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Baer involutions and polarities in Moufang
planes of characteristic two

Norbert Knarr, Markus Stroppel

Abstract
We classify those polarities of Moufang planes in characteristic two that have at least
one absolute point. In many cases the absolute points form a reasonable unital but it
turns out that the set of absolute points may also form a rather small collinear set. Along
the way, we determine the Baer involutions of the planes in question and show that the
corresponding Baer subplanes will be pappian or non-desarguesian Moufang planes;
there do exist desarguesian Baer subplanes that are not pappian but these are not fixed
pointwise by any involution.
Mathematics Subject Classification (2000). 51A35, 51A10, 17A35, 17A36, 17A75, 51A40.
Keywords. Moufang plane, translation plane, Baer involution, polarity, conjugacy, semi-
field, division algebra, alternative algebra, composition algebra, octonion field, automor-
phism, autotopism.

Introduction

We consider proper (i.e., non-desarguesian) Moufang planes. Such a plane is coordinatized by
an octonion field O (i.e., a non-associative, alternative division ring). The first two chapters
of [8] form a convenient source for the basic theory of such algebras; see also Chapters 9 and 20
in [11]. Throughout the present note, we will concentrate on the case where charO = 2.

For our present purposes it will be convenient to consider the projective plane P2(O) as the
projective hull of the affine plane. We describe the affine points by pairs (x, y) ∈ O2, lines are
either of the form [m, b] B {(x,mx + b) | x ∈ O} or [c] B {c} × O with m, b, c ∈ O, cf. [3, p. 13].
The line at infinity will be denoted by L∞, it contains the parallel class ∞ of all “vertical”
lines (of the form [c]) and the class (m) B {[m, b] | b ∈ O} for each m ∈ O. See [2] for a more
projective viewpoint of Moufang planes in characteristic 2.

We are interested in polarities and their absolute points. It comes as no surprise that
involutory (anti-)automorphisms of octonion fields play an important role in this context.

According to a fundamental observation by R. Baer [1] involutory collineations may be
elations (here our assumption charO = 2 is used for the first time) or Baer involutions (i.e.,
involutions fixing a non-degenerate quadrangle). The fixed elements of a Baer involution
form a subplane with the property that every point of the ambient plane is incident with at
least one line of the subplane and, dually, every line is incident with at least one point of
the subplane (such a subplane is called a Baer subplane). Since the collineation group of our
Moufang plane acts transitively ([7, 7.3.14], see also [5, 2.7]) on the set of quadrangles, each
one of the Baer involutions is conjugate to one of the form (x, y) 7→ (ι(x), ι(y)) where ι is an
automorphism of O.

1



N. Knarr, M. Stroppel Baer involutions and polarities in Moufang planes of characteristic two

1 Octonion fields

1.1 The norm and the standard involution. We will considerO as a composition algebra over
its center Z B Z(O). There is a (unique, cf. [8, 1.2.4]) multiplicative quadratic form N : O→ Z.
This form is anisotropic because O contains no divisors of zero. The corresponding polar
form

fN : (x, y) 7→ 〈x|y〉 B N(x + y) −N(x) −N(y)

is non-degenerate (and alternating because char Z = 2).
The standard involution of O is the anti-automorphism given by

κ : O→ O : a 7→ a B fN(a, 1) − a .

From a2 = ( fN(a, 1) − a) a we see that O is a quadratic algebra over Z: for each a ∈ O there are
unique elements n, t ∈ Z such that a2 = −ta − n, namely the norm n = N(a) = aa and trace
t = fN(a, 1) = a + a of a; cf. [8, 1.2.3].

The involution is indeed a standard one (cf. [5, 2.2]):

1.2 Lemma. Every ring automorphism of O centralizes the standard involution. Consequently,
every automorphism and every anti-automorphism of O is a semi-similitude of the norm form. �

2 Involutory automorphisms of octonion fields

Of course, every automorphism of O leaves Z invariant. Automorphisms thus come in
two flavors; they may be Z-linear or fail to do so. From experience outside the realm of
characteristic two one might be tempted to expect that quaternion fields occur as sets of
fixed points of involutory Z-linear automorphisms. This is not the case, indeed we prove
in this section that the set Fix(ι) of fixed points of an involutory automorphism ι either
forms an octonion field over some subfield of Z (this happens if ι is not Z-linear) or is a
four-dimensional commutative Z-subalgebra, see 2.1.

The reader should be warned that the following results heavily depend on the fact that our
algebra has no divisors of zero; indeed there are subalgebras of dimensions 5 and 6 in split
octonion algebras, and some of these occur as fixed point sets of involutory automorphisms
(see [2, 4.11]).

2.1 Theorem. If ι is a Z-linear involutory automorphism of O then Fix(ι) is a commutative field,
and thus a totally inseparable extension of degree 4 over Z.

Proof. The trace map Trι : O→ O : x 7→ ι(x) + x is a Z-linear map; its kernel is F B Fix(ι) and
its range is contained in F. In particular, we have dim F ≥ 4. Choosing any a ∈ O r F we
obtain F ∩ aF = {0}, and dim F ≤ 4 follows. Thus Trι may be regarded as a surjection onto F.

From 1.2 we know that ι commutes with κ. Thus the trace maps Trι and Trκ commute,
and F lies in the kernel 1⊥ = Fix(κ) of Trκ. This means that F is totally isotropic with respect
to the polar form fN. Now we use 0 = fN(x, y) = xy + yx and charO = 2 to conclude xy = yx
for x, y ∈ F. �

2.2 Theorem. Let ι be an involutory automorphism of O that acts non-trivially on Z and put
S B FixZ(ι). Then Z/S is a separable quadratic field extension, and Fix(ι) is an octonion field over S.
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Proof. We abbreviate F B Fix(ι). Since ι commutes with the standard involution it is easy to
see that the norm N induces a (multiplicative) quadratic form Nι : F→ S.

In order to show dimS F = 8 we consider the S-linear endomorphism ϕ B ι + id of O and
pick c ∈ Z with ι(c) = c + 1. Then ϕ(cF) = F ⊆ ϕ(O) ⊆ F = kerϕ yields dimS F = dimS(O/F) =
16 − dimS F.

Since the values of fN on O = F ⊕ cF can be computed from values of the restriction fNι

of fN to F we see that this restriction is non-degenerate, and F is indeed an octonion algebra
(over S). Of course, there are still no divisors of zero, and we have an octonion field. �

2.3 Lemma. For each involution ι ∈ Aut(O) the trace map Trι : O → Fix(ι) : a 7→ ι(a) + a is
surjective.

Proof. We abbreviate S B FixZ(ι). Clearly Trι is S-linear with kernel Fix(ι) and Trι(O) ⊆ Fix(ι).
Comparing dimensions over S we obtain the assertion. �

2.4 Theorem. If β ∈ Aut(P(O)) is a Baer involution then the Baer subplane consisting of fixed points
and fixed lines of β is either pappian or not desarguesian.

Proof. As Aut(P(O)) acts transitively on quadrangles we may assume that β is of the form
(x, y) 7→ (ι(x), ι(y)) with some involution ι ∈ Aut(O). Now the assertion follows from 2.1
and 2.2. �

3 Involutory anti-automorphisms

Apart from the standard involution κ our octonion field O will also admit other involutions
that reverse the multiplication.

3.1 Theorem. If σ is an involutory anti-automorphism of O then either σ = κ or σ = ι ◦ κ where ι is
one of the involutions discussed in 2.1 and 2.2.

Proof. The automorphism ι B σ ◦ κ commutes with the standard involution κ, see 1.2. Thus
ι2 = id and either ι = id or ι is known from 2.1 and 2.2. �

3.2 Proposition. Consider ι ∈ Aut(O) with ι2 = id and put σ B ι ◦ κ. The trace map Trσ : O →
Fix(σ) : a 7→ σ(a) + a is surjective if, and only if, the restriction σ|Z = ι|Z of ι to the center Z is not
trivial. More precisely:

a. If ι = id then Trσ(O) = Z and Fix(σ) = 1⊥. Thus dimZ Trσ(O) = 1 < 7 = dimZ Fix(σ) and
Trσ(O) is the radical of the restriction fN |Fix(σ)×Fix(σ) of the polar form.

b. If ι , id but ι|Z = id then dimZ Trσ(O) = 3 < 5 = dimZ Fix(σ).
More explicitly, we have Fix(σ) = Fix(ι)⊕Zb for any b ∈ O satisfying Trι(b) ∈ Zr {0}. Again,
Trσ(O) is the radical of the restriction fN |Fix(σ)×Fix(σ) of the polar form.

c. If ι|Z , id then Fix(σ) = Trσ(O) and dimS Fix(σ) = 8.

Proof. As in 2.2 we abbreviate S B FixZ(ι); then Trσ is S-linear and the kernel of Trσ is Fix(σ).
We treat the three cases separately:

If ι = id then S = Z and dimZ Trσ(O) = dimZ(O/Fix(σ)) = 1 < 7 = dimZ Fix(σ). The
observation Z ≤ Trσ(O) now yields Trσ(O) = Z = 1⊥ = Fix(σ)⊥.

If ι , id but S = Z then Fix(ι) ≤ Fix(κ) by 2.1. We pick b ∈ O such that Trι(b) ∈ Z r {0};
such a b exists by 2.3. Then the subalgebra Z(b) = Z + Zb is invariant under ι and also
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invariant under κ by 1.1. Both ι and κ induce the generator of the Galois group Gal(Z(b)/Z)
on Z(b). Thus σ(b) = b, and dimZO = dimZ Fix(σ)+dimZ Trσ(O) yields dimZ Trσ(O) ≤ 3. From
Fix(κ)∩Fix(σ) = Fix(ι) we infer that Trσ(Fix(κ)) has dimension 3. Thus dimZ Trσ(O) = 3. Now
Fix(σ) contains Fix(ι) and b < Fix(ι). Comparing dimensions we find Fix(σ) = Fix(ι) ⊕ Zb.

For any x ∈ Fix(σ) and y ∈ O we use 1.2 to compute 〈x|Trσ(y)〉 = 〈x|y〉 + 〈x|σ(y)〉 =
〈x|y〉 + 〈σ(x)|σ(y)〉 = 〈x|y〉 + 〈x|y〉 = 0. Thus Trσ(O) ≤ Fix(σ)⊥, and equality follows because
the dimension is the right one.

Finally, consider the case where S , Z. Pick z ∈ Z such that ι(z) = z + 1. Then O =
Fix(ι)⊕ z Fix(ι) and for any x, y ∈ Fix(ι) we compute σ(x + zy) = x + y(z + 1) = x + y + zy. Thus
x + zy is fixed by σ precisely if y = x + x, and dimS Fix(σ) = 8 = dimS Trσ(O). This means that
Fix(σ) and Trσ(O) coincide. �

In 7.4 and 8.1 below we will locate the norms and traces of non-standard involutions more
explicitly.

4 Existence of involutions

4.1 Lemma ([11, 20.16]). Let B and C be subalgebras of A with B ≤ C. If the restriction of the polar
form fN of the norm N to B is non-zero then the restriction of fN to C is non-degenerate. �

4.2 Lemma. Let A be a composition algebra over R, with standard involution κ : x 7→ x and
multiplicative norm N : x 7→ N(x) B xx. Consider a subalgebra B such that dimR A = 2 dimR B and
the restriction of the polar form fN to B is non-zero, and pick any a ∈ B⊥ with γ B N(a) , 0. Then A
is the γ-double of B, i.e., we have A = B ⊕ Ba and the multiplication is given by

(u + xa)(v + ya) = (uv + γyx) + (yu + xv)a

for all u, x, v, y ∈ B. If α is a Z-linear automorphism of O with α(B) = B then there exist c, p ∈ B
with N(c) , 0 and N(p) = 1 such that α(v + ya) = cvc−1 + (pcyc−1)a holds for all v, y ∈ B.

Proof. See [8, 1.5.1] and [8, Sec. 2.1]. �

4.3 Proposition. For each quaternion subfieldH of O there exists an involutory Z-linear automor-
phism of O leavingH invariant (but acting non-trivially onH).

Proof. Pick a ∈H⊥r{0}, thenO =H⊕Ha is the N(a)-double ofH, see 4.2. The automorphism
α : O = H ⊕Ha : x + ya 7→ cxc−1 + (pcyc−1)a is an involution whenever we take c ∈ H r {0}
such that c is orthogonal to both 1 and p because then c = c yields c2

∈ Z and pcpc−1 = 1. �

Our next aim is to construct involutory Z-linear automorphisms with given sets of fixed
points. We will also see that such an involution is not determined by its set of fixed points.
This is in marked contrast to the case of non-linear automorphisms, or the situation if the
characteristic is different from 2; see [5, 3.4].

We start with an observation by Faulkner [2, 4.11]:

4.4 Lemma. Let D = D⊥ be a (four-dimensional commutative) subalgebra of O. For each s ∈ OrD
there exists a unique Z-linear automorphism αs of O with D ≤ Fix(αs) such that α2

s = id and
αs(s) = s. �
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4.5 Theorem. Let D = D⊥ be a (four-dimensional commutative) subalgebra of O, and pick c ∈ OrD.
Then O = D ⊕Dc, and a map α : O→ O belongs to the global stabilizer of D in Aut(O) precisely if
there exists u ∈ D with u2 = 〈c|u〉 such that α(x + yc) = x + yu + yc for all x, y ∈ D. In particular,
we have α2 = id.

Proof. If a Z-linear automorphism γ of O fixes D globally then it induces an element of the
Galois group Gal(D/Z) on D. As the extension D/Z is purely inseparable, this group is trivial,
and γ fixes D pointwise. We write γ(c) = u + vc with u, v ∈ D. The intersection D ∩ c⊥ is
invariant under γ because the latter acts trivially on D. Thus (D ∩ c⊥)⊥ = D⊥ + c⊥⊥ = D + Zc
is also invariant, and v ∈ Z follows. If c , c then c + c = γ(c + c) = v(c + c) yields v = 1, and
γ2 = id follows. If c = c we use temporarily replace c by an element with non-vanishing trace
to see γ2 = id and then compute c = γ2(c) = u + v(u + vc) = (u + vu) + v2c ∈ D ⊕ Dc to see
v = 1, again.

From N(c) = γ(N(c)) = N(γ(c)) = (u + c)(u + c) = (u + c)(u + c) = u2 + 〈c|u〉 + N(c) we now
infer u2 = 〈c|u〉. Thus every Z-linear automorphism stabilizing D is an involution of the form
given in the statement of the theorem.

Conversely, consider u ∈ D with u2 = 〈c|u〉. In order to show that α(x + yc) B x + yu + yc
defines an automorphism of O we put s B uc, then s = cu = cu = uc + u2. For any y ∈ D
we obtain yc = (u−1yu)c = N(u)−1((uy)u)c = N(u)−1u(y(uc)) by one of the Moufang identities.
Using the automorphism αs from 4.4 we compute αs(x + yc) = αs

(
x + N(u)−1u(y(uc))

)
=

αs(x) +αs
(
N(u)−1u(ys)

)
= x + N(u)−1u(ys) = x + N(u)−1u(y(uc + u2)) = x + yc + uy = x + yc + yu.

Thus α = αs is an automorphism. �

4.6 Corollary. The (global) stabilizer of a four-dimensional commutative subalgebra of O in the
group of Z-linear automorphisms is an elementary abelian group. �

Every involutory Z-linear anti-automorphism arises from an involution as in 4.3:

4.7 Lemma. Let σ be a Z-linear involutory anti-automorphism of O. Then every element of O lies
in a quaternion subalgebra which is invariant both under σ and under ι = σ ◦ κ. Moreover, if σ , κ
then the restrictions of σ and κ to that subalgebra are distinct.

Proof. Every Z-subalgebra A of O is invariant under κ because a ∈ A implies a ∈ Z + Za ⊆ A.
Thus the case σ = κ is clear; we concentrate on the case σ , κ.

Consider x ∈ O. We will construct a subalgebraH containing x such that dimZH = 4 and
κ|H , id; then κH has non-degenerate polar form (by [11, 20.16], see 4.1), andH is indeed a
quaternion algebra.

If x ∈ Z then we choose y ∈ O r (Fix(σ) ∪ Fix(κ)). Then either y and σ(y) generate a
four-dimensional subalgebraH or σ(y) ∈ Z(y). In the latter case we adjoin w ∈ Fix(σ) r Z(y)
to Z(y) and putH B Z(y) + Z(y)w.

If x = σ(x) < Z we choose w ∈ Fix(σ) r (Z(x) ∪ Fix(κ)) and putH B Z(x) + Z(x)w.
There remains the case where x , σ(x). The Z-algebra A generated by x and σ(x) cannot

be purely inseparable because σ|A , id is an involution. From 4.1 we infer that either A is a
quaternion algebra (and we putH B A) or dimZ A = 2 and A = Z(x). In the latter case, we
pick w ∈ Fix(σ) r Z(x) and putH B Z(x) + Z(x)w.

In any case, we have defined a non-commutative four-dimensional subalgebra H which
is invariant under σ. If the restrictions σ|H and κ|H were the same then H ≤ Fix(ι) would
imply that H is commutative, see 2.1. This would contradict the fact that κ|H , id by
construction. �
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5 Polarities

A polarity of a projective plane is a map π interchanging points with lines such that incidence
is preserved and π2 = id. We consider the set Abs(π) of absolute points; i.e. points incident
with their image under π. The pair (p, π(p)) is called an absolute flag if p lies on π(p).

If there exists an absolute point we may use flag-transitivity of the automorphism group
of P2(O) to achieve that the point∞ is absolute, with π(∞) = L∞. SinceO has characteristic 2
there do exist polarities with precisely one absolute flag; cf. 9.1 below.

Polarities with this absolute flag and at least one more absolute point can be treated as
in [9], [10]. In particular, we have the following source of examples:

5.1 Construction ([6, 4.5]). Let σ be an involutory anti-automorphism of O.
a. The map (u, v) 7→ [σ(u),−σ(v)] extends to a polarity σ̂with σ̂([c]) = (σ(c)) and σ̂(∞) = L∞.
b. The set of affine absolute points is Aσ = {(u, v) | u, v ∈ O, σ(v) + v = σ(u)u}, and Uσ B

Aσ ∪ {∞} is the set of all absolute points.
c. For x, y ∈ K we put

ξx,y : (u, v) 7→
(
u + x, v + σ(x)u + y

)
.

Then Ξσ B {ξx,y | x, y ∈ K, σ(y) + y = σ(x)x} is a subgroup of the centralizer of the polar-
ity σ̂.

d. The subgroup Tσ B {ξ0,p | p ∈ Fix(σ)} of Ξσ fixes each line through∞ and acts regularly
on the set of affine absolute points on any vertical line. �

5.2 Proposition. The group Tσ contains the commutator group of Ξσ. Equality holds precisely if
σ|Z , id.

Proof. A straightforward computation yields ξ−1
a,b ◦ ξ

−1
x,y ◦ ξa,b ◦ ξx,y = ξ0,σ(a)x+σ(x)a. Thus the set

of commutators equals {ξ0,t | ∃y ∈ O : t = Trσ(y)}. Now 3.2 gives the assertion. �

5.3 Remark. If σ is a non-standard Z-linear involutory anti-automorphism then it turns out
(see 7.5 below) that Ξσ = Tσ is an elementary abelian group.

In fact, the construction in 5.1 yields (up to conjugation) each polarity with more than one
absolute point.

5.4 Theorem ([5, 3.4]). Let P be a projective plane with a polarity π. If P is a translation plane and
π has at least two absolute points then there is a semifield K with an anti-automorphism σ and an
isomorphism η : P → PK such that η ◦ π ◦ η−1 = σ̂, as defined in 5.1. �

Since Aut(P2(O)) acts transitively on quadrangles, we obtain:

5.5 Corollary. Every polarity of P2(O) with at least two absolute points is conjugate to a polarity σ̂
defined by an involutory anti-automorphism σ of O. �

Combining 5.5 with 2.2 and 2.1 we thus know all polarities of P2(O) that have at least two
absolute points. See 9.1 for examples of polarities with only one absolute point and Section 10
for a very brief discussion of the problem of existence of polarities with no absolute points
at all.
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6 The centralizer, and conjugacy

6.1 Example (see [7, 3.5 (22), p. 107]). Mapping (x, y) ∈ O × (O r {0}) to (xy−1, y−1) and [m, b]
to [−b−1m, b−1] extends to a collineation that centralizes each one of the polarities σ̂ where σ
is an involutory anti-automorphism of O.

Together with the group Ξσ from 5.1 we obtain:

6.2 Theorem. The centralizer Ψσ of σ̂ acts two-transitively on Uσ.

Since Ξσ acts sharply transitively on Uσ r {∞} it remains to determine the stabilizer ∇σ of
the two absolute points o = (0, 0) and∞ in order to find the stabilizer of∞ in the centralizer
Ψσ. The group ∇σ also fixes the pole σ̂([0]) = (0). We study ∇σ in [5].

6.3 Proposition. Let σ and ϑ be involutory anti-automorphisms of O. Then ∇σ acts transitively on
[0, 0]r {(0, 0)}, and σ̂ and ϑ̂ are conjugates under Aut(P2(O)) if, and only if, the involutions σ and ϑ
are conjugates under Aut(O).

Proof. The assertion about transitivity is proved in [5, 5.3]. Clearly σ̂ and ϑ̂ are conjugates
under Aut(P2(O)) if σ and ϑ are conjugates under Aut(O). The converse has been proved
in [5, 4.3]. �

7 Polarities induced by linear involutions

From 5.2 we infer for the standard involution κ :

7.1 Theorem. Tκ = Z(Ξκ) = {ξ0,p | p ∈ Fix(κ)} and Ξ′κ = {ξ0,t | t ∈ Z(O)}. �

The rest of this section is concerned with the fact that the set of all absolute points is
collinear (in fact, contained in the vertical [0]) if σ is Z-linear but σ , κ. We study the
quaternion case first.

7.2 Theorem. Let H be a quaternion field of characteristic 2 and let σ be an involutory anti-
automorphism that is linear over the center Z of H. If σ is not the standard involution then the absolute
points of the polarity σ̂ are collinear. Explicitly, the set of absolute points is {(0, y) | y ∈ Fix(σ)}∪ {∞}.

Proof. Every Z-linear automorphism ofH is inner (by the Skolem-Noether Theorem). Thus
each Z-linear anti-automorphism σ is of the form σ(w) = awa−1 with some a ∈ H, and
σ2 = id ⇐⇒ a = ±a ⇐⇒ a2

∈ Z. If this is the case then there exists a subfield B ≤H which
is a separable extension of Z and contained in a⊥. ThusH is the γ-double of B, see 4.2.

For any w = v+ya ∈Hwith v, y ∈ B we computeσ(w) =
(
a(v + ya)

)
a−1 = (av)a−1+ay = v+ya

and then σ(w) w = (v + ya)(v + ya) = (v2 + y2γ) + (vy + vy)a and σ(w) + w = (y + y)a. Thus the
set of traces of σ is Za.

Now γ = a2 cannot be the square of an element of B because the extension B/Z is separable
while Z(a)/Z is inseparable (it is here that we use charH = 2). Thus σ(w) w is a trace of σ
only if w = 0. This means that the set Uσ of absolute points of the polarity σ̂ is contained in a
single line, cf. 5.1.b. �

7.3 Theorem. Let O be an octonion field of characteristic 2 and let σ be an involutory anti-
automorphism that is linear over the center Z of O. If σ is not the standard involution then the absolute
points of the polarity σ̂ are collinear. Explicitly, the set of absolute points is {(0, y) | y ∈ Fix(σ)}∪ {∞}.
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Proof. It is clear that the vertical [0] contains infinitely many absolute points, namely those
in {(0, y) | y ∈ Fix(σ)}.

Aiming at a contradiction, we assume that there exists an absolute point (u, v) with u , 0.
Now 4.7 yields that u is contained in some σ-invariant quaternion fieldH. According to 7.2
there is no y ∈ H with σ(u)u = σ(y) + y. Thus the affine subspaces v + Fix(σ) and H
have empty intersection. This means H ⊆ Fix(σ), contradicting the fact that σ induces an
anti-automorphism on the non-commutative quaternion fieldH. �

7.4 Proposition. Let σ be a non-standard Z-linear involutory anti-automorphism of O, and consider
the “norm” Nσ(x) B σ(x)x and the “trace” Trσ(x) B σ(x) + x.

a. The intersection of {σ(x)x | x ∈ O} and {σ(y) + y | y ∈ O} is Nσ(O) ∩ Trσ(O) = {0}.
b. The map Nσ : O→ O is injective, and it induces an injective frob-semilinear map

N̂σ : O→ Fix(σ)/Trσ(O) : x 7→ Nσ(x) + Trσ(O)

where frob: s→ s2 is the Frobenius endomorphism.
c. If Nσ(x) + Trσ(u) = Nσ(y) + Trσ(v) then x = y and Trσ(u) = Trσ(v).
d. We have Fix(ι) = Z ⊕ Trσ(O) and Fix(σ) = Fix(ι) ⊕ Zb for any b ∈ O with Trι(b) ∈ Z r {0}.

Proof. The first assertion a is clear from 7.3. For the second one we assume Nσ(x) = Nσ(y)
and compute Nσ(x − y) = Nσ(x) + Nσ(y) + σ(x)y + σ(y)x. Using our assumption we find
Nσ(z) = σ

(
σ(y)x

)
+ σ(y)x = Trσ

(
σ(y)x

)
. Then assertion a yields x = y as claimed.

From Nσ(x) + Trσ(u) = Nσ(y) + Trσ(v) we infer Trσ(u) + Trσ(v) = Nσ(x) + Nσ(y) = Nσ(x + y) +
Trσ
(
σ(y)x

)
. Thus Nσ(x + y) is a trace, assertion a yields x = y, and assertion c is established.

Finally, choose any b ∈ O such that ι(b) + b ∈ Z r {0} and recall from 3.2 the decomposition
Fix(σ) = Fix(ι)⊕Zb. The set of traces forms a hyperplane in Fix(ι), cf. 3.2. Since each element
of Z r {0} yields a non-trivial element in Z ∩Nσ(O) assertion a yields Fix(ι) = Z ⊕ Trσ(O). It
remains to note Nσ(b) = b2 = bb + b ∈ Z(b) r Z to establish Fix(σ) = Fix(ι) ⊕ Zb. �

7.5 Corollary. If σ is a non-standard Z-linear involutory anti-automorphism of O then Ξσ = Tσ =
{ξ0,p | p ∈ Fix(σ)} is elementary abelian. �

7.6 Proposition. Let σ be a non-standard involutory Z-linear anti-automorphism of O. Put D B
Fix(κ ◦ σ). Then Fix(σ) = Nσ(O) + Trσ(O) holds precisely if Z = {u2

| u ∈ D}.

Proof. The set D is a four-dimensional purely inseparable extension of Z, see 2.1. From 4.4
we know that there exists s ∈ O rD such that (κ ◦ σ)(x + ys) = x + ys for x, y ∈ D. This gives
σ(x + ys) = x + sy. We have s , s because σ , κ; in particular, we have (Z + Zs) ∩D = Z.

Clearly D + Zs is contained in Fix(σ), and dim Fix(σ) = 5 yields D + Zs = Fix(σ) = ker Trσ,
see 3.2.b. For x, y ∈ D we compute Trσ(x + ys) = x + sy + x + ys = sy + ys = 〈s|y〉 + (s + s)y.
These elements lie in s⊥. The intersection of Z and Trσ(O) is trivial because 〈s|1〉 = s + s , 0.
Comparing dimensions we get Trσ(O) = {〈s|y〉 + (s + s)y | y ∈ D} = D ∩ s⊥.

We abbreviate Q B {u2
| u ∈ D} = Nσ(D) = Nκ(D) ⊆ Z and obtain

Nσ(x + ys) = (x + sy)(x + ys)
= x2 + (sy)(ys) + x(ys) + (sy)x
= x2 + s2y2 + 〈x|ys〉 + (s + s)yx
= x2 + ssy2 + 〈x|ys〉 + (s + s)yx + (s + s)sy2

∈ Z + Z + Z + D + Qs = D + Qs.
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Now Zs ≤ Nσ(O) + Trσ(O) ⊆ Nσ(O) + D ⊆ D ⊕Qs implies Z = (s + s)Z ≤ Q and then Z = Q.
Conversely, assume Z = Q. Then Z and Zs are both contained in Nσ(O) + Trσ(O). We

already know (Z ⊕ Zs) ∩ Trσ(O) ≤ (Z ⊕ Zs) ∩D = {0}. Thus Z ⊕ Zs ⊕ Trσ(O) has dimension 5,
coincides with Fix(σ) and forces Nσ(O) + Trσ(O) = Fix(σ), as claimed. �

7.7 Remark. From 7.4.d we also see that Nσ(O) is far from being additively closed because
Z(b) and Z(c) may be quite different if Trι(b) and Trι(c) both lie in Z.

8 Polarities induced by involutions that are not linear

8.1 Lemma. Let σ be an involutory anti-automorphism with σ|Z , id and put ι = σ ◦ κ.
a. If charO = 2 then Fix(σ) ∩ Fix(ι) = {x ∈ Fix(ι) | x = x} is a hyperplane in Fix(ι). Picking

z ∈ Z with ι(z) = z + 1 ( = σ(z)) and w ∈ Fix(σ) with w = w + 1 ( = σ(w)) we obtain
w + z ∈ Fix(σ) and thus Fix(σ) = (Fix(σ) ∩ Fix(ι)) ⊕ S(w + z).

b. If charO , 2 then the intersection Fix(σ) ∩ Fix(ι) = S has dimension 1. We pick any
z ∈ Z r {0} with ι(z) = −z. For each w ∈ Fix(σ) with w = −w we then have wz ∈ Fix(σ), and
Fix(σ) = S ⊕ {w ∈ Fix(ι) | w = −w}z.

Proof. From 3.2 we know dimS Fix(σ) = 8. Thus it suffices to check that the given sets are
contained in Fix(σ); this is easy. �

9 Polarities with precisely one absolute point

One knows (see [6, 2.7]) that a polarity of a translation plane cannot have precisely one
absolute point if the characteristic of that plane is different from 2. For the case that we study
here, the situation is different:

9.1 Proposition. Let A be a non-commutative composition algebra with char A = 2 and without
divisors of zero; and let σ be an involutory anti-automorphism of A. If Fix(σ) , Nσ(A) + Trσ(A)
then the projective plane over A admits polarities with precisely one absolute point. More explicitly:

a. The product of σ̂ ◦ ξ0,z has more than one absolute flag whenever z ∈ Nσ(A) + Trσ(A).
b. The polarity σ̂ ◦ ξ0,x has precisely one absolute flag whenever y ∈ Fix(σ) r (Nσ(A) + Trσ(A)).

Proof. The (involutory) translation ξ0,y mapping (u, v) to (u, v + y) centralizes the polarity σ̂
precisely if σ(y) = y, see 5.1. In that case the product πy B σ̂ ◦ ξ0,y is a polarity, and (∞,L∞)
is an absolute flag of πy. There are no other absolute points on L∞, and the affine absolute
points are of the form (u, v) with Nσ(u) + y = Trσ(v). Choosing y ∈ Fix(σ) r (Nσ(A) + Trσ(A))
we obtain that πy has no affine absolute point. �

9.2 Examples. a. The standard involution κ of A fixes each point of the hyperplane
Fix(κ) = 1⊥. We have Nκ(A) ⊆ Trκ(A) = Z $ Fix(κ) where Z is the center of A.
Thus κ satisfies the requirement on σ in 9.1.

b. If σ is a non-standard Z-linear involutory anti-automorphism then it depends on the
finer structure of squares in A whether Nσ(A) + Trσ(A) fills all of Fix(σ), see 7.6.

c. For involutions that are not linear over Z we always have that every fixed point is a
trace, see 3.2. Thus we cannot construct polarities with only one absolute point from
the corresponding polarities.
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9.3 Remark. There do exist (orthogonal) polarities of pappian planes over suitable com-
mutative fields of characteristic 2 with precisely one absolute point (cf. [4, 3.5]): if there are
sufficiently many square classes one may use a non-degenerate diagonal bilinear form which,
considered as a semilinear map with respect to the Frobenius endomorphism frob: s 7→ s2,
has a kernel of dimension one. These polarities may be interpreted as analogues of those
constructed in 9.1; the involution is the identity, the norm is the square, and the traces are
zero.

The following general result shows that every polarity with precisely one absolute point
arises from a polarity with more absolute points, as in 9.1.

9.4 Theorem. If π is a polarity of a translation plane with precisely one absolute point then the
translation plane has characteristic 2 and there exists a translation τ in the centralizer of π such that
π ◦ τ is a polarity with at least two absolute points.

Proof. Let π be such a polarity. From [6, 2.7] we know that the plane has characteristic two.
If the translation plane is not a Moufang plane then it has Lenz type V and the absolute flag

is the (uniquely determined) flag (∞,L∞) such that L∞ is the translation axis and∞ forms the
translation axis of the dual plane. If we have a Moufang plane and (∞,L∞) is already used
to denote a flag then flag-transitivity allows to choose the absolute flag as (∞,L∞).

We start introducing coordinates from a semifield S by choosing any line [0] , L∞
through ∞, any point (0, 0) , ∞ on [0] and putting (0) B π([0]). The intersection point
of [0] and π((0, 0)) will be denoted by a; then π(a) is the line [0, 0] joining π([0]) = (0) and
π2((0, 0)) = (0, 0). Let τ denote the translation mapping (0, 0) to a.

We claim that the duality π ◦ τ is a polarity, i.e. that λ B (π ◦ τ)2 is the identity. The
conjugate τ′ B π ◦ τ ◦ π is a translation because (∞,L∞) is an absolute flag. As the plane
has characteristic two it suffices to show τ′ ((0, 0)) = τ ((0, 0)); this equality follows from
π (τ (π ((0, 0)))) = π (τ ((0) ∨ a)) = π ((0) ∨ (0, 0)) = π ([0, 0]) = a = τ ((0, 0)). �

We return to the study of the octonion plane again. The translation τ in 9.4 centralizes π
and thus of course also centralizes π ◦ τ which is a conjugate of σ̂ for some involutory
anti-automorphism σ of O, cf. 5.5. For any involutory anti-automorphism σ of O and any
translation τ we have σ̂ ◦ τ = τ ◦ σ̂ precisely if τ ∈ Tσ, i.e., if τ(0, 0) = (0, t) with t ∈ FixO(σ).
We know from 9.1 that σ̂ ◦ τ has more than one absolute flag precisely if t ∈ Nσ(O) + Trσ(O).
All the polarities obtained in this way are conjugates of σ̂:

9.5 Lemma. Let σ be an involutory anti-automorphism of O. For a, c ∈ O define

µa,b : O2
→ O2 : (x, y) 7→ (x + a, y + σ(a)x + c) .

Then µa,c describes an element of Aut(P2(O)) and µa,c ◦ σ̂ ◦ µ
−1
a,c = σ̂ ◦ ξ0,z with z B Nσ(a) + Trσ(c).

Proof. The map µa,c is the product of a shear and a translation, and thus a collineation; the
line map is given by µa,c([m, b]) = [m+σ(a), b+c−ma−Trσ(a)]. A straightforward computation
yields µa,c ◦ σ̂ = σ̂ ◦ ξ0,z ◦ µa,c. This means µa,c ◦ σ̂ ◦ µ

−1
a,c = σ̂ ◦ ξ0,z, as claimed. �

9.6 Theorem. Let σ be an involutory anti-automorphism of O, and consider τ, η ∈ Tσ. Then the
polarities σ̂ ◦ τ and σ̂ ◦ η are conjugates under the flag stabilizer Aut(P2(O))∞,L∞ if, and only if, there
exist a, c ∈ O and ψ ∈ ∇σ such that τ ◦ ψ ◦ η−1

◦ ψ−1 = ξ0,z for z B Nσ(a) + Trσ(c).

10
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Proof. Assume first that there exists ϕ ∈ Aut(P2(O))∞,L∞ such that ϕ◦ σ̂◦η◦ϕ−1 = σ̂◦τ. Then
ϕ ◦ σ̂ ◦ϕ−1 = σ̂ ◦ τ ◦ϕ ◦ η−1

◦ϕ−1 is a polarity with more than one absolute flag. From 9.1 we
know that τ ◦ ϕ ◦ η−1

◦ ϕ−1 = ξ0,z where z = Nσ(a) + Trσ(c) for some a, c ∈ O.
Now 9.5 saysµa,c◦σ̂◦µ

−1
a,c = σ̂◦ξ0,z = ϕ◦σ̂◦ϕ−1, andµ−1

a,c◦ϕ lies in the centralizer Ψσ = ∇σΞσ.
Thus there exist ψ ∈ ∇σ and ξ ∈ Ξσ such that ϕ = µa,c ◦ ψ ◦ ξ. As Tσ is centralized by ξ, µa,c
and normalized by ψ, we obtain ξ0,z = τ◦ϕ◦η−1

◦ϕ−1 = τ◦µa,c ◦ψ◦ξ◦η−1
◦ξ−1

◦ψ−1
◦µ−1

a,c =
τ ◦ µa,c ◦ ψ ◦ η−1

◦ ψ−1
◦ µ−1

a,c = τ ◦ ψ ◦ η−1
◦ ψ−1.

In order to prove the converse, we assume the existence ofψ and a, c with τ◦ψ◦η−1
◦ψ−1 =

ξ0,z for z = Nσ(a) + Trσ(c). Using 9.5 and the fact that µa,c centralizes Tσ = ψ ◦ Tσ ◦ ψ−1 we
verify σ̂◦τ =

(
σ̂ ◦ ξ0,z

)
◦

(
ξ−1

0,z ◦ τ
)

=
(
µa,c ◦ σ̂ ◦ µ

−1
a,c

)
◦

(
ψ ◦ η ◦ ψ−1

)
=
(
µa,c ◦ (ψ ◦ σ̂ ◦ ψ−1) ◦ µ−1

a,c

)
◦(

µa,c ◦ (ψ ◦ η ◦ ψ−1) ◦ µ−1
a,c

)
= (µa,c ◦ ψ) ◦ (σ̂ ◦ η) ◦ (µa,c ◦ ψ)−1. �

9.7 Remark. If one of the polarities σ̂ ◦ τ and σ̂ ◦ η in 9.6 has only one absolute flag then
the extra restriction is superfluous because any conjugating element has to fix the unique
absolute flag.

9.8 Theorem. Let ϑ and σ be involutory anti-automorphisms of O and consider ξ ∈ Tϑ and τ ∈ Tσ.
a. If the polarities ϑ̂ ◦ ξ and σ̂ ◦ τ are conjugates under the stabilizer of (0) in Aut(P2(O)) then ϑ

and σ are conjugates under Aut(O).
b. If ϑ = κ then σ = κ holds whenever ϑ̂ ◦ ξ and σ̂ ◦ τ are conjugates under Aut(P2(O)).
c. In general, there may exist translations ζ, τ ∈ Tσ such that σ̂ ◦ τ and σ̂ ◦ ζ are polarities with

precisely one absolute flag but are not conjugates.

Proof. After 6.3 it suffices to consider the case where (∞,L∞) is the unique absolute flag of
both ϑ̂◦ξ and σ̂◦τ. Assume thatϕ is an automorphism of P2(O) such thatϕ◦(ϑ̂◦ξ)◦ϕ−1 = σ̂◦τ.
Then ϕ fixes the absolute flag, and is thus of the form ϕ = ζ ◦ψwith a translation ζ : (u, v) 7→
(u + z1, v + z2) and some Z(O)-semilinear bijection ψ : O2

→ O2. The latter is given by
ψ(u, v) = (A(u),B(u) + C(v)) with semilinear bijections A, B, and C; the line map is of the form
ψ([m, b]) = [D(m) + p,C(b)] with a semilinear bijection D and a constant p ∈ O.

If ϕ fixes (0) then B = 0 and p = 0. We compute the values of ϕ ◦ (ϑ̂ ◦ ξ) = (σ̂ ◦ τ) ◦ ϕ at an
arbitrary line [u, v] and evaluate the results in the special cases u = 0 and v = 0, respectively.
Returning to the general case gives the conditions z1 = 0, A ◦ ϑ = σ ◦ D, and C ◦ ϑ = σ ◦ C.
This yields ψ ◦ ϑ̂ = σ̂ ◦ ψ, and assertion a is established.

If ϑ = κ we recall from 5.1c that the subgroup Ξκ of the centralizer of κ̂ centralizes ξ ∈ Tκ
and then also κ̂ ◦ξ. The group Ξκ acts transitively1 on L∞ r {∞}, and we can thus replace any
conjugating element by one that fixes (0). Now a yields that σ is a conjugate of κ in Aut(O),
and assertion b follows from the fact that κ is central Aut(O), cf. 1.2.

The last (admittedly vague) claim is justified by 9.6. �

10 Elliptic polarities

A polarity is called elliptic if it has no absolute points at all. It appears that elliptic polarities
are hard to understand even if we consider projective planes over commutative fields; there
the existence of elliptic polarities depends on the existence of anisotropic bilinear or hermitian
forms. Studying the product of a (hypothetical) elliptic polarity with a suitable conjugate

1 This argument breaks down if ϑ is linear but not standard because then Ξϑ = Tϑ acts trivially on L∞.
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of κ̂ and the involution from 6.1 one can at least derive a necessary (but in general by no
means sufficient) condition for the existence of elliptic polarities: one needs an anisotropic
quadratic map from O × Z(O) to O.

11 Unitals

The polar unital (Abs(π),B) of a polarity π is the set Abs(π) of absolute points together with
the system B of secants (lines that meet Abs(π) in more than one point). Often one replaces
each secant with the subset of points of Abs(π) that are collinear with it; these subsets are
called the blocks of the unital. Note that it may happen that the unital degenerates to a
collinear set of points (possibly consisting of less than two points). In our context, unitals
with just one block occur if π is a conjugate of σ̂ for a linear involution σ , κ, see 7.3. Unitals
with just one point do occur, as well, see 9.1. We have left open whether elliptic polarities
(with empty unitals) are possible.

11.1 Definition. Let π be a polarity, and let a be an absolute point of π. By a tangent to Abs(π)
in a we mean a line L such that L ∩Abs(π) = {a}.

11.2 Proposition. Let π be any polarity of P2(O) such that Abs(π) is not contained in a line. Then
there is a unique tangent to Abs(π) in any absolute point.

Proof. On any absolute line there is exactly one absolute point (namely, the pole of that line).
Thus π(a) is a tangent to Abs(π) in a ∈ Abs(π). If Abs(π) is empty, we have nothing to prove.
If Abs(π) is non-empty but contained in a line L then any other line meeting L in an absolute
point is a tangent.

In order to see uniqueness in the remaining cases, we infer from 5.4, 3.1 and 3.2 that it
suffices to consider π = σ̂ for an involutory anti-automorphism σ that is not Z-linear and for
σ = κ. Transitivity of Ψσ on Abs(π) allows to concentrate on the non-absolute (i.e., affine)
lines through ∞. Now [c] meets Abs(π) in an affine point because the norm Nσ(c) is a trace
of σ by 3.2 and 5.1. Thus [c] is not a tangent. �

11.3 Remark. In a translation plane with characteristic different from two the uniqueness
of tangents to the set of absolute points of a polarity of the projective plane over S is not a
problem. Indeed by [5, 5.3]. such a polarity is either elliptic or of the form σ̂ for a suitable
involutory anti-automorphism of some semifield S with char S , 2, and Nσ(c) = Trσ

(
1
2 Nσ(c)

)
holds for any c ∈ S. This shows that no vertical line is a tangent; thus the tangent through∞
is unique.

Since Ξσ acts transitively on Abs(π) r {∞} it remains to consider tangents through (0, 0);
here it suffices to show that [m, 0] is a secant if m , 0. Now that line contains the absolute
point (2σ(m), 2m σ(m)) , (0, 0).

For any unital (Abs(π),B) we study the group Aut(Abs(π),B) of abstract automorphisms,
i.e. permutations of Abs(π) that preserve the system of blocks (but need not necessarily be
induced by collineations of P that leave Abs(π) invariant). Experience has shown that the
groups of translations of the unital are important: For any point x of the unital the group of
translations of the unital with center x consists of all elements of Aut(Abs(π),B) that fix each
block through x. We will denote by T the group generated by all translations of the unital.

11.4 Theorem ([6, 7.2]). If σ = κ or σ|Z , id then Tσ is the full group of translations at ∞, and
Aut(Uσ,Bσ) is a subgroup of Aut(T). �
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12 Open questions

12.1 Problem. Determine the centralizer in Aut(P2(O)) for each one of the polarities consid-
ered in the present paper, and clarify its structure.

12.2 Problem. Let σ be an involutory anti-automorphism ofO, and assume σ = κ or σ|Z , id.
Is it then true that the centralizer of σ̂ coincides with the group of all collineations of P that
leave the unital invariant?

The restrictions in 12.2 are due to the following observation:

12.3 Example. It is not true that the centralizer of σ̂ coincides with the group of all collineations
of P that leave the unital invariant, if σ is a Z-linear involutory anti-automorphism different
from the standard one.

In order to be explicit, we consider for r ∈ Z r {0} the collineations

δr : (x, y) 7→ (x, ry), [m, b] 7→ [rm, rb] , δ′r : (x, y) 7→ (rx, y), [m, b] 7→ [r−1m, b] .

If σ , κ is a Z-linear anti-involution then δr and δ′r both leave the (collinear) set Abs(σ̂)
invariant but none of them centralizes σ̂ if r , 1.
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