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Abstract

In this paper the problem of local variance estimation is considered. Given an independent and
identically distributed sample, estimates of local averaging type, especially partitioning and kernel
estimates, are investigated in view of consistency and rate of convergence. Furthermore the case
of additional measurement errors in the dependent variables is treated.

Key words: regression function, local (or conditional) variance function, local averaging, parti-
tioning, kernel, nearest neighbor estimates, least squares, measurement error, consistency, rate of
convergence.

1 Introduction

Let (X,Y ), (X1, Y1), (X2, Y2), . . . be independent and identically distributed Rd ×R-valued ran-
dom vectors with E{Y 4} <∞. The regression function m : Rd → R is defined by

m(x) := E{Y |X = x}.

m allows to predict a non-observable realization of Y on the basis of an observed realization
x of X by m(x). In competition with other measurable functions f : Rd → R the expression
E{(Y − f(X))2} is minimal for m, i.e.,

E
{

(Y −m(X))2
}

= min
f

E
{

(Y − f(X))2
}

(1)

because of

E
{
|f(X)− Y |2

}
= E

{
(m(X)− Y )2

}
+

∫
|f(x)−m(x)|2µ(dx)

where µ denotes the distribution PX of X.
However m is unknown if the distribution of (X,Y ) is unknown. Nonparametric regression deals
with the following problem: Given independent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ), an estimate
mn of the regression function shall be constructed, such that

∫
|mn(x)−m(x)|2µ(dx) is ”small”.

Widespread principles of constructing mn are local averaging and least squares estimations.
By local averaging the estimation of m(x) is given by the weighted mean of those Yi where Xi is
in a certain sense close to x :

mn(x)(LA) = m(LA)
n (x,X1, Y1, . . . , Xn, Yn) =

n∑
i=1

Wn,i(x) · Yi, (2)

where the weights Wn,i(x,X1, . . . , Xn) ∈ R, briefly written as Wn,i(x), depend on X1, . . . , Xn and
are therefore non-deterministic. We have ”small” (nonnegative) weights in the case that Xi is
”far” from x. Depending on the definition of the weights, we distinguish between partitioning,
kernel and nearest neighbor estimates.
By the least squares methods the idea is to minimize the empirical L2-risk over an appropriate set
of functions Fn and to choose the minimizing function(s) over Fn as regression estimate, that is

mn(·)(LS) = m(LS)
n (·, X1, Y1, . . . , X) = arg min

f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2. (3)

The quality of predicting by the regression function m is locally given by the local variance

σ2(x) := E{(Y −m(X))2|X = x} = E{Y 2|X = x} −m2(x).

In the literature Kohler in [5], Section 3.1, deals with the estimation of local variance functions.
We refer also the reader to Müller and Stadtmüller [6], Stadtmüller and Tsybakov [12], Ruppert
et al. [10], Härdle and Tsybakov [4], Spokoiny [11], Pan and Wang [9], Hall et al. [3], Müller et al.
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[7], Neumann [8] for the estimation of the local variance function also in the case of fixed design.
In this paper we modify and extend the approach of Kohler in [5], Remark 5, in context of local
averaging estimation of σ2 by use of local averaging estimates mn of m.
Note that we use the whole sample (X1, Y1 . . . , Xn, Yn) for the estimation of σ2 as well as for the
auxiliary estimate of m. The investigation of the asymptotic behavior regards the special structure
of the standard local averaging methods used here. It is possible to obtain corresponding results
for the general local averaging methods in Stone [13] (compare also Györfi et al. [2]) at the expense

of splitting the sample (n = n′ + n′′) with weights W
(1)
n′,j and W

(2)
n′′,j .

Section 2 deals with universal consistency of local averaging estimation of the local variance
function, i.e., first mean convergence of the L2-error

∫
|σ2

n(x) − σ2(x)|2µ(dx) to zero for general
distribution (X,Y ) under the optimal moment condition E{Y 4} <∞.
Section 3 is devoted to the rate of convergence in context of bounded Y and Lipschitz conditions
on m and σ2.
In Section 4 the concept of additional noise (induced because of the use of mn instead of m in
Sections 2 and 3) is extended to the case that Yi’s are noise-contaminated, again under uniform
boundedness of the dependent variables.

2 Local Variance Estimation

One defines new random variables
Z := Y 2 −m2(X)

and in context of observations in the case of known regression function

Zi := Y 2
i −m2(Xi)

and of unknown regression function

Zn,i := Y 2
i −m2

n(Xi). (4)

(Notice that usually m is unknown and has to be estimated. In this way one has a plug-in method.)
Note that the local variance function is a regression on the pair (X,Z).
This motivates the construction of a family of estimates of the local variance that have the form

σ2
n(x) := σ2

n(x)(LA) =
n∑

i=1

Wn,i(x) · Zn,i, (5)

The weights Wn,i(x) can take different forms. In the literature partitioning weights are used,
defined by

Wn,i(x,X1, . . . , Xn) =
1An(x)(Xi)∑n
l=1 1An(x)(Xl)

(6)

(An(x) denoting the An,j of the partitioning sequence {An,j} containing x ∈ Rd), with 0/0 := 0.
Further kernel weights are used, especially with symmetric kernel K : Rd → [0,∞), satisfying
1S0,R

≥ K(x) ≥ b1S0,r (x) (0 < r ≤ R <∞, b > 0), defined by

Wn,i(x,X1, . . . , Xn) =
K
(

x−Xi

hn

)
∑n

l=1K
(

x−Xl

hn

) , (7)

with bandwidth hn > 0 and 0/0 := 0 again. S0,r denotes the sphere with radius r > 0 centered in
0.
Finally, nearest neighbor weights are also frequently used, defined by

Wn,i(x,X1, . . . , Xn) =
1

kn
1{Xi is among the kn NNs of x in {X1,...,Xn}} (8)
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(2 ≤ kn ≤ n), here usually assuming that ties occur with probability 0. This can be obtained for
example via tie-breaking by indices (compare [2], pp. 86, 87).
We distinguish local averaging methods in the auxiliary estimates mn in (4) and in the estimates

σ2
n in (5), indicating the weights by W

(2)
n,i and W

(1)
n,i (instead of Wn,i in (5)), respectively. Thus

mn(Xi) =

n∑
j=1

W
(2)
n,j (Xi, X1, . . . , Xn)Yj (9)

where
W

(2)
n,j (x,X1, . . . , Xn),

is of partitioning type, with partitioning sequence
{
A

(2)
n,j

}
, or of kernel type, with kernel K(2) and

bandwidhts h
(2)
n , or of nearest neighbor type, with k

(2)
n neighbors.

Now with Zn,i = Y 2
i −m2

n(Xi) we define a family of estimators of the local variance function by

σ2
n(x) =

n∑
i=1

W
(1)
n,i (x) · Zn,i, (10)

depending on weights

W
(1)
n,i (x) = W

(1)
n,i (x,X1, . . . , Xn),

that are of partitioning type, with partitioning sequence
{
A

(1)
n,j

}
, or of kernel type, with kernel

K(1) and bandwidhts h
(1)
n . (Nearest neighbor weights will not be used for W

(1)
n,i (x).)

Theorem 2.1 Let (X,Y ) have an arbitrary distribution with E{Y 4} < ∞. For partitioning
weights defined according to (6) assume that, for each sphere S centered at the origin

lim
n→∞

max
A

(l)
n,j∩S 6=∅

diam(A
(l)
n,j) = 0, l = 1, 2, (11)

lim
n→∞

|{j : A
(l)
n,j ∩ S 6= ∅}|
n

= 0, l = 1, 2. (12)

For kernel weights defined according to (7) with kernels K(l) assume that the bandwidths satisfy

0 < h(l)n → 0, nh(l)dn →∞, l = 1, 2, (13)

(K(l) symmetric, 1S0,R
(x) ≥ K(l)(x) ≥ b1S0,r

(x) (0 < r ≤ R <∞, b > 0)).
For nearest neighbor weights defined according to (8) assume that

2 ≤ k(2)n ≤ n, k(2)n →∞, k
(2)
n

n
→ 0 (14)

Then for the estimate (10) under the above assumptions

lim
n→∞

E
∫ (

σ2
n(x)− σ2(x)

)2
µ(dx) = 0

holds. (Universal consistency of local averaging estimators of the local variance)

Theorem 2.1 will be proven by Lemmas 2.2 and 2.3.
The following Lemma 2.2 modifies Remark 5 in Kohler [5]. It is within the framework that the
dependent variable Y can be observed only with supplementary, maybe correlated, measurement
errors. Since it is not assumed that the means of these measurement errors are zero, these kinds
of errors are not already included in standard models. Therefore, the dataset is of the form

Dn = {(X1, Y 1,n), . . . , (Xn, Y n,n)},
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Lemma 2.2 Let mn be local averaging estimators of m of the form

mn(x) =

n∑
i=1

Wn,i(X)Y i

with Y i = Y i,n. Assume that the weights Wn,i(x) = Wn,i(x,X1, . . . , Xn) are of partitioning type
(6) or kernel type (7) with 1S0,R

(x) ≥ K(x) ≥ b1S0,r for some 0 < r ≤ R < ∞, b > 0, satisfying
(11) ∧ (12) and (13), respectively. Further assume

E
{
Y 2
}
<∞, E

{
Y

2

i

}
<∞ (i = 1, . . . , n)

and

E

{
1

n

n∑
i=1

|Y i − Yi|2
}
→ 0. (15)

Then

E
{∫
|mn(x)−m(x)|2µ(dx)

}
→ 0.

Proof As Kohler ([5], Remark 5) suggested,

E


∫ ( n∑

i=1

Wn,i(x)Y i −m(x)

)2

µ(dx)


= E


∫ ( n∑

i=1

Wn,i(x)
[
Y i − Yi + Yi

]
−m(x)

)2

µ(dx)


≤ 2E


∫ ( n∑

i=1

Wn,i(x)Yi −m(x)

)2

µ(dx)


+ 2E


∫ ( n∑

i=1

Wn,i(x)
[
Y i − Yi

])2

µ(dx)


= 2Kn,1 + 2Kn,2.

The term Kn,1 is simply the expected L2-error of the local averaging estimate of m on the basis of
observed ((X1, Y1), . . . , (Xn, Yn)). By Theorem 4.2 and Theorem 5.1 in [2], respectively, Kn,1 → 0.
It remains to show Kn,2 → 0. By the Cauchy-Schwarz inequality together with Wn,i(X) ≥ 0,∑n

i=1Wn,i(X) ≤ 1, one has

Kn,2 ≤E

{∫ ( n∑
i=1

Wn,i(x)|Y i − Yi|2
)
µ(dx)

}
.

With
fi(x) := E

{
|Y i − Yi|2

∣∣∣Xi = x
}
, x ∈ R (i ∈ {1, . . . , n}),

there is, because of the special structure of Wn,i, a finite constant c such that, for all i ∈ {1, . . . , n}∫
E

{
n∑

i=1

Wn,i(x)|Y i − Yi|2
}
µ(dx)

=

∫
E

{
n∑

i=1

Wn,i(x)fi(Xi)

}
µ(dx)

≤ c

n

n∑
i=1

∫
fi(u)µ(du)
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=
c

n

n∑
i=1

Efi(u)µ(du)

=
c

n
E

{
n∑

i=1

|Y i − Yi|2
}

where the inequality is obtained via the individual summands by the arguments in [2], p.62 (with
c = 1) and pp. 74, 75, respectively. Thus, by the assumption (15),

Kn,2 ≤ cE

{
1

n

n∑
i=1

|Y i − Yi|2
}
→ 0.

Lemma 2.3 Let mn be local averaging estimators of m of the form

mn(x) =

n∑
i=1

Wn,i(x)Yi.

Assume that the weights Wn,i(x) = Wn,i(x,X1, . . . , Xn) are of partitioning type (6) or of kernel
type (7) with 1S0,R

(x) ≥ K(x) ≥ b1S0,r
(x) for some 0 < r ≤ R <∞, b > 0, or of nearest neighbor

type (8) (here under assumption that ties occur with probability 0), satisfying (11) ∧ (12), (13)
and (14), respectively. Further assume E{Y 2} <∞. Then

E{|mn(X1)−m(X1)|2} → 0.

If moreover E{Y 4} <∞, then

E{|mn(X1)−m(X1)|4} → 0.

Proof We first assume that E{Y 2} <∞ and that W
(2)
n,j is of kernel type. Then

E{|mn(X1)−m(X1)|2}

= E


∣∣∣∣∣∣
Y1K(0) +

∑n
j=2 YjK

(
X1−Xj

hn

)
K(0) +

∑n
j=2K

(
X1−Xj

hn

) −m(X1)

∣∣∣∣∣∣
2


≤ 2K(0)2E

 E
{
Y 2|X

}(
K(0) +

∑n
j=2K

(
X−Xj

hn

))2


+ 2E


∣∣∣∣∣∣

∑n
j=2 YjK

(
X−Xj

hn

)
K(0) +

∑n
j=2K

(
X−Xj

hn

) −m(X)

∣∣∣∣∣∣
2
 .

The second term of the right-hand side converges to 0 as in the proof of Theorem 5.1 in [2]. With
a suitable finite constant c1 the first term is bounded by

c1

∫
E
{
Y 2
∣∣∣X = x

}
E

 1(
1 +

∑n
j=2 1Sx,rhn

(Xj)
)2
µ(dx)

≤ c1

∫
E
{
Y 2|X = x

} 1

nµ(Sx,rhn)
µ(dx)→ 0
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by Lemma 4.1 (i) in [2] together with Lemma 24.6 in [2], nhdn →∞ in assumption (13), E{Y 2} <
∞ and the dominated convergence theorem. The case that W

(2)
n,j is defined via partitioning, is

treated analogously by use of Theorem 4.2 in [2], and for ε > 0∫
E
{
Y 2|X = x

}
E

1(
1 +

∑n
j=2 1An(x)(Xj)

)2µ(dx)

≤
∫
E{Y 2|X = x}1{E{Y 2|X=x}>L}µ(dx)

+

∫
E{Y 2|X = x}1{E{Y 2|X=x}≤L}E

{
1

1 +
∑n

j=2 1An(x)

}
µ(dx)

≤ ε+ L

∫
Sc

µ(dx) + L

∫
S

1

nµ(An(x))
µ(dx)

(for suitable L <∞ and by Lemma 4.1 (i) in [2])

≤ 2ε+ L

∫
S

1

nµ(An(x))
µ(dx)

(for suitable sphere S centered at 0)

= 2ε+ o(1)

(by assumption (12)).

In the case that W
(2)
n,j is defined via nearest neighbors, we write

E{|mn(X1)−m(X1)|2}

= E

{∣∣∣∣ Y1 +Dn

1 + (kn − 1)
−m(X1)

∣∣∣∣2
}

with

Dn =

n∑
j=2

Yj1{Xj is among the (kn−1) NNs of X1 in {X2,...,Xn}},

and notice

E

{∣∣∣∣ Dn

kn − 1
−m(X1)

∣∣∣∣2
}
→ 0

by Theorem 6.1 in [2]. Further

E

{∣∣∣∣Y1 +Dn

kn
− Dn

kn − 1

∣∣∣∣2
}
≤ 2

k2n

(
E
{
Y 2
1

}
+ E

{(
Dn

kn − 1

)2
})
→ 0

because of

E
{
Y 2
1

}
<∞, E

{(
Dn

kn − 1

)2
}
→E{m(X1)2} <∞, kn →∞.

Now, we consider the case E{Y 4} < ∞. The above proof shows that for r = 2, 4 one has the
representation

J (r)
n := E{|mn(X1)−m(X1)|r}

= E

{∣∣∣∣∣
n∑

i=1

YiWn,i(X,X2, . . . , Xn)−m(X)

∣∣∣∣∣
r}

for someWn,i ≥ 0 with
∑n

i=1Wn,i = 1, e.g., in the kernel caseWn,i withK(0) instead ofK
(
·−X1

hn

)
in Wn,i. Then by Györfi [1], Theorem 1 with proof (compare also [2], Lemma 23.3 with proof, and
[14], last part of Lemma 8 with δ = 1, p = 2 and convergence in probability instead of almost sure

convergence), J
(2)
n → 0 for E{Y 2} <∞ (already proven) implies J

(4)
n → 0 for E{Y 4} <∞.
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Proof of Theorem 2.1 We apply Lemma 2.2 with Yi, Y i, Wn,i, mn and m replaced by Y 2
i −

m2(Xi), Y
2
i −m2

n(Xi), W
(1)
n,i , σ

2
n and σ2 in Theorem 2.1, respectively. We notice

E

{
1

n

n∑
i=1

|(Y 2
i −m2

n(Xi))− (Y 2
i −m2(Xi))|2

}
= E{|m2

n(X1)−m2(X1)|2}
(due to symmetry with respect to (X1, Y1), . . . , (Xn, Yn))

≤
(
E
{
|mn(X1) +m(X1)|4

}) 1
2
(
E
{
|mn(X1)−m(X1)|4

}) 1
2

(because of the Cauchy-Schwarz inequality)

→ 0.

The latter is obtained by the triangle inequality(
E
{
|mn(X1) +m(X1)|4

}) 1
4

≤
(
E
{
|mn(X1)−m(X1)|4

}) 1
4 + 2E({|m(X1)|4}) 1

4 ,

E{m(X1)4} = E{m(X)4}
= E{(E(Y |X))4} ≤E{E{Y 4|X}} = E{Y 4} <∞

because of Jensen’s inequality for conditional expectations,

E
{
|mn(X1)−m(X1)|4

}
→ 0

because of Lemma 2.3 with Wn,i there replaced by W
(2)
n,i in Theorem 2.1. Thus Lemma 2.2 yields

the assertion.

3 Rate of Convergence

In this section we establish a rate of convergence for the estimate of the local variance defined in
Section 2.

Theorem 3.1 Let the estimate of the local variance σ2 be given by (10) with weights W
(1)
n,i (x) of

cubic partition with side length h
(1)
n or with naive kernel 1

S
(1)
0,1

with bandwidths h
(1)
n , further for

mn(Xi) given by (9) with weights W
(2)
n,i (x) of cubic partition with side length h

(2)
n or with naive

kernel 1S0,1
and bandwidths h

(2)
n or with k

(2)
n -nearest neighbor (the latter for d ≥ 3).

Assume that
|Y | ≤ L ∈ [0,∞),

that
|m(x)−m(z)| ≤ C‖x− z‖, x, z ∈ Rd,

and finally, that
|σ2(x)− σ2(z)| ≤ D‖x− z‖, x, z ∈ Rd,

(‖ ‖ denoting the Euclidean norm). Let X have a compact support S∗. Then, for

h(1)n ∼ n−
1

d+2 ,

and
h(2)n ∼ n−

1
d+2 , and k(2)n ∼ n

2
d+2 , respectively,

E
∫
|σ2

n(x)− σ2(x)|µ(dx) = O
(
n−

2
d+2

)
.

7



Proof As in the proof of Lemma 2.2 and by the Cauchy-Schwarz inequality we obtain

E


∫ (( n∑

i=1

W
(1)
n,i (x)Zn,i

)
− σ2(x)

)2

µ(dx)


≤ 2E


∫ ( n∑

i=1

W
(1)
n,i (x)

(
Y 2
i −m2(Xi)

)
− σ2(x)

)2

µ(dx)


+2E


∫ ( n∑

i=1

W
(1)
n,i (x)

[
m2

n(Xi)−m2(Xi)
])2

µ(dx)


≤ 2E


∫ ( n∑

i=1

W
(1)
n,i (x)

(
Y 2
i −m2(Xi)

)
− σ2(x)

)2

µ(dx)


+2

c

n

n∑
i=1

E
{∣∣m2

n(Xi)−m2(Xi)
∣∣2}

≤ 2E


∫ ( n∑

i=1

W
(1)
n,i (x)

(
Y 2
i −m2(Xi)

)
− σ2(x)

)2

µ(dx)


+c∗E

{
|mn(X1)−m(X1)|2

}
=: 2Kn + c∗Ln

with suitable c∗ ∈ [0,∞) because of boundedness of Y and by symmetry. We have

Kn = O
(
n−

2
d+2

)
by Theorems 4.3, 5.2 and 6.2 in [2], respectively.
According to the proof of Lemma 2.3 these theorems together with boundedness of Y (with sphere
S ⊃ S∗, centered in 0),∫

S

1

nµ(A
(2)
n (x))

µ(dx) = O

(
1

nh
(2)d
n

)
= O

(
n−

2
d+2

)
(because the number of cubes in S is O

(
1

h
(2)d
n

)
) in the partitioning case,∫

S

1

nµ(S
x,rh

(2)
n

)
µ(dx) = O

(
1

nh
(2)d
n

)
= O

(
n−

2
d+2

)
(by (5.1) in [2]) in the kernel case,

E

{∣∣∣∣Y1 +Dn

k
(2)
n

− Dn

k
(2)
n − 1

∣∣∣∣2
}

= O

(
1

k
(2)2
n

)
= O

(
n−

2
d+2

)
in the nearest neighbor case, yield

Ln = O
(
n−

2
d+2

)
.

4 Local Variance Estimation with Additional Measurement
Errors

We recall the important variable Z := Y 2−m2(X) and their corresponding observations in the case
of known regression function Zi := Y 2

i −m2(Xi). In the general case m is however to be estimated.
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One can do that by use of least squares estimates mn = m(LS) or by local averaging estimates

mn = m
(LA)
n (as in Theorem 2.1) of partitioning type satisfying (11) ∧ (12) with l = 2, additionally

assuming that the partitioning sequence ({A(2)
n,j}) is nested, i.e., A

(2)
n+1(x) ⊂ A(2)

n (x) for all n ∈ N,
x ∈ Rd, or of kernel type (K(2) symmetric, 1S0,R

≥ K(2)(x) ≥ b1S0,r (x) (0 < r ≤ R <∞, b > 0))
with bandwidths hn satisfying (13) with l = 2:

Zn,i = Y 2
i −m2

n(Xi).

With additional noise these variables are taking the form

Zn,i = Y
2

i −m2
n(Xi).

with the noisy data Y i used also in the corresponding definition of mn = m(LS) and mn = m(LA),
respectively. We refer the reader to Kohler [5] for the topics concerning the regression estimates
m(LS), by use of piecewise polynomials, see also [2], Chapter 19, especially Section 19.4 and
Problems and Excercises.
Let a familiy of estimates of the local variance function in case of additional measurement errors
for the dependent variable Y be given by

σ2
n(x) := σ2

n(x)(LA) =

n∑
i=1

W
(1)
n,i (x) · Zn,i, (16)

with weights W
(1)
n,i (x) = W

(1)
n,i (x,X1, . . . , Xn) of partitioning or of kernel type with kernel K(1)

and bandwidths h
(1)
n , respectively, satisfying (11) ∧ (12) and (13) with l = 1, respectively.

Theorem 4.1 Let the assumptions of Theorem 2.1 hold and additionally let the difference between
Yi and the noisy data Y i satisfy

1

n

n∑
i=1

(
Yi − Y i

)2 P→ 0. (17)

For Yi and Y i assume uniform boundedness: |Y | ≤ L, |Y i| ≤ L for some L ∈ [0,∞).

Then, for the estimate (16) with mn = m
(LA)
n

lim
n→∞

E
∫ (

σ2
n(x)− σ2(x)

)2
µ(dx) = 0

holds. (Consistency of the local averaging estimator of the local variance with additional measure-
ments error in the response variable)

Proof We apply Lemma 2.2 with Yi, Y i, mn and m replaced by Y 2
i −m2(Xi), Y

2

i −m2
n(Xi), σ

2
n

and σ2, respectively. It is enough to show

E

{
1

n

n∑
i=1

|(Y 2

i −mn(Xi)
2)− (Y 2

i −m2(Xi))|2
}
→ 0.

The left-hand side is bounded by

2E

{
1

n

n∑
i=1

|Y 2

i − Y 2
i |2 +

1

n

n∑
i=1

|mn(Xi)
2 −m2(Xi)|2

}

≤ c′

(
E

1

n

n∑
i=1

|Y i − Yi|2 + E
1

n

n∑
i=1

|mn(Xi)−m(Xi)|2
)
,

for some finite constant c′ because of the uniform boundedness assumption.
Because of (17) and the uniform boundness assumption we have

E

{
1

n

n∑
i=1

|Y i − Yi|2
}
→ 0 (18)
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by the dominated convergence theorem. For m
(LA)
n we notice that by [2], Lemma 24.11 and Lemma

24.7 (Hardy-Littlewood) and its extension (24.10) together with pp. 595, 503, 504, respectively,
(for the empirical measure with respect to (X1, . . . , Xn) and the function xi → yi−yi (i = 1, . . . , n)
for the realizations (xi, yi, yi) of (Xi, Yi, Y i), without sup)

1

n

n∑
i=1

∣∣∣∣∣
1
n

∑n
j=1(Y j − Yj)1An(Xj)(Xi)

1
n1An(Xj)(Xi)

∣∣∣∣∣
2

≤ c∗ 1

n

n∑
i=1

(Y i − Yi)2

and

1

n

n∑
i=1

∣∣∣∣∣∣
1
n

∑n
j=1(Y j − Yj)K

(
Xi−Xj

hn

)
1
nK

(
Xi−Xj

hn

)
∣∣∣∣∣∣
2

≤ c∗ 1

n

n∑
i=1

(Y i − Yi)2,

respectively, for some finite constant c∗, thus

E
{

1

n
|m(LA)

n (Xi)−m(LA)
n (Xi)|2

}
≤ c∗E

{
1

n

n∑
i=1

|Y i − Yi|2
}
→ 0.

Further

E

{
1

n

n∑
i=1

|m(LA)
n (Xi)−m(Xi)|2

}

= E
{

1

n
|m(LA)

n (X1)−m(X1)|2
}

(by symmetry)

→ 0 (by Lemma 2.3).

Therefore

E

{
1

n

n∑
i=1

|m(LA)
n (Xi)−m(Xi)|2

}
→ 0 (19)

Remark 4.1 One can obtain a result analogous to Theorem 4.1 for mn = m
(LS)
n where besides

(18) one gets (19) with m(LA) replaced by m(LS) via conditioning and Lemmas 2, 3, 4 in Kohler
[5] together with [2], Section 19.4 and Problems and Excercises, for extension to d > 1.
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