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1. Introduction and main result

1.1. Introduction. In this paper we study the asymptotic behavior of eigenvalues for
fractional powers of the Laplacian. The operator (−∆)s with 0 < s < 1 appears in
numerous fields of mathematical physics, mathematical biology and mathematical finance
and has attracted a lot of attention recently. The key difference between this operator and
the usual Laplacian is the non-locality of (−∆)s, which allows one to model long-range
interactions in applications and leads to challenging mathematical problems.

From a probabilistic point of view, the fractional Laplacian of order s on a domain
Ω ⊂ Rd can be defined as the generator of the 2s-stable process killed upon exiting Ω. A
more operator theoretic definition, which we employ here, is in terms of the quadratic form

Cs,d

∫
Rd

∫
Rd

|u(x)− u(y)|2

|x− y|d+2s
dx dy =

∫
Rd

|p|2s|û(p)|2 dp , (1)

restricted to functions u ∈ Hs(Rd) which satisfy u ≡ 0 in Rd \ Ω. Here Hs(Rd) is the
Sobolev space of order s, û(p) = (2π)−d/2

∫
e−ip·xu(x) dx is the Fourier transform of u and

Cs,d is an explicit constant given in (5). The identity in (1) is an easy consequence of
Plancherel’s theorem.

For bounded domains Ω the spectrum of the fractional Laplacian is discrete and we

denote its eigenvalues (in increasing order, repeated according to multiplicities) by λ
(s)
n .

Our main result in this paper is a two-term asymptotic expansion of the sum of these
eigenvalues,

1

N

N∑
n=1

λ(s)
n = C

(1)
d,s |Ω|

−2s/d N2s/d + C
(2)
d,s |∂Ω||Ω|−(d−1+2s)/d N (2s−1)/d (1 + o(1)) (2)

as N → ∞. Here |Ω| and |∂Ω| denote the d-dimensional measure of Ω and the (d − 1)-

dimensional surface measure of ∂Ω, respectively, and C
(1)
d,s and C

(2)
d,s are positive, universal

constants, depending only on d and s, for which we shall obtain explicit expressions. Our
result is valid for non-smooth domains, requiring only that ∂Ω ∈ C1,α for some (arbitrarily
small) α > 0. It is remarkable that, despite the fact that we are dealing with a non-local
operator, both coefficients in (2) have a local form, depending only on Ω and ∂Ω, just
like in the case of the Laplacian. This will become clearer from the reformulation given in
Theorem 1 below.

In order to avoid confusion, we emphasize that the fractional Laplacian of order s on
a domain Ω is different from the Dirichlet Laplacian on Ω raised to the s-th power. For
the Dirichlet Laplacian, and hence for its fractional powers, asymptotics analogous to (2)
are well-known. One of our results is that, while the first terms in (2) coincide for both
operators, the second terms do not. This means, in particular, that our result cannot be
obtained from the study of the (local) Dirichlet Laplacian, and that our analysis needs to
take into account the non-locality inherent in (2). For further results about the relation
between the fractional Laplacian on a domain and the fractional power of the Dirichlet
Laplacian we refer to [CS05]; see also Section 6 below.
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The one-term asymptotics λ
(s)
N = d+2s

d
C

(1)
d,s |Ω|−2s/d N2s/d(1 + o(1)), which is a fractional

version of Weyl’s law, is a classical result of Blumenthal and Getoor [BG59]. More recently,
Bañuelos and Kulczycki [BK08] and Bañuelos, Kulczycki and Siudeja [BKS09] have shown

a two-term asymptotic formula for
∑∞

n=1 exp(−tλ(s)
n ) as t→ 0. Note that

∑∞
n=1 exp(−tλ(s)

n )

and 1
N

∑N
n=1 λ

(s)
n correspond to the Abel and Cesàro summation of the sequence λ

(s)
n , re-

spectively. As is well-known, asymptotics of Cesàro means imply asymptotics of Abel
means, but not vice versa. Hence for C1,α domains we recover and improve upon the result
of [BK08,BKS09].

This is, actually, a significant improvement since our asymptotics are no longer derived
for the infinitely smooth function e−tE of the fractional Laplacian, but, as we shall see
shortly, for the Lipschitz function (Λ − E)+. Moreover, since we are no longer able to
apply the probabilistic machinery available for the partition function, we have to find new
and more robust tools. Our methods also work for the ordinary Dirichlet Laplacian on a
bounded domain, and in [FG11] we use the techniques developed here to give an elementary
and short proof of two-term asymptotics in that case.

Another point in which we go beyond [BK08,BKS09] is that we give an expression for the

constant C
(2)
d,s in (2) in terms of a model operator on a half-line instead of a model operator

on a half-space. In this way our expression is similar to familiar two-term formulas in semi-
classical analysis; see, for instance, [SV97]. This is possible due to some recent beautiful
results of Kwaśnicki [Kwa10b] about a general class of half-line operators.

We find it convenient to prove (2) in an equivalent form, namely

∞∑
n=1

(
Λ− λ(s)

n

)
+

= L
(1)
s,d |Ω|Λ

1+d/2s − L(2)
s,d |∂Ω|Λ1+(d−1)/2s(1 + o(1)) as Λ→∞ . (3)

Here x+ := max{x, 0} denotes the positive part of a number x. (The fact that (2) and (3)
are equivalent is well-known to experts in the field, but we include a short proof in Section
7 for the sake of completeness, see Lemma 20.) Note also that (3) can be rewritten as

∞∑
n=1

(
1− h2sλ(s)

n

)
+

= L
(1)
s,d |Ω|h

−d − L(2)
s,d |∂Ω|h−d+1(1 + o(1)) as h→ 0+ , (4)

and this is the form in which we shall state and prove our main theorem. The small
parameter h has the interpretation of Planck’s constant and (4) emphasizes the semi-
classical nature of the problem.

Our approach extends the multiscale analysis to the fractional setting. By this we mean
that we localize simultaneously on different length scales according to the distance from
the boundary. Of course, a main difficulty when dealing with our non-local operator comes
from the treatment of the localization error. At this point we have to improve upon previous
results from [LY88, SSS10]. Another major impass, as compared to the local case, is the
analysis of a one-dimensional model operator for which an (almost) explicit diagonalization
is far from trivial. This is where Kwaśnicki’s work [Kwa10b] enters. It requires, however,
still substantial work to bring these results into a form which is useful for us. We will
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explain the strategy of our proof in more detail in Subsection 1.3 after a precise statement
of our main result.

Throughout this paper we assume that the dimension d ≥ 2. In the one dimensional
case (the fractional Laplacian on an interval) considerably stronger results are known
[KKMS10, Kwa10a]. The powerful methods developed there are, however, intrinsically
one-dimensional and seem of little help in the multi-dimensional case. The question raised

in [BKS09] of whether an analogue of Ivrii’s two-term asymptotics [Ivr80] holds for λ
(s)
n in

d ≥ 2 without Abel or Cesàro averaging remains a challenging open problem.

1.2. Main Result. Let Ω ⊂ Rd, d ≥ 2, be a bounded open set. For h > 0 and 0 < s < 1
let

HΩ = (−h2∆)s − 1

be the self-adjoint operator in L2(Ω) generated by the quadratic form

(u,HΩu) =

∫
Rd

(
|hp|2s − 1

)
|û(p)|2 dp

with form domain

Hs(Ω) =
{
u ∈ Hs(Rd) : u ≡ 0 on Rd \ Ω

}
.

For 0 < s < 1 we have the representation

(u,HΩu) = Cs,d h
2s

∫
Rd

∫
Rd

|u(x)− u(y)|2

|x− y|d+2s
dx dy −

∫
Ω

|u(x)|2 dx

with constant

Cs,d = 22s−1π−d/2
Γ(d/2 + s)

|Γ(−s)|
> 0 . (5)

Our main results hold without any global geometric conditions on Ω. We only require
weak smoothness conditions on the boundary - namely that the boundary belongs to the
class C1,α for some α > 0. That is, the local charts of ∂Ω are differentiable and the
derivatives are Hölder continuous with exponent α.

Theorem 1. Let 0 < s < 1 and assume that the boundary of Ω satisfies ∂Ω ∈ C1,α with
some 0 < α ≤ 1. Then

Tr(HΩ)− = L
(1)
s,d |Ω|h

−d − L(2)
s,d |∂Ω|h−d+1 +Rh (6)

with Rh = o(h−d+1) as h→ 0+. Here

L
(1)
s,d =

1

(2π)d

∫
Rd

(
|p|2s − 1

)
− dp (7)

and the positive constant L
(2)
s,d is given in (28).

More precisely, we have the lower bound Rh ≥ −Ch−d+1+ε− for any

0 < ε− <

{
α
α+2

if 1/2 ≤ s < 1 ,
2sα

α+1+2s
if 0 < s < 1/2 ,
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and the upper bound Rh ≤ Ch−d+1+ε+ for any

0 < ε+ <
α

α + 2
if 1− d/4 ≤ s < 1 ,

0 < ε+ ≤
α(2s− 1 + d/2)

α + 2s+ d/2
if 0 < s < 1− d/4 .

We do not claim that our remainder estimates are sharp. They show, however, that our
methods are rather explicit and they correctly reflect the intuitive fact that the estimate
worsens as the boundary gets rougher. We also mention that for not too small s we (almost)
get the same remainder estimate h−d+1+α/(α+2) that our method yields in the local case
s = 1 [FG11].

In Section 6 we will derive several representations of the constant L
(2)
s,d in (6). One of

these, which emphasizes the semi-classical nature of the problem, leads to a rewriting of
(6) as

Tr(HΩ)− =

∫∫
TΩ

(
|p|2s − 1

)
−
dpdx

(2πh)d
−
∫∫

T∂Ω

ζ(|p′|−2s)
dp′dσ(x)

(2πh)d−1
+Rh , (8)

where TΩ = Ω×Rd and T∂Ω = ∂Ω×Rd−1 are the cotangent bundles over Ω and ∂Ω, re-
spectively, and where dσ is the surface element of ∂Ω. Here ζ is a universal (i.e., depending
on s, but independent of Ω or d) function, which has the interpretation of an energy shift
(the integral of a spectral shift). It is given in terms of a one-dimensional model operator
A+ on the half-line R+ and its analogue A on the whole line (see Section 3) by

ζ(µ) = µ−1

∫ ∞
0

(
a(t, t, µ)− a+(t, t, µ)

)
dt , µ > 0 ,

where a(t, u, µ) and a+(t, u, µ) denote the integral kernels of (A − µ)− and (A+ − µ)−,
respectively. Another representation, derived in Remark 6.1, shows that our result is
consistent with the result of [BK08,BKS09].

In Section 6 we also prove that

L
(2)
s,d > 0 .

Moreover, we compare this constant with the one obtained from the corresponding frac-
tional power of the Dirichlet Laplacian.

Proposition 2. Let 0 < s < 1 and assume that the boundary of Ω satisfies ∂Ω ∈ C1,α with
some 0 < α ≤ 1. Let −∆Ω be the Dirichlet Laplacian on Ω. Then

Tr
((
−h2∆Ω

)s − 1
)
− = L

(1)
s,d |Ω|h

−d − L̃(2)
s,d |∂Ω|h−d+1 +Rh (9)

with Rh = o(h−d+1) as h→ 0+. Here L
(1)
s,d is the same as in (7) and L̃

(2)
s,d satisfies

L
(2)
s,d < L̃

(2)
s,d . (10)

In other words, the operators HΩ and (−h2∆Ω)
s − 1 differ semi-classically to first sub-

leading order.
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1.3. Strategy of the proof. The proof of Theorem 1 is divided into three main steps:
First, we localize the operator HΩ into balls, whose size varies depending on the distance
to the complement of Ω. Then we can analyze separately the semiclassical limit in the
bulk and at the boundary.

The key idea is to choose the localization depending on the distance to the complement
of Ω, see [Hör85, Theorem 17.1.3] and [SS03]. Let d(u) = inf{|x− u| : x /∈ Ω} denote the
distance of u ∈ Rd to the complement of Ω. We set

l(u) =
1

2

(
1 +

(
d(u)2 + l20

)−1/2
)−1

, (11)

where 0 < l0 ≤ 1/2 is a small parameter depending only on h. Indeed, we will finally
choose l0 proportional to hβ with suitable 0 < β < 1.

In Section 5 we construct real-valued functions φu ∈ C∞0 (Rd) with support in the ball
Bu = {x ∈ Rd : |x− u| < l(u)}. For all u ∈ Rd these functions satisfy

‖φu‖∞ ≤ C , ‖∇φu‖∞ ≤ C l(u)−1 (12)

and for all x ∈ Rd ∫
Rd

φ2
u(x) l(u)−d du = 1 . (13)

Here and in the following the letter C denotes various positive constants that are indepen-
dent of u, l0 and h.

Proposition 3. There is a constant C > 0 depending only on s and d such that for all
0 < l0 ≤ 1/2 and all 0 < h ≤ C−1l0 the estimates

0 ≤ Tr(HΩ)− −
∫

Rd

Tr (φuHΩφu)− l(u)−d du ≤ C h−d+2 l−1
0 Rloc(h, l0)

hold with a remainder

Rloc(h, l0) =


1 if 1− d/4 < s < 1
| ln(l0/h)|1/2 if 0 < s = 1− d/4
(l0/h)2−2s−d/2 if 0 < s < 1− d/4

.

In view of this result, one can analyze the local asymptotics, i.e., the asymptotic behavior
of Tr(φuHΩφu)−, separately on different parts of Ω. First, we consider the bulk, where the
influence of the boundary is not felt.

Proposition 4. Assume that φ ∈ C1
0(Ω) is supported in a ball of radius l > 0 and that

‖∇φ‖∞ ≤ Cl−1 . (14)

Then for all h > 0 the estimates

−Cld−2h−d+2 ≤ Tr (φHΩφ)− − L
(1)
s,d

∫
Ω

φ2(x) dx h−d ≤ 0

hold with a constant depending only on the constant in (14).

Close to the boundary of Ω, more precisely, if the support of φ intersects the boundary,
a boundary term of the order h−d+1 appears.
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Proposition 5. Assume that φ ∈ C1
0(Rd) is supported in a ball of radius 0 < l ≤ 1

intersecting the boundary of Ω and assume that (14) is satisfied. Then for all h > 0 the
estimates

−R̃bd(l, h) ≤ Tr (φHΩφ)− − L
(1)
s,d

∫
Ω

φ2(x)dxh−d + L
(2)
s,d

∫
∂Ω

φ2(x)dσ(x)h−d+1 ≤ Rbd(l, h)

hold. Here dσ denotes the (d − 1)-dimensional volume element of ∂Ω and the remainder
terms satisfy for any 0 < δ1 < 1 and 0 < δ2 < min{1, 2s}

Rbd(l, h) ≤ Cδ1

(
ld−1−δ1

hd−1−δ1
+
ld+α

hd

)
,

R̃bd(l, h) ≤ Cδ1,δ2

(
ld−1−δ1

hd−1−δ1
+
ld−1−δ2

hd−1−δ2
+
l2α+d−1

hd−1
+
ld+α

hd

)
,

with constants depending on δ1, δ2, Ω, ‖φ‖∞ and the constant in (14).

Based on these propositions we can complete the proof of Theorem 1.

Proof of Theorem 1. In order to apply Proposition 5 to the operators φuHΩφu, we need to
estimate l(u) uniformly. Let

U(Ω) = {u ∈ Rd : Bu ∩ ∂Ω 6= ∅}

be a small neighborhood of the boundary. For u ∈ U(Ω) we have d(u) ≤ l(u), which by
the definition of l(u) implies

l(u) ≤ l0/
√

3 . (15)

In view of (12) and (15) we can apply Proposition 4 and Proposition 5 to all functions
φu, u ∈ Rd, if l0 is sufficiently small. Combining these results with Proposition 3 we get

− C
∫

Ω\U(Ω)

l(u)−2du h−d+2 −
∫
U(Ω)

R̃bd(l(u), h) l(u)−ddu

≤ Tr (HΩ)− − L
(1)
s,d

∫
Rd

∫
Ω

φ2
u(x)dx

du

l(u)d
h−d + L

(2)
s,d

∫
Rd

∫
∂Ω

φ2
u(x)dσ(x)

du

l(u)d
h−d+1

≤
∫
U(Ω)

Rbd(l(u), h)l(u)−ddu+ Ch−d+2l−1
0 Rloc(l0, h) .

Now we change the order of integration and in view of (13) we obtain

− C
∫

Ω\U(Ω)

l(u)−2du h−d+2 −
∫
U(Ω)

R̃bd(l(u), h) l(u)−ddu

≤ Tr (HΩ)− − L
(1)
s,d |Ω|h

−d + L
(2)
s,d |∂Ω|h−d+1

≤
∫
U(Ω)

Rbd(l(u), h)l(u)−ddu+ Ch−d+2l−1
0 Rloc(l0, h) . (16)

It remains to estimate the error terms.
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By definition of l(u) we have

l(u) ≥ 1

4
min (d(u), 1) and l(u) ≥ l0

4
(17)

for all u ∈ Rd. For u ∈ Ω \ U(Ω), we find d(u) ≥ l(u) ≥ l0/4. Hence, we can estimate∫
Ω\U(Ω)

l(u)−2du ≤ C

(
1 +

∫
{d(u)≥l0/4}

d(u)−2du

)
≤ C

(
1 +

∫ ∞
l0/4

t−2 |∂Ωt| dt
)
,

where |∂Ωt| denotes the surface area of the boundary of Ωt = {x ∈ Ω : d(x) > t}. Using
the fact that |∂Ωt| is uniformly bounded and that |∂Ωt| = 0 for large t, we get∫

Ω\U(Ω)

l(u)−2du ≤ Cl−1
0 . (18)

For u ∈ U(Ω) the inequalities (15) and (17) show that l(u) is proportional to l0. Since
Bu ∩ ∂Ω 6= ∅ we find d(u) < l(u) ≤ Cl0 and∫

U(Ω)

l(u)adu ≤ Cla0

∫
{d(u)≤l0}

du ≤ Cla+1
0 , (19)

for any a ∈ R.
We insert (18) and (19) into (16) and get (using the fact that h ≤ C−1l0)

−C
(
l−δ20 hδ2 + l2α0 + lα+1

0 h−1
)
≤ hd−1

(
Tr (HΩ)− − L

(1)
s,d |Ω|h

−d + L
(2)
s,d |∂Ω|h−d+1

)
≤ C

(
l−δ10 hδ1 + lα+1

0 h−1 + l−1
0 hRloc(l0, h)

)
. (20)

In order to choose l0 we need to distinguish several cases. For the lower bound we recall
that 0 < δ2 < min{1, 2s}. The stated lower bound on Rh follows with l0 proportional to
hβ, where β = (1 + δ2)/(1 + α + δ2).

For the upper bound we have 0 < δ1 < 1. If 1 − d/4 < s < 1, we pick l0 proportional
to hβ, where β = (1 + δ1)/(1 + α + δ1). If 0 < s ≤ 1 − d/4, we pick hβ, where β =
(2s+ d/2)/(α + 2s+ d/2). This completes the proof of Theorem 1. �

The remainder of the text is structured as follows. First we analyze the local asymptotics
in the bulk and prove Proposition 4. This is done in Section 2. In Section 3 we consider
the local asymptotics in the case where Ω is replaced by a half-space. We reduce the
problem close to the boundary to the analysis of a one-dimensional model operator given
on a half-line and give an analogue of Proposition 5 for a half-space. In Section 4 we show
how Proposition 5 follows from the previous considerations by local straightening of the
boundary. In Section 5, we perform the localization and, in particular, prove Proposition 3.
In Section 8 we provide some technical results about the one-dimensional model operator
introduced in Section 3.

Notation. We define the positive and negative parts of a real number x by x± =max{0,±x}.
We use a similar notation for the heavy side function, namely, x0

± = 1 if ±x ≥ 0 and x0
± = 0

if ±x < 0. For a self-adjoint operator X, the operators X± and X0
± are defined similarly

via the spectral theorem.
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2. Local asymptotics in the bulk

This section is a warm-up dealing with the spectral asymptotics in the boundaryless
case. Although the estimates in this case are essentially known, we include a proof for the
sake of completeness and in order to introduce the methods that will be important later
on. We divide the proof of Proposition 4 into two subsections containing the lower and the
upper bound, respectively. The operator

H0 = (−h2∆)s − 1 in L2(Rd) ,

defined with form domain Hs(Rd), will appear frequently.

2.1. Lower bound. The lower bound is given by a variant of the Berezin-Lieb-Li-Yau
inequality, see [Ber72,Lie73,LY83]. For later purposes we record this as

Lemma 6. For any φ ∈ L2(Rd) and h > 0

Tr (φHΩφ)− ≤ L
(1)
s,d

∫
Rd

φ2(x) dx h−d .

Proof. We apply the variational principle for the sum of the eigenvalues

−Tr (φHΩφ)− = inf
0≤γ≤1

Tr (γφHΩφ) ,

where the infimum is taken over all trial density matrices, i.e., over all trace-class operators
0 ≤ γ ≤ 1 with range belonging to the form domain of HΩ. We apply this twice and find

Tr (φHΩφ)− ≤ Tr (φH0φ)− ≤ Tr
(
φ (H0)− φ

)
.

Applying the Fourier transform to diagonalize the operator (H0)− yields the bound

Tr
(
φ (H0)− φ

)
=

1

(2πh)d

∫∫
φ(x)2

(
|p|2s − 1

)
− dp dx = L

(1)
s,d

∫
φ(x)2 dx h−d ,

as claimed. �

2.2. Upper bound. We now assume that φ satisfies the conditions of Proposition 4.
In particular, we assume that φ has support in Ω. To derive the upper bound we put
γ = (H0)0

−, i.e.,

γ(x, y) = (2πh)−d
∫
|p|<1

eip·(x−y)/h dp ,

and obtain that

−Tr (φHΩφ)− ≤ Tr (γφHΩφ) = Tr (γφH0φ)

=

∫
|p|<1

(
‖(−h2∆)s/2φ eip·/h‖2

2 − ‖φ‖
2
2

) dp

(2πh)d
. (21)

Lemma 7. For φ ∈ C∞0 (Rd) and h > 0 we have

‖(−h2∆)s/2φ e−ip·/h‖2
2 = |p|2s ‖φ‖2

2 +

∫ (
1

2

(
|p+ hη|2s + |p− hη|2s

)
− |p|2s

)
|φ̂(η)|2dη .
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Proof. By Plancherel’s theorem we get

‖(−h2∆)s/2φ eip·/h‖2
2

=

∫∫∫
|ξ|2s φ(x)φ(y) ei(p−ξ)·(x−y)/hdxdydξ

(2πh)d

=
1

2

∫∫∫
|ξ|2s

(
φ2(x) + φ2(y)− |φ(x)− φ(y)|2

)
ei(p−ξ)·(x−y)/h dxdydξ

(2πh)d
. (22)

In the first two terms we perform the ξ integration and either the x or the y integration
to arrive at

1

2

∫∫∫
|ξ|2s

(
φ2(x) + φ2(y)

)
ei(p−ξ)·(x−y)/hdxdydξ

(2πh)d
= |p|2s

∫
φ2(x) dx . (23)

We are left with calculating the third term in (22). Again, by Plancherel’s theorem we see
that it equals

1

2

∫∫∫
|ξ|2s

∣∣∣φ̂(η
h

)∣∣∣2 ∣∣1− e−iz·η/h∣∣2 ei(p−ξ)·z/h dηdzdξ

(2π)dh2d
.

We can write ∣∣1− e−iz·η/h∣∣2 = 2− eiz·η/h − e−iz·η/h

and perform the integration in z and ξ to obtain

1

2

∫∫∫
|ξ|2s |φ(x)− φ(y)|2 ei(p−ξ)·(x−y)/hdxdydξ

(2πh)d

=
1

hd

∫ (
|p|2s − 1

2

(
|p+ η|2s + |p− η|2s

)) ∣∣∣φ̂(η
h

)∣∣∣2 dη . (24)

Hence, combining (22), (23) and (24) yields the claim. �

In view of identity (21) and Lemma 7 we conclude

Tr (γφH0φ) = (2πh)−d
∫
|p|<1

(
|p|2s − 1

)
dp ‖φ‖2

2 + (2πh)−d
∫
|p|<1

Rh(p) dp (25)

with

Rh(p) =

∫ (
1

2

(
|p+ hη|2s + |p− hη|2s

)
− |p|2s

)
|φ̂(η)|2dη .

We proceed to estimate Rh(p). Note that for any a > 0

max
|t|≤a

((a+ t)s + (a− t)s) = 2as .

Taking a = |p|2 + |η|2 and t = 2p · η we deduce that

1

2

(
|p+ η|2s + |p− η|2s

)
− |p|2s ≤ (|p|2 + |η|2)s − |p|2s .

Next, for 0 < s < 1 concavity implies that (a + b)s ≤ as + sas−1b for a, b > 0, from which
we learn that

(|p|2 + |η|2)s − |p|2s ≤ s |p|2(s−1) |η|2 .
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Hence, replacing η with hη and using (14) we can estimate

Rh(p) ≤ s

∫
|p|−2+2s|hη|2|φ̂(η)|2dη = s |p|−2+2s h2

∫
|∇φ|2dx ≤ Ch2|p|−2+2s .

Thus the upper bound follows from (21) and (25).

3. Asymptotics on the half-space

Our goal in this section is to prove the analogue of Proposition 5 in the case where Ω
is the half-space Rd

+ = {(x′, xd) : xd > 0}. We define the operator H+ on L2(Rd
+), in the

same way as HΩ, with form domain

Hs(Rd
+) =

{
v ∈ Hs(Rd) : v ≡ 0 on Rd \ Rd

+

}
.

We shall prove

Proposition 8. Assume that φ ∈ C1
0(Rd) is supported in a ball of radius l > 0 and assume

that (14) is satisfied. Then for h > 0 and any 0 < δ1 < 1 and 0 < δ2 < min{1, 2s} we have

− Cδ1,δ2
(
ld−1−δ1h−d+1+δ1 + ld−1−δ2h−d+1+δ2

)
≤ Tr

(
φH+φ

)
− − L

(1)
s,d

∫
Rd

+

φ2(x)dxh−d + L
(2)
s,d

∫
Rd−1

φ2(x′, 0)dx′h−d+1

≤ Cδ1l
d−1−δ1h−d+1+δ1 .

This result depends on a more or less explicit diagonalization of the operator H+, which
is far from obvious. This is accomplished in Subsections 3.1 and 3.2, relying crucially
on recent results of Kwaśnicki [Kwa10b] about non-local operators on a half-line. These
results are collected and extended to our needs in Section 8.

3.1. The model operator on the half-line. In this subsection we collect some facts
about the one-dimensional operator

A+ =

(
− d2

dt2
+ 1

)s
in L2(R+) with form domain Hs(R+), and about the corresponding operator A in L2(R),
defined analogously to A+, but with form domain Hs(R).

For µ > 0 and t, u ∈ R+, let e+(t, u, µ) and a+(t, u, µ) be the integral kernels of (A+−µ)0
−

and (A+−µ)−, respectively. Similarly, we define a(t, u, µ) via (A−µ)−. To simplify notation
we abbreviate a+(t, µ) = a+(t, t, µ). We also note that a(µ) = a(t, t, µ) is independent of
t ∈ R+. The inequality A+ ≥ 1 implies that a+(t, u, µ) = e+(t, u, µ) = 0 for µ < 1 and
similarly for a(t, u, µ) and e(t, u, µ).

The following two results about e+(t, µ) and a+(t, µ) are rather technical and we defer
the proofs to Subsections 8.1 and 8.2. The first one provides a rough a-priori bound on
e+(t, u, µ).

Lemma 9. For any µ > 0 and t, u ∈ R+ one has |e+(t, u, µ)| ≤ Cµ1/2s.
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The second result in this subsection quantifies that a+(t, µ) is close to a(µ) for large t.

Lemma 10. For any 0 ≤ γ < 1 there is a constant Cγ such that for all µ ≥ 1,∫ ∞
0

tγ|a+(t, µ)− a(µ)| dt ≤ Cγ µ
(
(lnµ)2 + 1

)
. (26)

In particular, the function

K(t) =
1

(2π)d−1

∫
Rd−1

|ξ′|1+2s
(
a(|ξ′|−2s)− a+(t|ξ′|, |ξ′|−2s)

)
dξ′ , t > 0 , (27)

satisfies for every 0 ≤ γ < 1 ∫ ∞
0

tγ |K(t)| dt < ∞ .

With this lemma at hand we can now define the constant L
(2)
s,d which appears in our main

theorem by

L
(2)
s,d =

∫ ∞
0

K(t) dt . (28)

(This integral converges by Lemma 10.) Expression (28) suffices for the proof of our main

result. In Section 6, see also (71), we will derive different representation for L
(2)
s,d.

3.2. Reduction from the half-space to the half-line. Our goal in this subsection is to
write the spectral projections of the operator H+ on the half-space in terms of those of the
operator A+ on the half-line. Before turning to spectral projections we treat resolvents.

Lemma 11. For x = (x′, xd) ∈ Rd
+, y = (y′, yd) ∈ Rd

+ and z ∈ C \ [0,∞) the resolvent
kernels of H+ and of A+ are related by

(H+ − z)−1(x, y)

=
1

hd

∫
Rd−1

|ξ′|1−2s eiξ
′·(x′−y′)/h

(
A+ − z

|ξ′|2s

)−1(
xd|ξ′|
h

,
yd|ξ′|
h

)
dξ′

(2π)d−1
.

This lemma, together with the representations (see, e.g., [Kat66])

(H+)0
− = − 1

2πi

∫
Γ(h−2s)

(H+ − z)−1 dz

and

(H+)− = −h2s

∫ h−2s

0

1

2πi

∫
Γ(ν)

(H+ − z)−1 dz dν ,

where Γ(ν) = {z ∈ C : |z| = ν}, implies that

(H+)0
−(x, y) =

1

hd

∫
Rd−1

|ξ′|eiξ′·(x′−y′)/h e+

(
xd|ξ′|
h

,
yd|ξ′|
h

,
1

|ξ′|2s

)
dξ′

(2π)d−1
(29)

and

(H+)−(x, y) =
1

hd

∫
Rd−1

|ξ′|1+2s eiξ
′·(x′−y′)/h a+

(
xd|ξ′|
h

,
yd|ξ′|
h

,
1

|ξ′|2s

)
dξ′

(2π)d−1
. (30)
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We now give the

Proof of Lemma 11. By scaling we may assume that h = 1. Given f ∈ L2(Rd
+) we want to

solve (−∆)su = zu + f . Take ψ ∈ C∞0 (Rd−1) and φ ∈ C∞0 (0,∞). Then ψ ⊗ φ belongs to
the form domain of H+ and therefore the equation implies that∫∫

(|ξ′|2 + ξ2
d)
sψ̂(ξ′)φ̂(ξd)û(ξ′, ξd) dξ

′ dξd = z

∫∫
ψ̂(ξ′)φ̂(ξd)û(ξ′, ξd) dξ

′ dξd

+

∫∫
ψ̂(ξ′)φ̂(ξd)f̂(ξ′, ξd) dξ

′ dξd .

Since ψ is arbitrary, this means that for a.e. ξ′,∫
(|ξ′|2 + ξ2

d)
sφ̂(ξd)û(ξ′, ξd) dξd = z

∫
φ̂(ξd)û(ξ′, ξd) dξd +

∫
φ̂(ξd)f̂(ξ′, ξd) dξd . (31)

For fixed ξ′ define functions vξ′ , gξ′ and χξ′ on (0,∞) by

vξ′(t) := (2π)−(d−1)/2

∫
Rd−1

|ξ′|−1u(x′, |ξ′|−1t)e−iξ
′·x′ dx′ ,

gξ′(t) := (2π)−(d−1)/2

∫
Rd−1

|ξ′|−1−2sf(x′, |ξ′|−1t)e−iξ
′·x′ dx′ ,

χξ′(t) := |ξ′|−1φ(|ξ′|−1t) .

We note that the one-dimensional Fourier transforms of these functions are given by

v̂ξ′(k) = û(ξ′, |ξ′|k) ,

ĝξ′(k) = |ξ′|−2sf̂(ξ′, |ξ′|k) ,

χ̂ξ′(k) = φ̂(|ξ′|k) .

Hence we can rewrite (31) as∫
(1 + k2)sχ̂ξ′(k)v̂ξ′(k) dk = |ξ′|−2sz

∫
χ̂ξ′(k)v̂ξ′(k) dk +

∫
χ̂ξ′(k)ĝξ′(k) dk .

Note that both vξ′ and χξ′ belong to the form domain of A+ and that the set of all functions
χξ′ obtained in this way is dense in the form sense (by the definition of A+). Therefore the
equation can be written as

A+vξ′ = |ξ′|−2szvξ′ + gξ′ .

We abbreviate r+
z (t, w) = (A+ − z)−1(t, w) and conclude that

vξ′(t) =

∫ ∞
0

r+
z|ξ′|−2s(t, w)gξ′(w) dw .
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Recalling the definitions of vξ′ and gξ′ this reads∫
Rd−1

|ξ′|−1u(x′, |ξ′|−1t)e−iξ
′·x′ dx′

=

∫ ∞
0

∫
Rd−1

r+
z|ξ′|−2s(t, w)|ξ′|−1−2sf(x′, |ξ′|−1t)e−iξ

′·x′ dw dx′ .

Multiplying by |ξ′|, setting t = |ξ′|xd and inverting the Fourier transform, we obtain

u(x) = (2π)−d+1

∫
Rd−1

∫
Rd−1

∫ ∞
0

r+
z|ξ′|−2s(|ξ′|xd, w)|ξ′|−2sf(y′, |ξ′|−1w) eiξ

′·(x′−y′)dw dξ′ dy′

= (2π)−d+1

∫
Rd

∫
Rd−1

r+
z|ξ′|−2s(|ξ′|xd, |ξ′|yd)|ξ′|1−2sf(y) eiξ

′·(x′−y′)dξ′ dy .

This proves the lemma. �

3.3. Proof of Proposition 8. Our next step is to state upper and lower bounds on
Tr (φH+φ)− in terms of the one-dimensional model operators A and A+, in particular,
in terms of the function K(t) given in (27). As explained below, the main result of this
section, Proposition 8, will be a direct consequence of the following estimates.

Proposition 12. Assume that φ ∈ C1
0(Rd) is supported in a ball of radius l = 1 and

assume that (14) is satisfied with l = 1. Then for any 0 < δ2 < min{1, 2s} there is a
constant Cδ2 such that for all h > 0 we have

Tr
(
φH+φ

)
− ≤ L

(1)
s,d

∫
Rd

+

φ2(x)dxh−d −
∫

Rd
+

φ2(x)
1

h
K
(xd
h

)
dxh−d+1 , (32)

Tr
(
φH+φ

)
− ≥ L

(1)
s,d

∫
Rd

+

φ2(x)dxh−d −
∫

Rd
+

φ2(x)
1

h
K
(xd
h

)
dxh−d+1 − Cδ2h−d+1+δ2 . (33)

Assuming Proposition 12, we now give the short

Proof of Proposition 8. To prove the proposition we may rescale φ and hence assume l = 1.
Proposition 8 is then an immediate consequence of Proposition 12 provided we can show
that for any 0 < δ1 < 1 there is a Cδ1 such that for all h > 0∣∣∣∣∫

Rd−1

φ2(x)
1

h
K
(xd
h

)
dx− L(2)

s,d

∫
Rd−1

φ2(x′, 0)dx′
∣∣∣∣ ≤ Cδ1h

δ1 . (34)

In order to obtain the latter bound, we substitute xd = th and write, recalling (28),∫
Rd−1

φ2(x)
1

h
K
(xd
h

)
dx− L(2)

s,d

∫
Rd−1

φ2(x′, 0)dx′

=

∫ ∞
0

K(t)

∫
Rd−1

∫ th

0

∂τφ
2(x′, τ)dτdx′dt .
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By Hölder’s inequality we can further estimate∣∣∣∣∫
Rd−1

∫ th

0

∂τφ
2(x′, τ)dτdx′

∣∣∣∣ ≤ (∫ th

0

dτ

)δ1(∫ ∞
0

∣∣∣∣∫
Rd−1

∂τφ
2(x′, τ)dx′

∣∣∣∣(1−δ1)−1

dτ

)1−δ1

≤ Ctδ1hδ1 .

Since
∫∞

0
tδ1|K(t)| dt <∞ by Lemma 10, we obtain inequality (34). �

In the following two subsections we shall prove the lower and the upper bound in Propo-
sition 12, respectively.

3.4. Lower bound. To prove (32) we use that

−Tr
(
φH+φ

)
− ≥ −Tr

(
φ(H+)−φ

)
.

The lower bound follows from this by integrating the identity

(H+)−(x, x) = h−dL
(1)
s,d − h

−dK
(xd
h

)
, (35)

against φ2. Equation (35) is a consequence of (30). Indeed, by the same argument as in
Subsection 3.2 we learn that

(H0)−(x, x) =
1

(2π)d−1

1

hd

∫
Rd−1

|ξ′|1+2s a
(
|ξ′|−2s

)
dξ′ .

On the other hand, by direct diagonalization as in Subsection 2.1 we find that

(H0)−(x, x) = h−dL
(1)
s,d .

Comparing these two identities with (30) we arrive at (35), thus establishing (32).

3.5. Upper bound. To prove (33) we set γ = (H+)0
−. Its integral kernel is given by (29)

in terms of the kernel e+(·, ·, µ) of (A+ − µ)0
−. By the variational principle it follows that

−Tr
(
φH+φ

)
− ≤Tr

(
φγφH+

)
=

1

h2d

∫
Rd

+

∫
Rd

+

∫
Rd−1

∫
Rd

|ξ′|eiξ′·(x′−y′)/h e+
(
xd|ξ′|h−1, yd|ξ′|h−1, |ξ′|−2s

)
×
(
|p|2s − 1

)
eip·(y−x)/h φ(x)φ(y)

dp dξ′ dx dy

(2π)2d−1
. (36)

We insert the identity

φ(x)φ(y) =
1

2

(
φ2(x) + φ2(y)− |φ(x)− φ(y)|2

)
,

use the symmetry in x and y and substitute q = pd/|p′| to obtain

−Tr
(
φH+φ

)
≤ Ih[φ]−Rh[φ]
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with the main term

Ih[φ] =
1

h2d

∫
Rd

+

∫
Rd

+

∫
Rd−1

∫
Rd−1

∫
R
|ξ′|ei(ξ′−p′)·(x′−y′)/he+

(
xd|ξ′|h−1, yd|ξ′|h−1, |ξ′|−2s

)
× ei(yd−xd)|p′|q/h ((q2 + 1)s − |p′|−2s

)
|p′|1+2sφ2(x)

dq dp′ dξ′ dx dy

(2π)2d−1

and the remainder

Rh[φ] =
1

h2d

∫
Rd

+

∫
Rd

+

∫
Rd−1

∫
Rd

|ξ′|eiξ′·(x′−y′)/h e+
(
xd|ξ′|h−1, yd|ξ′|h−1, |ξ′|−2s

)
× |p|2seip·(y−x)/h |φ(x)− φ(y)|2 dp dξ

′ dx dy

2(2π)2d−1
.

Since φ ∈ C1
0(Rd) we can perform the y′-integration in Ih[φ]. We use the fact that∫
R

∫ ∞
0

e+ (xd, yd, µ)
(
(q2 + 1)s − µ

)
ei(yd−zd)q dyd dq = −a+(xd, zd, µ)

and obtain

Ih[φ] =
1

hd+1

∫
Rd

+

∫ ∞
0

∫
Rd−1

∫
R
|ξ′|2s+2 e+

(
xd|ξ′|h−1, yd|ξ′|h−1, |ξ′|−2s

)
×
(
(q2 + 1)s − |ξ′|−2s

)
ei(yd−xd)|ξ′|q/hφ2(x)

dq dξ′ dyd dx

(2π)d

=− 1

hd

∫
Rd

+

φ2(x)

∫
Rd−1

|ξ′|2s+1 a+
(
xd|ξ′|h−1, |ξ′|−2s

) dξ′ dx

(2π)d−1
.

Using again (35) we find that

Ih[φ] = −L(1)
s,d

∫
Rd

+

φ2(x) dx h−d +

∫
Rd

+

φ2(x)K
(xd
h

)
dx h−d . (37)

It remains to study Rh[φ]. We claim that for any 1
2
− s < σ < min{1

2
, 1 − s} there is a

Cσ such that

|Rh[φ]| ≤ Cσh
−d+2s+2σ (38)

for all h > 0. This, together with (37) will complete the proof of (33).
In order to show (38) we perform the p integration and find that

Rh[φ] = − C

hd−2s

∫
Rd

+

∫
Rd

+

∫
Rd−1

|ξ′|eiξ′·(x′−y′)/he+

(
xd|ξ′|
h

,
yd|ξ′|
h

,
1

|ξ′|2s

)
× |φ(x)− φ(y)|2

|x− y|d+2s
dξ′ dx dy .

We insert

eiξ
′·(x′−y′)/h =

h2σ

|ξ′|2σ
(−∆x′)

σeiξ
′·(x′−y′)/h
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and integrate by parts to get

Rh[φ] = − C

hd−2s−2σ

∫
Rd

+

∫
Rd

+

∫
Rd−1

|ξ′|1−2σeiξ
′·(x′−y′)/he+

(
xd|ξ′|
h

,
yd|ξ′|
h

,
1

|ξ′|2s

)
dξ′

× (−∆x′)
σ |φ(x)− φ(y)|2

|x− y|d+2s
dx dy .

By Lemma 9 and the fact that e+(t, u, µ) = 0 for µ ≤ 1 we arrive at

|Rh[φ]| ≤ C

hd−2s−2σ

∫
Rd

+

∫
Rd

+

∫
{ξ′∈Rd−1:|ξ′|<1}

|ξ′|−2σdξ′
∣∣∣∣(−∆x′)

σ |φ(x)− φ(y)|2

|x− y|d+2s

∣∣∣∣ dxdy
≤ C

hd−2s−2σ

∫
Rd

+

∫
Rd

+

∣∣∣∣(−∆′x)
σ |φ(x)− φ(y)|2

|x− y|d+2s

∣∣∣∣ dxdy .
According to Lemma 24 this implies (38) and hence completes the proof of (33).

4. Local asymptotics near the boundary

In this section we prove Proposition 5. After having analyzed the half-space case in
the previous section, we now show how the case of a general domain follows. We shall
transform the operator HΩ locally to an operator given on the half-space Rd

+ = {(y′, yd) ∈
Rd−1 × R : yd > 0} and we shall quantify the error made by this straightening of the
boundary.

Under the conditions of Proposition 5, let B denote the open ball of radius l > 0,
containing the support of φ. For x0 ∈ B ∩ ∂Ω let νx0 be the inner normal unit vector at
x0. We choose a Cartesian coordinate system such that x0 = 0 and νx0 = (0, . . . , 0, 1), and
we write x = (x′, xd) ∈ Rd−1 × R for x ∈ Rd.

For sufficiently small l > 0 one can introduce new local coordinates near the boundary.
Let D denote the projection of B on the hyperplane given by xd = 0. Since the boundary
of Ω is compact and C1,α there is a constant c > 0 such that for 0 < l ≤ c we can find a
real function f ∈ C1,α given on D, satisfying

∂Ω ∩B = {(x′, xd) : x′ ∈ D, xd = f(x′)} ∩B .

The choice of coordinates implies f(0) = 0 and ∇f(0) = 0. Hence, we can estimate

sup
x′∈D
|∇f(x′)| = sup

x′∈D
|∇f(x′)−∇f(0)| ≤ Cf |x′|α ≤ Cf l

α .

Since the boundary of Ω is compact we can choose a constant C > 0, depending only on
Ω, in particular independent of f , such that the bound

sup
x′∈D
|∇f(x′)| ≤ Clα (39)

holds.
We introduce new local coordinates via the diffeomorphism ϕ : D × R→ Rd, given by

yj = ϕj(x) = xj for j = 1, . . . , d− 1
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and

yd = ϕd(x) = xd − f(x′) .

Note that the determinant of the Jacobian matrix of ϕ equals 1 and that the inverse of ϕ
is given on ranϕ = D × R. In particular, we get

ϕ (∂Ω ∩B) ⊂ ∂Rd
+ = {y ∈ Rd : yd = 0} .

Fix v ∈ Hs(Ω) with support in B. For y ∈ ranϕ put ṽ(y) = v ◦ ϕ−1(y) and extend ṽ by
zero to Rd.

Lemma 13. The function ṽ belongs to Hs(Rd
+) and for 0 < l ≤ c we have∣∣∣(ṽ, (−∆)sRd

+
ṽ)− (v, (−∆)sΩv)

∣∣∣ ≤ C lα min
{

(ṽ, (−∆)sRd
+
ṽ), (v, (−∆)sΩv)

}
.

Proof. By definition, ṽ belongs to Hs(Rd) and for y ∈ Rd \ Rd
+ we find xd = yd + f(y′) <

f(x′), thus ṽ(y) = v(x) = 0. Therefore ṽ belongs to Hs(Rd
+).

Using the new local coordinates we get

(v, (−∆)sΩv) = Cs,d

∫
Rd

∫
Rd

|v(x)− v(w)|2

|x− w|d+2s
dx dw = Cs,d

∫
Rd

∫
Rd

|ṽ(y)− ṽ(z)|2

|x− w|d+2s
dy dz , (40)

where y = ϕ(x) and z = ϕ(w), thus x = (y′, yd + f(y′)) and w = (z′, zd + f(z′)). Let us
write ∣∣∣∣ 1

|y − z|d+2s
− 1

|x− w|d+2s

∣∣∣∣
=

1

|y − z|d+2s

∣∣∣∣∣1− |y − z|d+2s

[|y′ − z′|2 + (yd + f(y′)− zd − f(z′))2]d/2+s

∣∣∣∣∣ .
After multiplying out, the last fraction equals(

1 +
(f(y′)− f(z′))2 + 2(yd − zd)(f(y′)− f(z′))

|y − z|2

)−(d/2+s)

and we can employ (39) to estimate∣∣∣∣(f(y′)− f(z′))2 + 2(yd − zd)(f(y′)− f(z′))

|y − z|2

∣∣∣∣
≤ sup |∇f |2 |y

′ − z′|2

|y − z|2
+ 2 sup |∇f | |y

′ − z′| |yd − zd|
|y − z|2

≤ Clα .

Choosing l small enough we can assume Clα < 1/2. Then, combining the foregoing rela-
tions, we find ∣∣∣∣ 1

|x− w|d+2s
− 1

|y − z|d+2s

∣∣∣∣ ≤ C
lα

|y − z|d+2s
. (41)
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From (40) and (41) we conclude∣∣∣(ṽ, (−∆)sRd
+
ṽ)− (v, (−∆)sΩv)

∣∣∣
≤ Cs,d

∫∫
|ṽ(y)− ṽ(z)|2

∣∣∣∣ 1

|y − z|d+2s
− 1

|x− w|d+2s

∣∣∣∣ dy dz
≤ C lα(ṽ, (−∆)sRd

+
ṽ) .

This proves the first claim of the Lemma. The second claim follows by interchanging the
roles of (−∆)sRd

+
and (−∆)sΩ. �

On the range of ϕ we define φ̃u = φu ◦ ϕ−1 and extend it by zero to Rd such that
φ̃u ∈ C1

0(Rd) and ‖∇φ̃u‖∞ ≤ Cl−1 hold. Using Lemma 13 we show the following relations.

Lemma 14. For 0 < l ≤ c and any h > 0 the estimate∣∣∣Tr(φHΩφ)− − Tr(φ̃H+φ̃)−

∣∣∣ ≤ C ld+α h−d (42)

holds. Moreover, we have ∫
Ω

φ2(x) dx =

∫
Rd

+

φ̃2(y) dy (43)

and

0 ≤
∫
∂Ω

φ2(x) dσ(x)−
∫

Rd−1

φ̃2(y′, 0) dy′ ≤ C ld−1+2α . (44)

Proof. The definition of φ̃ and the fact that the Jacobian of φ equals 1 immediately gives
(43). Using (39) we estimate∫

∂Ω

φ2(x) dσ(x) =

∫
Rd−1

φ̃2(y′, 0)
√

1 + |∇f |2 dy′ ≤
∫

Rd−1

φ̃2(y′, 0) dy′ + Cld−1+2α .

from which (44) follows.
To prove (42) we refer to the variational principle once more and note that

−Tr (φHΩφ)− = inf
0≤γ≤1

Tr (φγφHΩ) ,

where we can assume that infimum is taken over trial density matrices γ supported in
B ×B. Fix such a γ. For y and z from D × R set

γ̃(y, z) = γ
(
ϕ−1(y), ϕ−1(z)

)
,

so that 0 ≤ γ̃ ≤ 1 and the range of γ̃ belongs to the form domain of φ̃H+φ̃. According to
Lemma 13 it follows that

Tr (φγφHΩ) ≥ Tr
(
φ̃γ̃φ̃

(
h2s(1− Clα)(−∆)sRd

+
− 1
))

≥ −Tr
(
φ̃
(

(1− Clα)h2s(−∆)sRd
+
− 1
)
φ̃
)
−
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and consequently

Tr (φHΩφ)− ≤ Tr
(
φ̃
(

(1− Clα)h2s(−∆)sRd
+
− 1
)
φ̃
)
−
.

Set ε = 2Clα and assume l to be sufficiently small, so that 0 < ε ≤ 1/2. Then

Tr (φHΩφ)− ≤ Tr
(
φ̃
(

(1− Clα)h2s(−∆)sRd
+
− 1
)
φ̃
)
−

≤ Tr
(
φ̃
(

(−h2∆)sRd
+
− 1
)
φ̃
)
−

+ Tr
(
φ̃
(

(ε− Clα)h2s(−∆)sRd
+
− ε
)
φ̃
)
−

≤ Tr(φ̃H+φ̃)− + εTr
(
φ̃
(

(h2s/2)(−∆)sRd
+
− 1
)
φ̃
)
−
.

Using Lemma 6 we estimate Tr(φ̃((h2s/2)(−∆)sRd
+
− 1)φ̃)− ≤ Cldh−d and it follows that

Tr(φHΩφ)− ≤ Tr(φ̃H+φ̃)− + C ld+α h−d .

Finally, by interchanging the roles of HΩ and H+, we get an analogous lower bound and
the proof of the Lemma is complete. �

We conclude this section by giving the short

Proof of Proposition 5. It suffices to combine Lemma 14 and Proposition 8. �

5. Localization

In this section we construct the family of localization functions (φu)u∈Rd and prove
Proposition 3. Fix a real-valued function φ ∈ C∞0 (Rd) with support in the ball {x ∈ Rd :
|x| < 1} that satisfies ‖φ‖2 = 1. We recall the definition of the local length scale l(u) from
(11). For u, x ∈ Rd let J(x, u) be the Jacobian of the map u 7→ (x− u)/l(u). We define

φu(x) = φ

(
x− u
l(u)

)√
J(x, u) l(u)d/2 ,

such that φu is supported in the ball Bu = {x ∈ Rd : |x− u| < l(u)}.
By definition, the function l(u) is smooth and satisfies 0 < l(u) ≤ 1/2 and ‖∇l‖∞ ≤ 1/2.

Therefore, according to [SS03], the functions φu satisfy (12) and (13) for all u ∈ Rd.
To prove the lower bound in Proposition 3 we follow some ideas from [LY88]. In partic-

ular, we need the following auxiliary results; the first one gives an IMS-type localization
formula for the fractional Laplacian.

Lemma 15. For the family of functions (φu)u∈Rd introduced above and for all f ∈ Hs(Ω)
the identity

(f, (−∆)sf) =

∫
Ω∗

(φuf, (−∆)sφuf) l(u)−d du− (f, Lf)

holds with Ω∗ = {u ∈ Rd : suppφu ∩ Ω 6= ∅}. The operator L is of the form

L =

∫
Ω∗
Lφu l(u)−d du , (45)
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where Lφu is a bounded operator with integral kernel

Lφu(x, y) = Cs,d
|φu(x)− φu(y)|2

|x− y|d+2s
χΩ(x)χΩ(y) .

Here χΩ denotes the characteristic function of Ω.
Lemma 15 implies that for any operator γ with range in Hs(Ω)

Tr γ(−∆)s =

∫
Rd

Tr (γφu(−∆)sφu) l(u)−d du− Tr γL . (46)

The next result allows to estimate the localization error Tr γL.

Lemma 16. For u ∈ Rd and 0 < δ ≤ 1/2 we have

Tr γLφu ≤ Tr γ
(
Cδ2−2sl(u)−2sχδχΩ

)
+ C ‖γ‖ l(u)−2s δ−d+2−2sr(δ)

with

r(δ) =

 1 if 1− d/4 < s < 1
| ln δ| if 0 < s = 1− d/4
δd+4s−4 if 0 < s < 1− d/4

.

where χδ denotes the characteristic function of {x ∈ Rd : |x− u| < l(u)(1 + δ)}.

Proof. By translation and scaling we can assume that u = 0 and l(u) = 1, and hence
φu = φ. (This rescaling changes Ω, but the bound we are going to prove is independent of
the domain and therefore not affected by this dilation.) We set

L1
φ(x, y) =

{
Lφ(x, y)χδ(x)χδ(y) if |x− y| < δ
0 if |x− y| ≥ δ

,

L0
φ(x, y) = Lφ(x, y) − L1

φ(x, y) and θ(x) =
∫
L1
φ(x, y) dy. By a simple adaption of the

arguments of [LY88, Thm. 10] we find that for any ε > 0

Tr γLφ ≤ Tr γ (θ + ε χ0) +
‖γ‖
2ε

Tr
(
L0
φ

)2
. (47)

It remains to bound θ and Tr(L0
φ)2.

We begin by estimating θ. By definition, for |x| ≥ 1 + δ we have L1
φ(x, y) = 0 and hence

θ(x) = 0, and for |x| < 1 + δ we get

θ(x) = Cs,d

∫
|x−y|<δ
|y|<1+δ

(φ(x)− φ(y))2

|x− y|d+2s
dy ≤ C ‖∇φ‖2

∞

∫
|x−y|<δ

1

|x− y|d+2s−2
dy .

Thus, for all x ∈ Rd

θ(x) ≤ C δ2−2s χδ(x) . (48)

Finally, we estimate Tr(L0
φ)2. The symmetry of L0

φ(x, y) implies

Tr
(
L0
φ

)2 ≤ C

∫∫
A

(
(φ(x)− φ(y))2

|x− y|d+2s

)2

dx dy
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where A denotes the set {(x, y) ∈ Rd × Rd : |x| < min(|y|, 1) , |x − y| ≥ δ}. Set A1 =
{(x, y) ∈ A : |y| ≥ 2} and A2 = {(x, y) ∈ A : |y| < 2}. Then

Tr
(
L0
φ

)2 ≤ C

∫∫
A1

(
φ4(x)

|x− y|2d+4s

)
dx dy + C ‖∇φ‖4

∞

∫∫
A2

1

|x− y|2d+4s−4
dx dy

≤ C r(δ) . (49)

Choosing ε = δ2−2s and combining (47) with (48) and (49) yields the claimed result. �

Proof of Proposition 3. We apply Lemma 16 with a parameter 0 < δu ≤ 1/2 to be specified
later. For ease of notation we write χu instead of χδu . Identities (45) and (46) and the
estimate from Lemma 16 imply

Tr γ(−∆)s ≥
∫

Ω∗
Tr γ

(
φu(−∆)sφu − Cδ2−2s

u l(u)−2sχu(x)χΩ(x)
)
l(u)−d du

− C ‖γ‖
∫

Ω∗
δ−d+2−2s
u r(δu)l(u)−d−2s du . (50)

If the supports of χu and φu′ overlap, we have |u − u′| ≤ (3/2)l(u) + l(u′). It follows
that l(u′) − l(u) ≤ ‖∇l‖∞ ((3/2)l(u) + l(u′)). Since ‖∇l‖∞ ≤ 1/2 we find l(u′) ≤ Cl(u)
and l(u)−1 ≤ Cl(u′)−1. Similarly, we get l(u) ≤ Cl(u′). We assume now that δu satisfies

δu ≤ Cδu′ if |u− u′| ≤ (3/2)(l(u) + l(u′)) . (51)

Using these locally uniform bounds on l(u)/l(u′) and δu/δu′ , together with (13), we can
deduce the pointwise bound for all x ∈ Rd∫

Ω∗
δ2−2s
u l(u)−2s χu(x)χΩ(x)

du

l(u)d

=

∫
Ω∗
δ2−2s
u l(u)−2s χu(x)χΩ(x)

(∫
φ2
u′(x)

du′

l(u′)d

)
du

l(u)d

≤ C

∫
Ω∗
φu′(x) δ2−2s

u′ l(u′)−2s φu′(x)
du′

l(u′)d
.

Rewriting the last integral with u as integration variable, in view of (50), we find

Tr γ(−∆)s ≥
∫

Ω∗
Tr γ

(
φu

(
(−∆)s − Cδ2−2s

u

l(u)2s

)
φu

)
du

l(u)d

− C‖γ‖
∫

Ω∗
δ−d+2−2s
u r(δu)

du

l(u)d+2s
.

By the variational principle it follows that

Tr(HΩ)− = − inf
0≤γ≤1

Tr γ
(
(−h2∆)s − 1

)
≤

∫
Ω∗

Tr
(
φu
(
(−h2∆)s − 1− Ch2sδ2−2s

u l(u)−2s
)
φu
)
−

du

l(u)d

+Ch2s

∫
Ω∗
δ−d+2−2s
u r(δu)

du

l(u)d+2s
. (52)
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To bound the first term, we use Lemma 6. For any u ∈ Rd, let ρu be another parameter
satisfying 0 < ρu ≤ 1/2 and estimate

Tr
(
φu
(
(−h2∆)s − 1− Ch2sδ2−2s

u l(u)−2s
)
φu
)
−

≤ Tr (φuHΩφu)− + C Tr
(
φu
(
ρuh

2s(−∆)s − ρu − h2sδ2−2s
u l(u)−2s

)
φu
)
−

≤ Tr (φuHΩφu)− + C l(u)d(ρuh
2s)−d/(2s)

(
ρu + h2sδ2−2s

u l(u)−2s
)1+d/(2s)

.

We pick ρu = h2s δ2−2s
u l(u)−2s. By (17) and our assumption that δu ≤ 1/2, we see that

ρu ≤ (h/l0)2s26s−2. We assume now that h ≤ C−1l0 (with a possibly large constant C) in
order to guarantee that ρu ≤ 1/2. With this choice we find

Tr

(
φu

(
(−h2∆)s − 1− Ch2sδ2−2s

u

l(u)2s

)
φu

)
−
≤ Tr (φuHΩφu)− + C

δ2−2s
u l(u)d−2s

hd−2s
. (53)

Combining (52) and (53) we obtain

Tr(HΩ)− ≤
∫

Ω∗
Tr (φuHΩφu)−

du

l(u)d
+ C

∫
Ω∗

(
δ2−2s
u

hd−2sl(u)2s
+
h2sδ−d+2−2s

u r(δu)

l(u)d+2s

)
du . (54)

At this point we choose δu in order to minimize the second integrand, which we shall
denote by Iu. We pick

δu =


h/l(u) if 1− d/4 < s < 1
(h/l(u))| ln(l(u)/h)|1/(4−4s) if 0 < s = 1− d/4
(h/l(u))d/(4−4s) if 0 < s < 1− d/4

and note that δu ≤ 1/2 if h ≤ C−1l0 by (17). Moreover, (51) is an easy consequence of the
corresponding estimate for l(u)/l(u′). With this choice we arrive at the bounds

Iu ≤ C


h−d+2l(u)−2 if 1− d/4 < s < 1
h−d+2l(u)−2| ln(l(u)/h)|1/2 if 0 < s = 1− d/4
h−d/2+2sl(u)−d/2−2s if 0 < s < 1− d/4

.

Finally, we integrate with respect to u. The same arguments that lead to (18) and (19)
yield ∫

Ω∗
Iu du ≤ C


h−d+2l−1

0 if 1− d/4 < s < 1
h−d+2l−1

0 | ln(l0/h)|1/2 if 0 < s = 1− d/4
h−d/2+2sl

−d/2−2s+1
0 if 0 < s < 1− d/4

.

This completes the proof of the lower bound with the remainder stated in Proposition 3.
To prove the upper bound we put

γ =

∫
Rd

φu (φuHΩφu)
0
− φu l(u)−d du .

Obviously, γ ≥ 0 holds and in view of (13) also γ ≤ 1. The range of γ belongs to Hs(Ω)
and by the variational principle it follows that

−Tr(HΩ)− ≤ Tr γHΩ = −
∫

Rd

Tr (φuHΩφu)− l(u)−d du .
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This yields the upper bound and finishes the proof of Proposition 3. �

6. Discussion of the second term

6.1. Representations for the second constant. In this section we study the second
term of (6) in more detail. First we derive representation (8).

Proposition 17. One has

L
(2)
s,d =

∫
Rd−1

ζ(|p′|−2s)
dp′

(2π)d−1

=
|Sd−2|

(2π)d−1

2s

(d− 1)(d− 1 + 2s)
Tr
[
χA−(d−1)/2sχ− (A+)−(d−1)/2s

]
. (55)

Here χ is the characteristic function of R+ and

ζ(µ) = µ−1

∫ ∞
0

(
a(µ)− a+(t, µ)

)
dt . (56)

Proof. The first identity follows immediately from (27) and (28). The second identity
follows from the fact that∫

Rd−1

|p′|2s(E − |p′|−2s)−
dp′

(2π)d−1
=
|Sd−2|

(2π)d−1

2s

(d− 1)(d− 1 + 2s)
E−(d−1)/2s

for any E > 0, which by the spectral theorem implies that∫
Rd−1

|p′|2sa+(t, |p′|−2s)
dp′

(2π)d−1
=
|Sd−2|

(2π)d−1

2s

(d− 1)(d− 1 + 2s)
(A+)−(d−1)/2s(t, t)

and similarly for A. �

Remark. There is another representation, namely,

L
(2)
s,d =

2s

d− 1 + 2s

∫
Rd−1

ξ(|p′|−2s)
dp′

(2π)d−1
, (57)

where

ξ(µ) =

∫ ∞
0

(
e(µ)− e+(t, µ)

)
dt . (58)

Here e(µ) and e+(t, µ) are the diagonals of the integral kernels of the spectral projectors
(A − µ)0

− and (A+ − µ)0
−, respectively. We have not shown that the integral in (58)

converges, since we will not use (57) in the remainder of this paper. Identity (57) is an
easy consequence of (55) and the fact that

a(µ) =

∫ µ

0

e(τ) dτ a+(t, µ) =

∫ µ

0

e+(t, τ) dτ

which follows by the spectral theorem from (E − µ)− =
∫ µ

0
(E − τ)0

− dτ . Representation
(57) is natural since in terms of this function the conjectured formula for the number of
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negative eigenvalues of HΩ takes the form∫∫
TΩ

(
|p|2s − 1

)0

−
dpdx

(2πh)d
−
∫∫

T∂Ω

ξ(|p′|−2s)
dp′dσ(x)

(2πh)d−1
+ o(h−d+1) ,

which is the analogue of well-known two-term semi-classical formulas in the local case; see,
for instance, [Ivr80,SV97]. The function ξ plays the role of a spectral shift. Note that we
avoided to write (56) and (58) in terms of a trace. While the integrals on the diagonals
converge, we do not expect the operators to be trace class, see [Pus08].

Remark. Yet another representation is

h−d+1L
(2)
s,d =

∫ ∞
0

(
H−(x, x)− (H+)−(x, x)

)
dxd .

(Note that the right side is independent of x′.) This follows from (30) and the corresponding
formula for H. Using this representation one sees that our asymptotic formula coincides
with the one obtained in [BK08,BKS09].

Finally, we refer to (71) in Section 8 for a representation of L
(2)
s,d in terms of generalized

eigenfunctions of A+.

6.2. Positivity of the constant. Here we shall prove

Proposition 18. For any 0 < s < 1 and d ≥ 2, one has L
(2)
s,d > 0.

Proof. We use the second representation in (55) and the fact that

E−(d−1)/2s =
1

Γ((d− 1)/2s)

∫ ∞
0

e−βEβ(d−1)/(2s)−1dβ

for every E > 0 to see that

L
(2)
s,d =

|Sd−2|
(2π)d−1

2s

(d− 1)(d− 1 + 2s)Γ((d− 1)/2s)

×
∫ ∞

0

∫ ∞
0

(
e−βA(t, t)− e−βA+

(t, t)
)
β(d−1)/(2s)−1dt dβ .

By means of the Trotter’s product formula (see also [BK08] for a probabilistic derivation)
it is easy to see that

exp(−βA)(t, u) ≥ exp(−βA+)(t, u)

for every β > 0 and every t, u > 0. This, together with the fact that A 6≡ A+, proves the
proposition. �
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6.3. Comparison with a fractional power of the Dirichlet Laplacian. It is well-
known that the Dirichlet Laplacian −∆Ω on Ω satisfies

Tr
(
−h2∆Ω − 1

)
− = L

(1)
1,d |Ω|h

−d − L(2)
1,d |∂Ω|h−d+1 + o(h−d+1) ,

see, e.g., [FG11] for a proof under the sole assumption that ∂Ω ∈ C1,α for some 0 < α ≤ 1.
Here

L
(1)
1,d =

1

(2π)d

∫
Rd

(
|p|2 − 1

)
− dp

and, by an argument similar to that in our Proposition 17, one can bring the second
constant in the form

L
(2)
1,d =

|Sd−2|
(2π)d−1

2

(d− 1)(d+ 1)
Tr
[
χB−(d−1)/2χ− (B+)−(d−1)/2

]
where B = − d2

dt2
+ 1 in L2(R) and B+ = − d2

dt2
+ 1 with Dirichlet boundary conditions in

L2(R+). A short computation, using the fact that

(Es − 1)− = s(1− s)
∫ 1

0

(E − τ)−τ
s−2 dτ + s(E − 1)− ,

gives

Tr
((
−h2∆Ω

)s − 1
)
− =L

(1)
1,d |Ω|h

−d s

(
(1− s)

∫ 1

0

τ d/2+s−1 dτ + 1

)
− L(2)

1,d |∂Ω|h−d+1 s

(
(1− s)

∫ 1

0

τ (d−1)/2+s−1 dτ + 1

)
+ o(h−d+1)

=L
(1)
s,d |Ω|h

−d − s(d+ 1)

d− 1 + 2s
L

(2)
1,d |∂Ω|h−d+1 + o(h−d+1) ,

that is,

L̃
(2)
s,d =

s(d+ 1)

d− 1 + 2s
L

(2)
1,d =

|Sd−2|
(2π)d−1

2s

(d− 1)(d− 1 + 2s)
Tr
[
χB−(d−1)/2χ− (B+)−(d−1)/2

]
.

Since

B−(d−1)/2(t, t) =
1

2π

∫
R

1

(1 + p2)(d−1)/2
dp = A−(d−1)/2s(t, t)

we find that

L̃
(2)
s,d − L

(2)
s,d =

|Sd−2|
(2π)d−1

2s

(d− 1)(d− 1 + 2s)
Tr
[
(A+)−(d−1)/2s − (B+)−(d−1)/2

]
.

We now apply Lemma 19 below with B = −d2/dt2 +1 in L2(R), with P being the projector
onto L2(R+) and with φ(E) = Es. Then φ(PBP ) = (B+)s and Pφ(B)P = A+, and
therefore (59) yields

(B+)s ≥ A+ .
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Since E 7→ E−(d−1)/2s is strictly monotone and since the operators A+ and (B+)s are not
identical, we conclude that

Tr
(
(A+)−(d−1)/2s − (B+)−(d−1)/2

)
> 0 .

This shows that L̃
(2)
s,d − L

(2)
s,d > 0 and completes the proof of Proposition 2. �

In the previous proof we used

Lemma 19. Let B be a non-negative operator with kerB = {0} and let P be an orthogonal
projection. Then for any complete Bernstein function

φ(PBP ) ≥ Pφ(B)P . (59)

We recall (see, e.g., [SSV10]) that complete Bernstein functions (also known as operator-
monotone functions) are characterized by the representation

φ(E) = a+ bE +

∫ ∞
0

E

τ(E + τ)
dρ(τ) (60)

with a ∈ R, b ≥ 0 and a positive measure ρ satisfying∫ ∞
0

1

τ(1 + τ)
dρ(τ) <∞ .

Proof. We first prove that

B−1 ≥ (PBP )−1 . (61)

Let us write P⊥ = 1− P , so that

B = PBP + P⊥BP⊥ + P⊥BP + PBP⊥ .

By the Schwarz inequality we have

P⊥BP + PBP⊥ ≤ εPBP +
1

ε
P⊥BP⊥

for any ε > 0, and hence

B ≤ (1 + ε)PBP +

(
1 +

1

ε

)
P⊥BP⊥ .

Since P and P⊥ are orthogonal we can invert this inequality and obtain

B−1 ≥ 1

1 + ε
(PBP )−1 +

ε

1 + ε
(P⊥BP⊥)−1 .

Thus (61) follows by taking ε→ 0+.
Now if φ is of the form (60) then

φ(PBP )− Pφ(B)P = −
∫ ∞

0

(
(PBP + τ)−1 − P (B + τ)−1P

)
dρ(τ) .

By (61) with B replaced by B + τ , this is non-negative. �
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7. Equivalence of (2) and (3)

For the sake of completeness we include a short proof of

Lemma 20. Let (λk)k∈N be a non-decreasing sequence of real numbers and let A,C > 0,
B,D ∈ R and −1 < a− 1 < b < a be related by

C = A−1/aa(a+ 1)−(1+a)/a , D = B(A(a+ 1))−(1+b)/a .

Then the asymptotic formula
N∑
k=1

λk = ANa+1 +BN b+1(1 + o(1)) , N →∞ , (62)

is equivalent to∑
k∈N

(Λ− λk)+ = CΛ(1+a)/a −DΛ(1+b)/a(1 + o(1)) , Λ→∞ . (63)

Proof. This lemma is a consequence of Hardy, Littlewood and Polya’s majorization theo-
rem, which says that for any non-decreasing sequences {ak} and {bk}

N∑
k=1

ak ≤
N∑
k=1

bk for all N ∈ N (64)

is equivalent to
∞∑
k=1

(Λ− ak)+ ≥
∞∑
k=1

(Λ− bk)+ for all Λ ∈ R ;

see, e.g., [MO79, Prop. 4.B.4]. As usual, we will denote property (64) by {ak} ≺ {bk}.
We fix ε > 0 and set β±k = A(a+ 1)ka + (B ± ε)(b+ 1)kb. Note that the assumptions on

a and b imply
N∑
k=1

β±k = ANa+1 + (B ± ε)N b+1(1 + o(1)) , N →∞ , (65)

and∑
k∈N

(Λ− β±k )+ =
aA

(A(a+ 1))1+1/a
Λ(1+a)/a − B ± ε

(A(a+ 1))(1+b)/a
Λ(1+b)/a(1 + o(1)) , (66)

as Λ → ∞. First, we assume that (62) holds. Then, by (62) and (65) there is an Nε ∈ N
such that for all N ≥ Nε

N∑
k=1

β−k ≤
N∑
k=1

λk ≤
N∑
k=1

β+
k .

We put α±k = β±k for k ≥ Nε and α+
k = max(β+

k , λk), α
−
k = min(β−k , λk) for k < Nε. Thus

{α−k } ≺ {λk} ≺ {α
+
k }, and therefore∑

k∈N

(Λ− α+
k )+ ≤

∑
k∈N

(Λ− λk)+ ≤
∑
k∈N

(Λ− α−k )+ for all Λ ∈ R .
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Since
∑

k∈N(Λ−α±k )+ =
∑

k∈N(Λ−β±k )+ +O(1), the assertion (63) follows from (66). The
converse implication is proved similarly. �

8. The one-dimensional model operator

Here we outline the calculations that are necessary to complete the analysis of the
model operator A+ introduced in Section 3. The results depend on the following spectral
representation of the operator A+ found in [Kwa10b].

Theorem 21. For E > 0 let
ψ(E) = (E + 1)s − 1

and for λ > 0 put γλ(ξ) = 0 if 0 < ξ < 1 and

γλ(ξ) =
1

π

λψ′(λ2) sin(πs) (ξ2 − 1)s

ψ(λ2)2 + (ξ2 − 1)s − 2ψ(λ2)(ξ2 − 1) cos(πs)

× exp

(
− 1

π

∫ ∞
0

ξ

ξ2 + ζ2
ln
ψ′(λ2)(λ2 − ζ2)

ψ(λ2)− ψ(ζ2)
dζ

)
if ξ ≥ 1. Moreover, define a phase-shift

ϑλ =
1

π

∫ ∞
0

λ

ζ2 − λ2
ln
ψ′(λ2)(λ2 − ζ2)

ψ(λ2)− ψ(ζ2)
dζ (67)

and functions

Fλ(x) = sin (λx+ ϑλ) +

∫ ∞
0

e−xξ γλ(ξ) dξ , x > 0 . (68)

Then

Φf(λ) =

√
2

π

∫ ∞
0

f(x)Fλ(x) dx

defines a unitary operator from L2(R+) to L2(R+).
This operator diagonalizes A+ in the sense that a function f ∈ L2(R+) is in the domain

of A+ if and only if (λ2 + 1)sΦf(λ) is in L2(R+), and in this case

ΦA+f(λ) = (λ2 + 1)sΦf(λ) .

According to [Kwa10b] the Laplace transform of γλ is a completely monotone function
bounded by one. From (68) it follows that for all t ≥ 0

|Fλ(t)| ≤ 2 . (69)

Theorem 21 states that the functions Fλ are generalized eigenfunctions of the operator
A+. Hence, we can write

e+(t, u, µ) =
2

π

∫ ∞
0

(
(λ2 + 1)s − µ

)0

− Fλ(t)Fλ(u) dλ . (70)

From (28) and (8) it follows that

L
(2)
s,d =

4s

(d− 1 + 2s)(d− 1)

|Sd−2|
(2π)d

∫ ∞
0

∫ ∞
0

(
1− 2F 2

λ (t)
) (
λ2 + 1

)−(d−1)/2
dλ dt . (71)
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8.1. Proof of Lemma 9. Lemma 9 is an immediate consequence of (70). In view of (69)
we estimate ∣∣e+(t, u, µ)

∣∣ ≤ C

∫ (µ1/s−1)
1/2
+

0

dλ ≤ Cµ1/(2s) .

This proves the lemma.

8.2. Proof of Lemma 10. First we need the following technical result about ϑλ.

Lemma 22. The phase-shift ϑλ is monotone increasing and twice differentiable in λ > 0.
It satisfies

ϑ0 = 0 and ϑλ →
π

4
(1− s) as λ→∞ .

The first and second derivatives are bounded and one has, as λ→∞,

dϑλ
dλ

=
d2ϑλ
dλ2

= O

(
1

λ

)
.

Proof. Following [Kwa10b], we substitute ζ = λz for ζ ∈ (0, 1) and ζ = λ/z for ζ ∈ (1,∞)
in the definition of ϑλ and obtain

ϑλ =
1

π

∫ 1

0

1

1− z2
ln

(
1

z2

ψ(λ2)− ψ(λ2z2)

ψ(λ2/z2)− ψ(λ2)

)
dz.

Note that the function

1

z2

ψ(λ2)− ψ(λ2z2)

ψ(λ2/z2)− ψ(λ2)
=

1

z2

(1 + λ2)s − (1 + λ2z2)s

(1 + λ2/z2)s − (1 + λ2)s

equals 1 for λ = 0 and that for all z ∈ (0, 1) it is increasing in λ > 0 and tends to z2s−2 as
λ tends to infinity. By Lebesgue’s dominated convergence we find ϑ0 = 0 and

lim
λ→∞

ϑλ =
1

π

∫ 1

0

1

1− z2
ln(z2s−2) dz =

π

4
(1− s) .

By (67), we also have

ϑλ =
1

π

∫ ∞
0

bλ(ζ) dζ

with

bλ(ζ) =
λ

ζ2 − λ2
ln

(
s(1 + λ2)s−1(λ2 − ζ2)

(λ2 + 1)s − (ζ2 + 1)s

)
.

We remark that

|∂λbλ(ζ)| ≤ ∂λbλ(ζ)|λ=0 =
1

ζ2
ln

(
sζ2

(1− ζ2)s − 1

)
.

for all ζ ∈ (0,∞). Since the last expression is integrable in ζ ∈ (0,∞) it follows that

dϑλ
dλ

=
1

π

∫ ∞
0

∂λbλ(ζ) dλ
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is bounded and, in particular, we obtain

dϑλ
dλ

∣∣∣∣
λ=0

=
1

π

∫ ∞
0

1

ζ2
ln

(
sζ2

(1 + ζ2)s − 1

)
dζ . (72)

Similarly, we can show existence and boundedness of the second derivative and decay of the
derivatives as λ→∞ by explicit calculations and Lebesgue’s dominated convergence. �

To simplify notation we put

ψλ(E) =
1− E/λ2

1− ψ(E)/ψ(λ2)

for E > 0. Moreover, we write Gλ for the Laplace transform of γλ and gλ for the Laplace
transform of Gλ. According to [Kwa10b] we have

gλ(t) =
λ cosϑλ + t sinϑλ

λ2 + t2
− λ2

√
ψ′(λ2)

ψ(λ2)

ϕλ(t)

λ2 + t2
, t > 0 , (73)

with

ϕλ(t) = exp

(
1

π

∫ ∞
0

t

t2 + ζ2
ln
(
ψλ(ζ

2)
)
dζ

)
.

To prove Lemma 10 we need the following properties of ϕλ.

Lemma 23. The function t 7→ ϕλ(t) is differentiable in t > 0 and its derivative satisfies

ϕ′λ(0) = o(1) as λ→∞ ,

ϕ′λ(0) =
dϑλ
dλ

∣∣∣∣
λ=0

+O(λ) as λ→ 0 .

Proof. For fixed ζ ∈ (0,∞) the function λ 7→ ψλ(ζ
2) is non-increasing in λ > 0 and tends

to 1 as λ→∞. Moreover,

1

ζ2
ln
(
ψ0(ζ2)

)
=

1

ζ2
ln

(
sζ2

(ζ2 + 1)s − 1

)
is integrable with respect to ζ ∈ (0,∞). Hence we find that

ϕ′λ(0) =
1

π

∫ ∞
0

1

ζ2
ln
(
ψλ(ζ

2)
)
dζ

and ϕ′λ(0) = o(1) as λ→∞ by Lebesgue’s theorem.
In view of (72)

ϕ′λ(0)|λ=0 =
1

π

∫ ∞
0

1

ζ2
ln
(
ψ0(ζ2)

)
dζ =

dϑλ
dλ

∣∣∣∣
λ=0

.

The second claim now follows from the fact that the derivative of λ 7→ ϕ′λ(0) is bounded. �
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Proof of Lemma 10. In view of Theorem 21 we can write

a(µ)− a+(t, µ) =
1

π

∫ ∞
0

(
(λ2 + 1)s − µ

)
−

(
1− 2F 2

λ (t)
)
dλ

and by (68)

1− 2Fλ(t)
2 = cos(2λt+ 2ϑλ)− 4 sin(λt+ ϑλ)Gλ(t)− 2Gλ(t)

2 .

We get ∫ ∞
0

tγ|a(µ)− a+(t, µ)|dt ≤ R1(µ) +R2(µ)

with

R1(µ) =

∫ ∞
0

tγ

∣∣∣∣∣
∫ (µ1/s−1)

1/2
+

0

(
µ− (λ2 + 1)s

)
cos(2λt+ 2ϑλ) dλ

∣∣∣∣∣ dt ,
R2(µ) =

∫ ∞
0

tγ

∣∣∣∣∣
∫ (µ1/s−1)

1/2
+

0

(
µ− (λ2 + 1)s

) (
2 sin(λt+ ϑλ)Gλ(t) +Gλ(t)

2
)
dλ

∣∣∣∣∣ dt .
To estimate R1(µ) we split the integration in t and integrate over t ∈ [0, 1] first. We

assume 0 < γ < 1. The proof for γ = 0 follows similarly.
We write

cos(2λt+ 2ϑλ) =
1

2t

d

dλ
sin(2λt+ 2ϑλ)−

cos(2λt+ 2ϑλ)

t

dϑλ
dλ

and insert this identity in the expression for R1(µ). After integrating by parts in the
λ-integral one can estimate∫ 1

0

tγ

∣∣∣∣∣
∫ (µ1/s−1)

1/2
+

0

(
µ− (λ2 + 1)s

)
cos(2λt+ 2ϑλ) dλ

∣∣∣∣∣ dt ≤ Cµ
(
(lnµ)2 + 1

)
.

To estimate the integral over t ∈ [1,∞) we proceed similarly. We integrate by parts twice
and get ∫ ∞

1

tγ

∣∣∣∣∣
∫ (µ1/s−1)

1/2
+

0

(
µ− (λ2 + 1)s

)
cos(2λt+ 2ϑλ) dλ

∣∣∣∣∣ dt ≤ Cµ(lnµ+ 1) .

We conclude

R1(µ) ≤ Cµ
(
(lnµ)2 + 1

)
and turn to estimating R2(µ).

Since Gλ is non-negative and uniformly bounded, we have

R2(µ) ≤ C

∫ (µ1/s−1)
1/2
+

0

(
µ− (λ2 + 1)s

) ∫ ∞
0

tγ Gλ(t)du dλ . (74)
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Identity (73) implies
∫∞

0
Gλ(t)dt = gλ(0) and

∫∞
0
tGλ(t)dt = g′λ(0). We note that

gλ(0) =
cosϑλ
λ
−

√
ψ′(λ2)

ψ(λ2)

and apply Lemma 22 to estimate
∫∞

0
Gλ(t)dt ≤ C (λ ∧ λ−1). Moreover, by (73),

g′λ(0) =
sinϑλ
λ2

−

√
ψ′(λ2)

ψ(λ2)
ϕ′λ(0)

and we apply Lemma 22 and Lemma 23 to estimate
∫∞

0
tGλ(t)dt ≤ C (1 ∧ λ−1). It follows

that ∫ ∞
0

tγ Gλ(t) dt ≤ C
(
1 ∧ λ−1

)
.

Thus, by (74), we arrive at

R2(µ) ≤ C

∫ (µ1/s−1)
1/2
+

0

(
µ− (λ2 + 1)s

) (
1 ∧ λ−1

)
dλ ≤ C µ (lnµ+ 1) .

This finishes the first part of the proof of Lemma 10.
In order to prove the assertion about K(t), we bound∫ ∞

0

tγ |K(t)| dt ≤
∫
|ξ′|<1

|ξ′|1+2s

∫ ∞
0

tγ|a+(t|ξ′|, |ξ′|−2s)− a(|ξ′|−2s)| dt dξ′ .

Here we also used that, since a(µ) = a+(t, µ) = 0 for µ ≤ 1, we can restrict the integration
in the definition of K to |ξ′| < 1. On the other hand, from (26) we know that∫ ∞

0

tγ|a+(tµ−1/2s, µ)− a(µ)| dt ≤ Cγµ
1+(γ+1)/(2s)

(
(lnµ)2 + 1

)
.

Combining these two bounds and using that γ < 1 ≤ d − 1 we obtain the second part of
Lemma 10. �

8.3. A remainder estimate. The following technical lemma was needed in the proof of
the upper bound near the boundary.

Lemma 24. Assume that φ ∈ C1
0(Rd) is supported in a ball of radius l = 1 and that (14)

is satisfied with l = 1. Then for any 1
2
− s < σ < min{1

2
, 1− s} one has∫

Rd

∫
Rd

∣∣∣∣(−∆x′)
σ |φ(x)− φ(y)|2

|x− y|d+2s

∣∣∣∣ dxdy ≤ C (75)

Proof. For x = (x′, xd) ∈ Rd−1 × R and y = (y′, yd) ∈ Rd−1 × R put

Fxd,y(x
′) =

(φ(x′, xd)− φ(y′, yd))
2

(|x′ − y′|2 + (xd − yd)2)d/2+s
.



33

To establish (75) we use that∣∣∣∣(−∆x′)
σ |φ(x)− φ(y)|2

|x− y|d+2s

∣∣∣∣ ≤ C

∫
Rd−1

|Fxd,y(x
′)− Fxd,y(z

′)|
|x′ − z′|d−1+2σ

dz′ (76)

and split the integration in x ∈ Rd and y ∈ Rd in four parts. First we assume that x and
y are in B1. Then we have to show that∫

B1

∫
B1

∫
Rd−1

|Fxd,y(x
′)− Fxd,y(z

′)|
|x′ − z′|d−1+2σ

dz′ dx dy =∫
B1

∫
B1

∫
|x′−z′|<|x−y|/2

|Fxd,y(x
′)− Fxd,y(z

′)|
|x′ − z′|d−1+2σ

dz′ dx dy

+

∫
B1

∫
B1

∫
|x′−z′|≥|x−y|/2

|Fxd,y(x
′)− Fxd,y(z

′)|
|x′ − z′|d−1+2σ

dz′ dx dy (77)

is bounded from above.
To estimate the first integral over |x′ − z′| < |x− y|/2 we use that

F (z′)− F (x′) =
d−1∑
j=1

(zj − xj)
|x′ − z′|

∫ |x′−z′|
0

(∂jF )

(
x′ + t

(z′ − x′)
|x′ − z′|

)
dt .

For j = 1, . . . , d− 1 we have

(∂jFxd,y)(x
′) =

2(φ(x′, xd)− φ(y))(∂jφ(x))

|x− y|d+2s
− (d+ 2s)(xj − yj)

(φ(x)− φ(y))2

|x− y|d+2s+2
,

thus
|(∂jFxd,y)(x

′)| ≤ C |x− y|−d+1−2s .

Hence, we obtain

|Fxd,y(z
′)− Fxd,y(x

′)|

≤ C|x′ − z′|α
∫ |x′−z′|

0

(∣∣∣∣x′ + t
(z′ − x′)
|x′ − z′|

− y′
∣∣∣∣2 + (xd − yd)2

)β

dt

1−α

, (78)

with 0 < α < 1 and β = (d−1
2

+ s)/(α− 1), by applying Hölder’s inequality. Note that∣∣∣∣x′ − y′ + t
(z′ − x′)
|x′ − z′|

∣∣∣∣2 + (xd − yd)2 = |x− y|2 + t2 + 2t
(x′ − y′) · (z′ − x′)

|x′ − z′|
≥ (|x− y| − t)2 .

Inserting this into (78) we get for |x′ − z′| < |x− y|/2

|Fxd,y(z
′)− Fxd,y(x

′)| ≤ C|x′ − z′|α
(∫ |x−y|/2

0

(|x− y| − t)2βdt

)1−α

≤ C|x′ − z′|α|x− y|(2β+1)(1−α) ,
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where (2β + 1)(1 − α) = −d − 2s + 2 − α. We conclude that for any 2σ < α < 1 and
σ < 1− s ∫

B1

∫
B1

∫
|x′−z′|<|x−y|/2

|Fxd,y(x
′)− Fxd,y(z

′)|
|x′ − z′|d−1+2σ

dz′ dx dy

≤ C

∫
B1

∫
B1

∫
|x′−z′|<|x−y|/2

|x′ − z′|−d+1−2σ+αdz′ |x− y|−d−2s+2−α dx dy

≤ C . (79)

Now we turn to the second integral in (77) over |x′ − z′| ≥ |x− y|/2. Since

0 ≤ Fxd,y(x
′) ≤ |x− y|−d−2s+2 (80)

and σ < 1− s we have∫
B1

∫
B1

∫
|x′−z′|≥|x−y|/2

Fxd,y(x
′)

|x′ − z′|d−1+2σ
dz′dxdy ≤ C

∫
B1

∫
B1

1

|x− y|d+2s−2+2σ
≤ C. (81)

Moreover,∫
|x′−z′|≥|x−y|/2

Fxd,y(z
′)

|x′ − z′|d−1+2σ
dz′ ≤ C|x− y|1−d−2σ+(d−1)/p

(∫
|x′−z′|≥|x−y|/2

F q
xd,y

(z′)dz′
) 1

q

with 1
p

+ 1
q

= 1, by Hölder’s inequality. Since σ > 1
2
− s we can choose p > d−1

2σ
and

q > d−1
d+2s−2

. By (80), we have(∫
|x′−z′|≥|x−y|/2

F q
xd,y

(z′)dz′
) 1

q

≤ C

(∫
Rd−1

(
|z′ − y′|2 + (xd − yd)2

)−q(d/2+s−1)
dz′
) 1

q

≤ C |xd − yd|−d−2s+2+(d−1)/q .

It follows that∫
B1

∫
B1

∫
|x′−z′|≥|x−y|/2

Fxd,y(z
′)

|x′ − z′|d−1+2σ
dz′ dx dy

≤ C

∫
B1

∫
B1

|x− y|−d+1−2σ+(d−1)/p |xd − yd|−d−2s+2+(d−1)/q dx dy

≤ C

∫ 2

0

t−d−2s+2+(d−1)/q

∫ 2

0

rd−2
(
r2 + t2

)(−d+1−2σ)/2+(d−1)/(2p)
dr dt ,

where we substituted t = |xd − yd| and r = |x′ − y′|. Since p > d−1
2σ

and σ < 1− s we find∫
B1

∫
B1

∫
|x′−z′|≥|x−y|/2

Fxd,y(z
′)

|x′ − z′|d−1+2σ
dz′ dx dy ≤ C

∫ 2

0

t1−2s−2σdt ≤ C . (82)

The estimates (81) and (82) show that∫
B1

∫
B1

∫
|x′−z′|≥|x−y|/2

|Fxd,y(x
′)− Fxd,y(z

′)|
|x′ − z′|d−1+2σ

dz′ dx dy ≤ C (83)
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and from (76), (79), and (83) it follows that∫
B1

∫
B1

∣∣∣∣(−∆x′)
σ |φ(x)− φ(y)|2

|x− y|d+2s

∣∣∣∣ dxdy ≤ C .

The proof that the respective integrals over B1 × (Rd \ B1), (Rd \ B1) × B1, and (Rd \
B1)×(Rd\B1) are finite is similar but easier, since suppφ ⊂ B1 and we only have to handle
one singularity at a time. �
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[Hör85] L. Hörmander, The analysis of linear partial differential operators, vol. 4, Springer-Verlag,
Berlin, 1985.

[Ivr80] V. Ja. Ivrii, The second term of the spectral asymptotics for the Laplace-Beltrami operator on
manifolds with boundary, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 25–34.

[Kat66] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., vol. 132, Springer-
Verlag, New York, 1966.
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