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Polarities and planar collineations
of Moufang planes

Norbert Knarr, Markus Stroppel

Abstract

We show that conjugacy classes of Baer involutions and non-elliptic polarities, respec-
tively, of proper (i.e., non-desarguesian) Moufang planes are interrelated. Restriction
of the conjugating group to the stabilizer of a triangle or a quadrangle does not refine
the classes. These results are applied to prove transitivity properties for the central-
izers of these polarities. Along the way, a new proof is obtained for the fact that the
automorphism group of a Moufang plane acts transitively on quadrangles.
Mathematics Subject Classification (2000). 51A35, 51A10, 17A35, 17A36, 17A75, 51A40.
Keywords. Moufang plane, translation plane, Baer involution, polarity, conjugacy, semi-
field, division algebra, alternative algebra, composition algebra, octonion field, automor-
phism, autotopism.

Introduction

In the present paper we study collineations and correlations (i.e., dualities) of Moufang
planes. We concentrate on the non-desarguesian case. Specifically, we study involutions:
among the collineations, we are interested in those involutions (traditionally, named to honor
R. Baer [1]) that fix a subplane pointwise. We establish an intimate interrelation between Baer
involutions and polarities (i.e., involutory correlations). Since we exclude the desarguesian
case, we have an exposed class of polarities, corresponding to the standard involution of the
coordinate structure.

We will show (Theorem 2.3) that conjugacy classes of Baer involutions are not refined if we
restrict the conjugating element to the stabilizer of a quadrangle; this means that conjugacy
of Baer involutions precisely corresponds to conjugacy of involutory automorphisms of
the coordinate structure. In Theorem 4.3 we then establish a precise interrelation between
(conjugacy classes of) Baer involutions and polarities with at least two absolute flags. Finally,
we use our results to prove a transitivity result for centralizers of polarities, see 5.3.

Every Moufang plane is coordinatized by an alternative field, see 1.2. Whenever feasible,
we will consider the more general situation of semifield, i.e, a not necessarily associative
division ring.

The characteristic two case presents special features (such as polarities with precisely one
absolute flag, and Baer subplanes that are pappian planes). In the present paper we do
not exclude this case. However, a detailed study of specific details in characteristic two is
contained in a separate paper [7].
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1 Autotopisms

1.1 Definition. Let S be a semifield. An autotopism (A,B,C) of S is a triplet of additive
bijections of S such that B(sx) = C(s)A(x) holds for all s, x ∈ S.

Semifields may be used to coordinatize projective planes of Lenz type V, i.e., translation
planes that are also dual translation planes. The affine planeAS over S has point set S2 and
line setL B {[m, b] | m, b ∈ S}∪{[c] | c ∈ S}where [m, b] B {(x,mx + b) | x ∈ S} and [c] B {c}×S.
The projective hull PS ofAS is obtained by adding a line L∞ containing points∞ and (m) for
each m ∈ S that correspond to the parallel classes {[c] | c ∈ S} and {[m, b] | b ∈ S}, respectively.

In the group Aut(PS) the autotopisms describe each element in the stabilizer ∆ of the
triangle consisting of the three points o = (0, 0),∞ and (0) as maps (x, y) 7→ (A(x),B(y)); cf. [5,
VIII 4]. The map C gives the action on the line at infinity via (s) 7→ (C(s)). We will be interested
in those elements of the triangle stabilizer ∆ that centralize a certain polarity.

Note that any autotopism is already determined by any one of the maps A, B, or C together
with a single non-zero value of any one of the remaining two maps. For instance, we have
C(1)A(x) = B(x) = C(x)A(1) for each x ∈ S.

1.2 Octonion fields. In general, it may be quite hard to find the autotopisms for a given
semifield. This task becomes easier if we consider an alternative field, i.e., a semifield A with
the inverse property: for a ∈ A r {0} the unique element a−1

∈ A with aa−1 = 1 also satisfies
a−1(ax) = x = (xa)a−1 for all x ∈ A. The inverse property yields (cf. [10, 6.1.2 (18)–(21), p. 160])
the Moufang identities:

∀ x, y, a ∈ A : a(x(ay)) = ((ax)a)y , x(a(ya)) = ((xa)y)a , (ax)(ya) = (a(xy))a .

The center1 Z B Z(A) B {z ∈ A | ∀x ∈ A : zx = xz} is closed under addition, multiplication,
and passage to the inverse. Moreover, any two elements a, b ∈ A are contained in an
associative subalgebra, namely Z(a, b) B Z + Za + Zb + Zab. We refer to this fact as bi-
associativity.

It is known (see [2], [6], cf. [10, Ch. 6] or [16, Ch. 10]) that every non-associative alternating
field is an octonion field, i.e., a composition algebra O of dimension 8 with anisotropic norm
form N and non-degenerate polar form fN : (x, y) 7→ 〈x|y〉 B N(x + y) − N(x) − N(y). Such a
composition algebra has the standard involution κ : x 7→ x B 〈1|x〉 − x. This involution also
allows to recover the norm as N(x) B xx = xx and the polar form as fN(x, y) = xy + yx. The
space Pu(O) B 1⊥ = {x ∈ O | 〈1|x〉 = 0} = {x ∈ O | x = −x} is called the space of pure elements.

See [13] for a general discussion of composition algebras.

1.3 Lemma. Every ring automorphism of O centralizes the standard involution. Consequently, every
automorphism and every anti-automorphism of O is a semi-similitude of the norm form, i.e., a Z-
semilinear bijection α such that N(α(x)) = βα(N(x))s holds for all x ∈ O, with some fixed βα ∈ Aut(Z)
and s ∈ Z r {0}.

Proof. Let α be an arbitrary ring automorphism of O. Since α leaves the center Z ⊆ Fix(κ)
invariant it suffices to consider the effect of κ and α on a ∈ O r Z. Now α induces an
isomorphism from Z(a) B Z+Za onto Z (α(a)). Thus it transports the Galois group Gal(Z(a)/Z)
onto Gal(Z (α(a)) /Z). It remains to note that κ induces the (possibly trivial) generators of
these Galois groups. We may take βα = α|Z and s = 1. �

1 For a general (non-alternative) semifield one has to be more careful when defining the center.
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1.4 Examples. IfO is an octonion field then straightforward calculations (using bi-associativity
and the Moufang identities) yield that for each a ∈ Or{0} the following maps (inspired by [11],
see [4, 3.1]) are collineations:

γa : (x, y) 7→ (a−1x, ay), (s) 7→ (asa) ;
γ′a : (x, y) 7→ (axa, ya), (s) 7→ (sa−1) ;
γ′′a : (x, y) 7→ (xa, aya), (s) 7→ (as) .

For each p ∈ Pu(O) r {0}we also have the collineation (cf. [12, 11.22])

µp : (x, y) 7→ (xp,−p−1yp), (s) 7→ (−p−1s) ;

this follows from −p−1 = 1
N(p) p ∈ Zp and one of the Moufang identities.

Finally, for r, t ∈ Z(O) r {0}we have the collineation

τr,t : (x, y) 7→ (xr, yt), (s) 7→ (str−1) .

1.5 Lemma. Elements ϕ and ψ of the triangle stabilizer ∆ induce the same bijection on [0] if, and
only if, the quotient ϕ ◦ ψ−1 is a homothety of the form τr,1 : (x, y) 7→ (rx, y) with r ∈ Z(O) r {0}.

Proof. As ϕ ◦ψ−1 has axis [0] and fixes (0) it is a homothety with axis [0] and center (0). Thus
it is of the form τr,1 : (x, y) 7→ (rx, y) with a nonzero element r of the middle nucleus Nm B
{a ∈ O | ∀x, y ∈ O : (xa)y = (x(ay)}, cf. [5, 8.2]. This nucleus equals Z(O), (see [2, Thm. 3.1], [6],
cf. [10, 6.2, 6.4]) and the assertion follows. �

The full group of automorphisms of a Moufang plane is transitive on quadrangles. Usu-
ally, this fact is proved algebraically via a discussion of isotopies between alternative fields.
We offer another proof (generalizing arguments from [12, 12.17, 12.18, 17.11 ff]) which pro-
vides more information about the triangle stabilizer ∆ and also about centralizers of planar
collineations (see 2.1 below). We need a lemma first.

1.6 Lemma. Let S be a subfield of Z(O) such that dimS Z(O) is finite. If W ⊂ O is a subspace of O
such that 2 dimS W > dimSO and {w−1

| w ∈W r {0}} ⊂W then every element of O is the product
of two elements of W.

In particular, every element of O is the product of two elements that are perpendicular to 1.

Proof. For a ∈ O r {0} we use that dimS aW = dimS W implies that there exists w ∈ W ∩ aW
with w , 0. Then there exists u ∈W such that w = au, and wu−1 = a as required. �

1.7 Theorem. The group Λ generated by {γa | a ∈ O r {0}}∪{µp | p ∈ Pu(O) r {0}} acts transitively
on the set {(x, y) | x, y ∈ O r {0}}. The full triangle stabilizer ∆ is the product of Λ with the sta-
bilizer of (1, 1). The latter is in fact the stabilizer of a quadrangle, and thus isomorphic to the full
automorphism group of the alternative division ring O.

Proof. Consider (x, y) ∈ O2 with x , 0 , y. Applying γ−1
y we map (x, y) to (w, 1) with w B yx.

According to 1.6 we find p, q with p = −p and q = −q such that w−1 = pq. Now µq ◦ µp maps
(w, 1) to (1, 1), as required. �

1.8 Corollary ([10, 7.3.14]). The full group of collineations of the projective plane over O acts
transitively on the set of non-degenerate quadrangles. The stabilizer of any triangle (a, b, c) acts
transitively on (a ∨ b) r {a, b}, and for d ∈ (a ∨ b) r {a, b} the stabilizer of the degenerate quadrangle
(a, b, c, d) acts transitively on (c ∨ d) r {c, d}. �
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1.9 Corollary. For every autotopism (A,B,C) of O the maps A, B and C are semi-similitudes of the
norm form. �

2 Conjugacy of planar collineations

In general, not every automorphism of a subplane Q of the projective plane PO will ex-
tend to an automorphism of PO. For instance, a subfield of the center Z of O may admit
automorphisms that do not extend to automorphisms of Z, let alone O.

2.1 Lemma. Assume that K ⊆ O contains 1 and is closed under addition, multiplication and both
additive and multiplicative inverses. Then the stabilizer of PK in Aut(PO) acts transitively on the
set of non-degenerate quadrangles in PK.

Proof. Let ΓK be the subgroup consisting of those automorphisms of PO that leave PK
invariant. We note that the subplane PK is a Moufang plane, again; the elations required
to see that ΓK acts transitive on triangles in PK are those translations and shears that may
be described in terms of K. For a ∈ K r {0} we have γa, γ

′
a ∈ ΓK. Thus the proof of 1.7 also

applies to the action of ΓK on PK. �

Examples of subsetsK as in 2.1 occur as sets of fixed points of elements of Aut(O).

2.2 Corollary. For each element α̃ of the stabilizer of a quadrangle in Aut(PO) the centralizer of α̃
acts transitively on the set of non-degenerate quadrangles in Fix(α̃). �

2.3 Theorem. Let α1 and α2 be automorphisms of O, and consider the corresponding automorphisms
given by α̃1(x, y) B (α1(x), α1(y)) and α̃2(x, y) B (α2(x), α2(y)), respectively. Then the following are
equivalent:

a. α̃1 and α̃2 are conjugates in Aut(PO).
b. α̃1 and α̃2 are conjugates in the stabilizer of the standard quadrangle.
c. α1 and α2 are conjugates in Aut(O).

Proof. If δ ∈ Aut(PO) satisfies δ ◦ α̃1 ◦ δ−1 = α̃2 then the image of the standard quadrangle
under δ is a quadrangle in Fix(α̃2). From 2.2 we know that there exists ϕ in the centralizer
of α̃2 such that ϕ ◦ δ fixes the standard quadrangle. Thus there exists ψ ∈ Aut(O) such that
ϕ ◦ δ = ψ̃, and the first assertion implies each one of the other two. The rest is clear. �

In general, planar automorphisms need not be conjugates if their respective planes of
fixed elements are in the same orbit under Aut(PO). This is rather obvious if we deal with
automorphisms that have order greater than 2. For Baer involutions, the situation depends
on the characteristic of O:

2.4 Theorem. Consider the automorphisms α̃ j induced by involutions α1, α2 ∈ Aut(O).
a. If α1|Z(O) , id then Fix(α̃1) = Fix(α̃2) ⇐⇒ α1 = α2.
b. If charO , 2 then Fix(α̃1) = Fix(α̃2) ⇐⇒ α1 = α2.
c. If charO = 2 then there exist different Baer involutions with the same set of fixed points.

Proof. We abbreviate Z B Z(O), again. If Fix(α̃1) = Fix(α̃2) then F B FixO(α1) = FixO(α2).
Now F is a vector space over S B FixZ(α1) = FixZ(α2), and dimSO = 2 dimS F.

If α1|Z(O) , id then both involutions induce the generator of Gal(Z/S). Thus α1 ◦ α2 is
an automorphism of O with dimS FixO(α1 ◦ α2) ≥ dimS(Z + F) > 1

2 dimSO. This means
α1 ◦ α2 = id, and α1 = α2, as claimed.
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Now assume charO , 2. It suffices to consider the case where α j is linear over Z. Then
both involutions are orthogonal maps, and Fix(−α1) = F⊥ = Fix(−α2). Again, we obtain
α1 = α2.

If charO = 2 there are indeed examples of Z-linear involutory automorphisms sharing the
same set of fixed points; see [7, 4.5]. �

3 Some polarities of semifield planes

Let S be a semifield. Easy computations show that every involutory anti-automorphism σ
of S yields a polarity σ̂ of PS interchanging (x, y) with [σ(x),−σ(y)]. The set of affine absolute
points is Aσ B {(x, y) ∈ S2

| σ(y) + y = σ(x)x}, and the point∞ is the unique absolute point at
infinity.

3.1 Lemma. Let σ and τ be involutory anti-automorphisms, and let δ B (A,B,C) be an autotopism.
Then the following are equivalent:

a. δ ◦ σ̂ ◦ δ−1 = τ̂.
b. C ◦ σ = τ ◦ A.
c. B ◦ σ = τ ◦ B and C(1) = τ(A(1)).

Proof. The autotopism (A,B,C) maps [m, t] to [C(m),B(t)]. Thus δ ◦ σ̂ = τ̂ ◦ δ implies that
[C(σ(x),−B(σ(y))] = [τ(A(x)),−τ(B(y))] holds for all x, y ∈ O. This shows that assertion a
implies both b and c.

Now assume C ◦ σ = τ ◦ A, then τ ◦ C = A ◦ σ because σ2 = id = τ2. For x ∈ O we
compute B (σ(x)) = B (σ(x)σ(1)) = C (σ(x)) A (σ(1)) = τ (A(x)) τ (C(1)) = τ (C(1)A(x)) = τ (B(x))
and B ◦ σ = τ ◦ B follows. Thus b implies c.

Finally, assume that B◦σ = τ◦B and C(1) = τ(A(1)). Then τ(C(1)) = A(1) because τ is an in-
volution. Now C(σ(x))A(1) = C(σ(x))A(σ(1)) = B(σ(x)σ(1) = B(σ(x)) = τ(B(x)) = τ(C(1)A(x)) =
τ(A(x))τ(C(1)) = τ(A(x))τ2(A(1)) = τ(A(x))A(1) yields C ◦ σ = τ ◦ A. A straightforward
computation yields δ ◦ σ̂ = τ̂ ◦ δ. Thus we have shown that c implies a. �

3.2 Proposition. The stabilizer ∇σ also fixes the pole σ̂([0]) = (0). Its elements correspond to those
autotopisms δ = (A,B,C) of O that have one of the following equivalent properties:

a. δ ◦ σ̂ = σ̂ ◦ δ.
b. C ◦ σ = σ ◦ A.
c. B ◦ σ = σ ◦ B and C(1) = σ(A(1)).

Proof. The pole of [0] is fixed by each element that centralizes σ̂ and fixes [0]. The rest is a
specialization of 3.1 for the case where σ = τ. �

3.3 Corollary. For each α ∈ Aut(O) we have that α̃ B (α, α, α) is an autotopism which centralizes
the polarity κ̂.

Proof. This follows from 1.3 and 3.2 because (α, α, α) is an autotopism with α(1) = 1. �

Polarities of translation planes can be described quite explicitly if they have more than one
absolute flag:

3.4 Theorem. Let P be a projective plane with a polarity π. If P is a translation plane and π has at
least two absolute flags then there is a semifield S with an anti-automorphism σ and an isomorphism
η : P → PS such that η ◦ π ◦ η−1 = σ̂.
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Proof. The projective plane P is self-dual. Therefore, it either has Lenz type V and then a
distinguished flag (∞,L∞) or it is a Moufang plane (by the Skornyakov–Sans Soucie Theorem,
cf. [5, VI.6 and 7]). In the first case, we know that (∞,L∞) is an absolute flag. In the Moufang
case, we may choose any absolute flag for (∞,L∞).

We pick a second absolute point o. Then o < L∞ and π(o) meets L∞ in a point u , ∞.
We pick another point w ∈ L∞ r {∞,u} and put e B (o ∨ w) ∩ π(w). Then o,u,∞, e form a
quadrangle Q, the line L∞ is a translation axis, and the point ∞ is a translation axis for the
dual plane. Therefore, the ternary field defined by the quadrangle Q is a semifield S.

In coordinates with respect to Q we have o = (0, 0), e = (1, 1), π(o) = [0, 0], and π(w) = [1].
The lines through w apart from L∞ are those of the form [1, t] with t ∈ S.

There are bijections σ and τ of S such that π(x, y) = [σ(x), τ(y)] holds for each (x, y) ∈ S2. In
particular, we know σ(1) = 1 = −τ(1) from

π(1, 1) = π
(
(o ∨ w) ∧ π(w)

)
=
(
π(o) ∧ π(w)

)
∨ w = ([0, 0] ∧ [1]) ∨ w = [1,−1] .

Using the assumption π2 = id we find

∀ x, y, z ∈ S : σ(z)x + τ
(
σ(x)z + τ(y)

)
= y .

We specialize z = 0 and obtain σ(0)x + τ2(y) = y for all x, y ∈ S. This yields σ(0) = 0 and
then τ2 = id. Now we specialize y = 0 and x = 1 and find σ(z) + τ(z) = 0 for each z ∈ S.
Using this for x = 1 and y = τ(c) we see from σ(z) + τ(z + c) = τ(c) that τ is additive. Then
σ2(z) = σ

(
−τ(z)

)
= −τ(−τ(z)

)
= τ2(z) = z yields σ2 = id. Finally, we specialize y = 0 and

x = σ(c) to see from σ(z)σ(c)−σ(cz) = σ(z)σ(c)+τ(cz) = 0 that σ is in fact an anti-automorphism
of S. The rest is clear. �

3.5 Remark. If we start withP = PK for some semifield K in 3.4 then it may well happen that
the semifield S constructed in the proof is not isomorphic to K; in general, the two semifields
will only be isotopic. In a Moufang plane (where the automorphism group is transitive on
quadrangles, see 1.8) we have that S and K are isomorphic.

3.6 Theorem. Let π be a polarity of PO.
a. If π has at least two absolute flags then a conjugate of π has the absolute flags ((0, 0), [0, 0])

and (∞,L∞).
b. If π has the absolute flags ((0, 0), [0, 0]) and (∞,L∞) then there exists an involutory anti-

automorphism σ of O and an element δ of the stabilizer of the (degenerate) quadrangle
(∞, (0), (0, 0), (1, 0)) such that δ ◦ π ◦ δ−1 = σ̂.

Proof. Choose absolute flags (a,A) and (b,B) of π. Then (a, b,A ∩ B) is a non-degenerate
triangle. Since the full automorphism group of PO acts transitively on quadrangles (see 1.8)
we find ϕ ∈ Aut(PO) mapping (a,A) and (b,B) to ((0, 0), [0, 0]) and (∞,L∞), respectively. Then
((0, 0), [0, 0]) and (∞,L∞) are absolute flags of ϕ ◦ π ◦ ϕ−1, as required.

Now assume that π has these absolute flags. Then π(1, 0) is a line through (0, 0) and
π(1, 0) , [0]. Let (1, c) B [1] ∧ π(1, 0); then π(1, 0) = (0, 0) ∨ (1, c) = [c, 0] and π[1] =
π(∞∨ (1, 0)) = L∞ ∧ π(1, 0) = (c) yield π(1, c) = π([1] ∧ [c, 0]) = (c) ∨ (1, 0) = [c,−c]. From 1.8
we know that there exists δ in the stabilizer of (∞, (0), (0, 0), (1, 0)) such that δ(1, c) = (1, 1); we
obtain δ[c,−c] = [1,−1]. Now δ ◦ π ◦ δ−1 still has the absolute flags ((0, 0), [0, 0]) and (∞,L∞),
and maps (1, 1) to δ(π(1, c)) = δ[c,−c] = [1,−1]. As in the proof of 3.4 we conclude that there
exists an involutory anti-automorphism σ of O such that δ ◦ π ◦ δ−1 = σ̂. �

6
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4 Conjugacy of polarities of Moufang planes

In this section, we consider the projective plane PO over an octonion field O, again.

4.1 Proposition. An autotopism (A,B,C) centralizes κ̂ precisely if A(1) A(1) = B(1).

Proof. If (A,B,C) centralizes κ̂ then C(1) = A(1) by 3.1, and B(1) = C(1) A(1) = A(1) A(1).
Assume now that A(1) A(1) = B(1). Then B(1) ∈ Z, and we get B(Pu(O)) = B(1⊥) = B(1)⊥ =

1⊥ = Pu(O) because B is a semi-similitude of the norm form, cf. 1.9. For x ∈ Pu(O) we find
B(x) + B(x) = 0 and hence B(x) = B(x).

Define S,T : O→ O by S(x) B B(x) and T B S−1
◦ B. Then T(x) = x for all x ∈ Pu(O). Thus

the semi-similitude T is in fact an orthogonal (in particular, a linear) map.
For x ∈ Pu(O) and y ∈ Owe obtain 〈x|y〉 = 〈T(x)|T(y)〉 = 〈x|T(y)〉 and therefore 〈x|T(y)−y〉 =

0. It follows that ϕ B T − id maps O to Pu(O)⊥ = 1⊥⊥ = Z.
Since T preserves the norm we get for any x ∈ O:

xx = N(T(x)) = (x + ϕ(x))(x + ϕ(x)) = xx +
(
x + x + ϕ(x)

)
ϕ(x) .

For each x ∈ O we either have ϕ(x) = 0 or ϕ(x) = −x − x. In any case, we find Pu(O) ≤ kerϕ.
So consider x ∈ O r Pu(O). If ϕ(x) , 0 then T(x) = x + ϕ(x) = −x yields B(x) = S(−x) = −B(x).
Thus x ∈ B−1(Pu(O)) ∩ (O r Pu(O)), contradicting the fact that B is a semi-linear bijection
leaving Pu(O) invariant. Thus ϕ = 0 and T = id. This means that B = S, and B centralizes κ.
The result now follows from 3.1 because B(1) = C(1) A(1) = A(1) A(1) yields C(1) = A(1). �

4.2 Lemma. Every autotopism (A,B,C) can be uniquely written as a product ψc ◦ γa ◦ δ, where
δ = (A′,B′,C′) centralizes κ̂ and cB′(1) = 1. The elements a and c are determined by a = B(1) and
c−1 = N(B(1) A(1)).

Proof. Assume that such a decomposition exists, then A(x) = a−1A′(x), B(x) = acB′(x) and
C(x) = ca C′(x) a. Since c B′(1) = 1 we get B(1) = a. Using 4.1 we obtain c−1 = B′(1) =
A′(1) A′(1) = aA(1) a A(1) = N(aA(1)) = N(B(1) A(1)). This proves uniqueness of a and c, and
then also of δ.

To prove existence we define a B B(1) and c B N(B(1) A(1)) and use 4.1 to show that
δ B τ−1

1,c ◦ γ
−1
a ◦ (A,B,C) centralizes κ̂. �

Recall that ∆ is the stabilizer of the standard triangle (∞, (0), (0, 0)); the group ∆(1,1) is the
stabilizer of the standard quadrangle.

4.3 Theorem. Let α and β be automorphisms of Owith α2 = id = β2, and consider the corresponding
elements α̃, β̃ ∈ ∆(1,1) given by α̃(x, y) B (α(x), α(y)) and β̃(x, y) B (β(x), β(y)), respectively. We put
σ = κ ◦ α and τ = κ ◦ β. Then the following are equivalent:

a. The polarities σ̂ and τ̂ are conjugate under an element of Aut(PO).
b. The polarities σ̂ and τ̂ are conjugate under an element of the triangle stabilizer ∆.
c. The polarities σ̂ and τ̂ are conjugate under an element of ∆(1,1).
d. The anti-automorphisms σ and τ are conjugates under Aut(O).
e. The collineations α̃ and β̃ are conjugates in Aut(PO).
f. The collineations α̃ and β̃ are conjugates in ∆.
g. The collineations α̃ and β̃ are conjugates in ∆(1,1).
h. The automorphisms α and β are conjugates in Aut(O).
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Proof. Clearly assertion d implies c, that assertion implies b, and that implies a. Transitivity
of Aut(PO) on triangles (see 1.8) yields that the first two assertions are equivalent.

We will show next that assertion b implies f; this will be the major task in the proof of the
theorem. We will use the autotopism (cf. 1.4)

ψc B τ1,c : (x, y) 7→ (x, cy), (s) 7→ (cs) .

Assume that there exists δ ∈ ∆ such that τ̂ = δ ◦ σ̂ ◦ δ−1. Write δ = ψc ◦ γa ◦ δ′ where δ′

centralizes κ̂, cf. 4.2. Then κ̂ ◦ β̃ = τ̂ = ψc ◦ γa ◦ κ̂ ◦ γ−1
a ◦ ψ

−1
c ◦ δ ◦ α̃ ◦ δ

−1, and hence
ψc ◦ γa ◦ κ̂ ◦ γ−1

a ◦ ψ
−1
c ◦ κ̂ ◦ β̃ = δ ◦ α̃ ◦ δ−1.

Let δ = (A,B,C). We know from 3.1 that τ(a) = τ(B(1)) = B(1) = a and hence β(a) = a. Using
c ∈ Z and bi-associativity we compute that the composition ψc ◦ γa ◦ κ̂ ◦ γ−1

a ◦ ψ
−1
c ◦ κ̂ ◦ β̃ is

given by

(x, y) 7→
(
β(x)
(
N(a)ac

)−1
, aβ(y)a−1

)
.

This mapping coincides with an involution (namely, δ ◦ α̃ ◦ δ−1). Evaluating the square at
the first component we find the condition cβ(c)N(a)3 = 1. Since β(a) = a this condition is
equivalent to (

caβ(a)2
)
β
(
caβ(a)2

)
= 1.

Assume first that β is not the identity on Z + Za. Then Hilbert’s Theorem 90 (cf. [8, VI 6.1])
implies that there exists an element b ∈ Z + Za with caβ(a)2 = β(b)b−1. For the conjugate of
γa ◦ ψc ◦ κ̂ ◦ ψ−1

c ◦ γ
−1
a ◦ κ̂ ◦ β̃ = δ ◦ α̃ ◦ δ−1 under (γ′′b ◦ ψc)−1 we get

(x, y) 7→
(
β(x)
(
N(a)ac

)−1
β(b)b−1, b−1c−1aβ(cbyb)(ba)−1

)
= (β(x), β(y)) .

Hence β̃ is conjugate to α̃.
If β is the identity on Z + Za, then a = a, and (ca3)2 = 1 yields ε B ca3

∈ {1,−1}. So the
composition ψc ◦ γa ◦ κ̂ ◦ γ−1

a ◦ ψ
−1
c ◦ κ̂ ◦ β̃ = δ ◦ α̃ ◦ δ−1 is given by

(x, y) 7→ (εβ(x), aβ(y)a−1) .

If β = id then the involution δ ◦ α̃ ◦ δ−1 either has axis [0, 0] (if ε = 1) or it fixes precisely
one affine point on that line (if ε , 1). In any case, our involution is not a Baer involution,
and α = id = β follows.

If β , id we choose p ∈ O r {0} such that β(p) = −p. Then the conjugate ω B γ′′p ◦ (δ ◦ α̃ ◦
δ−1) ◦ (γ′′p )−1 is obtained as

(x, y) 7→
(
β(x), p

(
a(p−1β(y)p−1

)
a−1)p

)
.

Now the product ω ◦ β̃−1 fixes each point on the line [0, 0] and both the points (∞) and (0, p2)
outside that line. This means ω ◦ β̃−1 = id, and δ ◦ α̃ ◦ δ−1 = β̃ follows.

The last two assertions are clearly equivalent to each other; they are equivalent to assertion e
by 2.3. Finally, assertion h implies d because Aut(O) centralizes the standard involution,
see 1.3, 3.3. �
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5 Centralizers of polarities

In this section, let σ be an involutory anti-automorphism of O. The centralizer Ψσ of σ̂
in Aut(PO) contains the group Ξσ B {ξx,y | (x, y) ∈ Aσ}whereξx,y maps (u, v) to

(
u + x, v + σ(x)u + y

)
.

Since Ξσ acts sharply transitively on Aσ it remains to understand the stabilizer∇σ B (Ψσ)o,∞
of the two absolute points o = (0, 0) and∞; then Ψσ = Ξσ ◦ ∇σ.

5.1 Lemma. The group ∇σ acts faithfully on the points rows of [0, 0] and of L∞.

Proof. The polarity translates the action on L∞ into the action on the line pencil in the pole
σ̂(L∞) = ∞. Thus if ψ ∈ ∇ acts trivially on L∞ then ψ has axis L∞ and center∞. Since ψ also
fixes (0, 0) it is trivial. The argument for the kernel of the restriction to [0, 0] is analogous. �

5.2 Example (see [10, 3.5 (22), p. 107]). Mapping (x, y) ∈ O × (Or {0}) to (xy−1, y−1) and [m, b]
to [−b−1m, b−1] extends to a collineation that centralizes each one of the polarities σ̂ where σ
is an involutory anti-automorphism of O.

5.3 Theorem. Let π be a polarity of PO = (P,L) and let Ψ denote the centralizer of π in Aut(PO).
Then Ψ acts two-transitively on the set U of absolute points.

a. If |U| ≥ 2 then π is a conjugate of σ̂, for some involutory anti-automorphism σ of O.
b. The stabilizer Ψx,y of two absolute points x, y ∈ U acts transitely on π(x) r {x, π(x) ∩ π(y)}.
c. If U is not contained in a line then the stabilizer Ψx of x ∈ U acts two-transitively onLxr{π(x)}.

Proof. It suffices to consider the case where π has at least two absolute points. According
to 3.6 we may then assume π = σ̂ for some involutory anti-automorphism σ of O.

Since Ξσ acts (sharply) transitively on Aσ the existence of a single element moving∞ yields
that Ψ = Ψσ acts 2-transitively. Such an element was exhibited in 5.2.

It remains to show that ∇σ acts transitively on [0, 0] r {(0, 0)}; then joining with ∞ gives
transitivity of ∇σ on L∞ r {[0],L∞}. If U is not contained in a line then two-transitivity of Ψ
yields that [0] can be moved by the stabilizer of∞, and the last assertion follows.

Consider x ∈ O r {0}. Transitivity of the triangle stabilizer (cf. 1.8) yields that there exists
δ ∈ ∆ with δ(x, 0) = (1, 0). The conjugate δ ◦ σ̂ ◦ δ−1 is a polarity having ((0, 0), [0, 0]) and
(∞,L∞) as absolute flags. From 3.6 we know that there exists ϕ ∈ ∆(1,0) and some involutory
anti-automorphism τ ofO such thatϕ◦ (δ◦ σ̂◦δ−1)◦ϕ−1 = τ̂. By 4.3 there exists γ ∈ ∆(1,1) with
γ ◦ τ̂ ◦ γ−1 = σ̂. We have thus found ψ B γ ◦ ϕ ◦ δ ∈ ∇σ with ψ(x, 0) = (1, 0), as required. �

5.4 Remark. The extra assumption in 5.3.c may look strange to a reader who is not familiar
with characteristic two. In fact, if we take for σ a Z-linear but not standard involutory
automorphism of an octonion field of characteristic 2 then the absolute points of σ̂ form a
infinite proper subset of [0] ∪ {∞}, see [7, 7.2]. Note also that polarities with precisely one
absolute point do exist in the characteristic two case, cf. [7, 9.1].

5.5 Remarks. Consider a ∈ O r {0}. Straightforward computation yields:
a. The map γ′′a belongs to the centralizer of σ̂ precisely if a ∈ Fix(σ).
b. The maps γ′a or γa belong to that centralizer only if a ∈ Z ∩ Fix(σ) and a3 = 1.

If this is the case then γ′a = γa = γ′′a−1 .
c. The map γ̃a B γ′−1 ◦ γ

′′
a centralizes σ̂ precisely if a ∈ Fix(−σ); i.e., if σ(a) = −a.

d. For r, t ∈ Z(O) r {0} the collineation τr,t centralizes σ̂ precisely if σ(r)r = t.
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If σ is Z-linear one can use this to exhibit transitive subsets in ∇σ quite explicitly. To this end,
consider the vector spaces Ws

σ B {x ∈ O | σ(x) = sx} for s ∈ {+,−}.
If σ = κ then 1.6 yields that {γ′′a | a ∈W−κ r {0}} generates a subgroup of ∇κ that is transitive

on [0, 0] r {(0, 0)}.
If σ , κ is Z(O)-linear then 1.6 yields that {γ′−1 ◦ γ

′′
a | a ∈W+

σ r {0}} generates a subgroup
of ∇σ that is transitive on [0, 0] r {(0, 0)}.

If σ is not Z-linear then {γ′′a | a ∈W−κ r {0}} ∪ {γ′−1 ◦ γ
′′
a | a ∈W+

σ r {0}} ⊆ ∇σ generates a
subgroup Γ of ∇σ which is not transitive on [0, 0]r {(0, 0)}. In fact, each a ∈Ws

σ satisfies N(a) ∈
S B FixZ(σ). Thus the orbit of (1, 0) under the group Γ is contained in {x ∈ O | N(x) ∈ S}×{0} ,
[0, 0].

5.6 Remark. If we derive the transitivity properties 5.3 of ∇σ without using the solution 4.3
of the conjugacy problem (as we did in 5.5 for linear σ), we can deduce that solution in a
more direct fashion, as follows.

Assume that there exists ϕ ∈ Aut(PO) such that ϕ ◦ ϑ̂ ◦ ϕ−1 = σ̂. Using the transitivity
properties of the centralizer Ψσ (see 5.3) of σ̂ together with the transitivity of ∇σ we may
assume that ϕ fixes the points ∞, (0, 0), and (1, 0). Now ϕ fixes the line [1] that joins (0, 0)
with ∞, and [1, 0] = σ̂(1, 0) = σ̂(ϕ(1, 0)) = ϕ(ϑ̂(1, 0)) = ϕ([1, 0]) yields that [1, 0] is also fixed
by ϕ. Thus ϕ fixes the standard quadrangle, and there exists an automorphism α of O such
that ϕ(x, y) = (α(x), α(y)) holds for all (x, y) ∈ O2. Evaluating ϕ◦ ϑ̂◦ϕ−1 = σ̂ at (x, 0) we obtain
α ◦ ϑ ◦ α−1 = σ.

5.7 Remark. The group Ξσ is nilpotent of class at most 2; in fact we have Ξ′σ ≤ Tσ B
{ξ0,y | y ∈ O, σ(y) = −y}. If charO , 2 then Ξ′σ = Tσ and Ξσ is a generalized Heisenberg
group. In general, such groups are good candidates for groups with many automorphisms,
see [9], [14], [15], [3].

The group∇σ normalizes Ξσ; by 5.3 it induces a transitive group on Ξσ/Tσr {Tσ}. However,
transitivity of the action on Tσ is a strong condition, see [17].
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2008/006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian
data using nonparametric regression and a reduced number of nested Monte Carlo steps
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