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Abstract

This paper examines the k-nearest neighbours method in functional non-parametric regression
for α-mixing data. We prove almost complete convergence and give the almost complete
convergence rate the k-NN kernel estimate. The results are obtained on the one hand by
using results on the classical functional kernel estimate, where a deterministic bandwidth
sequence is used, and on the other hand by applying lemmas from Bradley and Burba et al.
The latter one was already used for the k-nearest neighbours kernel estimate for independent
data. Finally, we give an outline on how to avoid the drawback of susceptibility of the k-
nearest neighbours kernel estimate to outliers.

1 Introduction

In this paper we examine the functional k-nearest neighbours, shortly k-NN, non-parametric re-
gression estimate in case of α-mixing data. The classical functional non-parametric regression
estimate (see e.g. by [11]) depends on a real-valued non-random bandwidth sequence hn. On the
contrary, the smoothing parameter of the k-NN regression estimate depends on the numbers of
neighbours at the point of interest at which we want to make a prediction. In cases where data
is sparse, the k-NN kernel estimate has a significant advantage over the classical kernel estimate.
The k-NN kernel estimate is also automatically able to take into account the local structure of the
data. This advantage, however, may turn into a disadvantage. If there is an outlier in the dataset,
the local prediction may be bad. To avoid this, a robust non-parametric regression ansatz may
be chosen (see Section 6 of this paper). Selecting the bandwidth depending on the data turns the
bandwidth into a random variable. Hence we are no longer able to use the same techniques in the
consistency proofs as in the case of a non-random bandwidth sequence.

The k-NN kernel estimate is a widely studied if the explanatory variable is an element of a
finite-dimensional space, see Györfi et al. [12]. For functional explanatory variable and with real-
valued response variable, two different approaches for the k-NN regression estimation exist. The
first one, published by Laloë [13], examines a k-NN kernel estimate when the functional variable is
an element of a separable Hilbert space. For that case Laloë establishes a weak consistency result.
However, his ansatz is not completely functional. Laloë’s strategy is to reduce the dimension
of the input variable by using a projection onto a finite-dimensional subspace and then applying
multivariate techniques on the projected data. The second result, from Burba et al. [5], is based on
a pure functional approach instead. Burba et al. examine the problem on a semi-metric functional
space. They proved almost complete convergence and almost complete convergence rates for
independent data. Furthermore, Burba et al. extended a lemma that we will also use in our
proofs. This lemma originates from Collomb [7]. We will cite it in Section 4 and make some
additional comments on it. Additionally, the k-NN kernel estimate is examined for classification
in infinite dimension by Cérou and Guyader [6] and there exists a convergence result for the k-NN
regression estimate when the response is an element of a Hilbert space (see Lian [14]).

In the case of finite-dimensional explanatory variable, the k-NN kernel estimate for α-mixing
random variables is treated by Tran [18] and Lu and Cheng [15]. Both results are based on
Collomb’s [7] results. We combined their idea with Burba et alii’s [5] results to prove consistency
and the rate.

This paper is organised as follows. In Section 2 we present the k-NN kernel estimate. After-
wards, we introduce the assumptions and the main result, the almost complete convergence and
the almost complete convergence rate. In Section 4, some technical auxiliary results are deployed
and in Section 5, we show the proofs of our main result. In the end, we outline some applications
and discuss how to get a robust k-NN kernel estimate.

2 Method and Assumptions

Let (Xi, Yi)
n
i=1 be a dependent sequence identically distributed as (X,Y ), the latter being a random

pair with values in the measurable space (E×R, Ed ⊗ B). Here (E, d) is a semi-metric space and
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Ed is the σ–algebra generated by the topology of E that is defined by the semi-metric d, and B
is the Borel σ–algebra. In order to characterise the model of dependence, we use the notion of
α-mixing.

We examine the k-NN kernel estimate that is defined for x ∈ E as

m̂k-NN(x) =

n∑
i=1

Yi
K
(
H−1n,kd(x,Xi)

)
n∑
i=1

K
(
H−1n,kd(x,Xi)

) , if

n∑
j=1

K
(
H−1n,kd(x,Xi)

)
6= 0, (1)

otherwise m̂k-NN(x) = 0. K : R → R+ is a kernel function and Hn,k is the bandwidth that is
defined as

Hn,k := d(x,X(k)), (2)

where the sequence (X(i), Y(i))
n
i=1 is the re-indexed sequence (Xi, Yi)

n
i=1 such that

d(x,X(1)) ≤ d(x,X(2)) ≤ . . . ≤ d(x,X(n)).

From now on, when we refer to the bandwidth of the k-NN kernel estimate, we mean the number
of neighbours k we are considering.

To prove the almost complete convergence of the k-NN kernel estimate, we need some results
of the Nadaraya-Watson kernel estimate. Therefore, we present this kernel estimate here. Let x ∈
E, then

m̂(x) =

n∑
i=1

Yi
K
(
h−1n d(x,Xi)

)
n∑
i=1

K
(
h−1n d(x,Xi)

) , if

n∑
j=1

K
(
h−1n d(x,Xi)

)
6= 0, (3)

otherwise m̂(x) = 0. K is a kernel function and h := hn is a non-random bandwidth. Hereafter,
the notion kernel estimate will refer to the Nadaraya-Watson kernel estimate.

We consider two types of non-parametric models. The first one is called continuity-type, which
means that the regression function m is continuous and the second one, the Hölder-type, which
means that the regression function m is Hölder continuous with constant β > 0.

Prior to the presentation of our main results, we outline the assumptions.

(F) Let x ∈ E, then assume that the probability of observing the functional random variable X
around x is strictly positive, that means

∀ε > 0 : Fx(ε) := P (d(x,X) ≤ ε) > 0.

(K) We distinguish two types of kernel functions K:

(a) There exist constants 0 < C1 < C2 <∞ such that

∀u ∈ R : C11[0,1](u) ≤ K(u) ≤ C21[0,1](u).

(b) The kernel function K has its support in [0, 1], K is differentiable in [0, 1], K(1) = 0,
and there exist two constants −∞ < C1 < C2 < 0 such that

∀u ∈ [0, 1] : C1 ≤ K ′(u) ≤ C2.

Furthermore, we need following technical assumption

∃C > 0 ∃ε0 > 0 ∀ε < ε0 :

ε∫
0

Fx(u)du > CεFx(ε),

for details see [11, p. 44]
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(M) Assume that the conditional moments of Y are bounded,

∀m ∈N : E [|Y |m|X = x] < σm(x) <∞,

with σm(·) continuous at x ∈ E.

The sequence ((Xi, Yi)) is said to be α-mixing if

α(n) := sup
k

sup
A∈Ak1

sup
B∈A∞k+n

|P (A ∩B)− P (A) P (B) | → 0

as n→∞, where Aml is the σ-algebra generated by {(Xi, Yi), l ≤ i ≤ m}.

(A) Assume that the sequence (Xi, Yi) is arithmetic α-mixing (or algebraic), namely we have for
some C > 0 and rate b > 1: α(n) ≤ Cn−b.

The terms of covariance, which are a measure of dependence, are here denoted by

sn,1(x) :=

n∑
i,j=1

|Cov(∆i(x),∆j(x))| and sn,2(x) :=

n∑
i,j=1

|Cov(Yi∆i(x), Yj∆j(x))|,

where ∆i(x) := K(h−1d(x,Xi))/E
[
K(h−1d(x,X1))

]
. Note that we can split for example sn,2(x)

as

sn,2(x) =

n∑
i=1

Var [Yi∆i(x)]

︸ ︷︷ ︸
I

+

n∑
i,j=1
j 6=i

|Cov(Yi∆i(x), Yj∆j(x))|

︸ ︷︷ ︸
II

. (4)

Term II in (4) is a measure of the dependence of the random variables. We want to remark, if the
Xi are α-mixing then also the ∆i(x) are α-mixing, see e.g. Lemma 10.3 in [11, p. 155].

(D) Assume for the covariance term sn(x) := max {sn,1(x), sn,2(x)} that there exists a θ > 2

such that s
−(b+1)
n = o

(
n−θ

)
, where b is the rate of the mixing coefficient (see Condition

(A)).

(B) Assume for the sequence of bandwidths k := kn that there exists a γ ∈ (0, 1) such that
k ∼ nγ .

Condition (B) is not to be more restrictive than in the independent case. However, for their
consistency result Burba et al. [5] need the following two conditions, k/n → 0 and log n/k → 0
as n → ∞, so k must exceed logarithmic order. As Lian comments in [14], in most cases in the
functional context the small ball probability is of exponential-type. Hence the convergence speed
is logarithmic, no matter if the number of neighbours k increases logarithmically or polynomially.
For example, if we have for the small ball probability

Fx(h) ∼ exp

(
− 1

hτ

)
, then F−1

(
k

n

)
∼

(
1

log
(
k
n

))τ ,
where F−1x (y) := inf{h|Fx(h) ≥ y} (see [14]). It can be easily seen that the order of k is less
important for such small probabilities.

(D1) This condition is on the distribution of two distinct pairs (Xi, Yi) and (Xj , Yj). We assume
that

∀i 6= j : E [YiYj |XiXj ] ≤ C <∞,
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and the joint distribution functions P (Xi ∈ B(x, h), Xj ∈ B(x, h)) satisfy

∃ε1 ∈ (0, 1] : 0 < Gx(h) = O
(
Fx(h)1+ε1

)
,

where

Gx(h) := max
i,j∈{1,...,n},i6=j

P (Xi ∈ B(x, h), Xj ∈ B(x, h)) .

Condition (D1) is, as Ferraty and Vieu [11, p. 163] in Note 11.2 describe, not too restrictive. For
example, if we choose E = Rp, then ε1 = 1 as soon as each pair of random variables (Xi, Xj) has
a bounded density fi,j with respect to the Lebesgue measure.

Next, we formulate a more general condition on the joint distribution function.

(D2) Define χ(x, h) := max
{

1, Gx(h)/(Fx(h))2
}

and s := 1/(b + 1) with b as the rate of the
mixing coefficient. Then assume that

log (n)χ(x, h)1−sn1+s

k2
→ 0 as n→∞.

3 Almost Complete Convergence and Almost Complete Con-
vergence Rate

Before we present the consistency result of the k-NN estimate the almost complete convergence1

result of the kernel regression estimate m̂(x) of Ferraty and Vieu [11] is presented. All results
presented here assumes a sequence of α-mixing random variables ((Xi, Yi)) (see Condition (A)).

Theorem 3.1 (Ferraty and Vieu [11], p. 63). Assume that the regression function is of continuity-
type, furthermore assume (F), (K), and (M). Additionally, suppose for the bandwidth that hn → 0
and log n/(nFx(hn))→ 0 as n→∞. Then we have for x ∈ E

lim
n→∞

m̂(x) = m(x) almost completely.

The following theorem gives almost complete rates2.

Theorem 3.2 (Ferraty and Vieu [11], p. 80). Assume the same conditions as in Theorem 3.1,
and a Hölder-type model instead of a continuity-type model. Then we have for x ∈ E

m̂(x)−m(x) = O
(
hβ
)

+Oa.co.

(√
sn(x) log n

n

)
.

Now we state the almost complete convergence result for the non-parametric k-NN kernel estimate,
introduced in (1).

Theorem 3.3. In the case of a continuity-type model, we suppose condition (F) for the small ball
probability, (K) for the kernel function, (B) for the bandwidth k. Either assume that Condition
(D1) holds with b > max {3/(2γ)− 1, (2− γ)/(ε1(1− γ))}, where γ is the constant in Condition
(B) and ε1 the constant in Condition (D1). Or assume that Condition (D2) is enforced, with rate
b > 3

2γ − 1. Then we have for x ∈ E

lim
n→∞

m̂k-NN(x) = m(x) almost completely.

1We recall that Xn → X almost completely if and only if ∀ε > 0 :
∞∑

n=1
P (|Xn −X| > ε) <∞

2We recall that Xn −X = Oa.co. (un) if and only if ∃ε0 > 0 :
∞∑

n=1
P (|Xn −X| > ε0un) <∞
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Theorem 3.4. In the case of a Hölder-type model, we suppose condition (F) for the small ball
probability, (K) the kernel function, (B) the bandwidth k.

If Condition (D1) holds with b > max {3/(2γ)− 1, (2− γ)/(ε1(1− γ))}, where γ is the constant
in Condition (B) and ε1 the constant in Condition (D1). Then we have x ∈ E

m̂k-NN(x)−m(x) = O

((
F−1x

(
k

n

))β)
+Oa.co.

(√
log n

k

)
. (5)

If (D2) holds instead of (D1) with b > 3/(2γ)− 1, then we have for x ∈ E

m̂k-NN(x)−m(x) = O

((
F−1x

(
k

n

))β)
+Oa.co.

(√
log n

k

)

+Oa.co.

√n1+s log n

k2
χ

(
x, F−1x

(
k

n

))1−s
 , (6)

where χ(x, h) := max
{

1, Gx(h)/(Fx(h))2
}

.

The covariance term sn(x) disappears in (5). The Condition (D1) and the condition on the
rate b implies that term II in (4) decays faster than term I. We get sn(x) = O

(
n(Fx(h))−1

)
, see

Lemma 11.5 in [11, p. 166]. If Condition (D2) instead of (D1) is assumed we get three terms for
the rate (see (6)). The first one in (6) has its origin in the regularity of the regression function, the
second one stems from term I in (4) and the third one represents the dependence of the random
variables (compare term II in (4)).

4 Technical Tools

Because of the randomness of the smoothing parameter Hn,k, it is not possible to use the same
tools for proving the consistency as in the kernel estimation. The necessary tools are presented
in this section. The following two lemmas of Burba et al. [5] are generalisations of a result firstly
presented by Collomb [7]. In our opinion, Burba et alii’s [5] Lemmas 4.1 and 4.2 are valid for
dependent random variables as in the original lemma from Collomb [7]. We checked the proof
from Burba et al. against Collomb’s proof; we did not find any reason why Burba et al. [5] assume
independence. On reflection, this assumption appears unnecessary.

Let (Ai, Bi)
n
i=1 be a sequence of random variables with values in (Ω×R,A⊗B), not necessarily

identically distributed or independent. Let k : R × Ω → R+ be a measurable function with the
property

z ≤ z′ ⇒ ∀ω ∈ Ω : k(z, ω) ≤ k(z′, ω).

Let H be a real-valued random variable. Then define

∀n ∈N : cn(H) =

n∑
i=1

Bik(H,Ai)

n∑
i=1

k(H,Ai)
. (7)

Lemma 4.1 (Burba et al. [5]). Let (Dn) be a sequence of real random variables and (un) be a
decreasing sequence of positive numbers.

• If l = limun 6= 0 and if, for all increasing sequences βn ∈ (0, 1), there exist two sequences of
real random variables (D−n (βn)) and (D+

n (βn)) (depending on the sequence (βn)) such that

(L1) ∀n ∈N D−n ≤ D+
n and 1[D−n≤Dn≤D+

n ] → 1 almost completely,
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(L2)

n∑
i=1

k(D−n ,Ai)

n∑
i=1

k(D+
n ,Ai)

− βn = Oa.co. (un) ,

(L3) Assume there exists a real positive number c such that
cn(D−n )− c = Oa.co. (un) and cn(D+

n )− c = Oa.co. (un).

Then cn(Dn)− c = Oa.co. (un).

• If l = 0 and if (L1), (L2), and (L3) hold for any increasing sequence
βn ∈ (0, 1) with limit 1, the same conclusion holds.

Lemma 4.2 (Burba et al. [5]). Let (Dn) be a sequence of real random variables and (vn) a
decreasing positive sequence.

• If l′ = lim vn 6= 0 and if, for all increasing sequences βn ∈ (0, 1), there exist two sequences
of real random variables (D−n (βn)) and (D+

n (βn)) such that

(L1’) D−n ≤ D+
n ∀n ∈N and 1[D−n≤Dn≤D+

n ] → 1 almost completely,

(L2’)

n∑
i=1

k(D−n ,Ai)

n∑
i=1

k(D+
n ,Ai)

− βn = oa.co.(vn),

(L3’) Assume there exists a real positive number c such that
cn(D−n )− c = oa.co.(vn) and cn(D+

n )− c = oa.co.(vn).

Then cn(Dn)− c = oa.co.(vn),

• If l′ = 0 and if (L1’), (L2’), and (L3’) are checked for any increasing sequence βn ∈ (0, 1)
with limit 1, the same result holds.

Burba et al. [5] use in their consistency proof of the k-NN kernel estimate for independent data a
Chernoff-type exponential inequality to check Conditions (L1) or (L1’). In the case of α-mixing
random variables however, we cannot use that exponential inequality. Instead we use the following
lemma of Bradley [3] and Lemma 4.4.

Lemma 4.3 (Bradley [3] p. 20). Let (X,Y ) be a Rr × R valued random vector, such that
Y ∈ Lp(P ) for some p ∈ [1,∞]. Let d be a real number such that ‖Y +d‖p > 0 and ε ∈ (0, ‖Y +d‖p].
Then there exists a random variable Z such that

• PZ = PY and Z is independent of X,

• P (|Z − Y | > ε) ≤ 11
(
‖Y+d‖p

ε

) p
2p+1

[α(σ(X), σ(Y ))]
p

2p+1 , where σ(X) is the σ-Algebra gen-

erated by X.

The following lemma is needed in our proofs for technical reasons.

Lemma 4.4. Let (Xi) be an arithmetically α-mixing sequence in the semi-metric space (E, d),
α(n) ≤ cn−b, with b, c > 0. Define ∆i(x) := 1B(x,h)(Xi). Then we have

n∑
i=1

n∑
j=1

|Cov (∆i(x),∆j(x)) | = O (nFx(h)) +O
(
χ(x, h)1−sn1+s

)
,

where χ(x, h) := max {Gx(h), Fx(h)2} and s = 1/(b+ 1).

Proof. The proof of this lemma is identical to that of Lemma 3.2 of [10], except for the choice of
the parameter s.
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5 Proofs

Proof. Theorem 3.3
To prove this theorem we apply Lemma 4.2. The main difference to the proof of the independent
case in [5] concerns verification of (L1’). To verify (L2’) and (L3’) we need only small modifications.

Let vn = 1, cn(Hn,k) = m̂k-NN(x) and c = m(x). Choose β ∈ (0, 1) arbitrarily, D+
n and

D−n such that Fx(D+
n ) = 1√

β
k
n and Fx(D−n ) =

√
β kn . Define h+ := D+

n = F−1
(√
β kn
)

and

h− := D−n = F−1
(

1√
β
k
n

)
.

To apply Theorem 3.1, we have to show that the covariance term sn fulfills following condition:
there exists a θ > 2 such that

s−(b+1)
n = o

(
n−θ

)
, (8)

where b is the rate of the mixing coefficient. If (D1) and the condition on the rate b of the mixing
coefficient holds, we have by Lemma 11.5 in [11, p. 166]

sn(x) = O
(

n

Fx(h+)

)
= O

(
n2

k

)
.

The same is true for the bandwidth h−. It can be easily seen that there exists an θ > 2 such that
(8) holds. In the case of (D2), we have

sn(x) = O
(
n2

k

)
+O

(
χ(x, h+)1−sn1+s

)
.

Since χ(x, h+)1−sn1+s > 0 for all n, it turns out that (8) holds under Condition (D2) as well.
Consequently, we are able to apply Theorem 3.1 to quarantee

cn(D+
n )→ c almost completely, and cn(D−n )→ c almost completely.

Thus Condition (L3’) is verified.
In [11, p. 162] Ferraty and Vieu proved under the conditions of Theorem 3.1 that

1

nFx(h)

n∑
i=1

K(h−1d(x,Xi))→ 1 almost completely. (9)

By (9) we have

1

nFx(h+)

n∑
i=1

K(h+
−1

d(x,Xi))→ 1 almost completely and

1

nFx(h−)

n∑
i=1

K(h−
−1

d(x,Xi))→ 1 almost completely.

We get

n∑
i=1

K(h+
−1

d(x,Xi))

n∑
i=1

K(h−−1d(x,Xi))
→ β.

Condition (L2’) is proved.
Finally, we check (L1’),

∀ε > 0 :

∞∑
n=1

P
(
|1{D−n≤Hn,k≤D+

n } − 1| > ε
)
<∞.
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Let ε > 0 be fixed. We know that

P
(
|1{D−n≤Hn,k≤D+

n } − 1| > ε
)
≤ P

(
Hn,k < D−n

)
+ P

(
Hn,k > D+

n

)
. (10)

For the two terms in (10) we obtain

P
(
Hn,k < D−n

)
≤ P

(
n∑
i=1

1B(x,D−n )(Xi) > k

)

≤ P

(
n∑
i=1

(
1B(x,D−n )(Xi)− Fx(D−n )

)
> k − nFx(D−n )

)
=: P1n (11)

and

P
(
Hn,k > D+

n

)
≤ P

(
n∑
i=1

1B(x,D+
n )(Xi) < k

)

≤ P

(
n∑
i=1

(
1B(x,D+

n )(Xi)− Fx(D+
n )
)
< k − nFx(D+

n )

)
=: P2n (12)

In the second step of (11) and (12), we centred the random variables.
At this step, Burba et al. [5] use the independence of the random variables. The plan here is to

split the data into a block scheme as is done by Modha and Masry [16], Oliveira [17], Tran [18] or
Lu and Cheng [15]. Afterwards we are applying Lemma 4.3. Divide the set {1, . . . , n} into blocks
of length 2ln, set mn = [n/2ln], where [·] is the Gaussian bracket3 and fn = n − 2lnmn < 2ln.
The sequences are chosen such that mn → ∞ and fn → ∞. ln is specified later on in the proof,
see (16). By this choice we have n = 2lnmn + fn.

Firstly, we examine term P1n. Let

Un(j) :=

jln∑
i=(j−1)ln+1

(
1B(x,D−n )(Xi)− Fx(D−n )

)
,

and define

Bn1 :=

mn∑
j=1

Un(2j − 1), Bn2 :=

mn∑
j=1

Un(2j), and

Rn :=

n∑
i=2lnmn+1

(
1B(x,D−n )(Xi)− Fx(D−n )

)
.

We get

P1n ≤ P

(
Bn1 >

k − nFx(D−n )

3

)
+ P

(
Bn2 >

k − nFx(D−n )

3

)
+ P

(
Rn >

k − nFx(D−n )

3

)
=: P

(1)
1n + P

(2)
1n + P

(3)
1n (13)

Let us consider P
(1)
1n . Lemma 4.3 with d := lnmn leads to 0 < lnmn ≤ ‖Un(2j − 1) + dn‖∞ ≤

2ln + lnmn. Because of mnln = O (n) and k/n→ 0, we have

ε :=
k − nFx(D−n )

6mn
=
k(1−

√
β)

6mn
∈ (0, ‖Un(2j − 1) + dn‖∞].

3[x] = max {y ∈ Z| z ≤ x}, x ∈ R
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This choice of ε is motivated by (15) below. By Lemma 4.3 we can construct (Ũn(2j−1))mnj=1 such
that

• the random variables (Ũn(2j − 1))mnj=1 are independent,

• Ũn(2j − 1) has the same distribution as Un(2j − 1) for j = 1, . . . ,mn,

• and

P
(
|Ũn(2j − 1)− Un(2j − 1)| > ε

)
≤11

(
‖Un(2j − 1) + d‖∞

ε

) 1
2

·

· sup |P (AB)− P (A) P (B) |,

where the supremum is taken over all sets A,B ∈ σ (Un(1), Un(3), . . . , Un(2mn − 1)) .

This leads to

P
(1)
1n = P

mn∑
j=1

[
Ũn(2j − 1) + (Un(2j − 1)− Ũn(2j − 1))

]
>
k − nFx(D−n )

3


≤ P

mn∑
j=1

Ũn(2j − 1) >
k − nFx(D−n )

6


+ P

mn∑
j=1

(Un(2j − 1)− Ũn(2j − 1)) >
k − nFx(D−n )

6


=: P

(11)
1n + P

(12)
1n . (14)

Applying Lemma 4.3 on P
(12)
1n ,

P
(12)
1n ≤

mn∑
j=1

P

(
(Un(2j − 1)− Ũn(2j − 1)) >

k − nFx(D−n )

6mn

)
(15)

≤ mn

(
6mnln(mn + 1)

k(1−
√
β)

) 1
2

α(ln)

≤ C n2

l
3
2
nk

α(ln).

We choose the sequence ln such that

lan =
n2

2arak
, (16)

where r is a positive constant specified below and a > 2/γ − 1. By the condition on the mixing
coefficient b and some calculations

n2

l
3/2
n k

α(ln) = Cn(2−γ)(a−3/2−b)/a

Consequently, by the assumptions we arrive at

∞∑
n=1

P
(12)
1n <∞. (17)
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Apply now Markov’s inequality on term P
(11)
1n for some t > 0,

P

mn∑
j=1

Ũn(2j − 1) >
k − nFx(D−n )

6


≤ exp

(
−tk − nFx(D−n )

6

)
E

exp

t mn∑
j=1

Ũn(2j − 1)

 . (18)

Due to the independence of the random variables (Ũn(2j − 1))mnj=1, we have

E

exp

t mn∑
j=1

Ũn(2j − 1)

 =

mn∏
j=1

E
[
exp (tŨn(2j − 1))

]
. (19)

Choose t := r log n/k, then we obtain together with ln as defined in (16)

t|Ũn(2j − 1)| ≤ 2rln log n

k
= log n

(
n2

ka+1

) 1
a

.

In this step, we need the number of neighbours to be a power in n, i.e. k ∼ nγ . By the choice of
a > 2/γ − 1, we have for large n that t|Ũn(2j − 1)| ≤ 1. For large n we have

exp
(
tŨn(2j − 1)

)
≤ 1 + tŨn(2j − 1) + t2Ũn(2j − 1)2.

The random variable Ũn(2j−1) has the same distribution as the centred random variable Un(2j−
1). Hence we know that the expectation of the linear term is zero, E

[
Ũn(2j − 1)

]
= 0. With this

and 1 + x ≤ exp (x) we get

E
[
exp

(
tŨn(2j − 1)

)]
≤ 1 + E

[
t2Ũn(2j − 1)2

]
≤ exp

(
t2E

[
Ũn(2j − 1)2

])
. (20)

Furthermore, because Ũn(2j−1) and Un(2j−1) have the same distribution function and by some
calculations, it follows that

mn∑
j=1

E
[
Ũn(2j − 1)2

]
≤

n∑
i,j=1

∣∣Cov(1B(x,D−n )(Xi), 1B(x,D−n )(Xj))
∣∣.

Since Fx(D−n ) =
√
β kn and k ∼ nγ , we know that Fx(D−n ) = O

(
nγ−1

)
. We apply Lemma 4.4 and

get in the case of (D2)

mn∑
j=1

E
[
Ũn(2j − 1)2

]
≤ C1

√
βk + C2χ(D−n )1−sn1+s, (21)

and in the case of (D1)

mn∑
j=1

E
[
Ũn(2j − 1)2

]
≤ C1

√
βk.

Below, we present the arguments if Condition (D2) holds, because in the case of (D1) the rationale
follows the same line. By (19), (20), (21), and t := r log n/k, we have for the second term in (18)

E

exp

t mn∑
j=1

Ũn(2j − 1)

 ≤ exp

(
C1

√
βr2

(log n)2

k

)
·

· exp

(
C2

√
βr2

(log n)2χ(D−n )1−sn1+s

k2

)
. (22)
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By k ∼ nγ , we know that the first term in (22) satisfies

exp

(
C1

√
βr2

(log n)2

k

)
→ 1 as n→∞.

If (D2) holds, we have for the second term in (22)

exp

(
C2

√
βµ2 (log n)2χ(D−n )1−sn1+s

k2

)
→ 1 as n→∞.

Since Fx(D−n ) =
√
β kn , t = r log n/k, and by choosing r > 6/(1 −

√
β), we find for the first term

in (18)

exp

(
−tk − nFx(D−n )

6

)
= exp

(
−r(1−

√
β)

6
log (n)

)
= n−

r(1−
√
β)

6

By this,

∞∑
n=1

P
(11)
1n <∞ (23)

Now, combine relations (17) and (23) to obtain

∞∑
n=1

P
(1)
1n ≤

∞∑
n=1

P
(11)
1n +

∞∑
n=1

P
(12)
1n <∞.

By similar arguments as for P
(1)
1n we receive

∞∑
n=1

P
(2)
1n <∞.

Finally, we examine

P
(3)
1n = P

(
Rn >

k − nFx(D−n )

3

)
.

We know that |Rn| ≤ 4ln and k−nFx(D−n )/3 = O (k). Together with the choice of ln in (16) and
the condition on the parameter a > 2/γ − 1 we have k > ln for large n. This implies

∞∑
n=1

P
(3)
1n <∞.

Finally, we get

∞∑
n=1

P1n ≤
∞∑
n=1

P
(1)
1n +

∞∑
n=1

P
(2)
1n +

∞∑
n=1

P
(3)
1n <∞.

Analysis of P2n is similar to that of P1n. This finishes the proof of Condition (L1’), which states
that

1[D−n≤Dn≤D+
n ] → 1 almost completely.

Now, we are in the position to apply Lemma 4.2 to obtain the desired result,

lim
n→∞

m̂k-NN(x) = m(x) almost completely.
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Proof. Theorem 3.4
To prove this theorem we use Lemma 4.1 from Burba et al. [5]. The conditions of Lemma 4.1 are
proven in a similar manner as in the proof of Theorem 3.4. Condition (L1) is the same as (L1’) of
Lemma 4.2. So the proof can be omitted here. Conditions (L2) and (L3) are checked in a similar
way as in the proof of Theorem 3.3. In [11, p. 162] Ferraty and Vieu prove under the conditions
of Theorem 3.2 that

1

n

n∑
i=1

K(h−1d(x,Xi)) = Oa.co.

(√
sn(x) log n

n

)
. (24)

Choose βn as an increasing sequence in (0, 1) with limit 1. Furthermore, choose D+
n and D−n such

that

Fx(D+
n ) =

1√
βn

k

n
and Fx(D−n ) =

√
βn
k

n
.

If (D1) holds, then

sn(x) = O
(

n

Fx(h+)

)
= O

(
n2

k

)
. (25)

The same is true for the bandwidth h−. In the case of (D2), we have for both bandwidth sequences
h− and h+

sn(x) = O
(
n2

k

)
+O

(
χ(x, h)1−sn1+s

)
. (26)

Now we are able to apply Theorem 3.2 with

h+ = D+
n = F−1

(√
βn
k

n

)
and h− = D−n = F−1

(
1√
βn

k

n

)
to get

cn(D+
n ) = O

((
F−1x

(
k

n

))β)
+Oa.co.

(√
sn(x) log n

n

)
and

cn(D−n ) = O

((
F−1x

(
k

n

))β)
+Oa.co.

(√
sn(x) log n

n

)
.

That verifies Condition (L3’). Now, by (24) and the same choice of h+ and h− as above, we have

1

nFx(h+)

n∑
i=1

K(h+
−1

d(x,Xi)) =
√
βn
k

n
+Oa.co.

(√
sn(x) log n

n

)
and

1

nFx(h−)

n∑
i=1

K(h−
−1

d(x,Xi)) =
√
βn
k

n
+Oa.co.

(√
sn(x) log n

n

)
.

By this, we obtain

n∑
i=1

K(h+
−1

d(x,Xi))

n∑
i=1

K(h−−1d(x,Xi))
− βn = Oa.co.

(√
sn(x) log n

n

)
.

To check Condition (L2’) we estimate sn(x) by bounds obtained either by Condition (D1) and
b > (2− γ)/(ε1(1− γ)) or by (D2), see (25) or (26). This completes this proof.
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6 Applications and Related Results

Applications

In the context of functional data analysis the k-NN kernel estimate was first introduced in the
monograph of Ferraty and Vieu [11]. There the authors give numerical examples for the k-NN
kernel estimate. They tested it on different data sets, such as electrical consumption in the U.S.
[11, p. 200]. In [9], Ferraty et al. examined a data set describing the El Niño phenomenon. Other
interesting examples can be found in the R-package fds (functional data sets) or Bosq [4, pp. 247].
For both data sets the assumption of α-mixing is plausible. If we have for example a look on the
electrical consumption data set, it makes sense that the electrical consumption of the year which
we want to predict is more dependent on the near past than on years afterwards.

Related Results

Here we want to outline how to make a robust k-NN kernel estimate. As already mentioned in
the introduction, the k-NN estimate is prone to outliers. This disadvantage can be treated by
robust regression estimation. For functional data analysis Azzedine et al. [2] introduce a robust
non-parametric regression estimate for independent data. Attouch et al. [1] prove the asymptotic
normality for the non-parametric regression estimate for α-mixing data. Crambes et al. [8] present
results dealing with the Lp error for independent and α-mixing data.

In robust estimation the non-parametric model θx can be defined as the root t of the following
equation

Ψ(x, t) := E [ψx(Y, t)|X = x] = 0. (27)

The model θx is called the ψx(Y, t)-regression and is a generalisation of the classical regression
function. If we choose for example ψx(Y, t) = Y − t then we have θx = m(x).

In the case of α-mixing data Almost complete convergence and almost complete convergence
rate are not yet proven for robust kernel estimate. These results can be easily obtained by ar-
guments similar to those of Azzedine et al. [2] and those for the classical regression function
estimation. By such a result and similar arguments as in this section: we get almost complete
convergence and related rates for a robust k-NN non-parametric estimate.

Attouch et al. [1], Azzedine et al. [2], or Crambes et al. [8] suggest in their application the L1-L2

function ψ(t) := t/
√

(1 + t2)/2 and ψx(t) := ψ (t/M(x)), where M(x) := med|Y −med(Y |X = x)|
with med(Y |X = x) as the conditional median of Y given X = x. We get the consistency for the
kernel estimate of conditional distribution function directly by choosing in (7) for Bi = 1(−∞,y](Yi)
with Yi as a real valued random variable distributed as Y , and by this a consistent kernel estimate
of med(Y |X = x).

Alternatively, if one has consistency results for a robust k-NN kernel, we can choose ψx(t) =
1[t≥0] − 1/2, to get immediately the consistency for the kernel estimate of the conditional distri-
bution function.
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