Universität Stuttgart

Fachbereich Mathematik

Nonparametric Local Averaging Estimation of the Local Variance Function

Paola Gloria Ferrario

Universität Stuttgart

Nonparametric Local Averaging Estimation of the Local Variance Function

Paola Gloria Ferrario

Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints
ISSN 1613-8309
(C) Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

LATEX-Style: Winfried Geis, Thomas Merkle

Abstract

In this paper the problem of local variance estimation is considered. Given an independent and identically distributed sample, estimates of local averaging type, especially partitioning and kernel estimates, are investigated in view of consistency and rate of convergence. Furthermore the case of additional measurement errors in the dependent variables is treated.

Key words: regression function, local (or conditional) variance function, local averaging, partitioning, kernel, nearest neighbor estimates, least squares, measurement error, consistency, rate of convergence.

1 Introduction

Let $(X, Y),\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ be independent and identically distributed $\mathbb{R}^{d} \times \mathbb{R}$-valued random vectors with $\boldsymbol{E}\left\{Y^{4}\right\}<\infty$. The regression function $m: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is defined by

$$
m(x):=\boldsymbol{E}\{Y \mid X=x\} .
$$

m allows to predict a non-observable realization of Y on the basis of an observed realization x of X by $m(x)$. In competition with other measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ the expression $\boldsymbol{E}\left\{(Y-f(X))^{2}\right\}$ is minimal for m, i.e.,

$$
\begin{equation*}
\boldsymbol{E}\left\{(Y-m(X))^{2}\right\}=\min _{f} \boldsymbol{E}\left\{(Y-f(X))^{2}\right\} \tag{1}
\end{equation*}
$$

because of

$$
\boldsymbol{E}\left\{|f(X)-Y|^{2}\right\}=\boldsymbol{E}\left\{(m(X)-Y)^{2}\right\}+\int|f(x)-m(x)|^{2} \mu(d x)
$$

where μ denotes the distribution P_{X} of X.
However m is unknown if the distribution of (X, Y) is unknown. Nonparametric regression deals with the following problem: Given independent copies $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ of (X, Y), an estimate m_{n} of the regression function shall be constructed, such that $\int\left|m_{n}(x)-m(x)\right|^{2} \mu(d x)$ is "small". Widespread principles of constructing m_{n} are local averaging and least squares estimations. By local averaging the estimation of $m(x)$ is given by the weighted mean of those Y_{i} where X_{i} is in a certain sense close to x :

$$
\begin{equation*}
m_{n}(x)^{(L A)}=m_{n}^{(L A)}\left(x, X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right)=\sum_{i=1}^{n} W_{n, i}(x) \cdot Y_{i}, \tag{2}
\end{equation*}
$$

where the weights $W_{n, i}\left(x, X_{1}, \ldots, X_{n}\right) \in \mathbb{R}$, briefly written as $W_{n, i}(x)$, depend on X_{1}, \ldots, X_{n} and are therefore non-deterministic. We have "small" (nonnegative) weights in the case that X_{i} is "far" from x. Depending on the definition of the weights, we distinguish between partitioning, kernel and nearest neighbor estimates.
By the least squares methods the idea is to minimize the empirical L_{2}-risk over an appropriate set of functions \mathcal{F}_{n} and to choose the minimizing function(s) over \mathcal{F}_{n} as regression estimate, that is

$$
\begin{equation*}
m_{n}(\cdot)^{(L S)}=m_{n}^{(L S)}\left(\cdot, X_{1}, Y_{1}, \ldots, X\right)=\underset{f \in \mathcal{F}_{n}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left|f\left(X_{i}\right)-Y_{i}\right|^{2} . \tag{3}
\end{equation*}
$$

The quality of predicting by the regression function m is locally given by the local variance

$$
\sigma^{2}(x):=\boldsymbol{E}\left\{(Y-m(X))^{2} \mid X=x\right\}=\boldsymbol{E}\left\{Y^{2} \mid X=x\right\}-m^{2}(x) .
$$

In the literature Kohler in [5] Section 3.1, deals with the estimation of local variance functions. We refer also the reader to Müller and Stadtmüller [6], Stadtmüller and Tsybakov [12], Ruppert et al. [10, Härdle and Tsybakov [4, Spokoiny [11, Pan and Wang [9, Hall et al. [3], Müller et al.
[7], Neumann [8] for the estimation of the local variance function also in the case of fixed design. In this paper we modify and extend the approach of Kohler in 55, Remark 5, in context of local averaging estimation of σ^{2} by use of local averaging estimates m_{n} of m.
Note that we use the whole sample $\left(X_{1}, Y_{1} \ldots, X_{n}, Y_{n}\right)$ for the estimation of σ^{2} as well as for the auxiliary estimate of m. The investigation of the asymptotic behavior regards the special structure of the standard local averaging methods used here. It is possible to obtain corresponding results for the general local averaging methods in Stone [13] (compare also Györfi et al. [2]) at the expense of splitting the sample $\left(n=n^{\prime}+n^{\prime \prime}\right)$ with weights $W_{n^{\prime}, j}^{(1)}$ and $W_{n^{\prime \prime}, j}^{(2)}$.
Section 2 deals with universal consistency of local averaging estimation of the local variance function, i.e., first mean convergence of the L_{2}-error $\int\left|\sigma_{n}^{2}(x)-\sigma^{2}(x)\right|^{2} \mu(d x)$ to zero for general distribution (X, Y) under the optimal moment condition $\boldsymbol{E}\left\{Y^{4}\right\}<\infty$.
Section 3 is devoted to the rate of convergence in context of bounded Y and Lipschitz conditions on m and σ^{2}.
In Section 4 the concept of additional noise (induced because of the use of m_{n} instead of m in Sections 2 and 3) is extended to the case that Y_{i} 's are noise-contaminated, again under uniform boundedness of the dependent variables.

2 Local Variance Estimation

One defines new random variables

$$
Z:=Y^{2}-m^{2}(X)
$$

and in context of observations in the case of known regression function

$$
Z_{i}:=Y_{i}^{2}-m^{2}\left(X_{i}\right)
$$

and of unknown regression function

$$
\begin{equation*}
Z_{n, i}:=Y_{i}^{2}-m_{n}^{2}\left(X_{i}\right) \tag{4}
\end{equation*}
$$

(Notice that usually m is unknown and has to be estimated. In this way one has a plug-in method.) Note that the local variance function is a regression on the pair (X, Z).
This motivates the construction of a family of estimates of the local variance that have the form

$$
\begin{equation*}
\sigma_{n}^{2}(x):=\sigma_{n}^{2}(x)^{(L A)}=\sum_{i=1}^{n} W_{n, i}(x) \cdot Z_{n, i}, \tag{5}
\end{equation*}
$$

The weights $W_{n, i}(x)$ can take different forms. In the literature partitioning weights are used, defined by

$$
\begin{equation*}
W_{n, i}\left(x, X_{1}, \ldots, X_{n}\right)=\frac{1_{A_{n}(x)}\left(X_{i}\right)}{\sum_{l=1}^{n} 1_{A_{n}(x)}\left(X_{l}\right)} \tag{6}
\end{equation*}
$$

$\left(A_{n}(x)\right.$ denoting the $A_{n, j}$ of the partitioning sequence $\left\{A_{n, j}\right\}$ containing $\left.x \in \mathbb{R}^{d}\right)$, with $0 / 0:=0$. Further kernel weights are used, especially with symmetric kernel $K: \mathbb{R}^{d} \rightarrow[0, \infty)$, satisfying $1_{S_{0, R}} \geq K(x) \geq b 1_{S_{0, r}}(x)(0<r \leq R<\infty, b>0)$, defined by

$$
\begin{equation*}
W_{n, i}\left(x, X_{1}, \ldots, X_{n}\right)=\frac{K\left(\frac{x-X_{i}}{h_{n}}\right)}{\sum_{l=1}^{n} K\left(\frac{x-X_{l}}{h_{n}}\right)} \tag{7}
\end{equation*}
$$

with bandwidth $h_{n}>0$ and $0 / 0:=0$ again. $S_{0, r}$ denotes the sphere with radius $r>0$ centered in 0 .

Finally, nearest neighbor weights are also frequently used, defined by

$$
\begin{equation*}
W_{n, i}\left(x, X_{1}, \ldots, X_{n}\right)=\frac{1}{k_{n}} 1_{\left\{X_{i} \text { is among the } k_{n} \text { NNs of } x \text { in }\left\{X_{1}, \ldots, X_{n}\right\}\right\}} \tag{8}
\end{equation*}
$$

$\left(2 \leq k_{n} \leq n\right)$, here usually assuming that ties occur with probability 0 . This can be obtained for example via tie-breaking by indices (compare [2], pp. 86, 87).
We distinguish local averaging methods in the auxiliary estimates m_{n} in (4) and in the estimates σ_{n}^{2} in 5), indicating the weights by $W_{n, i}^{(2)}$ and $W_{n, i}^{(1)}$ (instead of $W_{n, i}$ in $\sqrt{5}$), respectively. Thus

$$
\begin{equation*}
m_{n}\left(X_{i}\right)=\sum_{j=1}^{n} W_{n, j}^{(2)}\left(X_{i}, X_{1}, \ldots, X_{n}\right) Y_{j} \tag{9}
\end{equation*}
$$

where

$$
W_{n, j}^{(2)}\left(x, X_{1}, \ldots, X_{n}\right)
$$

is of partitioning type, with partitioning sequence $\left\{A_{n, j}^{(2)}\right\}$, or of kernel type, with kernel $K^{(2)}$ and bandwidhts $h_{n}^{(2)}$, or of nearest neighbor type, with $k_{n}^{(2)}$ neighbors.
Now with $Z_{n, i}=Y_{i}^{2}-m_{n}^{2}\left(X_{i}\right)$ we define a family of estimators of the local variance function by

$$
\begin{equation*}
\sigma_{n}^{2}(x)=\sum_{i=1}^{n} W_{n, i}^{(1)}(x) \cdot Z_{n, i} \tag{10}
\end{equation*}
$$

depending on weights

$$
W_{n, i}^{(1)}(x)=W_{n, i}^{(1)}\left(x, X_{1}, \ldots, X_{n}\right)
$$

that are of partitioning type, with partitioning sequence $\left\{A_{n, j}^{(1)}\right\}$, or of kernel type, with kernel $K^{(1)}$ and bandwidhts $h_{n}^{(1)}$. (Nearest neighbor weights will not be used for $W_{n, i}^{(1)}(x)$.)
Theorem 2.1 Let (X, Y) have an arbitrary distribution with $\boldsymbol{E}\left\{Y^{4}\right\}<\infty$. For partitioning weights defined according to (6) assume that, for each sphere S centered at the origin

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \max _{A_{n, j}^{(l)} \cap S \neq \emptyset} \operatorname{diam}\left(A_{n, j}^{(l)}\right)=0, \quad l=1,2, \tag{11}\\
& \lim _{n \rightarrow \infty} \frac{\left|\left\{j: A_{n, j}^{(l)} \cap S \neq \emptyset\right\}\right|}{n}=0, \quad l=1,2 . \tag{12}
\end{align*}
$$

For kernel weights defined according to (7) with kernels $K^{(l)}$ assume that the bandwidths satisfy

$$
\begin{equation*}
0<h_{n}^{(l)} \rightarrow 0, \quad n h_{n}^{(l) d} \rightarrow \infty, \quad l=1,2 \tag{13}
\end{equation*}
$$

($K^{(l)}$ symmetric, $1_{S_{0, R}}(x) \geq K^{(l)}(x) \geq b 1_{S_{0, r}}(x)(0<r \leq R<\infty, b>0)$).
For nearest neighbor weights defined according to (8) assume that

$$
\begin{equation*}
2 \leq k_{n}^{(2)} \leq n, \quad k_{n}^{(2)} \rightarrow \infty, \quad \frac{k_{n}^{(2)}}{n} \rightarrow 0 \tag{14}
\end{equation*}
$$

Then for the estimate (10) under the above assumptions

$$
\lim _{n \rightarrow \infty} \boldsymbol{E} \int\left(\sigma_{n}^{2}(x)-\sigma^{2}(x)\right)^{2} \mu(d x)=0
$$

holds. (Universal consistency of local averaging estimators of the local variance)
Theorem 2.1 will be proven by Lemmas 2.2 and 2.3 .
The following Lemma 2.2 modifies Remark 5 in Kohler [5]. It is within the framework that the dependent variable Y can be observed only with supplementary, maybe correlated, measurement errors. Since it is not assumed that the means of these measurement errors are zero, these kinds of errors are not already included in standard models. Therefore, the dataset is of the form

$$
\bar{D}_{n}=\left\{\left(X_{1}, \bar{Y}_{1, n}\right), \ldots,\left(X_{n}, \bar{Y}_{n, n}\right)\right\}
$$

Lemma 2.2 Let \bar{m}_{n} be local averaging estimators of m of the form

$$
\bar{m}_{n}(x)=\sum_{i=1}^{n} W_{n, i}(X) \bar{Y}_{i}
$$

with $\bar{Y}_{i}=\bar{Y}_{i, n}$. Assume that the weights $W_{n, i}(x)=W_{n, i}\left(x, X_{1}, \ldots, X_{n}\right)$ are of partitioning type (6) or kernel type (7) with $1_{S_{0, R}}(x) \geq K(x) \geq b 1_{S_{0, r}}$ for some $0<r \leq R<\infty, b>0$, satisfying (11) \wedge (12) and (13), respectively. Further assume

$$
\boldsymbol{E}\left\{Y^{2}\right\}<\infty, \quad \boldsymbol{E}\left\{\bar{Y}_{i}^{2}\right\}<\infty \quad(i=1, \ldots, n)
$$

and

$$
\begin{equation*}
\boldsymbol{E}\left\{\frac{1}{n} \sum_{i=1}^{n}\left|\bar{Y}_{i}-Y_{i}\right|^{2}\right\} \rightarrow 0 \tag{15}
\end{equation*}
$$

Then

$$
\boldsymbol{E}\left\{\int\left|\bar{m}_{n}(x)-m(x)\right|^{2} \mu(d x)\right\} \rightarrow 0
$$

Proof As Kohler (5], Remark 5) suggested,

$$
\begin{aligned}
& \boldsymbol{E}\left\{\int\left(\sum_{i=1}^{n} W_{n, i}(x) \bar{Y}_{i}-m(x)\right)^{2} \mu(d x)\right\} \\
= & \boldsymbol{E}\left\{\int\left(\sum_{i=1}^{n} W_{n, i}(x)\left[\bar{Y}_{i}-Y_{i}+Y_{i}\right]-m(x)\right)^{2} \mu(d x)\right\} \\
\leq & 2 \boldsymbol{E}\left\{\int\left(\sum_{i=1}^{n} W_{n, i}(x) Y_{i}-m(x)\right)^{2} \mu(d x)\right\} \\
+ & 2 \boldsymbol{E}\left\{\int\left(\sum_{i=1}^{n} W_{n, i}(x)\left[\bar{Y}_{i}-Y_{i}\right]\right)^{2} \mu(d x)\right\} \\
= & 2 K_{n, 1}+2 K_{n, 2} .
\end{aligned}
$$

The term $K_{n, 1}$ is simply the expected L_{2}-error of the local averaging estimate of m on the basis of observed $\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right)$. By Theorem 4.2 and Theorem 5.1 in [2], respectively, $K_{n, 1} \rightarrow 0$. It remains to show $K_{n, 2} \rightarrow 0$. By the Cauchy-Schwarz inequality together with $W_{n, i}(X) \geq 0$, $\sum_{i=1}^{n} W_{n, i}(X) \leq 1$, one has

$$
K_{n, 2} \leq \boldsymbol{E}\left\{\int\left(\sum_{i=1}^{n} W_{n, i}(x)\left|\bar{Y}_{i}-Y_{i}\right|^{2}\right) \mu(d x)\right\}
$$

With

$$
f_{i}(x):=\boldsymbol{E}\left\{\left|\bar{Y}_{i}-Y_{i}\right|^{2} \mid X_{i}=x\right\}, \quad x \in \mathbb{R} \quad(i \in\{1, \ldots, n\})
$$

there is, because of the special structure of $W_{n, i}$, a finite constant c such that, for all $i \in\{1, \ldots, n\}$

$$
\begin{aligned}
& \int \boldsymbol{E}\left\{\sum_{i=1}^{n} W_{n, i}(x)\left|\bar{Y}_{i}-Y_{i}\right|^{2}\right\} \mu(d x) \\
= & \int \boldsymbol{E}\left\{\sum_{i=1}^{n} W_{n, i}(x) f_{i}\left(X_{i}\right)\right\} \mu(d x) \\
\leq & \frac{c}{n} \sum_{i=1}^{n} \int f_{i}(u) \mu(d u)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{c}{n} \sum_{i=1}^{n} \boldsymbol{E} f_{i}(u) \mu(d u) \\
& =\frac{c}{n} \boldsymbol{E}\left\{\sum_{i=1}^{n}\left|\bar{Y}_{i}-Y_{i}\right|^{2}\right\}
\end{aligned}
$$

where the inequality is obtained via the individual summands by the arguments in [2, p. 62 (with $c=1$) and pp. 74, 75, respectively. Thus, by the assumption (15),

$$
K_{n, 2} \leq c \boldsymbol{E}\left\{\frac{1}{n} \sum_{i=1}^{n}\left|\bar{Y}_{i}-Y_{i}\right|^{2}\right\} \rightarrow 0
$$

Lemma 2.3 Let m_{n} be local averaging estimators of m of the form

$$
m_{n}(x)=\sum_{i=1}^{n} W_{n, i}(x) Y_{i}
$$

Assume that the weights $W_{n, i}(x)=W_{n, i}\left(x, X_{1}, \ldots, X_{n}\right)$ are of partitioning type (6) or of kernel type (7) with $1_{S_{0, R}}(x) \geq K(x) \geq b 1_{S_{0, r}}(x)$ for some $0<r \leq R<\infty, b>0$, or of nearest neighbor type (8) (here under assumption that ties occur with probability 0), satisfying (11) \wedge (12), (13) and (14), respectively. Further assume $\boldsymbol{E}\left\{Y^{2}\right\}<\infty$. Then

$$
\boldsymbol{E}\left\{\left|m_{n}\left(X_{1}\right)-m\left(X_{1}\right)\right|^{2}\right\} \rightarrow 0
$$

If moreover $\boldsymbol{E}\left\{Y^{4}\right\}<\infty$, then

$$
\boldsymbol{E}\left\{\left|m_{n}\left(X_{1}\right)-m\left(X_{1}\right)\right|^{4}\right\} \rightarrow 0
$$

Proof We first assume that $\boldsymbol{E}\left\{Y^{2}\right\}<\infty$ and that $W_{n, j}^{(2)}$ is of kernel type. Then

$$
\begin{aligned}
& \boldsymbol{E}\left\{\left|m_{n}\left(X_{1}\right)-m\left(X_{1}\right)\right|^{2}\right\} \\
= & \boldsymbol{E}\left\{\left|\frac{Y_{1} K(0)+\sum_{j=2}^{n} Y_{j} K\left(\frac{X_{1}-X_{j}}{h_{n}}\right)}{K(0)+\sum_{j=2}^{n} K\left(\frac{X_{1}-X_{j}}{h_{n}}\right)}-m\left(X_{1}\right)\right|^{2}\right\} \\
\leq & 2 K(0)^{2} \boldsymbol{E}\left\{\frac{\boldsymbol{E}\left\{Y^{2} \mid X\right\}}{\left(K(0)+\sum_{j=2}^{n} K\left(\frac{X-X_{j}}{h_{n}}\right)\right)^{2}}\right\} \\
+ & 2 \boldsymbol{E}\left\{\left|\frac{\sum_{j=2}^{n} Y_{j} K\left(\frac{X-X_{j}}{h_{n}}\right)}{K(0)+\sum_{j=2}^{n} K\left(\frac{X-X_{j}}{h_{n}}\right)}-m(X)\right|^{2}\right\}
\end{aligned}
$$

The second term of the right-hand side converges to 0 as in the proof of Theorem 5.1 in [2]. With a suitable finite constant c_{1} the first term is bounded by

$$
\begin{aligned}
& c_{1} \int \boldsymbol{E}\left\{Y^{2} \mid X=x\right\} \boldsymbol{E}\left\{\frac{1}{\left(1+\sum_{j=2}^{n} 1_{S_{x, r h_{n}}}\left(X_{j}\right)\right)^{2}}\right\} \mu(d x) \\
\leq & c_{1} \int \boldsymbol{E}\left\{Y^{2} \mid X=x\right\} \frac{1}{n \mu\left(S_{x, r h_{n}}\right)} \mu(d x) \rightarrow 0
\end{aligned}
$$

by Lemma 4.1 (i) in [2] together with Lemma 24.6 in [2], $n h_{n}^{d} \rightarrow \infty$ in assumption 13, $\boldsymbol{E}\left\{Y^{2}\right\}<$ ∞ and the dominated convergence theorem. The case that $W_{n, j}^{(2)}$ is defined via partitioning, is treated analogously by use of Theorem 4.2 in [2], and for $\epsilon>0$

$$
\begin{aligned}
& \int \boldsymbol{E}\left\{Y^{2} \mid X=x\right\} \boldsymbol{E} \frac{1}{\left(1+\sum_{j=2}^{n} 1_{A_{n}(x)}\left(X_{j}\right)\right)^{2}} \mu(d x) \\
\leq & \int \boldsymbol{E}\left\{Y^{2} \mid X=x\right\} 1_{\left\{\boldsymbol{E}\left\{Y^{2} \mid X=x\right\}>L\right\}} \mu(d x) \\
& +\int \boldsymbol{E}\left\{Y^{2} \mid X=x\right\} 1_{\left\{\boldsymbol{E}\left\{Y^{2} \mid X=x\right\} \leq L\right\}} \boldsymbol{E}\left\{\frac{1}{1+\sum_{j=2}^{n} 1_{A_{n}(x)}}\right\} \mu(d x) \\
\leq & \epsilon+L \int_{S^{c}} \mu(d x)+L \int_{S} \frac{1}{n \mu\left(A_{n}(x)\right)} \mu(d x)
\end{aligned}
$$

(for suitable $\mathrm{L}<\infty$ and by Lemma 4.1 (i) in [2])

$$
\leq 2 \epsilon+L \int_{S} \frac{1}{n \mu\left(A_{n}(x)\right)} \mu(d x)
$$

(for suitable sphere S centered at 0)

$$
=2 \epsilon+o(1)
$$

(by assumption 12).
In the case that $W_{n, j}^{(2)}$ is defined via nearest neighbors, we write

$$
\begin{aligned}
& \boldsymbol{E}\left\{\left|m_{n}\left(X_{1}\right)-m\left(X_{1}\right)\right|^{2}\right\} \\
= & \boldsymbol{E}\left\{\left|\frac{Y_{1}+D_{n}}{1+\left(k_{n}-1\right)}-m\left(X_{1}\right)\right|^{2}\right\}
\end{aligned}
$$

with

$$
D_{n}=\sum_{j=2}^{n} Y_{j} 1_{\left\{X_{j} \text { is among the }\left(k_{n}-1\right) \text { NNs of } X_{1} \text { in }\left\{X_{2}, \ldots, X_{n}\right\}\right\}, ~, ~, ~}
$$

and notice

$$
\boldsymbol{E}\left\{\left|\frac{D_{n}}{k_{n}-1}-m\left(X_{1}\right)\right|^{2}\right\} \rightarrow 0
$$

by Theorem 6.1 in [2]. Further

$$
\boldsymbol{E}\left\{\left|\frac{Y_{1}+D_{n}}{k_{n}}-\frac{D_{n}}{k_{n}-1}\right|^{2}\right\} \leq \frac{2}{k_{n}^{2}}\left(\boldsymbol{E}\left\{Y_{1}^{2}\right\}+\boldsymbol{E}\left\{\left(\frac{D_{n}}{k_{n}-1}\right)^{2}\right\}\right) \rightarrow 0
$$

because of

$$
\boldsymbol{E}\left\{Y_{1}^{2}\right\}<\infty, \quad \boldsymbol{E}\left\{\left(\frac{D_{n}}{k_{n}-1}\right)^{2}\right\} \rightarrow \boldsymbol{E}\left\{m\left(X_{1}\right)^{2}\right\}<\infty, k_{n} \rightarrow \infty
$$

Now, we consider the case $\boldsymbol{E}\left\{Y^{4}\right\}<\infty$. The above proof shows that for $r=2,4$ one has the representation

$$
\begin{aligned}
J_{n}^{(r)} & :=\boldsymbol{E}\left\{\left|m_{n}\left(X_{1}\right)-m\left(X_{1}\right)\right|^{r}\right\} \\
& =\boldsymbol{E}\left\{\left|\sum_{i=1}^{n} Y_{i} \bar{W}_{n, i}\left(X, X_{2}, \ldots, X_{n}\right)-m(X)\right|^{r}\right\}
\end{aligned}
$$

for some $\bar{W}_{n, i} \geq 0$ with $\sum_{i=1}^{n} \bar{W}_{n, i}=1$, e.g., in the kernel case $\bar{W}_{n, i}$ with $K(0)$ instead of $K\left(\frac{.-X_{1}}{h_{n}}\right)$ in $W_{n, i}$. Then by Györfi [1], Theorem 1 with proof (compare also [2], Lemma 23.3 with proof, and [14], last part of Lemma 8 with $\delta=1, p=2$ and convergence in probability instead of almost sure convergence), $J_{n}^{(2)} \rightarrow 0$ for $\boldsymbol{E}\left\{Y^{2}\right\}<\infty$ (already proven) implies $J_{n}^{(4)} \rightarrow 0$ for $\boldsymbol{E}\left\{Y^{4}\right\}<\infty$.

Proof of Theorem 2.1 We apply Lemma 2.2 with $Y_{i}, \bar{Y}_{i}, W_{n, i}, \bar{m}_{n}$ and m replaced by $Y_{i}^{2}-$ $m^{2}\left(X_{i}\right), Y_{i}^{2}-m_{n}^{2}\left(X_{i}\right), W_{n, i}^{(1)}, \sigma_{n}^{2}$ and σ^{2} in Theorem 2.1. respectively. We notice

$$
\begin{aligned}
& \boldsymbol{E}\left\{\frac{1}{n} \sum_{i=1}^{n}\left|\left(Y_{i}^{2}-m_{n}^{2}\left(X_{i}\right)\right)-\left(Y_{i}^{2}-m^{2}\left(X_{i}\right)\right)\right|^{2}\right\} \\
= & \boldsymbol{E}\left\{\left|m_{n}^{2}\left(X_{1}\right)-m^{2}\left(X_{1}\right)\right|^{2}\right\}
\end{aligned}
$$

$$
\text { (due to symmetry with respect to } \left.\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right)
$$

$$
\leq\left(\boldsymbol{E}\left\{\left|m_{n}\left(X_{1}\right)+m\left(X_{1}\right)\right|^{4}\right\}\right)^{\frac{1}{2}}\left(\boldsymbol{E}\left\{\left|m_{n}\left(X_{1}\right)-m\left(X_{1}\right)\right|^{4}\right\}\right)^{\frac{1}{2}}
$$

(because of the Cauchy-Schwarz inequality)

$$
\rightarrow \quad 0
$$

The latter is obtained by the triangle inequality

$$
\begin{aligned}
&\left(\boldsymbol{E}\left\{\left|m_{n}\left(X_{1}\right)+m\left(X_{1}\right)\right|^{4}\right\}\right)^{\frac{1}{4}} \\
& \leq\left(\boldsymbol{E}\left\{\left|m_{n}\left(X_{1}\right)-m\left(X_{1}\right)\right|^{4}\right\}\right)^{\frac{1}{4}}+2 \boldsymbol{E}\left(\left\{\left|m\left(X_{1}\right)\right|^{4}\right\}\right)^{\frac{1}{4}} \\
& \boldsymbol{E}\left\{m\left(X_{1}\right)^{4}\right\}=\boldsymbol{E}\left\{m(X)^{4}\right\} \\
&=\boldsymbol{E}\left\{(\boldsymbol{E}(Y \mid X))^{4}\right\} \leq \boldsymbol{E}\left\{\boldsymbol{E}\left\{Y^{4} \mid X\right\}\right\}=\boldsymbol{E}\left\{Y^{4}\right\}<\infty
\end{aligned}
$$

because of Jensen's inequality for conditional expectations,

$$
\boldsymbol{E}\left\{\left|m_{n}\left(X_{1}\right)-m\left(X_{1}\right)\right|^{4}\right\} \rightarrow 0
$$

because of Lemma 2.3 with $W_{n, i}$ there replaced by $W_{n, i}^{(2)}$ in Theorem 2.1. Thus Lemma 2.2 yields the assertion.

3 Rate of Convergence

In this section we establish a rate of convergence for the estimate of the local variance defined in Section 2
Theorem 3.1 Let the estimate of the local variance σ^{2} be given by with weights $W_{n, i}^{(1)}(x)$ of cubic partition with side length $h_{n}^{(1)}$ or with naive kernel $1_{S_{0,1}^{(1)}}$ with bandwidths $h_{n}^{(1)}$, further for $m_{n}\left(X_{i}\right)$ given by (9) with weights $W_{n, i}^{(2)}(x)$ of cubic partition with side length $h_{n}^{(2)}$ or with naive kernel $1_{S_{0,1}}$ and bandwidths $h_{n}^{(2)}$ or with $k_{n}^{(2)}$-nearest neighbor (the latter for $d \geq 3$).
Assume that

$$
|Y| \leq L \in[0, \infty)
$$

that

$$
|m(x)-m(z)| \leq C\|x-z\|, \quad x, z \in \mathbb{R}^{d}
$$

and finally, that

$$
\left|\sigma^{2}(x)-\sigma^{2}(z)\right| \leq D\|x-z\|, \quad x, z \in \mathbb{R}^{d}
$$

(|| || denoting the Euclidean norm). Let X have a compact support S^{*}. Then, for

$$
h_{n}^{(1)} \sim n^{-\frac{1}{d+2}},
$$

and

$$
\begin{gathered}
h_{n}^{(2)} \sim n^{-\frac{1}{d+2}}, \quad \text { and } \quad k_{n}^{(2)} \sim n^{\frac{2}{d+2}}, \quad \text { respectively, } \\
\boldsymbol{E} \int\left|\sigma_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x)=O\left(n^{-\frac{2}{d+2}}\right) .
\end{gathered}
$$

Proof As in the proof of Lemma 2.2 and by the Cauchy-Schwarz inequality we obtain

$$
\begin{aligned}
& \boldsymbol{E}\left\{\int\left(\left(\sum_{i=1}^{n} W_{n, i}^{(1)}(x) Z_{n, i}\right)-\sigma^{2}(x)\right)^{2} \mu(d x)\right\} \\
\leq & 2 \boldsymbol{E}\left\{\int\left(\sum_{i=1}^{n} W_{n, i}^{(1)}(x)\left(Y_{i}^{2}-m^{2}\left(X_{i}\right)\right)-\sigma^{2}(x)\right)^{2} \mu(d x)\right\} \\
& +2 \boldsymbol{E}\left\{\int\left(\sum_{i=1}^{n} W_{n, i}^{(1)}(x)\left[m_{n}^{2}\left(X_{i}\right)-m^{2}\left(X_{i}\right)\right]\right)^{2} \mu(d x)\right\} \\
\leq & 2 \boldsymbol{E}\left\{\int\left(\sum_{i=1}^{n} W_{n, i}^{(1)}(x)\left(Y_{i}^{2}-m^{2}\left(X_{i}\right)\right)-\sigma^{2}(x)\right)^{2} \mu(d x)\right\} \\
& +2 \frac{c}{n} \sum_{i=1}^{n} \boldsymbol{E}\left\{\left|m_{n}^{2}\left(X_{i}\right)-m^{2}\left(X_{i}\right)\right|^{2}\right\} \\
\leq & 2 \boldsymbol{E}\left\{\int\left(\sum_{i=1}^{n} W_{n, i}^{(1)}(x)\left(Y_{i}^{2}-m^{2}\left(X_{i}\right)\right)-\sigma^{2}(x)\right)^{2} \mu(d x)\right\} \\
=: & 2 K_{n}+c^{*} L_{n}
\end{aligned}
$$

with suitable $c^{*} \in[0, \infty)$ because of boundedness of Y and by symmetry. We have

$$
K_{n}=O\left(n^{-\frac{2}{d+2}}\right)
$$

by Theorems 4.3, 5.2 and 6.2 in [2], respectively.
According to the proof of Lemma 2.3 these theorems together with boundedness of Y (with sphere $S \supset S^{*}$, centered in 0),

$$
\int_{S} \frac{1}{n \mu\left(A_{n}^{(2)}(x)\right)} \mu(d x)=O\left(\frac{1}{n h_{n}^{(2) d}}\right)=O\left(n^{-\frac{2}{d+2}}\right)
$$

(because the number of cubes in S is $O\left(\frac{1}{h_{n}^{(2) d}}\right)$) in the partitioning case,

$$
\int_{S} \frac{1}{n \mu\left(S_{x, r h_{n}^{(2)}}\right)} \mu(d x)=O\left(\frac{1}{n h_{n}^{(2) d}}\right)=O\left(n^{-\frac{2}{d+2}}\right)
$$

(by (5.1) in [2]) in the kernel case,

$$
\boldsymbol{E}\left\{\left|\frac{Y_{1}+D_{n}}{k_{n}^{(2)}}-\frac{D_{n}}{k_{n}^{(2)}-1}\right|^{2}\right\}=O\left(\frac{1}{k_{n}^{(2) 2}}\right)=O\left(n^{-\frac{2}{d+2}}\right)
$$

in the nearest neighbor case, yield

$$
L_{n}=O\left(n^{-\frac{2}{d+2}}\right)
$$

4 Local Variance Estimation with Additional Measurement Errors

We recall the important variable $Z:=Y^{2}-m^{2}(X)$ and their corresponding observations in the case of known regression function $Z_{i}:=Y_{i}^{2}-m^{2}\left(X_{i}\right)$. In the general case m is however to be estimated.

One can do that by use of least squares estimates $m_{n}=m^{(L S)}$ or by local averaging estimates $m_{n}=m_{n}^{(L A)}$ (as in Theorem 2.1) of partitioning type satisfying $11 \wedge 12$ with $l=2$, additionally assuming that the partitioning sequence $\left(\left\{A_{n, j}^{(2)}\right\}\right)$ is nested, i.e., $A_{n+1}^{(2)}(x) \subset A_{n}^{(2)}(x)$ for all $n \in \mathbb{N}$, $x \in \mathbb{R}^{d}$, or of kernel type ($K^{(2)}$ symmetric, $\left.1_{S_{0, R}} \geq K^{(2)}(x) \geq b 1_{S_{0, r}}(x)(0<r \leq R<\infty, b>0)\right)$ with bandwidths h_{n} satisfying 13 with $l=2$:

$$
Z_{n, i}=Y_{i}^{2}-m_{n}^{2}\left(X_{i}\right)
$$

With additional noise these variables are taking the form

$$
\bar{Z}_{n, i}=\bar{Y}_{i}^{2}-\bar{m}_{n}^{2}\left(X_{i}\right)
$$

with the noisy data \bar{Y}_{i} used also in the corresponding definition of $\bar{m}_{n}=\bar{m}^{(L S)}$ and $\bar{m}_{n}=\bar{m}^{(L A)}$, respectively. We refer the reader to Kohler [5] for the topics concerning the regression estimates $m^{(L S)}$, by use of piecewise polynomials, see also [2], Chapter 19, especially Section 19.4 and Problems and Excercises.
Let a familiy of estimates of the local variance function in case of additional measurement errors for the dependent variable Y be given by

$$
\begin{equation*}
\bar{\sigma}_{n}^{2}(x):=\bar{\sigma}_{n}^{2}(x)^{(L A)}=\sum_{i=1}^{n} W_{n, i}^{(1)}(x) \cdot \bar{Z}_{n, i} \tag{16}
\end{equation*}
$$

with weights $W_{n, i}^{(1)}(x)=W_{n, i}^{(1)}\left(x, X_{1}, \ldots, X_{n}\right)$ of partitioning or of kernel type with kernel $K^{(1)}$ and bandwidths $h_{n}^{(1)}$, respectively, satisfying 11) $\wedge 12$ and 13 with $l=1$, respectively.

Theorem 4.1 Let the assumptions of Theorem 2.1 hold and additionally let the difference between Y_{i} and the noisy data \bar{Y}_{i} satisfy

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{i}\right)^{2} \xrightarrow{P} 0 \tag{17}
\end{equation*}
$$

For Y_{i} and \bar{Y}_{i} assume uniform boundedness: $|Y| \leq L,\left|\bar{Y}_{i}\right| \leq L$ for some $L \in[0, \infty)$.
Then, for the estimate (16) with $\bar{m}_{n}=\bar{m}_{n}^{(L A)}$

$$
\lim _{n \rightarrow \infty} \boldsymbol{E} \int\left(\bar{\sigma}_{n}^{2}(x)-\sigma^{2}(x)\right)^{2} \mu(d x)=0
$$

holds. (Consistency of the local averaging estimator of the local variance with additional measurements error in the response variable)
Proof We apply Lemma 2.2 with $Y_{i}, \bar{Y}_{i}, \bar{m}_{n}$ and m replaced by $Y_{i}^{2}-m^{2}\left(X_{i}\right), \bar{Y}_{i}^{2}-\bar{m}_{n}^{2}\left(X_{i}\right), \sigma_{n}^{2}$ and σ^{2}, respectively. It is enough to show

$$
\boldsymbol{E}\left\{\frac{1}{n} \sum_{i=1}^{n}\left|\left(\bar{Y}_{i}^{2}-\bar{m}_{n}\left(X_{i}\right)^{2}\right)-\left(Y_{i}^{2}-m^{2}\left(X_{i}\right)\right)\right|^{2}\right\} \rightarrow 0
$$

The left-hand side is bounded by

$$
\begin{aligned}
& 2 \boldsymbol{E}\left\{\frac{1}{n} \sum_{i=1}^{n}\left|\bar{Y}_{i}^{2}-Y_{i}^{2}\right|^{2}+\frac{1}{n} \sum_{i=1}^{n}\left|\bar{m}_{n}\left(X_{i}\right)^{2}-m^{2}\left(X_{i}\right)\right|^{2}\right\} \\
\leq & c^{\prime}\left(\boldsymbol{E} \frac{1}{n} \sum_{i=1}^{n}\left|\bar{Y}_{i}-Y_{i}\right|^{2}+\boldsymbol{E} \frac{1}{n} \sum_{i=1}^{n}\left|\bar{m}_{n}\left(X_{i}\right)-m\left(X_{i}\right)\right|^{2}\right),
\end{aligned}
$$

for some finite constant c^{\prime} because of the uniform boundedness assumption. Because of 17) and the uniform boundness assumption we have

$$
\begin{equation*}
\boldsymbol{E}\left\{\frac{1}{n} \sum_{i=1}^{n}\left|\bar{Y}_{i}-Y_{i}\right|^{2}\right\} \rightarrow 0 \tag{18}
\end{equation*}
$$

by the dominated convergence theorem. For $\bar{m}_{n}^{(L A)}$ we notice that by [2], Lemma 24.11 and Lemma 24.7 (Hardy-Littlewood) and its extension (24.10) together with pp. 595, 503, 504, respectively, (for the empirical measure with respect to $\left(X_{1}, \ldots, X_{n}\right)$ and the function $x_{i} \rightarrow \bar{y}_{i}-y_{i}(i=1, \ldots, n)$ for the realizations $\left(x_{i}, y_{i}, \bar{y}_{i}\right)$ of $\left(X_{i}, Y_{i}, \bar{Y}_{i}\right)$, without sup)

$$
\frac{1}{n} \sum_{i=1}^{n}\left|\frac{\frac{1}{n} \sum_{j=1}^{n}\left(\bar{Y}_{j}-Y_{j}\right) 1_{A_{n}\left(X_{j}\right)}\left(X_{i}\right)}{\frac{1}{n} 1_{A_{n}\left(X_{j}\right)}\left(X_{i}\right)}\right|^{2} \leq c^{*} \frac{1}{n} \sum_{i=1}^{n}\left(\bar{Y}_{i}-Y_{i}\right)^{2}
$$

and

$$
\frac{1}{n} \sum_{i=1}^{n}\left|\frac{\frac{1}{n} \sum_{j=1}^{n}\left(\bar{Y}_{j}-Y_{j}\right) K\left(\frac{X_{i}-X_{j}}{h_{n}}\right)}{\frac{1}{n} K\left(\frac{X_{i}-X_{j}}{h_{n}}\right)}\right|^{2} \leq c^{*} \frac{1}{n} \sum_{i=1}^{n}\left(\bar{Y}_{i}-Y_{i}\right)^{2}
$$

respectively, for some finite constant c^{*}, thus

$$
\boldsymbol{E}\left\{\frac{1}{n}\left|\bar{m}_{n}^{(L A)}\left(X_{i}\right)-m_{n}^{(L A)}\left(X_{i}\right)\right|^{2}\right\} \leq c^{*} \boldsymbol{E}\left\{\frac{1}{n} \sum_{i=1}^{n}\left|\bar{Y}_{i}-Y_{i}\right|^{2}\right\} \rightarrow 0
$$

Further

$$
\begin{aligned}
& \boldsymbol{E}\left\{\frac{1}{n} \sum_{i=1}^{n}\left|m_{n}^{(L A)}\left(X_{i}\right)-m\left(X_{i}\right)\right|^{2}\right\} \\
= & \boldsymbol{E}\left\{\frac{1}{n}\left|m_{n}^{(L A)}\left(X_{1}\right)-m\left(X_{1}\right)\right|^{2}\right\} \\
& (\text { by symmetry }) \\
\rightarrow & 0 \text { (by Lemma } 2.3) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\boldsymbol{E}\left\{\frac{1}{n} \sum_{i=1}^{n}\left|\bar{m}_{n}^{(L A)}\left(X_{i}\right)-m\left(X_{i}\right)\right|^{2}\right\} \rightarrow 0 \tag{19}
\end{equation*}
$$

Remark 4.1 One can obtain a result analogous to Theorem 4.1 for $\bar{m}_{n}=\bar{m}_{n}^{(L S)}$ where besides (18) one gets (19) with $\bar{m}^{(L A)}$ replaced by $\bar{m}^{(L S)}$ via conditioning and Lemmas 2, 3, 4 in Kohler [5] together with [2], Section 19.4 and Problems and Excercises, for extension to $d>1$.

Acknowledgments

The author thanks Prof. em. Dr. Harro Walk for precious advice, guidance and encouragement.

References

[1] L. Györfi. Universal consistencies of a regression estimate for unbounded regression functions. In Nonparametric Functional Estimation and Related Topics, G. Roussas, ed., pages 329-338. Kluwer Academic Publishers, Dordrecht, 1991.
[2] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of Nonparametric Regression. Springer, New York, 2002.
[3] P. Hall, J.W. Kay, and D.M. Titterington. Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika, 77(3):521-528, 1990.
[4] W. Härdle and A. Tsybakov. Local polynomial estimators of the volatility function in nonparametric autoregression. Journal of Econometrics, 81:223-242, 1997.
[5] M. Kohler. Nonparametric regression with additional measurement errors in the dependent variable. Journal of statistical planning and inference, 136:3339-3361, 2006.
[6] H-G. Müller and U. Stadtmüller. Estimation of heteroscedasticity in regression analysis. The Annals of Statistics, 15(2):610-625, 1987.
[7] U. Müller, A. Schick, and W. Wefelmeyer. Estimating the error variance in nonparametric regression by a covariate-matched u-statistic. Statistics, 37(3):179-188, 2003.
[8] M.H. Neumann. Fully data-driven nonparametric variance estimators. Statistics, 25:189-212, 1994.
[9] Z. Pan and X. Wang. A wavelet-based nonparametric estimator of the variance function. Computational Economics, 15:79-87, 2000.
[10] D. Ruppert, M.P. Wand, U. Holst, and O. Hossjer. Local polynomial variance-function estimation. Technometrics, 39(3):262-273, 1997.
[11] V. Spokoiny. Variance estimation for high-dimensional regression models. Journal of Multivariate Analysis, 82:111-133, 2002.
[12] U. Stadtmüller and A.B. Tsybakov. Nonparametric recursive variance estimation. Statistics, 27:55-63, 1995.
[13] C.J. Stone. Nonparametric regression. The Annals of Statistics, 5(4):595-645, 1977.
[14] H. Walk. Strong laws of large numbers and nonparametric estimation. In Recent Developments in Applied Probability and Statistics. L. Devroye et al., eds., pages 183-214. Physica-Verlag, Heidelberg, 2010.

Paola Gloria Ferrario
Department of Mathematics, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
E-Mail: paola.ferrario@mathematik.uni-stuttgart.de

Erschienene Preprints ab Nummer 2007/001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints
2011/015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function
2011/014 Müller, S.; Dippon, J.: k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis
2011/013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
2011/012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of characteristic two
2011/011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
2011/010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy
2011/009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
2011/008 Stroppel, M.: Orthogonal polar spaces and unitals
2011/007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
2011/006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces
2011/005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
2011/004 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part II -Gain-Scheduled Control
2011/003 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part I Robust Control
2011/002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G_{2}-structures
2011/001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
2010/018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
2010/017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
2010/016 Moroianu, A.; Semmelmann,U.: Clifford structures on Riemannian manifolds
2010/015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group $S O(3)$
2010/014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
2010/013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
2010/012 Effenberger, F:: Stacked polytopes and tight triangulations of manifolds
2010/011 Györfi, L.; Walk, H.: Empirical portfolio selection strategies with proportional transaction costs
2010/010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function
2010/009 Geisinger, L.; Laptev, A.; Weidl, T.: Geometrical Versions of improved Berezin-Li-Yau Inequalities
2010/008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
2010/007 Grundhöfer, T.; Krinn, B.; Stroppel, M.: Non-existence of isomorphisms between certain unitals
2010/006 Höllig, K.; Hörner, J.; Hoffacker, A.: Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods

2010/005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems
2010/004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
2010/003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
2010/002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
2010/001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
2009/008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
2009/007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems
2009/006 Demirel, S.; Harrell II, E.M.: On semiclassical and universal inequalities for eigenvalues of quantum graphs
2009/005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
2009/004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator
2009/003 Walk, H.: Strong laws of large numbers and nonparametric estimation
2009/002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
2009/001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^{3} and of the 3-torus
2008/006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
2008/005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems
2008/004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
2008/003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008/002 Hertweck, M.; Hofert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $\operatorname{PSL}(2, q)$
2008/001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a correction term
2007/006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
2007/005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field
2007/004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger operators on metric trees
2007/003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
2007/002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
2007/001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions

