Universität Stuttgart

Fachbereich Mathematik

k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis

Simon Müller, Jürgen Dippon

Universität Stuttgart

Fachbereich Mathematik

k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis

Simon Müller, Jürgen Dippon

Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints
ISSN 1613-8309
(C) Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

LATEX-Style: Winfried Geis, Thomas Merkle

Abstract

This paper examines the k-nearest neighbours method in functional non-parametric regression for α-mixing data. We prove almost complete convergence and give the almost complete convergence rate the k-NN kernel estimate. The results are obtained on the one hand by using results on the classical functional kernel estimate, where a deterministic bandwidth sequence is used, and on the other hand by applying lemmas from Bradley and Burba et al. The latter one was already used for the k-nearest neighbours kernel estimate for independent data. Finally, we give an outline on how to avoid the drawback of susceptibility of the knearest neighbours kernel estimate to outliers.

1 Introduction

In this paper we examine the functional k-nearest neighbours, shortly k-NN, non-parametric regression estimate in case of α-mixing data. The classical functional non-parametric regression estimate (see e.g. by [11]) depends on a real-valued non-random bandwidth sequence h_{n}. On the contrary, the smoothing parameter of the k-NN regression estimate depends on the numbers of neighbours at the point of interest at which we want to make a prediction. In cases where data is sparse, the k-NN kernel estimate has a significant advantage over the classical kernel estimate. The k-NN kernel estimate is also automatically able to take into account the local structure of the data. This advantage, however, may turn into a disadvantage. If there is an outlier in the dataset, the local prediction may be bad. To avoid this, a robust non-parametric regression ansatz may be chosen (see Section 6 of this paper). Selecting the bandwidth depending on the data turns the bandwidth into a random variable. Hence we are no longer able to use the same techniques in the consistency proofs as in the case of a non-random bandwidth sequence.

The k-NN kernel estimate is a widely studied if the explanatory variable is an element of a finite-dimensional space, see Györfi et al. 12. For functional explanatory variable and with realvalued response variable, two different approaches for the k-NN regression estimation exist. The first one, published by Laloë [13], examines a k-NN kernel estimate when the functional variable is an element of a separable Hilbert space. For that case Laloë establishes a weak consistency result. However, his ansatz is not completely functional. Laloë's strategy is to reduce the dimension of the input variable by using a projection onto a finite-dimensional subspace and then applying multivariate techniques on the projected data. The second result, from Burba et al. [5], is based on a pure functional approach instead. Burba et al. examine the problem on a semi-metric functional space. They proved almost complete convergence and almost complete convergence rates for independent data. Furthermore, Burba et al. extended a lemma that we will also use in our proofs. This lemma originates from Collomb [7. We will cite it in Section 4 and make some additional comments on it. Additionally, the k-NN kernel estimate is examined for classification in infinite dimension by Cérou and Guyader [6] and there exists a convergence result for the k-NN regression estimate when the response is an element of a Hilbert space (see Lian [14).

In the case of finite-dimensional explanatory variable, the k-NN kernel estimate for α-mixing random variables is treated by Tran [18] and Lu and Cheng [15]. Both results are based on Collomb's [7] results. We combined their idea with Burba et alii's [5] results to prove consistency and the rate.

This paper is organised as follows. In Section 2 we present the k-NN kernel estimate. Afterwards, we introduce the assumptions and the main result, the almost complete convergence and the almost complete convergence rate. In Section 4, some technical auxiliary results are deployed and in Section5, we show the proofs of our main result. In the end, we outline some applications and discuss how to get a robust k-NN kernel estimate.

2 Method and Assumptions

Let $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ be a dependent sequence identically distributed as (X, Y), the latter being a random pair with values in the measurable space $\left(\mathrm{E} \times \mathbb{R}, \mathcal{E}_{d} \otimes \mathcal{B}\right)$. Here (E, d) is a semi-metric space and
\mathcal{E}_{d} is the σ-algebra generated by the topology of E that is defined by the semi-metric d, and \mathcal{B} is the Borel σ-algebra. In order to characterise the model of dependence, we use the notion of α-mixing.

We examine the $\mathrm{k}-\mathrm{NN}$ kernel estimate that is defined for $x \in \mathrm{E}$ as

$$
\begin{equation*}
\hat{m}_{\mathrm{k}-\mathrm{NN}}(x)=\sum_{i=1}^{n} Y_{i} \frac{K\left(H_{n, k}^{-1} d\left(x, X_{i}\right)\right)}{\sum_{i=1}^{n} K\left(H_{n, k}^{-1} d\left(x, X_{i}\right)\right)}, \text { if } \sum_{j=1}^{n} K\left(H_{n, k}^{-1} d\left(x, X_{i}\right)\right) \neq 0 \tag{1}
\end{equation*}
$$

otherwise $\hat{m}_{\mathrm{k}-\mathrm{NN}}(x)=0 . K: \mathbb{R} \rightarrow \mathbb{R}^{+}$is a kernel function and $H_{n, k}$ is the bandwidth that is defined as

$$
\begin{equation*}
H_{n, k}:=d\left(x, X_{(k)}\right) \tag{2}
\end{equation*}
$$

where the sequence $\left(X_{(i)}, Y_{(i)}\right)_{i=1}^{n}$ is the re-indexed sequence $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ such that

$$
d\left(x, X_{(1)}\right) \leq d\left(x, X_{(2)}\right) \leq \ldots \leq d\left(x, X_{(n)}\right)
$$

From now on, when we refer to the bandwidth of the k-NN kernel estimate, we mean the number of neighbours k we are considering.

To prove the almost complete convergence of the k-NN kernel estimate, we need some results of the Nadaraya-Watson kernel estimate. Therefore, we present this kernel estimate here. Let $x \in$ E, then

$$
\begin{equation*}
\hat{m}(x)=\sum_{i=1}^{n} Y_{i} \frac{K\left(h_{n}^{-1} d\left(x, X_{i}\right)\right)}{\sum_{i=1}^{n} K\left(h_{n}^{-1} d\left(x, X_{i}\right)\right)}, \quad \text { if } \sum_{j=1}^{n} K\left(h_{n}^{-1} d\left(x, X_{i}\right)\right) \neq 0 \tag{3}
\end{equation*}
$$

otherwise $\hat{m}(x)=0 . K$ is a kernel function and $h:=h_{n}$ is a non-random bandwidth. Hereafter, the notion kernel estimate will refer to the Nadaraya-Watson kernel estimate.

We consider two types of non-parametric models. The first one is called continuity-type, which means that the regression function m is continuous and the second one, the Hölder-type, which means that the regression function m is Hölder continuous with constant $\beta>0$.

Prior to the presentation of our main results, we outline the assumptions.
(F) Let $x \in E$, then assume that the probability of observing the functional random variable X around x is strictly positive, that means

$$
\forall \varepsilon>0: F_{x}(\varepsilon):=\mathrm{P}(d(x, X) \leq \varepsilon)>0
$$

(K) We distinguish two types of kernel functions K :
(a) There exist constants $0<C_{1}<C_{2}<\infty$ such that

$$
\forall u \in \mathbb{R}: C_{1} 1_{[0,1]}(u) \leq K(u) \leq C_{2} 1_{[0,1]}(u)
$$

(b) The kernel function K has its support in $[0,1], K$ is differentiable in $[0,1], K(1)=0$, and there exist two constants $-\infty<C_{1}<C_{2}<0$ such that

$$
\forall u \in[0,1]: C_{1} \leq K^{\prime}(u) \leq C_{2}
$$

Furthermore, we need following technical assumption

$$
\exists C>0 \exists \varepsilon_{0}>0 \forall \varepsilon<\varepsilon_{0}: \int_{0}^{\varepsilon} F_{x}(u) d u>C \varepsilon F_{x}(\varepsilon)
$$

for details see [11, p. 44]
(M) Assume that the conditional moments of Y are bounded,

$$
\forall m \in \mathbb{N}: \mathrm{E}\left[|Y|^{m} \mid X=x\right]<\sigma_{m}(x)<\infty
$$

with $\sigma_{m}(\cdot)$ continuous at $x \in E$.
The sequence $\left(\left(X_{i}, Y_{i}\right)\right)$ is said to be α-mixing if

$$
\alpha(n):=\sup _{k} \sup _{A \in \mathcal{A}_{1}^{k}} \sup _{B \in \mathcal{A}_{k+n}^{\infty}}|\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B)| \rightarrow 0
$$

as $n \rightarrow \infty$, where \mathcal{A}_{l}^{m} is the σ-algebra generated by $\left\{\left(X_{i}, Y_{i}\right), l \leq i \leq m\right\}$.
(A) Assume that the sequence $\left(X_{i}, Y_{i}\right)$ is arithmetic α-mixing (or algebraic), namely we have for some $C>0$ and rate $b>1: \alpha(n) \leq C n^{-b}$.

The terms of covariance, which are a measure of dependence, are here denoted by

$$
s_{n, 1}(x):=\sum_{i, j=1}^{n}\left|\operatorname{Cov}\left(\Delta_{i}(x), \Delta_{j}(x)\right)\right| \text { and } s_{n, 2}(x):=\sum_{i, j=1}^{n}\left|\operatorname{Cov}\left(Y_{i} \Delta_{i}(x), Y_{j} \Delta_{j}(x)\right)\right|
$$

where $\Delta_{i}(x):=K\left(h^{-1} d\left(x, X_{i}\right)\right) / \mathrm{E}\left[K\left(h^{-1} d\left(x, X_{1}\right)\right)\right]$. Note that we can split for example $s_{n, 2}(x)$ as

$$
\begin{equation*}
s_{n, 2}(x)=\underbrace{\sum_{i=1}^{n} \operatorname{Var}\left[Y_{i} \Delta_{i}(x)\right]}_{I}+\underbrace{\sum_{\substack{i, j=1 \\ j=i}}^{n} \operatorname{Cov}\left(Y_{i} \Delta_{i}(x), Y_{j} \Delta_{j}(x)\right) \mid}_{I I} \tag{4}
\end{equation*}
$$

Term II in (4) is a measure of the dependence of the random variables. We want to remark, if the X_{i} are α-mixing then also the $\Delta_{i}(x)$ are α-mixing, see e.g. Lemma 10.3 in [11, p. 155].
(D) Assume for the covariance term $s_{n}(x):=\max \left\{s_{n, 1}(x), s_{n, 2}(x)\right\}$ that there exists a $\theta>2$ such that $s_{n}^{-(b+1)}=o\left(n^{-\theta}\right)$, where b is the rate of the mixing coefficient (see Condition (A)).
(B) Assume for the sequence of bandwidths $k:=k_{n}$ that there exists a $\gamma \in(0,1)$ such that $k \sim n^{\gamma}$.

Condition (B) is not to be more restrictive than in the independent case. However, for their consistency result Burba et al. [5] need the following two conditions, $k / n \rightarrow 0$ and $\log n / k \rightarrow 0$ as $n \rightarrow \infty$, so k must exceed logarithmic order. As Lian comments in [14, in most cases in the functional context the small ball probability is of exponential-type. Hence the convergence speed is logarithmic, no matter if the number of neighbours k increases logarithmically or polynomially. For example, if we have for the small ball probability

$$
F_{x}(h) \sim \exp \left(-\frac{1}{h^{\tau}}\right), \text { then } F^{-1}\left(\frac{k}{n}\right) \sim\left(\frac{1}{\log \left(\frac{k}{n}\right)}\right)^{\tau}
$$

where $F_{x}^{-1}(y):=\inf \left\{h \mid F_{x}(h) \geq y\right\}$ (see [14]). It can be easily seen that the order of k is less important for such small probabilities.
(D1) This condition is on the distribution of two distinct pairs $\left(X_{i}, Y_{i}\right)$ and $\left(X_{j}, Y_{j}\right)$. We assume that

$$
\forall i \neq j: \mathrm{E}\left[Y_{i} Y_{j} \mid X_{i} X_{j}\right] \leq C<\infty
$$

and the joint distribution functions $\mathrm{P}\left(X_{i} \in B(x, h), X_{j} \in B(x, h)\right)$ satisfy

$$
\exists \varepsilon_{1} \in(0,1]: 0<G_{x}(h)=\mathcal{O}\left(F_{x}(h)^{1+\varepsilon_{1}}\right)
$$

where

$$
G_{x}(h):=\max _{i, j \in\{1, \ldots, n\}, i \neq j} \mathrm{P}\left(X_{i} \in B(x, h), X_{j} \in B(x, h)\right)
$$

Condition (D1) is, as Ferraty and Vieu [11, p. 163] in Note 11.2 describe, not too restrictive. For example, if we choose $\mathrm{E}=\mathbb{R}^{p}$, then $\varepsilon_{1}=1$ as soon as each pair of random variables $\left(X_{i}, X_{j}\right)$ has a bounded density $f_{i, j}$ with respect to the Lebesgue measure.

Next, we formulate a more general condition on the joint distribution function.
(D2) Define $\chi(x, h):=\max \left\{1, G_{x}(h) /\left(F_{x}(h)\right)^{2}\right\}$ and $s:=1 /(b+1)$ with b as the rate of the mixing coefficient. Then assume that

$$
\frac{\log (n) \chi(x, h)^{1-s} n^{1+s}}{k^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

3 Almost Complete Convergence and Almost Complete Convergence Rate

Before we present the consistency result of the k-NN estimate the almost complete convergence ${ }^{1}$ result of the kernel regression estimate $\hat{m}(x)$ of Ferraty and Vieu [11] is presented. All results presented here assumes a sequence of α-mixing random variables $\left(\left(X_{i}, Y_{i}\right)\right)$ (see Condition (A)).
Theorem 3.1 (Ferraty and Vieu [11], p. 63). Assume that the regression function is of continuitytype, furthermore assume $(F),(K)$, and (M). Additionally, suppose for the bandwidth that $h_{n} \rightarrow 0$ and $\log n /\left(n F_{x}\left(h_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. Then we have for $x \in E$

$$
\lim _{n \rightarrow \infty} \hat{m}(x)=m(x) \quad \text { almost completely. }
$$

The following theorem gives almost complete rates ${ }^{2}$
Theorem 3.2 (Ferraty and Vieu [11, p. 80). Assume the same conditions as in Theorem 3.1. and a Hölder-type model instead of a continuity-type model. Then we have for $x \in E$

$$
\hat{m}(x)-m(x)=\mathcal{O}\left(h^{\beta}\right)+\mathcal{O}_{\text {a.co. }}\left(\frac{\sqrt{s_{n}(x) \log n}}{n}\right)
$$

Now we state the almost complete convergence result for the non-parametric k-NN kernel estimate, introduced in (1).

Theorem 3.3. In the case of a continuity-type model, we suppose condition (F) for the small ball probability, (K) for the kernel function, (B) for the bandwidth k. Either assume that Condition (D1) holds with $b>\max \left\{3 /(2 \gamma)-1,(2-\gamma) /\left(\varepsilon_{1}(1-\gamma)\right)\right\}$, where γ is the constant in Condition (B) and ε_{1} the constant in Condition (D1). Or assume that Condition (D2) is enforced, with rate $b>\frac{3}{2 \gamma}-1$. Then we have for $x \in E$

$$
\lim _{n \rightarrow \infty} \hat{m}_{\mathrm{k}-\mathrm{NN}}(x)=m(x) \quad \text { almost completely. }
$$

[^0]Theorem 3.4. In the case of a Hölder-type model, we suppose condition (F) for the small ball probability, (K) the kernel function, (B) the bandwidth k.

If Condition (D1) holds with $b>\max \left\{3 /(2 \gamma)-1,(2-\gamma) /\left(\varepsilon_{1}(1-\gamma)\right)\right\}$, where γ is the constant in Condition (B) and ε_{1} the constant in Condition (D1). Then we have $x \in E$

$$
\begin{equation*}
\hat{m}_{\mathrm{k}-\mathrm{NN}}(x)-m(x)=\mathcal{O}\left(\left(F_{x}^{-1}\left(\frac{k}{n}\right)\right)^{\beta}\right)+\mathcal{O}_{a . c o .}\left(\sqrt{\frac{\log n}{k}}\right) \tag{5}
\end{equation*}
$$

If (D2) holds instead of (D1) with $b>3 /(2 \gamma)-1$, then we have for $x \in E$

$$
\begin{align*}
\hat{m}_{\mathrm{k}-\mathrm{NN}}(x)-m(x)= & \mathcal{O}\left(\left(F_{x}^{-1}\left(\frac{k}{n}\right)\right)^{\beta}\right)+\mathcal{O}_{a . c o .}\left(\sqrt{\frac{\log n}{k}}\right) \\
& +\mathcal{O}_{a . c o .}\left(\sqrt{\frac{n^{1+s} \log n}{k^{2}} \chi\left(x, F_{x}^{-1}\left(\frac{k}{n}\right)\right)^{1-s}}\right) \tag{6}
\end{align*}
$$

where $\chi(x, h):=\max \left\{1, G_{x}(h) /\left(F_{x}(h)\right)^{2}\right\}$.
The covariance term $s_{n}(x)$ disappears in (5). The Condition (D1) and the condition on the rate b implies that term II in (4) decays faster than term I. We get $s_{n}(x)=\mathcal{O}\left(n\left(F_{x}(h)\right)^{-1}\right)$, see Lemma 11.5 in [11, p. 166]. If Condition (D2) instead of (D1) is assumed we get three terms for the rate (see (6)). The first one in (6) has its origin in the regularity of the regression function, the second one stems from term I in (4) and the third one represents the dependence of the random variables (compare term II in (4)).

4 Technical Tools

Because of the randomness of the smoothing parameter $H_{n, k}$, it is not possible to use the same tools for proving the consistency as in the kernel estimation. The necessary tools are presented in this section. The following two lemmas of Burba et al. [5] are generalisations of a result firstly presented by Collomb [7]. In our opinion, Burba et alii's [5] Lemmas 4.1 and 4.2 are valid for dependent random variables as in the original lemma from Collomb [7]. We checked the proof from Burba et al. against Collomb's proof; we did not find any reason why Burba et al. [5] assume independence. On reflection, this assumption appears unnecessary.

Let $\left(A_{i}, B_{i}\right)_{i=1}^{n}$ be a sequence of random variables with values in $(\Omega \times \mathbb{R}, \mathcal{A} \otimes \mathcal{B})$, not necessarily identically distributed or independent. Let $k: \mathbb{R} \times \Omega \rightarrow \mathbb{R}^{+}$be a measurable function with the property

$$
z \leq z^{\prime} \Rightarrow \forall \omega \in \Omega: k(z, \omega) \leq k\left(z^{\prime}, \omega\right)
$$

Let H be a real-valued random variable. Then define

$$
\begin{equation*}
\forall n \in \mathbb{N}: c_{n}(H)=\frac{\sum_{i=1}^{n} B_{i} k\left(H, A_{i}\right)}{\sum_{i=1}^{n} k\left(H, A_{i}\right)} \tag{7}
\end{equation*}
$$

Lemma 4.1 (Burba et al. [5]). Let $\left(D_{n}\right)$ be a sequence of real random variables and $\left(u_{n}\right)$ be a decreasing sequence of positive numbers.

- If $l=\lim u_{n} \neq 0$ and if, for all increasing sequences $\beta_{n} \in(0,1)$, there exist two sequences of real random variables $\left(D_{n}^{-}\left(\beta_{n}\right)\right)$ and $\left(D_{n}^{+}\left(\beta_{n}\right)\right)$ (depending on the sequence $\left.\left(\beta_{n}\right)\right)$ such that
(L1) $\forall n \in \mathbb{N} D_{n}^{-} \leq D_{n}^{+}$and $1_{\left[D_{n}^{-} \leq D_{n} \leq D_{n}^{+}\right]} \rightarrow 1$ almost completely,
(L2) $\frac{\sum_{i=1}^{n} k\left(D_{n}^{-}, A_{i}\right)}{\sum_{i=1}^{n} k\left(D_{n}^{+}, A_{i}\right)}-\beta_{n}=\mathcal{O}_{\text {a.co. }}\left(u_{n}\right)$,
(L3) Assume there exists a real positive number c such that

$$
c_{n}\left(D_{n}^{-}\right)-c=\mathcal{O}_{\text {a.co. }}\left(u_{n}\right) \text { and } c_{n}\left(D_{n}^{+}\right)-c=\mathcal{O}_{\text {a.co. }}\left(u_{n}\right)
$$

Then $c_{n}\left(D_{n}\right)-c=\mathcal{O}_{a . c o .}\left(u_{n}\right)$.

- If $l=0$ and if (L1), (L2), and (L3) hold for any increasing sequence $\beta_{n} \in(0,1)$ with limit 1 , the same conclusion holds.

Lemma 4.2 (Burba et al. [5]). Let $\left(D_{n}\right)$ be a sequence of real random variables and $\left(v_{n}\right)$ a decreasing positive sequence.

- If $l^{\prime}=\lim v_{n} \neq 0$ and if, for all increasing sequences $\beta_{n} \in(0,1)$, there exist two sequences of real random variables $\left(D_{n}^{-}\left(\beta_{n}\right)\right)$ and $\left(D_{n}^{+}\left(\beta_{n}\right)\right)$ such that
(L1') $D_{n}^{-} \leq D_{n}^{+} \forall n \in \mathbb{N}$ and $1_{\left[D_{n}^{-} \leq D_{n} \leq D_{n}^{+}\right]} \rightarrow 1$ almost completely,
(L2') $\frac{\sum_{i=1}^{n} k\left(D_{n}^{-}, A_{i}\right)}{\sum_{i=1}^{n} k\left(D_{n}^{+}, A_{i}\right)}-\beta_{n}=o_{\text {a.co. }}\left(v_{n}\right)$,
(L3') Assume there exists a real positive number c such that

$$
c_{n}\left(D_{n}^{-}\right)-c=o_{a . c o .}\left(v_{n}\right) \text { and } c_{n}\left(D_{n}^{+}\right)-c=o_{a . c o .}\left(v_{n}\right) .
$$

Then $c_{n}\left(D_{n}\right)-c=o_{\text {a.co. }}\left(v_{n}\right)$,

- If $l^{\prime}=0$ and if (L1'), (L2'), and (L3') are checked for any increasing sequence $\beta_{n} \in(0,1)$ with limit 1, the same result holds.

Burba et al. 5] use in their consistency proof of the k-NN kernel estimate for independent data a Chernoff-type exponential inequality to check Conditions (L1) or (L1'). In the case of α-mixing random variables however, we cannot use that exponential inequality. Instead we use the following lemma of Bradley [3] and Lemma 4.4.

Lemma 4.3 (Bradley [3] p. 20). Let (X, Y) be a $\mathbb{R}^{r} \times \mathbb{R}$ valued random vector, such that $Y \in L_{p}(P)$ for some $p \in[1, \infty]$. Let d be a real number such that $\|Y+d\|_{p}>0$ and $\varepsilon \in\left(0,\|Y+d\|_{p}\right]$. Then there exists a random variable Z such that

- $P_{Z}=P_{Y}$ and Z is independent of X,
- $\mathrm{P}(|Z-Y|>\varepsilon) \leq 11\left(\frac{\|Y+d\|_{p}}{\varepsilon}\right)^{\frac{p}{2 p+1}}[\alpha(\sigma(X), \sigma(Y))]^{\frac{p}{2 p+1}}$, where $\sigma(X)$ is the σ-Algebra generated by X.

The following lemma is needed in our proofs for technical reasons.
Lemma 4.4. Let $\left(X_{i}\right)$ be an arithmetically α-mixing sequence in the semi-metric space (E, d), $\alpha(n) \leq c n^{-b}$, with $b, c>0$. Define $\Delta_{i}(x):=1_{B(x, h)}\left(X_{i}\right)$. Then we have

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left|\operatorname{Cov}\left(\Delta_{i}(x), \Delta_{j}(x)\right)\right|=\mathcal{O}\left(n F_{x}(h)\right)+\mathcal{O}\left(\chi(x, h)^{1-s} n^{1+s}\right)
$$

where $\chi(x, h):=\max \left\{G_{x}(h), F_{x}(h)^{2}\right\}$ and $s=1 /(b+1)$.
Proof. The proof of this lemma is identical to that of Lemma 3.2 of [10], except for the choice of the parameter s.

5 Proofs

Proof. Theorem 3.3
To prove this theorem we apply Lemma 4.2. The main difference to the proof of the independent case in [5] concerns verification of (L1'). To verify (L2') and (L3') we need only small modifications.

Let $v_{n}=1, c_{n}\left(H_{n, k}\right)=\hat{m}_{\mathrm{k}-\mathrm{NN}}(x)$ and $c=m(x)$. Choose $\beta \in(0,1)$ arbitrarily, D_{n}^{+}and D_{n}^{-}such that $F_{x}\left(D_{n}^{+}\right)=\frac{1}{\sqrt{\beta}} \frac{k}{n}$ and $F_{x}\left(D_{n}^{-}\right)=\sqrt{\beta} \frac{k}{n}$. Define $h^{+}:=D_{n}^{+}=F^{-1}\left(\sqrt{\beta} \frac{k}{n}\right)$ and $h^{-}:=D_{n}^{-}=F^{-1}\left(\frac{1}{\sqrt{\beta}} \frac{k}{n}\right)$.

To apply Theorem 3.1, we have to show that the covariance term s_{n} fulfills following condition: there exists a $\theta>2$ such that

$$
\begin{equation*}
s_{n}^{-(b+1)}=o\left(n^{-\theta}\right), \tag{8}
\end{equation*}
$$

where b is the rate of the mixing coefficient. If (D1) and the condition on the rate b of the mixing coefficient holds, we have by Lemma 11.5 in [11, p. 166]

$$
s_{n}(x)=\mathcal{O}\left(\frac{n}{F_{x}\left(h^{+}\right)}\right)=\mathcal{O}\left(\frac{n^{2}}{k}\right)
$$

The same is true for the bandwidth h^{-}. It can be easily seen that there exists an $\theta>2$ such that (8) holds. In the case of (D2), we have

$$
s_{n}(x)=\mathcal{O}\left(\frac{n^{2}}{k}\right)+\mathcal{O}\left(\chi\left(x, h^{+}\right)^{1-s} n^{1+s}\right)
$$

Since $\chi\left(x, h^{+}\right)^{1-s} n^{1+s}>0$ for all n, it turns out that 8 holds under Condition (D2) as well.
Consequently, we are able to apply Theorem 3.1 to quarantee

$$
c_{n}\left(D_{n}^{+}\right) \rightarrow c \text { almost completely, and } c_{n}\left(D_{n}^{-}\right) \rightarrow c \text { almost completely. }
$$

Thus Condition (L3') is verified.
In [11, p. 162] Ferraty and Vieu proved under the conditions of Theorem 3.1 that

$$
\begin{equation*}
\frac{1}{n F_{x}(h)} \sum_{i=1}^{n} K\left(h^{-1} d\left(x, X_{i}\right)\right) \rightarrow 1 \text { almost completely. } \tag{9}
\end{equation*}
$$

By (9) we have

$$
\begin{aligned}
& \frac{1}{n F_{x}\left(h^{+}\right)} \sum_{i=1}^{n} K\left(h^{+^{-1}} d\left(x, X_{i}\right)\right) \rightarrow 1 \text { almost completely and } \\
& \frac{1}{n F_{x}\left(h^{-}\right)} \sum_{i=1}^{n} K\left(h^{-\frac{1}{2}} d\left(x, X_{i}\right)\right) \rightarrow 1 \text { almost completely. }
\end{aligned}
$$

We get

$$
\frac{\sum_{i=1}^{n} K\left(h^{+^{-1}} d\left(x, X_{i}\right)\right)}{\sum_{i=1}^{n} K\left(h^{--1} d\left(x, X_{i}\right)\right)} \rightarrow \beta
$$

Condition (L2') is proved.
Finally, we check (L1'),

$$
\forall \varepsilon>0: \sum_{n=1}^{\infty} \mathrm{P}\left(\left|1_{\left\{D_{n}^{-} \leq H_{n, k} \leq D_{n}^{+}\right\}}-1\right|>\varepsilon\right)<\infty
$$

Let $\varepsilon>0$ be fixed. We know that

$$
\begin{equation*}
\mathrm{P}\left(\left|1_{\left\{D_{n}^{-} \leq H_{n, k} \leq D_{n}^{+}\right\}}-1\right|>\varepsilon\right) \leq \mathrm{P}\left(H_{n, k}<D_{n}^{-}\right)+\mathrm{P}\left(H_{n, k}>D_{n}^{+}\right) \tag{10}
\end{equation*}
$$

For the two terms in we obtain

$$
\begin{align*}
\mathrm{P}\left(H_{n, k}<D_{n}^{-}\right) & \leq \mathrm{P}\left(\sum_{i=1}^{n} 1_{B\left(x, D_{n}^{-}\right)}\left(X_{i}\right)>k\right) \\
& \leq \mathrm{P}\left(\sum_{i=1}^{n}\left(1_{B\left(x, D_{n}^{-}\right)}\left(X_{i}\right)-F_{x}\left(D_{n}^{-}\right)\right)>k-n F_{x}\left(D_{n}^{-}\right)\right) \\
& =: \mathrm{P}_{1 n} \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{P}\left(H_{n, k}>D_{n}^{+}\right) & \leq \mathrm{P}\left(\sum_{i=1}^{n} 1_{B\left(x, D_{n}^{+}\right)}\left(X_{i}\right)<k\right) \\
& \leq \mathrm{P}\left(\sum_{i=1}^{n}\left(1_{B\left(x, D_{n}^{+}\right)}\left(X_{i}\right)-F_{x}\left(D_{n}^{+}\right)\right)<k-n F_{x}\left(D_{n}^{+}\right)\right) \\
& =: \mathrm{P}_{2 n} \tag{12}
\end{align*}
$$

In the second step of 11 and $\sqrt[12]{ }$, we centred the random variables.
At this step, Burba et al. [5] use the independence of the random variables. The plan here is to split the data into a block scheme as is done by Modha and Masry [16, Oliveira 17, Tran 18 , or Lu and Cheng [15]. Afterwards we are applying Lemma 4.3. Divide the set $\{1, \ldots, n\}$ into blocks of length $2 l_{n}$, set $m_{n}=\left[n / 2 l_{n}\right]$, where [•] is the Gaussian bracket ${ }^{3}$ and $f_{n}=n-2 l_{n} m_{n}<2 l_{n}$. The sequences are chosen such that $m_{n} \rightarrow \infty$ and $f_{n} \rightarrow \infty . l_{n}$ is specified later on in the proof, see (16). By this choice we have $n=2 l_{n} m_{n}+f_{n}$.

Firstly, we examine term $\mathrm{P}_{1 n}$. Let

$$
U_{n}(j):=\sum_{i=(j-1) l_{n}+1}^{j l_{n}}\left(1_{B\left(x, D_{n}^{-}\right)}\left(X_{i}\right)-F_{x}\left(D_{n}^{-}\right)\right)
$$

and define

$$
\begin{aligned}
B_{n 1} & :=\sum_{j=1}^{m_{n}} U_{n}(2 j-1), \quad B_{n 2}:=\sum_{j=1}^{m_{n}} U_{n}(2 j), \text { and } \\
R_{n} & :=\sum_{i=2 l_{n} m_{n}+1}^{n}\left(1_{B\left(x, D_{n}^{-}\right)}\left(X_{i}\right)-F_{x}\left(D_{n}^{-}\right)\right) .
\end{aligned}
$$

We get

$$
\begin{align*}
\mathrm{P}_{1 n} \leq & \mathrm{P}\left(B_{n 1}>\frac{k-n F_{x}\left(D_{n}^{-}\right)}{3}\right)+\mathrm{P}\left(B_{n 2}>\frac{k-n F_{x}\left(D_{n}^{-}\right)}{3}\right) \\
& +\mathrm{P}\left(R_{n}>\frac{k-n F_{x}\left(D_{n}^{-}\right)}{3}\right) \\
= & \mathrm{P}_{1 n}^{(1)}+\mathrm{P}_{1 n}^{(2)}+\mathrm{P}_{1 n}^{(3)} \tag{13}
\end{align*}
$$

Let us consider $\mathrm{P}_{1 n}^{(1)}$. Lemma 4.3 with $d:=l_{n} m_{n}$ leads to $0<l_{n} m_{n} \leq\left\|U_{n}(2 j-1)+d_{n}\right\|_{\infty} \leq$ $2 l_{n}+l_{n} m_{n}$. Because of $m_{n} l_{n}=\mathcal{O}(n)$ and $k / n \rightarrow 0$, we have

$$
\varepsilon:=\frac{k-n F_{x}\left(D_{n}^{-}\right)}{6 m_{n}}=\frac{k(1-\sqrt{\beta})}{6 m_{n}} \in\left(0,\left\|U_{n}(2 j-1)+d_{n}\right\|_{\infty}\right] .
$$

${ }^{3}[x]=\max \{y \in \mathbb{Z} \mid z \leq x\}, x \in \mathbb{R}$

This choice of ε is motivated by 15 below. By Lemma 4.3 we can construct $\left(\tilde{U}_{n}(2 j-1)\right)_{j=1}^{m_{n}}$ such that

- the random variables $\left(\tilde{U}_{n}(2 j-1)\right)_{j=1}^{m_{n}}$ are independent,
- $\tilde{U}_{n}(2 j-1)$ has the same distribution as $U_{n}(2 j-1)$ for $j=1, \ldots, m_{n}$,
- and

$$
\begin{aligned}
\mathrm{P}\left(\left|\tilde{U}_{n}(2 j-1)-U_{n}(2 j-1)\right|>\varepsilon\right) \leq & 11\left(\frac{\left\|U_{n}(2 j-1)+d\right\|_{\infty}}{\varepsilon}\right)^{\frac{1}{2}} \\
& \cdot \sup |\mathrm{P}(A B)-\mathrm{P}(A) \mathrm{P}(B)|
\end{aligned}
$$

where the supremum is taken over all sets $A, B \in \sigma\left(U_{n}(1), U_{n}(3), \ldots, U_{n}\left(2 m_{n}-1\right)\right)$.
This leads to

$$
\begin{align*}
\mathrm{P}_{1 n}^{(1)}= & \mathrm{P}\left(\sum_{j=1}^{m_{n}}\left[\tilde{U}_{n}(2 j-1)+\left(U_{n}(2 j-1)-\tilde{U}_{n}(2 j-1)\right)\right]>\frac{k-n F_{x}\left(D_{n}^{-}\right)}{3}\right) \\
\leq & \mathrm{P}\left(\sum_{j=1}^{m_{n}} \tilde{U}_{n}(2 j-1)>\frac{k-n F_{x}\left(D_{n}^{-}\right)}{6}\right) \\
& +\mathrm{P}\left(\sum_{j=1}^{m_{n}}\left(U_{n}(2 j-1)-\tilde{U}_{n}(2 j-1)\right)>\frac{k-n F_{x}\left(D_{n}^{-}\right)}{6}\right) \\
= & \mathrm{P}_{1 n}^{(11)}+\mathrm{P}_{1 n}^{(12)} . \tag{14}
\end{align*}
$$

Applying Lemma 4.3 on $\mathrm{P}_{1 n}^{(12)}$,

$$
\begin{align*}
\mathrm{P}_{1 n}^{(12)} & \leq \sum_{j=1}^{m_{n}} \mathrm{P}\left(\left(U_{n}(2 j-1)-\tilde{U}_{n}(2 j-1)\right)>\frac{k-n F_{x}\left(D_{n}^{-}\right)}{6 m_{n}}\right) \tag{15}\\
& \leq m_{n}\left(\frac{6 m_{n} l_{n}\left(m_{n}+1\right)}{k(1-\sqrt{\beta})}\right)^{\frac{1}{2}} \alpha\left(l_{n}\right) \\
& \leq C \frac{n^{2}}{l_{n}^{\frac{3}{2}} k} \alpha\left(l_{n}\right)
\end{align*}
$$

We choose the sequence l_{n} such that

$$
\begin{equation*}
l_{n}^{a}=\frac{n^{2}}{2^{a} r^{a} k} \tag{16}
\end{equation*}
$$

where r is a positive constant specified below and $a>2 / \gamma-1$. By the condition on the mixing coefficient b and some calculations

$$
\frac{n^{2}}{l_{n}^{3 / 2} k} \alpha\left(l_{n}\right)=C n^{(2-\gamma)(a-3 / 2-b) / a}
$$

Consequently, by the assumptions we arrive at

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathrm{P}_{1 n}^{(12)}<\infty \tag{17}
\end{equation*}
$$

Apply now Markov's inequality on term $\mathrm{P}_{1 n}^{(11)}$ for some $t>0$,

$$
\begin{align*}
& \mathrm{P}\left(\sum_{j=1}^{m_{n}} \tilde{U}_{n}(2 j-1)>\frac{k-n F_{x}\left(D_{n}^{-}\right)}{6}\right) \\
& \leq \exp \left(-t \frac{k-n F_{x}\left(D_{n}^{-}\right)}{6}\right) \mathrm{E}\left[\exp \left(t \sum_{j=1}^{m_{n}} \tilde{U}_{n}(2 j-1)\right)\right] \tag{18}
\end{align*}
$$

Due to the independence of the random variables $\left(\tilde{U}_{n}(2 j-1)\right)_{j=1}^{m_{n}}$, we have

$$
\begin{equation*}
\mathrm{E}\left[\exp \left(t \sum_{j=1}^{m_{n}} \tilde{U}_{n}(2 j-1)\right)\right]=\prod_{j=1}^{m_{n}} \mathrm{E}\left[\exp \left(t \tilde{U}_{n}(2 j-1)\right)\right] . \tag{19}
\end{equation*}
$$

Choose $t:=r \log n / k$, then we obtain together with l_{n} as defined in 16

$$
t\left|\tilde{U}_{n}(2 j-1)\right| \leq \frac{2 r l_{n} \log n}{k}=\log n\left(\frac{n^{2}}{k^{a+1}}\right)^{\frac{1}{a}}
$$

In this step, we need the number of neighbours to be a power in n, i.e. $k \sim n^{\gamma}$. By the choice of $a>2 / \gamma-1$, we have for large n that $t\left|U_{n}(2 j-1)\right| \leq 1$. For large n we have

$$
\exp \left(t \tilde{U}_{n}(2 j-1)\right) \leq 1+t \tilde{U}_{n}(2 j-1)+t^{2} \tilde{U}_{n}(2 j-1)^{2}
$$

The random variable $\tilde{U}_{n}(2 j-1)$ has the same distribution as the centred random variable $U_{n}(2 j-$ 1). Hence we know that the expectation of the linear term is zero, $\mathrm{E}\left[\tilde{U}_{n}(2 j-1)\right]=0$. With this and $1+x \leq \exp (x)$ we get

$$
\begin{equation*}
\mathrm{E}\left[\exp \left(t \tilde{U}_{n}(2 j-1)\right)\right] \leq 1+\mathrm{E}\left[t^{2} \tilde{U}_{n}(2 j-1)^{2}\right] \leq \exp \left(t^{2} \mathrm{E}\left[\tilde{U}_{n}(2 j-1)^{2}\right]\right) \tag{20}
\end{equation*}
$$

Furthermore, because $\tilde{U}_{n}(2 j-1)$ and $U_{n}(2 j-1)$ have the same distribution function and by some calculations, it follows that

$$
\sum_{j=1}^{m_{n}} \mathrm{E}\left[\tilde{U}_{n}(2 j-1)^{2}\right] \leq \sum_{i, j=1}^{n}\left|\operatorname{Cov}\left(1_{B\left(x, D_{n}^{-}\right)}\left(X_{i}\right), 1_{B\left(x, D_{n}^{-}\right)}\left(X_{j}\right)\right)\right|
$$

Since $F_{x}\left(D_{n}^{-}\right)=\sqrt{\beta} \frac{k}{n}$ and $k \sim n^{\gamma}$, we know that $F_{x}\left(D_{n}^{-}\right)=\mathcal{O}\left(n^{\gamma-1}\right)$. We apply Lemma 4.4 and get in the case of (D2)

$$
\begin{equation*}
\sum_{j=1}^{m_{n}} \mathrm{E}\left[\tilde{U}_{n}(2 j-1)^{2}\right] \leq C_{1} \sqrt{\beta} k+C_{2} \chi\left(D_{n}^{-}\right)^{1-s} n^{1+s} \tag{21}
\end{equation*}
$$

and in the case of (D1)

$$
\sum_{j=1}^{m_{n}} \mathrm{E}\left[\tilde{U}_{n}(2 j-1)^{2}\right] \leq C_{1} \sqrt{\beta} k
$$

Below, we present the arguments if Condition (D2) holds, because in the case of (D1) the rationale follows the same line. By (19), 20), (21), and $t:=r \log n / k$, we have for the second term in (18)

$$
\begin{align*}
\mathrm{E}\left[\exp \left(t \sum_{j=1}^{m_{n}} \tilde{U}_{n}(2 j-1)\right)\right] \leq & \exp \left(C_{1} \sqrt{\beta} r^{2} \frac{(\log n)^{2}}{k}\right) \\
& \cdot \exp \left(C_{2} \sqrt{\beta} r^{2} \frac{(\log n)^{2} \chi\left(D_{n}^{-}\right)^{1-s} n^{1+s}}{k^{2}}\right) \tag{22}
\end{align*}
$$

By $k \sim n^{\gamma}$, we know that the first term in 22 satisfies

$$
\exp \left(C_{1} \sqrt{\beta} r^{2} \frac{(\log n)^{2}}{k}\right) \rightarrow 1 \text { as } n \rightarrow \infty
$$

If (D2) holds, we have for the second term in 22

$$
\exp \left(C_{2} \sqrt{\beta} \mu^{2} \frac{(\log n)^{2} \chi\left(D_{n}^{-}\right)^{1-s} n^{1+s}}{k^{2}}\right) \rightarrow 1 \text { as } n \rightarrow \infty
$$

Since $F_{x}\left(D_{n}^{-}\right)=\sqrt{\beta} \frac{k}{n}, t=r \log n / k$, and by choosing $r>6 /(1-\sqrt{\beta})$, we find for the first term in 18)

$$
\begin{aligned}
\exp \left(-t \frac{k-n F_{x}\left(D_{n}^{-}\right)}{6}\right) & =\exp \left(-\frac{r(1-\sqrt{\beta})}{6} \log (n)\right) \\
& =n^{-\frac{r(1-\sqrt{ })}{6}}
\end{aligned}
$$

By this,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathrm{P}_{1 n}^{(11)}<\infty \tag{23}
\end{equation*}
$$

Now, combine relations 17 and 23 to obtain

$$
\sum_{n=1}^{\infty} \mathrm{P}_{1 n}^{(1)} \leq \sum_{n=1}^{\infty} \mathrm{P}_{1 n}^{(11)}+\sum_{n=1}^{\infty} \mathrm{P}_{1 n}^{(12)}<\infty
$$

By similar arguments as for $\mathrm{P}_{1 n}^{(1)}$ we receive

$$
\sum_{n=1}^{\infty} \mathrm{P}_{1 n}^{(2)}<\infty
$$

Finally, we examine

$$
\mathrm{P}_{1 n}^{(3)}=\mathrm{P}\left(R_{n}>\frac{k-n F_{x}\left(D_{n}^{-}\right)}{3}\right)
$$

We know that $\left|R_{n}\right| \leq 4 l_{n}$ and $k-n F_{x}\left(D_{n}^{-}\right) / 3=\mathcal{O}(k)$. Together with the choice of l_{n} in 16) and the condition on the parameter $a>2 / \gamma-1$ we have $k>l_{n}$ for large n. This implies

$$
\sum_{n=1}^{\infty} \mathrm{P}_{1 n}^{(3)}<\infty
$$

Finally, we get

$$
\sum_{n=1}^{\infty} \mathrm{P}_{1 n} \leq \sum_{n=1}^{\infty} \mathrm{P}_{1 n}^{(1)}+\sum_{n=1}^{\infty} \mathrm{P}_{1 n}^{(2)}+\sum_{n=1}^{\infty} \mathrm{P}_{1 n}^{(3)}<\infty
$$

Analysis of $\mathrm{P}_{2 n}$ is similar to that of $\mathrm{P}_{1 n}$. This finishes the proof of Condition (L1'), which states that

$$
1_{\left[D_{n}^{-} \leq D_{n} \leq D_{n}^{+}\right]} \rightarrow 1 \text { almost completely. }
$$

Now, we are in the position to apply Lemma 4.2 to obtain the desired result,

$$
\lim _{n \rightarrow \infty} \hat{m}_{\mathrm{k}-\mathrm{NN}}(x)=m(x) \text { almost completely. }
$$

Proof. Theorem 3.4

To prove this theorem we use Lemma 4.1 from Burba et al. [5]. The conditions of Lemma 4.1 are proven in a similar manner as in the proof of Theorem 3.4. Condition (L1) is the same as (L1') of Lemma 4.2. So the proof can be omitted here. Conditions (L2) and (L3) are checked in a similar way as in the proof of Theorem 3.3. In [11, p. 162] Ferraty and Vieu prove under the conditions of Theorem 3.2 that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} K\left(h^{-1} d\left(x, X_{i}\right)\right)=\mathcal{O}_{a . c o .}\left(\frac{\sqrt{s_{n}(x) \log n}}{n}\right) \tag{24}
\end{equation*}
$$

Choose β_{n} as an increasing sequence in $(0,1)$ with limit 1 . Furthermore, choose D_{n}^{+}and D_{n}^{-}such that

$$
F_{x}\left(D_{n}^{+}\right)=\frac{1}{\sqrt{\beta_{n}}} \frac{k}{n} \text { and } F_{x}\left(D_{n}^{-}\right)=\sqrt{\beta_{n}} \frac{k}{n}
$$

If (D1) holds, then

$$
\begin{equation*}
s_{n}(x)=\mathcal{O}\left(\frac{n}{F_{x}\left(h^{+}\right)}\right)=\mathcal{O}\left(\frac{n^{2}}{k}\right) \tag{25}
\end{equation*}
$$

The same is true for the bandwidth h^{-}. In the case of (D2), we have for both bandwidth sequences h^{-}and h^{+}

$$
\begin{equation*}
s_{n}(x)=\mathcal{O}\left(\frac{n^{2}}{k}\right)+\mathcal{O}\left(\chi(x, h)^{1-s} n^{1+s}\right) \tag{26}
\end{equation*}
$$

Now we are able to apply Theorem 3.2 with

$$
h^{+}=D_{n}^{+}=F^{-1}\left(\sqrt{\beta_{n}} \frac{k}{n}\right) \text { and } h^{-}=D_{n}^{-}=F^{-1}\left(\frac{1}{\sqrt{\beta_{n}}} \frac{k}{n}\right)
$$

to get

$$
\begin{aligned}
& c_{n}\left(D_{n}^{+}\right)=\mathcal{O}\left(\left(F_{x}^{-1}\left(\frac{k}{n}\right)\right)^{\beta}\right)+\mathcal{O}_{\text {a.co. }}\left(\frac{\sqrt{s_{n}(x) \log n}}{n}\right) \text { and } \\
& c_{n}\left(D_{n}^{-}\right)=\mathcal{O}\left(\left(F_{x}^{-1}\left(\frac{k}{n}\right)\right)^{\beta}\right)+\mathcal{O}_{\text {a.co. }}\left(\frac{\sqrt{s_{n}(x) \log n}}{n}\right)
\end{aligned}
$$

That verifies Condition (L3'). Now, by (24) and the same choice of h^{+}and h^{-}as above, we have

$$
\begin{aligned}
& \frac{1}{n F_{x}\left(h^{+}\right)} \sum_{i=1}^{n} K\left(h^{+^{-1}} d\left(x, X_{i}\right)\right)=\sqrt{\beta_{n}} \frac{k}{n}+\mathcal{O}_{\text {a.co. }}\left(\frac{\sqrt{s_{n}(x) \log n}}{n}\right) \text { and } \\
& \frac{1}{n F_{x}\left(h^{-}\right)} \sum_{i=1}^{n} K\left(h^{-^{-1}} d\left(x, X_{i}\right)\right)=\sqrt{\beta_{n}} \frac{k}{n}+\mathcal{O}_{\text {a.co. }}\left(\frac{\sqrt{s_{n}(x) \log n}}{n}\right)
\end{aligned}
$$

By this, we obtain

$$
\frac{\sum_{i=1}^{n} K\left(h^{+^{-1}} d\left(x, X_{i}\right)\right)}{\sum_{i=1}^{n} K\left(h^{--1} d\left(x, X_{i}\right)\right)}-\beta_{n}=\mathcal{O}_{\text {a.co. }}\left(\frac{\sqrt{s_{n}(x) \log n}}{n}\right)
$$

To check Condition (L2') we estimate $s_{n}(x)$ by bounds obtained either by Condition (D1) and $b>(2-\gamma) /\left(\varepsilon_{1}(1-\gamma)\right)$ or by (D2), see 25) or 26). This completes this proof.

6 Applications and Related Results

Applications

In the context of functional data analysis the k-NN kernel estimate was first introduced in the monograph of Ferraty and Vieu [11. There the authors give numerical examples for the k-NN kernel estimate. They tested it on different data sets, such as electrical consumption in the U.S. [11, p. 200]. In [9, Ferraty et al. examined a data set describing the El Niño phenomenon. Other interesting examples can be found in the R-package fds (functional data sets) or Bosq [4, pp. 247]. For both data sets the assumption of α-mixing is plausible. If we have for example a look on the electrical consumption data set, it makes sense that the electrical consumption of the year which we want to predict is more dependent on the near past than on years afterwards.

Related Results

Here we want to outline how to make a robust k-NN kernel estimate. As already mentioned in the introduction, the k-NN estimate is prone to outliers. This disadvantage can be treated by robust regression estimation. For functional data analysis Azzedine et al. [2] introduce a robust non-parametric regression estimate for independent data. Attouch et al. 1] prove the asymptotic normality for the non-parametric regression estimate for α-mixing data. Crambes et al. 8 present results dealing with the L_{p} error for independent and α-mixing data.

In robust estimation the non-parametric model θ_{x} can be defined as the root t of the following equation

$$
\begin{equation*}
\Psi(x, t):=\mathrm{E}\left[\psi_{x}(Y, t) \mid X=x\right]=0 \tag{27}
\end{equation*}
$$

The model θ_{x} is called the $\psi_{x}(Y, t)$-regression and is a generalisation of the classical regression function. If we choose for example $\psi_{x}(Y, t)=Y-t$ then we have $\theta_{x}=m(x)$.

In the case of α-mixing data Almost complete convergence and almost complete convergence rate are not yet proven for robust kernel estimate. These results can be easily obtained by arguments similar to those of Azzedine et al. 2] and those for the classical regression function estimation. By such a result and similar arguments as in this section: we get almost complete convergence and related rates for a robust k-NN non-parametric estimate.

Attouch et al. [1], Azzedine et al. [2], or Crambes et al. [8] suggest in their application the $L_{1}-L_{2}$ function $\psi(t):=t / \sqrt{\left(1+t^{2}\right) / 2}$ and $\psi_{x}(t):=\psi(t / M(x))$, where $M(x):=\operatorname{med}|Y-\operatorname{med}(Y \mid X=x)|$ with $\operatorname{med}(Y \mid X=x)$ as the conditional median of Y given $X=x$. We get the consistency for the kernel estimate of conditional distribution function directly by choosing in $\sqrt[7]{)}$ for $B_{i}=1_{(-\infty, y]}\left(Y_{i}\right)$ with Y_{i} as a real valued random variable distributed as Y, and by this a consistent kernel estimate of $\operatorname{med}(Y \mid X=x)$.

Alternatively, if one has consistency results for a robust k-NN kernel, we can choose $\psi_{x}(t)=$ $1_{[t \geq 0]}-1 / 2$, to get immediately the consistency for the kernel estimate of the conditional distribution function.

References

[1] Attouch, M., Laksaci, A., and Saïd, E. O. Asymptotic normality of a robust estimator of the regression function for functional time series data. Journal of the Korean Statistical Society 39, 4 (2010), 489-500.
[2] Azzedine, N., Laksaci, A., and Ould-Saïd, E. On robust nonparametric regression estimation for a functional regressor. Statistics \& Probability Letters 78, 18 (2008), 32163221.
[3] Bosq, D. Nonparametric statistics for stochastic processes: estimation and prediction. Lecture notes in statistics. Springer, 1998.
[4] BosQ, D. Linear Processes in Function Spaces. Springer, Berlin, 2000.
[5] Burba, F., Ferraty, F., and Vieu, P. k-Nearest Neighbour method in functional nonparametric regression. Journal of Nonparametric Statistics 21, 4 (2009), 453-469.
[6] Cérou, F., and Guyader, A. Nearest neighbor classification in infinite dimension. ESAIM: PESS 10 (2005), 340-255.
[7] Collomb, G. Estimation de la regression par la methode des k points les plus proches avec noyau : quelques propriétés de convergence ponctuelle. In Statistique non Paramétrique Asymptotique, J.-P. Raoult, Ed., vol. 821 of Lecture Notes in Mathematics. Springer Berlin / Heidelberg, 1980, pp. 159-175.
[8] Crambes, C., Delsol, L., and Laksaci, A. Robust nonparametric estimation for functional data. Journal of Nonparametric Statistics 20, 7 (Oct. 2008), 573-598.
[9] Ferraty, F., Rabhi, A., and Vieu, P. Conditional Quantiles for Dependent Functional Data with Application to the Climatic El Niño Phenomenon. Sankhya: The Indian Journal of Statistics 67 (2005), 378-398.
[10] Ferraty, F., and Vieu, P. Non-parametric models for functional data, with application in regression, time-series prediction and curve discrimination. Journal of Nonparametric Statistics 16, $1 \& 2$ (2004), 111-125.
[11] Ferraty, F., and Vieu, P. Nonparametric Functional Data Analysis. Springer, New York, 2006.
[12] Györfi, L., Kohler, M., Krzyzak, A., and Walk, H. A Distribution-Free Theory of Nonparametric Regression. Springer, New-york, 2002.
[13] Lalö̈, T. A k-nearest neighbor approach for functional regression. Statistics $\& \mathcal{B}$ Probability Letters 78, 10 (2008), 1189-1193.
[14] Lian, H. Convergence of functional k-nearest neighbor regression estimate with functional responses. Electronic Journal of Statistics 5 (2011), 31-40.
[15] Lu, Z., and Cheng, P. Strong consistency of nearest neighbor kernel regression estimation for stationary dependent samples. Science in China Series A: Mathematics 41, 9 (1998), 918-926.
[16] Modha, D. S., and Masry, E. Minimum Complexity Regression Estimation with Weakly Dependent Observations. IEEE Transactions on Information Theory 42, 6 (1996), 2133-2145.
[17] Oliveira, P. E. Nonparametric density and regression estimation functional data. Tech. rep., Departamento de Matemática, Universidade de Coimbra, 2005.
[18] Tran, L. T. Nonparametric Estimation for Time Series by Local Average Estimators. The Annals of Statistics 42, 2 (1993), 1040-1057.

Simon Müller
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: Simon.Mueller@mathematik.uni-stuttgart.de
WWW: http://www.isa.uni-stuttgart.de/LstStoch/Mueller/
Jürgen Dippon
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: dippon@mathematik.uni-stuttgart.de
WWW: http://www.isa.uni-stuttgart.de/LstStoch/Dippon/

Erschienene Preprints ab Nummer 2007/001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints
2011/014 Müller, S.; Dippon, J.: k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis
2011/013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
2011/012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of characteristic two
2011/011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
2011/010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy
2011/009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
2011/008 Stroppel, M.: Orthogonal polar spaces and unitals
2011/007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
2011/006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces
2011/005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
2011/004 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part II -Gain-Scheduled Control
2011/003 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part I Robust Control
2011/002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G_{2}-structures
2011/001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
2010/018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
2010/017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
2010/016 Moroianu, A.; Semmelmann,U.: Clifford structures on Riemannian manifolds
2010/015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group $S O(3)$
2010/014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
2010/013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
2010/012 Effenberger, F:: Stacked polytopes and tight triangulations of manifolds
2010/011 Györfi, L.; Walk, H.: Empirical portfolio selection strategies with proportional transaction costs
2010/010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function
2010/009 Geisinger, L.; Laptev, A.; Weidl, T.: Geometrical Versions of improved Berezin-Li-Yau Inequalities
2010/008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
2010/007 Grundhöfer, T.; Krinn, B.; Stroppel, M.: Non-existence of isomorphisms between certain unitals
2010/006 Höllig, K.; Hörner, J.; Hoffacker, A.: Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods
2010/005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems

2010/004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
2010/003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
2010/002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
2010/001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
2009/008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
2009/007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems
2009/006 Demirel, S.; Harrell II, E.M.: On semiclassical and universal inequalities for eigenvalues of quantum graphs
2009/005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
2009/004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator
2009/003 Walk, H.: Strong laws of large numbers and nonparametric estimation
2009/002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
2009/001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^{3} and of the 3-torus
2008/006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
2008/005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems
2008/004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
2008/003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008/002 Hertweck, M.; Hofert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $\operatorname{PSL}(2, q)$
2008/001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a correction term
2007/006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
2007/005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field
2007/004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger operators on metric trees
2007/003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
2007/002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
2007/001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions

[^0]: ${ }^{1}$ We recall that $X_{n} \rightarrow X$ almost completely if and only if $\forall \varepsilon>0: \sum_{n=1}^{\infty} \mathrm{P}\left(\left|X_{n}-X\right|>\varepsilon\right)<\infty$
 ${ }^{2}$ We recall that $X_{n}-X=\mathcal{O}_{\text {a.co. }}\left(u_{n}\right)$ if and only if $\exists \varepsilon_{0}>0: \sum_{n=1}^{\infty} \mathrm{P}\left(\left|X_{n}-X\right|>\varepsilon_{0} u_{n}\right)<\infty$

