathcal{Z}_{hyp}(c_k)$. Then we can follow a simpler argument to construct $\mathcal{E}(t,s,\xi)$ explicitly.

We make the ansatz

$$(3.56) \qquad \qquad \mathcal{E}_k(t,s,\xi)\mathcal{Q}_k(t,s,\xi)$$

for the fundamental solution of the diagonalised system $D_t - D - F_{k-1} - R_k$ with a so far unkown matrix function $Q_k(t, s, \xi)$. A short calculation shows that the function $Q_k(t, s, \xi)$ solves

(3.57)
$$D_t \mathcal{Q}_k(t, s, \xi) = \mathcal{R}_k(t, s, \xi) \mathcal{Q}_k(t, s, \xi), \qquad \mathcal{Q}_k(s, s, \xi) = I$$

with

(3.58)
$$\mathcal{R}_k(t,s,\xi) = \mathcal{E}_k(s,t,\xi)R_k(t,\xi)\mathcal{E}_k(t,s,\xi).$$

We can represent the solution to (3.57) in terms of the Peano–Baker series

$$(3.59) \quad \mathcal{Q}_k(t,s,\xi) = \mathbf{I} + \sum_{\ell=1}^{\infty} \mathbf{i}^\ell \int_s^t \mathcal{R}_k(t_1,s,\xi) \int_s^{t_1} \mathcal{R}_k(t_2,s,\xi) \\ \cdots \int_s^{t_{\ell-1}} \mathcal{R}_k(t_\ell,s,\xi) dt_\ell \cdots dt_2 dt_1.$$

If $k \ge 1$, the symbol estimate $R_k(t,\xi) \in \mathcal{S}_*\{-k,k+1\}$ allows to give show the boundedness of $\mathcal{Q}_k(t,s,\xi)$. Indeed, using $\|\mathcal{R}_k(t,s,\xi)\| \approx \|R_k(t,\xi)\|$ uniform in s we obtain

(3.60)
$$\|\mathcal{Q}_k(t,s,\xi)\| \le \exp\left(\int_s^t \|\mathcal{R}_k(\tau,s,\xi)\| \mathrm{d}\tau\right) \lesssim \exp(Cc^{-k})$$

uniformly in $\mathcal{Z}_{hyp}(c)$.

We will derive one more consequence from the series representation. The uniform integrability of $\mathcal{R}_k(t, s, \xi)$ over $\mathcal{Z}_{hyp}(c_k)$ implies that the limit

(3.61)
$$\lim_{t \to \infty} \mathcal{Q}_k(t, s, \xi) = \mathcal{Q}_k(\infty, s, \xi)$$

exists locally uniform in $(s,\xi) \in \mathcal{Z}_{hyp}(c_k)$. This is most easily seen by checking the Cauchy criterion or reducing it to the estimate

$$(3.62) \quad \|\mathcal{Q}_k(\infty, s, \xi) - \mathcal{Q}_k(t, s, \xi)\| = \int_t^\infty \|R_k(\tau, \xi)\| \|\mathcal{Q}_k(\tau, s, \xi)\| d\tau$$
$$\lesssim \int_t^\infty \|R_k(\tau, \xi)\| d\tau.$$

The matrices $\mathcal{Q}_k(t, s, \xi)$ as well as $\mathcal{Q}_k(\infty, s, \xi)$ are invertible as the uniform lower bound on their determinant

(3.63)
$$\det \mathcal{Q}_k(t, s, \xi) = \exp\left(i \int_s^t \operatorname{trace} R_k(\tau, \xi) d\tau\right)$$
$$\geq \exp\left(-d \int_s^t \|R_k(\tau, \xi)\| d\tau\right) \geq C > 0$$

shows.

For further applications we also need estimates for ξ -derivatives of $\mathcal{Q}_k(t, s, \xi)$, which can be obtained by differentiating the above representations provided k is sufficiently large. There are some subtleties involved. If we consider ξ -derivatives of $\mathcal{E}_k(t, s, \xi)$ then logarithmic terms might appear from integrals of ξ -derivatives of $F^{(0)}(t, \xi) \in \mathcal{S}_*\{0, 1\}$, i.e., we get

(3.64)
$$\|\mathbf{D}_{\xi}^{\alpha} \mathcal{E}_{k}(t, t_{\xi}, \xi)\| \lesssim (1+t)^{|\alpha|} \big(\log(\mathbf{e}+t)\big)^{|\alpha|}$$

for t_{ξ} solving $(1 + t_{\xi})|\xi| = c_k$ (or being equal to 0 if this solution becomes negative). This implies that derivatives of $\mathcal{R}_k(t, s, \xi)$ defined in (3.58) satisfy weaker estimates than the symbol estimates of $\mathcal{R}_k(t, \xi)$. Based on the definition of the hyperbolic zone and the above estimate we obtain

(3.65)
$$\|D_{\xi}^{\alpha}\mathcal{R}_{k}(t,t_{\xi},\xi)\| \lesssim |\xi|^{-1-|\alpha|}(1+t)^{-2} (\log(e+t))^{|\alpha|}$$

for $|\alpha| \leq (k-1)/2$ and uniform in $\mathcal{Z}_{hyp}(c_k)$. Differentiating the series representation (3.59) term by term and using this estimate yields

(3.66)
$$\|\mathbf{D}_{\xi}^{\alpha}\mathcal{Q}_{k}(t,t_{\xi},\xi)\| \lesssim |\xi|^{-|\alpha|} \big(\log(\mathbf{e}+t)\big)^{|\alpha|}$$

uniform in $\mathcal{Z}_{hyp}(c_k)$ and with constants depending on k.

3.5. Examples and resulting representations of solutions. We will discuss some examples in more detail in order to show how to apply the previously developed theory. We will restrict our attention to homogeneous problems as in this case the estimates within Z_{pd} are easily obtained. In fact, assuming that $A(t,\xi)$ is positively homogeneous in ξ yields $||A(t,\xi)|| \leq C|\xi|$ uniform in t and therefore also directly the estimate

(3.67)
$$\|\mathcal{E}(t,0,\xi)\| \le \exp\left(\int_0^t \|A(\tau,\xi)\| \mathrm{d}\tau\right) \le \exp(Ct|\xi|) \lesssim 1, \qquad (t,\xi) \in \mathcal{Z}_{\mathrm{pd}}$$

for the fundamental solution defined by (3.44). Furthermore, differentiating the differential equation (3.44) implies that derivatives satisfy

$$(3.68) \|\mathbf{D}_{\boldsymbol{\xi}}^{\alpha} \mathcal{E}(t_{\boldsymbol{\xi}}, 0, \boldsymbol{\xi})\| \le C_{\alpha} |\boldsymbol{\xi}|^{-|\alpha|}$$

In the general case, the treatment for small frequencies needs more care and is often reduced to solving Volterra equations in suitable weighted spaces, see [56], [12] or [2].

Symmetric hyperbolic systems. First, we consider symmetric hyperbolic differential systems of the form (3.1),

(3.69)
$$D_t U = \sum_{j=1}^n A_j(t) D_{x_j} U, \qquad U(0, \cdot) = U_0$$

for self-adjoint matrices $A_j(t) \in \mathcal{T}\{0\}$. By partial Fourier transform this is related to $D_t \hat{U} = A(t,\xi)\hat{U}$ with

(3.70)
$$A(t,\xi) = \sum_{j=1}^{n} A_j(t)\xi_j \in \mathcal{S}_*\{1,0\}.$$

We assume that the roots of (3.4) satisfy $|\lambda_i(t,\xi) - \lambda_j(tj\xi)| \ge C|\xi|$ uniform in t and $i \ne j$ for some constant C > 0. Then we can follow the scheme of Sections 3.3 and 3.4 to explicitly determine leading terms of the representation of solutions.

As (3.70) defines a self-adjoint matrix, we choose the diagonaliser $M(t,\xi)$ as unitary matrix depending smoothly on t and ξ . This gives $M(t,\xi) \in \mathcal{S}_*\{0,0\}$. Furthermore, denoting the columns of the matrix $M(t,\xi)$ as $\nu_j(t,\xi)$, $j = 1, \ldots, d$, we can express the first matrices constructed in the diagonalisation scheme as $\mathcal{D}(t,\xi) = \text{diag}(\lambda_1(t,\xi), \ldots, \lambda_d(t,\xi))$ and

(3.71)
$$\left(F^{(0)}(t,\xi)\right)_{jj} = -i\overline{\partial_t \nu_j(t,\xi)} \cdot \nu_j(t,\xi) = -\frac{i}{2}\partial_t \|\nu_j(t,\xi)\|^2 = 0.$$

The next diagonal terms starting with $F^{(1)}(t,\xi)$ are in general non-zero such that $F_{k-1}(t,\xi) \in S_{*}\{-1,2\}$ in place of the weaker result from Lemma 3.3. In consequence, the estimates (3.66) are valid without the logarithmic terms.

Combining the representation (3.56) with the representation (3.41) and the estimates (3.66) and using the symbol properties of the diagonaliser $M(t,\xi)$ and $N_k(t,\xi)$ together with estimate

(3.68) we obtain structural information about the representation of solutions. Note first that for any $t \ge t_{\xi}$, i.e., within the hyperbolic zone $\mathcal{Z}_{hyp}(c_k)$, the representation

(3.72)
$$\mathcal{E}(t,0,\xi) = M^{-1}(t,\xi)N_k^{-1}(t,\xi)\mathcal{E}_k(t,t_{\xi},\xi)\mathcal{Q}_k(t,t_{\xi},\xi)$$

 $N_k(t_{\xi},\xi)M(t_{\xi},\xi)\mathcal{E}(t_{\xi},0,\xi)$

holds true. Regrouping the expressions a bit, we obtain the following theorem. Note that the precise zone constants depend on the number of derivatives of $B_j(t,\xi)$ we have to estimate.

Theorem 3.5. Any solution to the system (3.69) is representable in the form

(3.73)
$$\widehat{U}(t,\xi) = \sum_{j=1}^{d} \mathrm{e}^{\mathrm{i}t\vartheta_j(t,\xi)} B_j(t,\xi) \widehat{U}_0(\xi) + \mathcal{E}_{\mathrm{pd}}(t,\xi) \widehat{U}_0(\xi),$$

where $\mathcal{E}_{pd}(t,\xi)$ is uniformly bounded and supported within the zone $\mathcal{Z}_{pd}(2c_k)$, the phase function is defined in terms of the homogeneous characteristic roots $\lambda_j(t,\xi)$ via

(3.74)
$$\vartheta_j(t,\xi) = \frac{1}{t} \int_0^t \lambda_j(\tau,\xi) d\tau$$

and the amplitudes $B_j(t,\xi)$ are supported within $\mathcal{Z}_{hyp}(c_k)$ and satisfy the symbolic estimates

$$(3.75) \|\mathbf{D}_{\boldsymbol{\xi}}^{\alpha}B_{j}(t,\boldsymbol{\xi})\| \le C_{\alpha}|\boldsymbol{\xi}|$$

for all $|\alpha| \le (k-1)/2$.

We omit an explicit proof as it is just a combination of the above mentioned estimates and representations. We only point out that one uses a variant of $\chi_{hyp}(t,\xi)$ to cut off the zone $\mathcal{Z}_{pd}(c_k)$ and to decompose the representation smoothly into parts.

Second order equations. We consider first homogeneous second order equations of the form

(3.76)
$$\partial_t^2 u - \sum_{i,j=1}^n a_{ij}(t) \partial_{x_i} \partial_{x_j} u = 0, \qquad u(0,\cdot) = u_0, \quad u_t(0,\cdot) = u_1$$

for $a_{ij}(t) \in \mathcal{T}\{0\}$. The assumption of uniform strict hyperbolicity is equivalent to assuming that

(3.77)
$$\sum_{i,j=1}^{n} a_{ij}(t)\xi_i\xi_j \ge C|\xi|^2$$

for some constant C > 0. Let $a(t,\xi)$ denote the (positive) square root of the left-hand side of this inequality. Then $a(t,\xi) \in \mathcal{S}_*\{1,0\}$ and if we denote $\widehat{U} = (a(t,\xi)\widehat{u}, D_t\widehat{u})^\top$, then equation (3.76) is reduced to the first order system

(3.78)
$$D_t \widehat{U} = A(t,\xi) \widehat{U} = \begin{pmatrix} \frac{D_t a(t,\xi)}{a(t,\xi)} & a(t,\xi) \\ a(t,\xi) & 0 \end{pmatrix} \widehat{U}, \qquad \widehat{U}(0,\cdot) = \widehat{U}_0.$$

The above equation and this system were treated by Reissig [39] and in a similar setting Reissig–Yagdjian [35].

Clearly $A(t,\xi) \in \mathcal{S}_{*}\{1,0\}$. Furthermore, a diagonaliser of the homogeneous principal part is given by

(3.79)
$$M = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \qquad M^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},$$

such that $\mathcal{D}(t,\xi) = \text{diag}\left(a(t,\xi), -a(t,\xi)\right)$ and $F^{(0)}(t,\xi) = \frac{D_t a(t,\xi)}{2a(t,\xi)}I$. The matrix $\mathcal{E}_0(t,s,\xi)$ can be calculated explicitly as

(3.80)
$$\mathcal{E}_{0}(t,s,\xi) = \exp\left(\mathrm{i}\int_{s}^{t} \left(\mathcal{D}(\tau,\xi) + F^{(0)}(\tau,\xi)\right)\mathrm{d}\tau\right)$$
$$= \frac{\sqrt{a(t,\xi)}}{\sqrt{a(s,\xi)}}\operatorname{diag}\left(\exp\left(\pm\mathrm{i}\int_{s}^{t} a(\tau,\xi)\mathrm{d}\tau\right)\right).$$

As can be seen clearly from this representation, the exponential of the primitive of $F^{(0)}(t,\xi)$ is a symbol from $S_*\{0,0\}$ and the logarithmic terms appearing in (3.66) do not occur. Furthermore, estimate (3.67) applies for the fundamental solution associated to $(\hat{u}, D_t \hat{u})^{\top}$ and by equivalence of norms also to the one of (3.78). Hence, we obtain a representation of solutions reminiscent to that of Theorem 3.5.

Theorem 3.6. Any solution to (3.76) can be written as

(3.81)
$$\widehat{u}(t,\xi) = \sum_{j=0,1} \left(\sum_{\pm} e^{\pm it\vartheta(t,\xi)} b_{j,\pm,hyp}(t,\xi) + b_{j,pd}(t,\xi) \right) \widehat{u}_j(\xi)$$

with $b_{j,pd}(t,\xi)$ uniformly bounded and supported within $\mathcal{Z}_{pd}(2c_k)$, the phase function given in terms of $a(t,\xi)$ as

(3.82)
$$\vartheta(t,\xi) = \frac{1}{t} \int_0^t a(\tau,\xi) d\tau$$

and amplitudes $b_{j,\pm,hyp}(t,\xi)$ supported within $\mathcal{Z}_{hyp}(c_k)$ and satisfy

(3.83)
$$|\mathbf{D}_{\boldsymbol{\xi}}^{\alpha}b_{j,\pm,\mathrm{hyp}}(t,\boldsymbol{\xi})| \le C_{\alpha}|\boldsymbol{\xi}|^{-|\alpha|-j}$$

for $|\alpha| \le (k-1)/2$.

3.6. **Dispersive estimates.** In order to derive dispersive estimates from the results obtained so far, we have to provide a suitable parameter dependent version of the estimates of Sugimoto. We will follow [44] and [45].

Contact indices for families of surfaces. In order to formulate estimates in a uniform way over a family of surfaces, we need some more notation generalising the treatment of Section 1.3. Let again Σ be any closed smooth hypersurface in \mathbb{R}^n and let $p \in \Sigma$ be any point. We translate and rotate the hypersurface in such a way that it can be parameterised as

$$(3.84) \qquad \qquad \{(y, h(y)) : y \in \Omega\}$$

in a neighbourhood of the point p for a suitable open set $\Omega \subset \mathbb{R}^{n-1}$. We start by considering the convex situation. Hyperplanes H containing the normal $N_p\Sigma$ are determined by directions $\omega \in \mathbb{S}^{n-2}$ in $\Omega \subset \mathbb{R}^{n-1}$ and thus the contact orders $\gamma(\Sigma; p, H)$ correspond to the vanishing order of $\rho \mapsto h(\rho\omega)$ in $\rho = 0$. We need to measure this vanishing in a more quantitative way and define for some given parameter $\gamma \in \mathbb{N}_{\geq 2}$

(3.85)
$$\varkappa(\Sigma,\gamma;p) = \inf_{|\omega|=1} \sum_{j=2}^{\gamma} \left| \partial_{\rho}^{j} h(\rho\omega) \right|.$$

From the definition of the contact index $\gamma(\Sigma)$ in (1.18), it immediately follows that $\varkappa(\Sigma, \gamma(\Sigma); p) > 0$ for all $p \in \Sigma$. Because the function $p \mapsto \varkappa(\Sigma, \gamma; p)$ is continuous and Σ closed by assumption the minimum

(3.86)
$$\varkappa(\Sigma,\gamma) = \min_{p \in \Sigma} \varkappa(\Sigma,\gamma;p)$$

exists and is also strictly positive for $\gamma = \gamma(\Sigma)$.

If we find a uniform lower bound on $\varkappa(\Sigma_{\lambda}, \gamma)$ for a family of convex surfaces Σ_{λ} depending on parameters $\lambda \in \Upsilon$ for some number $\gamma \geq 2$ then we say that this family satisfies a uniformity condition. We further define the uniform contact index

(3.87)
$$\gamma_{\text{unif}}(\{\Sigma_{\lambda} : \lambda \in \Upsilon\}) = \min\{\gamma \in \mathbb{N}_{\geq 2} : \inf_{\lambda \in \Upsilon} \varkappa(\Sigma_{\lambda}, \gamma) > 0\}.$$

For real parameters $t \in \mathbb{R}_+$ (which can be thought of as time for now) it makes sense to consider a weaker notion of asymptotic contact index and we define

(3.88)
$$\gamma_{\mathrm{as}}(\{\Sigma_t : t \ge t_0\}) = \min\{\gamma \in \mathbb{N}_{\ge 2} : \liminf_{t \to \infty} \varkappa(\Sigma_t, \gamma) > 0\}.$$

In the particular case that Σ_{λ} is a family of spheres of different radii r_{λ} , the constant $\varkappa(\Sigma_{\lambda}, 2) \approx r_{\lambda}^{-1}$ is a measure of the curvature of the sphere and we have $\gamma_{\text{unif}}(\{\Sigma_{\lambda}\}) = 2$ if and only if r_{λ} stays bounded. If on the other hand r_{λ} is unbounded, the uniformity condition is not satisfied and no uniform contact order exists.

For non-convex surfaces we need to define a similar uniform non-convex contact index. We only explain the differences to the above formulae. First, we replace (3.85) by

(3.89)
$$\varkappa_0(\Sigma,\gamma;p) = \sup_{|\omega|=1} \sum_{j=2}^{\gamma} \left| \partial_{\rho}^j h(\rho\omega) \right|.$$

and then set $\varkappa_0(\Sigma, \gamma) = \min_{p \in \Sigma} \varkappa_0(\Sigma, \gamma; p)$. Again $\varkappa_0(\Sigma, \gamma_0(\Sigma)) > 0$ and we use the analogues to (3.87) and (3.88) to define uniform and asymptotic contact orders.

If a family Σ_t satisfies the uniformity condition, then the constants in the estimates of Lemmata 1.3 and 1.5 are uniform over the family of surfaces.

Estimates for t-dependent Fourier integrals. Now we are in a position to discuss Fourier integrals appearing in the representations (3.73) and (3.81), or, more generally, representations obtained by the construction of Section 3.4. We omit the possibly occurring logarithmic terms here; they can be included easily with a slight change in the decay rates.

We consider a *t*-dependent family of operators

(3.90)
$$T_t: u_0 \mapsto \int e^{i(x \cdot \xi + t\vartheta(t,\xi))} a(t,\xi) \widehat{u}_0(\xi) d\xi$$

for a real-valued homogeneous phase function $\vartheta(t,\xi) \in C^{\infty}(\mathbb{R}_+ \times (\mathbb{R}^n \setminus \{0\}))$ satisfying $\vartheta(t,\rho\xi) = \rho \vartheta(t,\xi)$ for $\rho > 0$ and

(3.91)
$$C^{-1}|\xi| \le \vartheta(t,\xi) \le C|\xi|, \qquad |\mathsf{D}^{\alpha}_{\xi}\vartheta(t,\xi)| \le C_{\alpha}|\xi|^{1-|\alpha|}$$

for some constants C > 0, C_{α} and all $t \ge t_0$ and an amplitude $a(t,\xi)$ supported within $\mathcal{Z}_{hyp}(c)$ and satisfying the symbol estimates

$$(3.92) \qquad \qquad |\mathbf{D}^{\alpha}_{\xi}a(t,\xi)| \le C_{\alpha}|\xi|^{-|\alpha|}$$

for a certain (finite) number of derivatives. Associated to the phase function we consider the family of slowness or Fresnel surfaces

(3.93)
$$\Sigma_t = \{\xi \in \mathbb{R}^n : \vartheta(t,\xi) = 1\}.$$

Then the following theorem can be obtained by the method of [44].

Theorem 3.7. Assume the family Σ_t is convex for $t \ge t_0$, satisfies the uniformity condition and that $\gamma = \gamma_{as}(\{\Sigma_t\})$ is its asymptotic contact index. Then the estimate

$$(3.94) ||T_t||_{B^r_{1,2}\to L^\infty} \le Ct^{-\frac{n-1}{\gamma}}$$

holds true for $r = n - \frac{n-1}{\gamma}$.

We remark that only finitely many derivatives of the phase (meaning also finite smoothness of Σ_t) and of the symbol $a(t, \xi)$ are needed to prove this statement.

Proof. For completeness we include the proof. Using the definition of the Besov spaces from (1.23) together with Hölder inequality we see that it suffices to prove

(3.95)
$$||T_t \circ \phi(2^{-j}|\mathbf{D}|)u_0||_{L^{\infty}} \lesssim 2^{j(n-\frac{n-1}{\gamma})} t^{-\frac{n-1}{\gamma}} ||u_0||_{L^1},$$

i.e., corresponding bounds for the operator with amplitude $a(t,\xi)\phi(2^{-j}|\xi|)$ taking into account the desired Besov regularity. The uniform bound (3.91) on the phase allows us to find a function $\psi \in C_0^{\infty}(\mathbb{R}_+)$ satisfying $\phi(|\xi|)\psi(\vartheta(t,\xi)) = \phi(|\xi|)$. We denote by

(3.96)
$$I_j(t,x) = \int e^{i(x\cdot\xi + t\vartheta(t,\xi))} a(t,\xi)\psi(2^{-j}\vartheta(t,\xi))d\xi$$

the (smooth!) convolution kernel of an operator related to (3.95) and it is sufficient to prove the uniform bound

(3.97)
$$\sup_{x \in \mathbb{R}^n} |I_j(t,x)| \lesssim 2^{j(n-\frac{n-1}{\gamma})} t^{-\frac{n-1}{\gamma}}, \qquad j \ge 1$$

in combination with a related low-frequency estimate. The bound in $I_j(t, x)$ can be achieved by the stationary phase method in combination with the multi-dimensional van der Corput lemma due to [42].

Stationary points of the phase are solutions to $x + t\nabla_{\xi}\vartheta(t,\xi) = 0$. We use a cut-off function $\chi \in C_0^{\infty}(\mathbb{R}^n)$ with $\chi(x) = 1$ for small |x| and decompose the integral (3.96) into two terms

(3.98)
$$I_j^{(1)}(t,x) = \int e^{i(x\cdot\xi + t\vartheta(t,\xi))} \chi(x/t + \nabla_{\xi}\vartheta(t,\xi))a(t,\xi)\psi(2^{-j}\vartheta(t,\xi))d\xi,$$

(3.99)
$$I_j^{(2)}(t,x) = \int e^{i(x\cdot\xi + t\vartheta(t,\xi))} (1 - \chi(x/t + \nabla_\xi \vartheta(t,\xi))) a(t,\xi) \psi(2^{-j}\vartheta(t,\xi)) d\xi.$$

Based on $|x+t\nabla_{\xi}\vartheta(t,\xi)| \gtrsim t$, the second integral can be treated by integration by parts giving

(3.100)
$$|I_j^{(2)}(t,\xi)| \le C_N t^{-N} 2^{j(n-N)}$$

uniform in j and t and for any number N^2 . For the first integral we use the structure of the level sets Σ_t and restrict consideration to large values of t. We localise the integral into narrow cones, by translation and rotation we can assume that ξ is within a sufficiently small conical neighbourhood of $(0, \ldots, 0, 1)^{\top}$ and Σ_t can parameterised as $\{(y, h_t(y)) : y \in U\}$

²Of course, N depends on the number of derivatives we can estimate by (3.92). The optimal number turns out to be $\lceil (n-1)/\gamma \rceil$.

with h vanishing to at least second order in 0. The function $\nabla h_t : U \to \nabla h_t(U) \subset \mathbb{R}^{n-1}$ is a homeomorphism and h_t is concave as Σ_t was assumed to be convex. Furthermore,

$$(3.101) |\mathsf{D}_y^{\alpha} h_t(y)| \le C_{\alpha}, t \ge t_0$$

uniform on U if U is small enough. Indeed, as $\vartheta(t, y, h_t(y)) = 1$ we obtain by differentiation $\nabla_y \vartheta + \partial_{\xi_n} \vartheta \nabla h_t = 0$ and by Euler's identity $\partial_{\xi_n} \vartheta(t, e_n) = \vartheta(t, e_n)$. Therefore, the bound $|\nabla_y \vartheta(t, y, h)| \leq 1$ implies the bound on $\nabla h_t(y)$ uniform in t. Higher order derivatives follow in analogy.

Associated to Σ_t we have the Gauss map

(3.102)
$$G: \Sigma_t \ni \xi \mapsto \frac{\nabla_{\xi} \vartheta(t,\xi)}{|\nabla_{\xi} \vartheta(t,\xi)|} \in \mathbb{S}^{n-1}$$

and for given $x = (x', x_n)$ near $-t\nabla_{\xi}\vartheta(t, e_n)$ we define $z_t \in U$ by $G(z_t, h_t(z_t)) = -x/|x|$. Making the change of variables $\xi = (ry, rh_t(y))$ with $\vartheta(t, \xi) = r \approx 2^j$, we get that the localised part of $I_i^{(1)}(t, x)$ equals

$$(3.103) \quad \int_0^\infty \int_U e^{ir(x'\cdot y+x_nh_t(y)+t)} a(t,ry,rh_t(y))\psi(2^{-j}r)\tilde{\chi}(t,x,y)\kappa(t,r,y)dydr$$
$$= 2^{jn} \int_0^\infty \int_U e^{i2^j r(x'\cdot y+x_nh_t(y)+t)} \tilde{a}_j(t,r,y)\tilde{\chi}(t,x,y)dydr$$

with $\tilde{\chi}(t, x, y) = \chi(x/t + \nabla_{\xi} \vartheta(t, y, h_t(y)))$, $\kappa(t, r, y) = |\partial \xi/\partial(r, y)|$ the Jacobi determinant of the t-dependent change of variables and

(3.104)
$$\tilde{a}_j(t,r,y) = \psi(r)a(t,2^j r y,2^j r h_t(y))\kappa(2^j r,y)$$

satisfying uniform bounds of the form

$$(3.105) \qquad \qquad |\mathbf{D}_{y}^{\alpha}\tilde{a}(t,r,y)| \le C_{\alpha}.$$

Here we used the symbol estimates of a in combination with (3.101) and also that the latter imply uniform bounds on y-derivatives of the Jacobian. Note, that r-derivatives of the Jacobian have symbolic behaviour by homogeneity. The stationary phase estimate [42, Theorem 2.1] is applied to the integral over U, which gives

(3.106)
$$\left| \int_{U} \mathrm{e}^{\mathrm{i}2^{j}r(x'\cdot y + x_{n}h_{t}(y) + t)} \tilde{a}_{j}(t, r, y) \tilde{\chi}(t, x, y) \mathrm{d}y \right| \leq C |2^{j}x_{n}|^{-\frac{n-1}{\gamma}}$$

with a constant C uniform in the remaining variables. Due to the localisation we have that $|x| \approx |x_n| \approx t$ and therefore we obtain the desired bound (3.95).

The remaining low-frequency estimate follows in an analogous manner, omitting the dyadic decomposition and using the relations $t|\xi| \gtrsim 1$ combined with the symbolic estimates and the idea that uniformly bounded Fourier multipliers supported within \mathcal{Z}_{pd} always lead to t^{-n} decay rates (which are much faster).

If the convexity assumption is dropped, decay rates get much worse but on the other hand we also need less regularity in the estimate. We only formulate the theorem.

Theorem 3.8. Assume the family Σ_t satisfies the uniformity condition and that $\gamma_0 = \gamma_{0,as}(\{\Sigma_t\})$ is its non-convex asymptotic contact index. Then the estimate

$$(3.107) ||T_t||_{B_{1,2}^r \to L^\infty} \le Ct^{-\frac{1}{\gamma_0}}$$

holds true for $r = n - \frac{1}{\gamma}$.

Extensions to fully variable setting. We conclude Section 3 with some more general estimates. They apply to global Fourier integral operators of a very particular structure at infinity and are essentially based on the observation that the variables t and x appear parametric in dispersive estimates. They also fit to the earlier observation that $t\xi$ is a natural co-variable when describing solutions to free wave equations and equations with weak dissipation.

We consider the operator

(3.108)
$$T_t: u_0 \mapsto \int e^{i(x \cdot \xi + t\vartheta(t, x, \xi))} a(t, x, \xi) \widehat{u}_0(\xi) d\xi$$

for a homogeneous real phase function $\vartheta(t, x, \xi) \in C^{\infty}(\mathbb{R}_+ \times \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}))$ with $\vartheta(t, x, \rho\xi) = \rho \vartheta(t, x, \xi)$ for $\rho > 0$ and

(3.109)
$$C^{-1}|\xi| \le \vartheta(t, x, \xi) \le C|\xi|, \qquad |\mathbf{D}^{\alpha}_{\xi}\vartheta(t, x, \xi)| \le |\xi|^{1-|\alpha|}$$

and an amplitude supported in $\{(t, x, \xi) : (1+t)|\xi| \ge c\}$ for some constant c and subject to

$$(3.110) \qquad |\mathsf{D}_{\xi}^{\alpha}a(t,x,\xi)| \le C_{\alpha}|\xi|^{-|\alpha|}.$$

Major difference to the previous considerations is that we now have a family of surfaces parameterised by t and x

(3.111)
$$\Sigma_{t,x} = \{\xi \in \mathbb{R}^n : \vartheta(t, x, \xi) = 1\}$$

and we have to use a contact index defined asymptotic with respect to t and uniform in x. Let therefore $\gamma = \gamma_{as,unif}(\{\Sigma_{t,x}\})$ with

(3.112)
$$\gamma_{\text{as,unif}}(\{\Sigma_{t,x}\}) = \min\{\gamma \in \mathbb{N}_{\geq 2} : \liminf_{t \to \infty} \inf_{x \in \mathbb{R}^n} \varkappa(\Sigma_{t,x}, \gamma) > 0\}$$

and we assume that all the surfaces are convex. Then the proof of Theorem 3.7 carries over and gives

(3.113)
$$||T_t u_0||_{L^{\infty}} \lesssim t^{-\frac{n-1}{\gamma}} ||u_0||_{B_{1,2}^r}$$

for $r \ge n - \frac{n-1}{\gamma}$. A similar replacement works for the non-convex situation with the weaker decay rate t^{-1/γ_0} for the non-convex asymptotic uniform contact index defined in analogy to (3.112).

4. Effective lower order perturbations

If lower order terms are too large to be controlled, it becomes important to investigate the behaviour of solutions for bounded frequencies. We will restrict ourselves to situations where an asymptotic construction for $\xi \to 0$ becomes important and provide some essential estimates for this.

4.1. The diffusion phenomenon. The classical diffusion phenomenon gives an asymptotic equivalence of damped wave equations and the heat equation. It was first observed for porous media type equations and its formulation for the damped wave equation is due to Nishihara [29], [17] and independently Han–Milani [27] in various formulations. The estimates of Nishihara were extended to arbitrary dimensions by Narazaki [28] and provide $L^p - L^q$ type estimates for differences of solutions to damped wave and heat equation.

We will follow a different line of thought here and provide estimates in the flavour of Radu– Todorova–Yordanov [32]. They are only energy type estimates and therefore easier to obtain. On the other hand, they are flexible enough to be formulated for abstract Cauchy problems in Hilbert spaces based on the continuous spectral calculus for self-adjoint operators.

Let in the following u(t, x) be the solution to the Cauchy problem for the damped wave equation

(4.1)
$$u_{tt} - \Delta u + u_t = 0, \quad u(0, \cdot) = u_0, \quad u_t(0, \cdot) = u_1$$

and similarly v(t, x) be the solution to the Cauchy problem for the heat equation

(4.2)
$$v_t = \Delta v, \quad v(0, \cdot) = v_0 = u_0 + u_1$$

with related data. Then their solutions are related due to the following theorem. Note that in general

(4.3)
$$\|u(t,\cdot)\|_{L^2} \le C(\|u_0\|_{L^2} + \|u_1\|_{H^{-1}}), \qquad \|v(t,\cdot)\| \le C\|v_0\|_{L^2}$$

are the best possible (operator-norm) estimates for solutions of both problems. This can be seen similar to the discussion in Section 1.2 using explicit representations of Fourier multipliers. However, forming the difference of the solutions improves estimates by one order. We denote by $e^{t\Delta}$ the heat semigroup.

Theorem 4.1. Let u(t,x) and v(t,x) be solutions to (4.1) and (4.2), respectively. Then

(1) the difference of the solutions satisfies

(4.4)
$$\|u(t,\cdot) - v(t,\cdot)\|_{L^2} \lesssim t^{-1} \left(\|e^{t\Delta/2}u_0\|_{L^2} + \|e^{t\Delta/2}u_1\|_{L^2} \right) + e^{-t/16} \left(\|u_0\|_{L^2} + \|u_1\|_{H^{-1}} \right)$$

for all $t \ge 1$; (2) moreover, for all $k \in \mathbb{N}$ and $\alpha \in \mathbb{N}_0^n$ the higher order estimate

$$(4.5) \quad \|\mathbf{D}_{t}^{k}\mathbf{D}_{x}^{\alpha}\left(u(t,\cdot)-v(t,\cdot)\right)\|_{L^{2}} \lesssim t^{-1-k-|\alpha|/2} \left(\|\mathbf{e}^{t\Delta/2}u_{0}\|_{L^{2}}+\|\mathbf{e}^{t\Delta/2}u_{1}\|_{L^{2}}\right) \\ + \mathbf{e}^{-t/16} \left(\|u_{0}\|_{H^{k+|\alpha|}}+\|u_{1}\|_{H^{k+|\alpha|-1}}\right)$$

holds true for $t \geq 1$.

Proof. As the theorem extends the results of [32] we include a sketch of the proof. Fourier transform relates the Cauchy problems to initial value problems for ordinary differential equations which can be solved explicitly. The solution of the parabolic problem $\hat{v}(t,\xi)$ is given by

(4.6)
$$\widehat{v}(t,\xi) = e^{-t|\xi|^2} \big(\widehat{u}_0(\xi) + \widehat{u}_1(\xi) \big),$$

while the solution to the damped wave equation can be written as

(4.7)
$$\widehat{u}(t,\xi) = e^{-t/2} \Big(\cos(t\sqrt{|\xi|^2 - 1/4}) \widehat{u}_0 + \frac{\sin(t\sqrt{|\xi|^2 - 1/4})}{\sqrt{|\xi|^2 - 1/4}} \widehat{u}_1(\xi) \Big)$$

for $|\xi| > \frac{1}{2}$ and similarly

(4.8)
$$\widehat{u}(t,\xi) = e^{-t/2} \Big(\cosh(t\sqrt{1/4 - |\xi|^2}) \widehat{u}_0 + \frac{\sinh(t\sqrt{1/4 - |\xi|^2})}{\sqrt{1/4 - |\xi|^2}} \widehat{u}_1(\xi) \Big)$$

for $|\xi| < \frac{1}{2}$. As we are concerned with polynomial estimates, we can neglect all exponentially decaying terms (and collect them in the $e^{-t/16}$ estimate later on). This happens for $\hat{v}(t,\xi)$ if

 $|\xi| \ge 1/4$, for $\hat{u}(t,\xi)$ for $|\xi| > 1/2$ and for the exponentially decaying terms defining cosh and sinh. What we are left with are the terms

(4.9)
$$v(t,x): e^{-t|\xi|^2} (\widehat{u}_0(\xi) + \widehat{u}_1(\xi))$$

(4.10)
$$u(t,x): e^{-t/2+t\sqrt{1/4-|\xi|^2}} (C_0(\xi)u_0(\xi) + C_1(\xi)u_1(\xi))$$

locally near $\xi = 0$ and with radially symmetric smooth functions $C_0(\xi)$ and $C_1(\xi)$ satisfying $C_0(0) = C_1(0) = 1$. Our first observation concerns the exponent in (4.10). It satisfies

(4.11)
$$\sqrt{1/4 - |\xi|^2} = 1/2 - |\xi|^2 - \sum_{k=2}^{\infty} b_k |\xi|^{2k}, \qquad b_k > 0$$

such that the main terms of the difference $\hat{u}(t,\xi) - \hat{v}(t,\xi)$ are a sum of terms of the form

(4.12)
$$e^{-t|\xi|^2} \left(e^{-tb_2|\xi|^4 + t\mathcal{O}(|\xi|^6)} - 1 \right) \left(\widehat{u}_0(\xi) + \widehat{u}_1(\xi) \right),$$

(4.13)
$$e^{-t|\xi|^2 + t\mathcal{O}(|\xi|^4)} \left((C_0(\xi) - 1)\widehat{u}_0(\xi) + (C_1(\xi) - 1)\widehat{u}_1(\xi) \right).$$

The first statement is proven, if we can bound these two terms by the ones on the right hand side; i.e., we are looking for uniform bounds for the multipliers

(4.14)
$$t e^{-t|\xi|^2/2} \left(e^{-b_2 t|\xi|^4 + t\mathcal{O}(|\xi|^6)} - 1 \right)$$

and

(4.15)
$$t e^{-t|\xi|^2/2 + t\mathcal{O}(|\xi|^4)} (C_j(\xi) - 1), \qquad j = 0, 1.$$

Using the elementary estimates $|e^{-s} - 1| \leq s$ and $se^{-s} \leq 1$ for $s \geq 0$ we conclude that the first multiplier is bounded by $t^2 |\xi|^4 \exp(-t|\xi|^2/2) \leq 1$, while the second multiplier can be estimated by $|\xi|^2 te^{-t|\xi|^2} \leq 1$ and the desired statement follows.

For the second statement we observe two things. First, when estimating x-derivatives this just gives additional factors of ξ for small frequencies and the above estimates improve by corresponding $t^{-1/2}$ factors for each derivative. Similarly, when considering t-derivatives the representations get one additional factor of $|\xi|^2$ for small ξ and each t-derivative improves the estimate by a factor of t^{-1} .

4.2. **Diagonalisation for small frequencies.** Versions of the diffusion phenomenon can also be obtained in a variable coefficient setting. We will restrict our consideration here mainly to *t*-dependent hyperbolic systems, for the sake of brevity even differential hyperbolic systems of the form

(4.16)
$$D_t U = \sum_{k=1}^n A_k(t) D_{x_k} U + B(t) U, \qquad U(t, \cdot) = U_0$$

Main difference to the considerations in Section 3 is that we assume now that B(t) is not of lower order in the \mathcal{T} -hierarchy, i.e., we assume that

We will make three main assumptions here;

(B1): the matrices $A_k(t)$ are self-adjoint and $-iB(t) \ge 0$;

(B2): the matrix B(t) has d (imaginary) eigenvalues $\delta_j(t)$, $j = 1, \ldots, d$ satisfying

(4.18)
$$\liminf_{t \to \infty} |\delta_i(t) - \delta_j(t)| > 0, \qquad i \neq j;$$

FIGURE 2. Zones for the small-frequency diagonalisation

(B3): the fundamental matrix $\mathcal{E}(t, 0, \xi)$ to

(4.19)
$$A(t,\xi) = \sum_{k=1}^{n} A_k(t)\xi_k + B(t)\xi_k$$

satisfies uniformly on any set $|\xi| \ge c_0 > 0$

(4.20)
$$\exp\left(-\mathrm{i}\int_0^t \delta_1(\tau)\mathrm{d}\tau\right)\mathcal{E}(t,0,\xi) \to 0,$$

where $\delta_1(t)$ is the eigenvalue of B(t) with smallest imaginary part.³

Assumption (B1) guarantees that the system is symmetric hyperbolic and dissipative. Therefore, the energy estimate

$$(4.21) ||U(t,\cdot)||_{L^2} \le ||U_0||_{L^2}$$

is valid. Assumption (B3) implies that the high frequency parts of solutions are decaying faster than low frequency parts. Our aim is to understand the large-time behaviour of small frequencies here.

For small ξ we use a diagonalisation procedure similar to the one from Section 3.3. It works within the elliptic zone $\mathcal{Z}_{ell}(c) = \{(t,\xi) : |\xi| \le c, t \ge c^{-1}\}$ collecting small frequencies for large times. All considerations will be done for $t \ge t_0$ with t_0 sufficiently large. This ensures uniform diagonalisability of B(t).

³This roughly means that the eigenspaces of A(t) and B(t) do not coincide and therefore the faster decaying modes influence the large-time asymptotics. We will not make this precise here as it is not necessary for our argument.

Initial step. We denote by M(t) a diagonaliser of B(t) satisfying the uniform bounds $M(t), M^{-1}(t) \in \mathcal{T}\{0\}$. Denoting $V^{(0)}(t,\xi) = M^{-1}(t)\hat{U}(t,\xi)$, we obtain the equivalent system

(4.22)
$$D_t V^{(0)} = \left(\mathcal{D}(t) + \sum_{k=1}^n M^{-1}(t) A_k(t) M(t) \xi_k + (D_t M^{-1}(t)) M(t) \right) V^{(0)}$$

with $\mathcal{D}(t) = \text{diag}(\delta_1(t), \dots, \delta_d(t))$. We denote the two non-diagonal terms by

(4.23)
$$R_1(t,\xi) = \sum_{k=1}^n M^{-1}(t)A_k(t)M(t)\xi_k + (D_t M^{-1}(t))M(t),$$

remarking in particular that the first term is linear in ξ with coefficients in $\mathcal{T}\{0\}$, while the second one is independent of ξ , but in the better class $\mathcal{T}\{1\}$. Both are small compared to the difference $\delta_i(t) - \delta_j(t)$ provided $|\xi|$ is small and t is large.

In the sequel we will use the notation

(4.24)
$$\mathcal{P}\{m\} = \left\{ p(t,\xi) = \sum_{|\alpha| \le m} p_{\alpha}(t)\xi^{\alpha} : p_{\alpha}(t) \in \mathcal{T}\{m - |\alpha|\} \right\}$$

for polynomials with coefficients in the \mathcal{T} -classes. By construction, $R_1(t,\xi) \in \mathcal{P}\{1\}$. The diagonalisation hierarchy. We start with a system

(4.25)
$$D_t V^{(0)} = \left(\mathcal{D}(t) + R_1(t,\xi) \right) V^{(0)}$$

with $P_1(t,\xi) \in \mathcal{P}\{1\}$. Before setting up the complete hierarchy, we will discuss its first step. Similar to Section 3.3 we construct a matrix $N^{(1)}(t,\xi) \in \mathcal{P}\{1\}$ such that

(4.26)
$$(D_t - \mathcal{D}(t) - R_1(t,\xi))(I + N^{(1)}(t,\xi)) - (I + N^{(1)}(t,\xi))(D_t - \mathcal{D}(t,\xi) - F_1(t,\xi)) \in \mathcal{P}\{2\}$$

holds true for some diagonal matrix $F_1(t,\xi) \in \mathcal{P}\{1\}$. Collecting all terms not belonging to the right class yields again conditions for the matrices $N^{(1)}(t,\xi)$ and $F_1(t,\xi)$. Indeed,

(4.27)
$$[\mathcal{D}(t), N^{(1)}(t,\xi)] = -R_1(t,\xi) + F_1(t,\xi)$$

must be satisfied and therefore

(4.28)
$$F_1(t,\xi) = \operatorname{diag} R_1(t,\xi), \qquad \left(N^{(1)}(t,\xi)\right)_{i,j} = \frac{\left(R_1(t,\xi)\right)_{i,j}}{\delta_i(t) - \delta_j(t)}$$

while we may again choose diagonal entries $(N^{(1)}(t,\xi))_{i,i} = 0$. As desired, this implies $N^{(1)}(t,\xi), F_1(t,\xi) \in \mathcal{P}\{1\}.$

Recursively, we will construct matrices $N^{(k)}(t,\xi) \in \mathcal{P}\{k\}$ and $F^{(k)}(t,\xi) \in \mathcal{P}\{k\}$ diagonal, such that for

(4.29)
$$N_K(t,\xi) = \mathbf{I} + \sum_{k=1}^K N^{(k)}(t,\xi), \qquad F_K(t,\xi) = \sum_{k=1}^K F^{(k)}(t,\xi),$$

the estimate

(4.30)
$$B_K(t,\xi) = (D_t - \mathcal{D}(t) - R_1(t,\xi)) N_K(t,\xi) - N_K(t,\xi) (D_t - \mathcal{D}(t) - F_K(t,\xi)) \in \mathcal{P}\{K+1\}$$

is valid.

We just did this for K = 1, it remains to do the recursion $k \mapsto k + 1$. Assume $B_k(t,\xi) \in \mathcal{P}\{k+1\}$. The requirement to be met is that

(4.31)
$$B_{k+1}(t,\xi) - B_k(t,\xi) = -[\mathcal{D}(t), N^{(k+1)}(t,\xi)] + F^{(k+1)}(t,\xi) \mod \mathcal{P}\{k+2\}$$

for diagonal $F^{(k+1)}(t,\xi)$, which yields $F^{(k+1)}(t,\xi) = -\operatorname{diag} B_k(t,\xi)$ together with

(4.32)
$$\left(N^{(k+1)}(t,\xi) \right)_{i,j} = -\frac{\left(B_k(t,\xi) \right)_{i,j}}{\delta_i(t) - \delta_j(t)}.$$

Again, the diagonal terms can be set to zero, $(N^{(k+1)}(t,\xi))_{i,i} = 0$. It is evident that the construction implies $F^{(k+1)}(t,\xi), N^{(k+1)}(t,\xi) \in \mathcal{P}\{k+1\}$ together with $B_{k+1}(t,\xi) \in \mathcal{P}\{k+2\}$.

The matrices $N_k(t,\xi) \in \mathcal{P}\{0\}$ are invertible with inverse $N_k^{-1}(t,\xi) \in \mathcal{P}\{0\}$ if we restrict our consideration to a sufficiently small elliptic zone $\mathcal{Z}_{\text{ell}}(c_k)$. The result of the above consideration can be summarised in the following lemma.

Lemma 4.2. Let $k \in \mathbb{N}$, $k \ge 1$. Then there exists a constant c_k and matrices $N_k(t,\xi) \in \mathcal{P}\{0\}$, diagonal $F_k(t,\xi) \in \mathcal{P}\{1\}$ and $R_{k+1}(t,\xi) \in \mathcal{P}\{k+1\}$ such that

(4.33)
$$(D_t - \mathcal{D}(t) - R_1(t,\xi)) N_k(t,\xi) = N_k(t,\xi) (D_t - \mathcal{D}(t) - F_k(t,\xi) - R_{k+1}(t,\xi))$$

holds true within $\mathcal{Z}_{ell}(c_k)$. The matrix $N_k(t,\xi)$ is uniformly invertible within this zone.

Resulting estimates. The low-frequency diagonalisation approach yields a complete description of solutions in a sufficiently small elliptic zone $\mathcal{Z}_{\text{ell}}(c)$, $c \ll 1$. It is only useful in situations where we already know that non-zero frequencies lead to stronger decay, but then it allows to prove a variant of the diffusion phenomenon given in Theorem 4.1; subtracting the (explicit) main contributions arising for small frequencies improves estimates.

5. Examples and counter-examples

Both, in Section 3 and Section 4 we made symbol like assumptions on coefficients, e.g., we considered hyperbolic systems

(5.1)
$$\mathbf{D}_t U = \sum_{k=1}^n A_k(t) \mathbf{D}_{x_k} U$$

for coefficient matrices $A_k(t) \in \mathcal{T}\{0\}$, meaning that derivatives of the coefficients are controlled by

(5.2)
$$\|\mathbf{D}_t^{\ell} A_k(t)\| \le C_{\ell} \left(\frac{1}{1+t}\right)^{\ell}.$$

We will use this section to show that assumptions controlling the amount of oscillations in the time-behaviour are in fact necessary in order to control the large-time behaviour of the energy. Yagdjian pointed out in [60] the deteriorating effect time-periodic propagation speeds might have on energy estimates and more generally on the global existence of small data solutions for nonlinear wave models. The key idea behind these is based on Floquet's theory for periodic ordinary differential equations and in particular Borg's theorem.

We will recall these first in connection with a very simple model and then give an idea how these can be used to prove sharpness of estimates and sharpness of assumptions on coefficients for wave models.

5.1. Parametric resonance phenomena. We will restrict ourselves to the simple model

(5.3)
$$u_{tt} - a^2(t)\Delta u = 0, \quad u(0, \cdot) = u_0, \quad u_t(0, \cdot) = u_1$$

of a wave equation with variable propagation speed. Basic assumption will be that $a^2(t)$ is positive, smooth, periodic

(5.4)
$$a(t+1) = a(t)$$

and non-constant. Using a partial Fourier transform with respect to the x-variable, this is equivalent to Hill's equation

(5.5)
$$\widehat{u}_{tt} + |\xi|^2 a^2(t) \widehat{u} = 0$$

with spectral parameter $|\xi|^2$ or equivalently the first order system

(5.6)
$$D_t \widehat{U} = \begin{pmatrix} 0 & |\xi| \\ a^2(t)|\xi| & 0 \end{pmatrix} \widehat{U}$$

for $\widehat{U} = (|\xi|\widehat{u}, D_t u)^{\top}$. Its fundamental matrix is again denoted as $\mathcal{E}(t, s, \xi)$. Due to periodicity, it is of interest to consider the monodromy matrix $\mathcal{M}(\xi) = \mathcal{E}(1, 0, \xi)$. Since det $\mathcal{M}(\xi) = 1$, it has either two non-zero eigenvalues of the form $\exp(\pm \kappa(\xi))$ or is a Jordan matrix to the eigenvalue 1. The number $\kappa(\xi)$ is called the Floquet exponent of (5.5). Its importance stems from the following lemma. It can be found in a similar form in [53].

Lemma 5.1 (Floquet-Lemma). Assume that $\mathcal{M}(\xi)$ is diagonalisable with Floquet exponent $\kappa(\xi)$. Then (5.5) has a fundamental system of solutions of the form

(5.7)
$$e^{\pm t\kappa(\xi)} f_{\pm}(t,\xi)$$

for non-vanishing 1-periodic functions $f_{\pm}(t,\xi)$ depending analytically on ξ .

Proof. We will give a proof based on the system (5.6). The same method applies to arbitrary periodic systems of differential equations. By assumption we find an invertible matrix $N(\xi)$ such that

(5.8)
$$\mathcal{M}(\xi)N(\xi) = N(\xi)\operatorname{diag}(\mathrm{e}^{\kappa(\xi)}, -\mathrm{e}^{\kappa(\xi)}) = N(\xi)\exp\left(K(\xi)\right)$$

holds true with $K(\xi) = \text{diag}(\kappa(\xi), -\kappa(\xi))$. We use the fundamental matrix to define the function

(5.9)
$$F(t,\xi) = \mathcal{E}(t,0,\xi)N(\xi)\exp\left(-tK(\xi)\right)N^{-1}(\xi)$$

Then a simple calculation shows that the periodicity implies $\mathcal{E}(t+1,1,\xi) = \mathcal{E}(t,0,\xi)$ and therefore we obtain

(5.10)
$$F(t+1,\xi) = \mathcal{E}(t,0,\xi)\mathcal{M}(\xi)N(\xi)e^{-K(\xi)}e^{-tK(\xi)}N^{-1}(\xi) = F(t,\xi)$$

based on (5.8). Furthermore, by construction we see that any solution of the system (5.6) is of the form

(5.11)
$$\widehat{U}(t,\xi) = \mathcal{E}(t,0,\xi)\widehat{U}_0 = F(t,\xi)\exp\left(-tK(\xi)\right)\widehat{U}_0.$$

The statement of Lemma 5.1 follows by looking at individual entries of this matrix in combination with the definition of \hat{U} .

ASYMPTOTIC PROPERTIES

Since a(t) was assumed to be real, the above representation implies a symmetry for the Floquet exponents. Either, they are both imaginary or they are both real. If they are imaginary, all solutions to (5.5) remain bounded, while for real Floquet exponents an exponential dichotomy appears. Looking at the original equation (5.3) this means that for appropriately chosen initial data, solutions will have an exponentially increasing energy.

For us the following statement is of interest. In the present form it is due to Colombini– Spagnolo [5], for more detailed results on Hill's equation see Magnus–Winkler [24].

Lemma 5.2 (Borg's theorem). Assume the coefficient a(t) is locally integrable, 1-periodic and non-constant. Then there exists an open interval $\mathcal{J} \subset \mathbb{R}_+$, such that for all $|\xi| \in \mathcal{J}$ the Floquet exponent satisfies $\kappa(\xi) > 0$.

In combination, the above lemmata imply that we can find initial data such that the solution is exponentially increasing. Note, that no assumption on the size of the coefficient was made, we only used that a(t) is not constant.

Corollary 5.3. There exist initial data $u_0, u_1 \in \mathscr{S}(\mathbb{R}^n)$ such that the solution u(t, x) to (5.3) satisfies

(5.12)
$$\liminf_{t \to \infty} \frac{\log \mathbb{E}(u; t)}{t} > 0.$$

5.2. Construction of coefficients and initial data. We stay with the model (5.3),

(5.13)
$$u_{tt} - a^2(t)\Delta u = 0, \quad u(0, \cdot) = u_0, \quad u_t(0, \cdot) = u_1,$$

but drop the periodicity assumption. The above sketched instability mechanism will be used to construct coefficient functions and data for prescribed energetic behaviour.

To be precise, let $\tau_k \nearrow \infty$, δ_k , η_k and n_k be sequences such that

(5.14)
$$\tau_{k+1} > \tau_k + \delta_k, \qquad \eta_k \le 1, \qquad n_k \in \mathbb{N}_{>0}$$

The sequences τ_k and δ_k define disjoint intervals $\mathcal{I}_k = [\tau_k, \tau_k + \delta_k]$. We will let our coefficient oscillate at least n_k times on the interval \mathcal{I}_k . Let therefore $\phi \in C_0^{\infty}(\mathbb{R})$ be supported in the interval (0, 1) and non-vanishing with $|\phi(t)| < 1$ and denote by b(t) its periodisation, $b(t) = \phi(t - |t|)$. Then we consider

(5.15)
$$a(t) = \begin{cases} 1 + \eta_k b\left(\frac{n_k}{\delta_k}(t - \tau_k)\right), & t \in \mathcal{I}_k, \quad k = 1, 2, \dots \\ 1, & \text{otherwise.} \end{cases}$$

The function a(t) is bounded,

(5.16)
$$0 < a(t) < 2$$

and satisfies the estimate

(5.17)
$$|\mathbf{D}_t^{\ell} a(t)| \le C_{\ell} \eta_k \left(\frac{n_k}{\delta_k}\right)^{\ell}, \qquad t \in \mathcal{I}_k.$$

the constants C_{ℓ} are independent of k.

The freedom in the choice of sequences can be used to construct examples of coefficient functions in order to prove sharpness of energy estimates. For instance, we obtain $a(t) \in \mathcal{T}\{0\}$ for the choice $\tau_k \sim k$, $\delta_k \sim k/2$, $\eta_k = 1$, and $n_k = 1$ while increasing n_k to $n_k = \lceil k^{1-\alpha} \rceil$, $\alpha \in (0, 1)$, yields the weaker estimate

(5.18)
$$|\mathcal{D}_t^\ell a(t)| \le C_\ell \left(\frac{1}{1+t}\right)^{\alpha \ell}.$$

FIGURE 3. Sketch of the constructed coefficient a(t).

If we want to show lower bounds on the energy or the sharpness of energy estimates, we have to construct initial data. One particularly simple idea is to use a sequence of initial data $u_{0,k}, u_{1,k} \in \mathscr{S}(\mathbb{R}^n)$ which leads to an exponential increase of the energy within the interval \mathcal{I}_k and still satisfies good estimates in the earlier intervals $\mathcal{I}_{k'}, k' < k$. The latter can be achieved by adjusting the sequences in the definition of the coefficient function. This idea was employed in [10], [12] to discuss the sharpness of the results.

The following statement is entirely in terms of the defining sequences and provides such a lower bound on the energy behaviour of solutions to (5.13). We use $\eta_k = 1$ for simplicity in order to reduce the statement to Borg's theorem in the form of Lemma 5.2.

Lemma 5.4. Assume a(t) is defined in terms of the above sequences τ_k , δ_k and n_k . Then there exists a sequences of initial data $u_{0,k}$, $u_{1,k}$ with normalised initial energy $\mathbb{E}(u_k; 0) = 1$ such that the solution to (5.13) satisfies

(5.19)
$$\log \mathbb{E}(u_k, \tau_k + \delta_k) \ge 2\kappa n_k - 2c \sum_{\ell=1}^{k-1} n_\ell$$

with $\kappa > 0$ small and $c = \sup_s \frac{|b'(s)|}{b(s)} > 0$.

Proof. We first outline the main strategy. We choose the sequence u_k in such a way that $\hat{u}_k(\tau_k, \xi)$ restricted to the interval \mathcal{I}_k is an exponentially increasing (eigen-) solution to the periodic problem on that interval. To relate different k, we note that all appearing periodic problems are rescaled versions of each other and we use the same instability interval \mathcal{J} for all of them. We follow these solutions backward to the initial line and adjust them in such a way that they are normalised in initial energy.

To be precise, let \mathcal{J} be an interval of instability of the periodic problem

(5.20)
$$\widehat{v}_{tt} + |\xi|^2 (1+b(t))^2 \widehat{v} = 0$$

Let further $\hat{v}(t,\xi)$ be an exponentially increasing eigensolution of the form (5.7) supported inside the interval \mathcal{J} such that on $\operatorname{supp} \hat{v}$ the Floquet exponent satisfies $\kappa(\xi) \geq \kappa > 0$ for some positive constant κ . We can rescale \hat{v} to

(5.21)
$$\widehat{u}_k(t,\xi) = \mu_k \widehat{v}(\frac{n_k}{\delta_k}(t-\tau_k), \frac{\delta_k}{n_k}\xi), \qquad \eta_k \in \mathbb{R}_+,$$

such that $u_k(t, x)$ solves (5.13) on \mathcal{I}_k . We will use μ_k to normalise solutions. Equation (5.21) implies

(5.22)
$$\mathbb{E}(u_k, \tau_k + \delta_k) = e^{2n_k \kappa} \mathbb{E}(u_k, \tau_k).$$

Outside of $\bigcup_{\ell} \mathcal{I}_{\ell}$ the energy is conserved, while it might decrease or increase on the intervals \mathcal{I}_{ℓ} . Therefore we obtain the lower bound by looking at the worst type behaviour as estimated by Gronwall inequality from

(5.23)
$$\left|\partial_t \int \left(|u_t|^2 + a^2(t)|\nabla u|^2\right) \mathrm{d}x\right| = 2\frac{|a'(t)|}{a(t)} \int a^2(t)|\nabla u|^2 \mathrm{d}x$$

$$\leq 2\frac{|a'(t)|}{a(t)} \int \left(|u_t|^2 + a^2(t)|\nabla u|^2\right) \mathrm{d}x,$$

i.e., $\mathbb{E}(u_k, \tau_\ell + \delta_\ell) \ge e^{-2\delta_\ell c_\ell} \mathbb{E}(u_k, \tau_\ell)$ with $c_\ell = \sup_{t \in \mathcal{I}_\ell} \frac{|a'(t)|}{a(t)} = \frac{n_\ell}{\delta_\ell} \sup_s \frac{|b'(s)|}{b(s)}$. In combination this yields

(5.24)
$$\log \mathbb{E}(u_k, \tau_k) - \log \mathbb{E}(u_k, 0) \ge -2c \sum_{\ell=1}^{k-1} n_\ell$$

and the statement follows by combining (5.24) with (5.22).

When using this construction one has to pay attention to some particular facts. First, the bad behaviour of solutions is localised to $|\xi| \approx n_k/\delta_k \to 0$ on $\mathcal{I}_k = [\tau_k, \tau_k + \delta_k] \to \infty$. In view of (5.17) this is related to the decomposition of the phase space into zones and the bad increase in energy happens close to the boundary of the hyperbolic zone. Second, the choice of sequences does matter. Even if it can not be seen in the statement of the previous lemma, one wants to construct coefficient functions violating conditions as closely as possible in order to draw interesting conclusions.

We draw one consequence from the above lemma. When considering (5.13) with $a(t) \in \mathcal{T}\{0\}$, then solutions satisfy the a global generalised energy conservation property in the sense that

(5.25)
$$\mathbb{E}(u;t) \approx \mathbb{E}(u;0)$$

uniform in t and with constants depending only on the coefficient function a(t). This follows from Theorem 3.6 and was originally proven in Reissig–Smith [40]. If we use the sequences $\tau_k = \sigma^k$, $\delta_k = \sigma^{k-1}$ and $n_k = \lceil \sigma^{qk} \rceil$ for some q > 0 and a given parameter $\sigma > 0$, we obtain a coefficient a(t) satisfying the estimate

(5.26)
$$|\mathcal{D}_t^{\ell} a(t)|_{t \in \mathcal{I}_k} \le C_{\ell} \left(\frac{\lceil \sigma^{qk} \rceil}{\sigma^k}\right)^{\ell} \approx C_{\ell} \left(\frac{1}{1+t}\right)^{(1-q)\ell}.$$

The solution to this problem can not satisfy (5.25), as

(5.27)
$$\kappa \sigma^{qk} - c \sum_{\ell=1}^{k-1} \sigma^{q\ell} = \kappa \sigma^{qk} - c \frac{\sigma^{qk} - 1}{\sigma^q - 1} \to \infty, \qquad k \to \infty,$$

provided σ is chosen large enough in comparison to κ and c.

A slight modification of the argument allows to show that the assumption $a(t) \in \mathcal{T}_{\nu}\{0\}$ for some $\nu > 0$ is also not sufficient to deduce the estimate (5.25).

6. Related topics

Most of the result presented here were based on diagonalisation procedures in order to deduce asymptotic information on the representations of solutions. This is natural and has a long history in the study of hyperbolic equations and coupled systems. For diagonalisation schemes in broader sense and their application we also refer to [19]. Some more applications are discussed there too.

Our main concern was the derivation of energy and dispersive type estimates describing the asymptotic behaviour of solutions to hyperbolic equations. As it is impossible to cover all directions appearing there, we refer also to the expository article [58] for a discussion on current results about energy type estimates for wave models with bounded coefficients. Wave models with unbounded coefficients (meaning polynomially increasing propagation speed or even exponentially increasing propagation speed) have been extensively studied by Reissig [34] and Reissig–Yagdjian, [35], [36], [37], [38], see also Galstian [9].

There is an interesting duality to be observed here. Wave models with increasing coefficients and their large-time behaviour are intimately connected to the well-posedness issues of weakly hyperbolic equations. In a similar way, models with bounded coefficients are related to wellposedness statements of equations with log-Lipschitz coefficients and their microlocal analysis. See, e.g., the results of Kubo–Reissig [21] or Kinoshita–Reissig [22] where the key ingredient of the consideration is a diagonalisation scheme for pseudo-differential versions of the symbol classes introduced in Section 3.3 applied locally in time.

The considerations of the generalised energy conservation property in Section 3.4 were inspired by the work of Hirosawa, [10] and later joint work with him, [11], [12]. Main question arising there is to what extend symbolic conditions on coefficients can be weakened without loosing uniform bounds on the energy. As the presented results are sharp, weaker estimates for derivatives have to be compensated by additional stabilisation conditions. There has been recent work in this direction by D'Abbicco–Reissig [2] for 2×2 hyperbolic systems generalising results of [12].

References

- M. D'Abbicco, S. Lucente and G. Taglialatela. L^p-L^q estimates for regularly linear hyperbolic systems. Adv. Differential Equations 14 (2009) 801–834.
- [2] M. D'Abbicco and M. Reissig. Long time asymptotics for 2 by 2 hyperbolic systems. J. Differential Equations 250 (2011) 752-781.
- [3] C. Böhme. Decay rates and scattering states for wave models with time-dependent potential. PhD Thesis. TU Bergakademie Freiberg, 2011.
- [4] P. Brenner. On $L_p-L_{p'}$ estimates for the wave equation. Math. Z. 145 (1975) 251–254.
- [5] F. Colombini and S. Spagnolo. Hyperbolic equations with coefficients rapidly oscillating in time. A result of nonstability. J. Differential Equations, 52 (1984) 24–38.
- [6] J.G. van der Corput. Zur Methode der stationären Phase. Erste Mitteilung: Einfache Integrale. (German) Compositio Math. 1 (1935) 15–38.
- [7] J.G. van der Corput. Zur Methode der stationären Phase. Zweite Mitteilung: Wiederum einfache Integrale. (German) Compositio Math. 3 (1936) 328–372.
- [8] D. Del Santo, T. Kinoshita and M. Reissig. Klein-Gordon type equations with a singular time-dependent potential. *Rend. Mat. Univ. Trieste* **39** (2007) 1–35.
- [9] A. Galstian. $L^p L^q$ decay estimates for the wave equations with exponentially growing speed of propagation. Appl. Anal. 82 (2003) 197–214.
- [10] F. Hirosawa. On the asymptotic behavior of the energy for the wave equations with time-depending coefficients. Math. Ann. 339 (2007) 819–838.

- [11] F. Hirosawa and J. Wirth. C^m-theory of damped wave equations with stabilisation. J. Math. Anal. Appl. 343 (2008) 1022–1035.
- [12] F. Hirosawa and J. Wirth. Generalized energy conservation law for wave equations with variable propagation speed. J. Math. Anal. Appl. 358 (2009) 56–74.
- [13] E. Hlawka. Uber Integrale auf konvexen Körpern I. Monatsh. Math., 54 (1950) 1–35.
- [14] E. Hlawka. Über Integrale auf konvexen Körpern II. Monatsh. Math., 54 (1950) 81–99.
- [15] R. Ikehata. Decay estimates by moments and masses of initial data for linear damped wave equations. Int. J. Pure Appl. Math. 5 (2003) 77–94.
- [16] R. Ikehata. Improved decay rates for solutions to one-dimensional linear and semilinear dissipative wave equations in all space. J. Math. Anal. Appl. 277 (2003) 555–570.
- [17] R. Ikehata and K. Nishihara. Diffusion phenomenon for second order linear evolution equations. Stud. Math., 158 (2003) 153–161.
- [18] R. Ikehata. New decay estimates for linear damped wave equations and its application to nonlinear problem. Math. Meth. Appl. Sci. 27 (2004) 865–889.
- [19] K. Jachmann and J. Wirth. Diagonalisation schemes and applications. Ann. Mat. Pura Appl. 189 (2010) 571–590.
- [20] M. Keel and T. Tao. Endpoint Strichartz estimates. Am. J. Math. 120 (1998) 955–980.
- [21] A. Kubo and M. Reissig. Construction of parametrix to strictly hyperbolic Cauchy problems with fast oscillations in non-Lipschitz coefficients. Comm. Partial Differential Equations 28 (2003) 1471–1502.
- [22] T. Kinoshita and M. Reissig. About the loss of derivatives for strictly hyperbolic equations with non-Lipschitz coefficients. Adv. Differential Equations 10 (2005) 191–222.
- [23] W. Littman. Fourier transforms of surface-carried measures and differentiability of surface averages. Bull. Amer. Math. Soc. 69 (1963) 766–770.
- [24] W. Magnus and S. Winkler. *Hills equation*. Interscience Tracts in Pure and Applied Mathematics, No. 20. Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966.
- [25] A. Matsumura. Energy decay of solutions of dissipative wave equations. Proc. Japan Acad. Ser. A Math. Sci. 53 (1977) 232–236.
- [26] T. Matsuyama and M. Ruzhansky. Asymptotic integration and dispersion for hyperbolic equations. Adv. Differential Equations 15 (2010) 721–756.
- [27] A. Milani and Han Yang. L^1 decay estimates for dissipative wave equations. Math. Methods Appl. Sci. **24** (2001) 319–338.
- [28] T. Narazaki. $L^p L^q$ estimates for damped wave equations and their applications to semi-linear problem. J. Math. Soc. Japan 56 (2004) 585–626.
- [29] K. Nishihara. Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping. J. Differential Equations 137 (1997) 384–395.
- [30] K. Nishihara. $L^p L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application. Math. Z. 244 (2003) 631–649.
- [31] H. Pecher. L_p-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen I. Math. Z. 150 (1976) 159–183.
- [32] P. Radu, G. Todorova and B. Yordanov. Diffusion phenomenon in Hilbert spaces and applications. J. Differential Equations 250 (2011) 4200–4218.
- [33] B. Randol. On the asymptotic behavior of the Fourier transform of the indicator function of a convex set. Trans. Am. Math. Soc. 139 (1969) 279–285.
- [34] M. Reissig. On L_p-L_q estimates for solutions of a special weakly hyperbolic equation. Li, Ta-Tsien (ed.), Proceedings of the conference on nonlinear evolution equations and infinite-dimensional dynamical systems, Shanghai, China, June 12-16, 1995. p. 153–164. World Scientific, Singapore, 1997.
- [35] M. Reissig and K. Yagdjian. The $L^p L^q$ decay estimates for the solutions of strictly hyperbolic equations of second order with increasing in time coefficients. *Math. Nachr.* **214** (2000) 71–104.
- [36] M. Reissig and K. Yagdjian. About the influence of oscillations on Strichartz-type decay estimates. Rend. Semin. Mat., Torino 58 No. 3 (2000) 375–388.
- [37] M. Reissig and K. Yagdjian. One application of Floquet's theory to $L^p L^q$ estimates for hyperbolic equations with very fast oscillations. *Math. Methods Appl. Sci.* **22** (1999) 937–951.
- [38] M. Reissig and K. Yagdjian. L^p-L^q decay estimates for hyperbolic equations with oscillations in coefficients. Chinese Ann. Math. Ser. B 21 (2000) 153–164.

- [39] M. Reissig. $L^p L^q$ decay estimates for wave equation with bounded time-dependent coefficients. In *Dispersive nonlinear problems in mathematical physics* (V. Georgiev, ed.) Quad. Mat. 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004.
- [40] M. Reissig and J. Smith. $L^p L^q$ estimate for wave equations with bounded time dependent coefficient. Hokkaido Math. J. **34** (2005), 541–586.
- [41] T. Runst and W. Sickel. Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial differential equations. de Gruyter Series in Nonlinear Analysis and Applications. Vol. 3. Berlin, de Gruyter, 1996.
- [42] M. Ruzhansky. Pointwise van der Corput lemma for functions of several variables. Funct. Anal. Appl. 43 (2009), 75–77.
- [43] M. Ruzhansky and J. Smith. Dispersive and Strichartz estimates for hyperbolic equations with constant coefficients. MSJ Memoirs 22, Mathematical Society of Japan, Tokyo, 2010.
- [44] M. Ruzhansky and J. Wirth. Dispersive estimates for t-dependent hyperbolic systems. J. Differential Equations 251 (2011) 941–969.
- [45] M. Ruzhansky and J. Wirth. Dispersive type estimates for Fourier integrals and applications to hyperbolic systems. Disc. Cont. Dyn. Systems, to appear.
- [46] R.S. Strichartz. A priori estimates for the wave equation and some applications. J. Functional Anal. 5 (1970) 218–235.
- [47] R.S. Strichartz. Convolutions with kernels having singularities on a sphere. Trans. Am. Math. Soc. 148 (1970) 461–471.
- [48] R.S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44 (1977) 705–714.
- [49] M. Sugimoto. A priori estimates for higher order hyperbolic equations. Math. Z. 215 (1994), 519–531.
- [50] M. Sugimoto. Estimates for hyperbolic equations with non-convex characteristics. Math. Z. 222 (1996), 521–531.
- [51] W. von Wahl. L^p -decay rates for homogeneous wave-equations. Math. Z. 120 (1971) 93–106
- [52] G.N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge 1922.
- [53] E.T. Whittaker and G.N. Watson. A Course of Modern Analysis. Cambridge University Press, Cambridge 1902.
- [54] J. Wirth. Solution representations for a wave equation with weak dissipation. Math. Meth. Appl. Sci. 27 (2004) 101–124.
- [55] J. Wirth. Modified scattering for a wave equation with weak dissipation. Preprint. arXiv:math.AP/0509229.
- [56] J. Wirth. Wave equations with time-dependent dissipation. I. J. Differential Equations 222 (2006) 487– 514.
- [57] J. Wirth. Wave equations with time-dependent dissipation. II. J. Differential Equations 232 (2007) 74–103.
- [58] J. Wirth. Energy inequalities and dispersive estimates for wave equations with time-dependent coefficients. Rend. Mat. Univ. Trieste, 42 Suppl. (2010) 205–219.
- [59] K. Yagdjian. The Cauchy problem for hyperbolic operators, Volume 12 of Mathematical Topics. Akademie Verlag, Berlin, 1997.
- [60] K. Yagdjian. Parameteric resonance and nonexistence of the global solution to nonlinear wave equations. J. Math. Anal. Appl. 260 (2001) 251–268.

J. WIRTH,, INSTITUT FÜR ANALYSIS, DYNAMIK UND MODELLIERUNG, FB MATHEMATIK, UNIVERSITÄT STUTTGART, PFAFFENWALDRING 57, 70569 STUTTGART, GERMANY

E-mail address: jens.wirth@iadm.uni-stuttgart.de

ASYMPTOTIC PROPERTIES

Erschienene Preprints ab Nummer 2007/001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

- 2011/013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
- 2011/012 *Knarr, N.; Stroppel, M.:* Baer involutions and polarities in Moufang planes of characteristic two
- 2011/011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
- 2011/010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy
- 2011/009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
- 2011/008 Stroppel, M.: Orthogonal polar spaces and unitals
- 2011/007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
- 2011/006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces
- 2011/005 Ginoux, N.; Semmelmann, U.: Imaginary Khlerian Killing spinors I
- 2011/004 Scherer, C.W.; Kse, I.E.: Control Synthesis using Dynamic D-Scales: Part II Gain-Scheduled Control
- 2011/003 Scherer, C.W.; Kse, I.E.: Control Synthesis using Dynamic D-Scales: Part I Robust Control
- 2011/002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G₂-structures
- 2011/001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
- 2010/018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
- 2010/017 *Gauduchon, P.; Moroianu, A.; Semmelmann, U.:* Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
- 2010/016 Moroianu, A.; Semmelmann, U.: Clifford structures on Riemannian manifolds
- 2010/015 *Grafarend, E.W.; Kühnel, W.:* A minimal atlas for the rotation group SO(3)
- 2010/014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
- 2010/013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
- 2010/012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
- 2010/011 Györfi, L.; Walk, H.: Empirical portfolio selection strategies with proportional transaction costs
- 2010/010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function
- 2010/009 *Geisinger, L.; Laptev, A.; Weidl, T.:* Geometrical Versions of improved Berezin-Li-Yau Inequalities
- 2010/008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
- 2010/007 *Grundhöfer, T.; Krinn, B.; Stroppel, M.:* Non-existence of isomorphisms between certain unitals
- 2010/006 Höllig, K.; Hörner, J.; Hoffacker, A.: Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods
- 2010/005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems
- 2010/004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
- 2010/003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
- 2010/002 *Gulde, M.; Stroppel, M.:* Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
- 2010/001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
- 2009/008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED

- 2009/007 *Griesemer, M.; Moeller, J.S.:* Bounds on the minimal energy of translation invariant n-polaron systems
- 2009/006 *Demirel, S.; Harrell II, E.M.:* On semiclassical and universal inequalities for eigenvalues of quantum graphs
- 2009/005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
- 2009/004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator
- 2009/003 Walk, H.: Strong laws of large numbers and nonparametric estimation
- 2009/002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
- 2009/001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^3 and of the 3-torus
- 2008/006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
- 2008/005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems
- 2008/004 *Leitner, F.:* Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
- 2008/003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
- 2008/002 *Hertweck, M.; Hofert, C.R.; Kimmerle, W.:* Finite groups of units and their composition factors in the integral group rings of the groups PSL(2,q)
- 2008/001 *Kovarik, H.; Vugalter, S.; Weidl, T.:* Two dimensional Berezin-Li-Yau inequalities with a correction term
- 2007/006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
- 2007/005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field
- 2007/004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger operators on metric trees
- 2007/003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
- 2007/002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
- 2007/001 *Meister, A.:* Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions