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Abstract

Support vector machines (SVMs) using Gaussian kernels are one of the standard and
state-of-the-art learning algorithms. In this work, we establish new oracle inequalities for
such SVMs when applied to either least squares or conditional quantile regression. With the
help of these oracle inequalities we then derive learning rates that are (essentially) minimax
optimal under standard smoothness assumptions on the target function. We further utilize
the oracle inequalities to show that these learning rates can be adaptively achieved by a
simple data-dependent parameter selection method that splits the data set into a training
and a validation set.

AMS 2000 subject classifcations: Primary 62G08; secondary 62G05, 68Q32, 68T05.
Keywords: least squares regression, quantile estimation, support vector machines.

1 Introduction

Given i.i.d. observations D := ((x1, y1) , . . . , (xn, yn)) of input/output observations drawn from
an unknown distribution P on X × Y , where Y ⊂ R, the goal of non-parametric regression is to
find a function fD : X → R that captures important characteristics of the conditional distribution
P(Y |x), x ∈ X. For example, in non-parametric least squares regression, an fD is sought that
approximates the conditional mean E(Y |x), while in quantile regression the goal is to find an
estimate fD of the quantiles of P(Y |x), x ∈ X. Non-parametric least squares regression is one of the
classical non-parametric problems, which has been extensively studied for decades. We refer to the
book [14], which presents a lot of results in this direction. In contrast, the non-parametric quantile
regression problem has attracted less attention, probably because for more advanced estimation
procedures, a.k.a. learning algorithms, the problem is often less tractable, both mathematically
and algorithmically. Nonetheless, also for this problem important contributions have been made,
which, besides other questions regarding quantile regression, are summarized in the recent book
[17].

A typical way to assess the quality of a found estimator fD in these regression problems is the
distance of fD to the target function. To be more precise, if f∗ denotes the conditional function
of interest, that is, either the conditional mean or a conditional quantile, and P is the marginal
distribution of P on X, then, for some p ∈ (0,∞), the norm

‖fD − f∗‖pLp(PX) , (1)

is often used to describe how well fD approximates f∗. Here we note, that taking the p-th power
of the norm is, of course, not dictated by mathematics but more by historically grown habits for
the least squares loss. Recall that, for least squares regression, one usually considers p = 2 due
to the very nature of the least squares loss, while for quantile regression various values for p have
actually been considered. In both cases, we say the learning algorithm that produces the estimates
fD is consistent, if the norm in (1) converges to 0 in probability for n → ∞. Likewise, learning
rates describe the corresponding convergence rates, either in probability or in expectation.

One of learning algorithms that have recently attracted many theoretical investigations are
support vector machines (SVMs), or more precisely, kernel-based regularized empirical risk min-
imizers. Reasons for this grown interest include their state-of-the-art empirical performance in
applications, their relatively simple implementation and application, and last-but-not-least, their
flexibility. To describe this flexibility, which is key to considering two regression scenarios simul-
taneously, let us briefly recall that SVMs solve an optimization problem of the form

fD,λ ∈ arg min
f∈H

λ‖f‖2H +RL,D(f) , (2)

where H is a reproducing kernel Hilbert space (RKHS) with reproducing kernel k, see e.g. [2, 4, 28],
λ > 0 is user-specified regularization parameter, L : Y ×R→ [0,∞) is a loss function, and RL,D(f)
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denotes the empirical error or risk of a function f : X → R, that is

RL,D (f) =
1
n

n∑
i=1

L (yi, f (xi)) .

It is well-known that the optimization problem above has a unique solution whenever the loss L
is convex in its second argument. In addition, under mild assumptions on the richness of H and
the way the regularization parameter λ is chosen, the corresponding SVM is L-risk consistent.
We refer to [28] for detailed descriptions of these and other results. Now, the above mentioned
flexibility of SVMs is made possible by their two main ingredients, namely the RKHS H and the
loss function L. To be more precise, the loss function can be used to model the learning target,
see [28, Chapter 3], while the RKHS can be used to adapt to the nature of the input domain
X. For example, when using the standard least squares loss in the optimization problem (2),
the SVM estimates the conditional mean, and for the so-called pinball loss, see Section 4 for a
definition, the SVM estimates conditional quantiles. On the other hand, RKHSs can be defined
on arbitrary input domains X, so that, besides standard Rd-valued data, various other types of
data can be dealt with. Moreover, due to the so-called kernel-trick [22], the choice of H has little
to no algorithmic consequences for solving the SVM optimization problem. The latter is not true
for the choice of L, where each different L demands a different optimization algorithm. However,
for standard loss functions including the least-squares loss and the pinball loss, these optimization
problems, which reduce to convex quadratic optimization problems, have been well-understood.
For solvers, we exemplarily refer to [8, 16] and [32], respectively.

One of the main topics in recent theoretical investigations on SVMs have been learning rates.
For example, the articles [9, 10, 25, 5, 20, 30] and the references therein establish rates for SVMs
using the least squares loss, while SVMs using the pinball loss are investigated in [27, 29]. We
discuss the findings of these articles and compare them to our results in more detail at the end
of Sections 3 and 4 after we have presented our main results. Here, we only note that besides
a very few articles, namely [5, 20, 30], the obtained learning rates are typically not optimal in a
minimax sense. In addition, these three papers only consider some specific cases. For example, [5]
only consider the case, when the target function, in this case the conditional mean, is contained
in the used RKHS H. On the other hand, H is assumed to be generic in this article, that is, no
specific family of kernels is considered. The latter generality is also adopted in [20, 30], where the
authors establish optimal rates in the more realistic case in which H does not contain the target
function. Unfortunately, however, these articles require additional assumptions on the interplay
between H and the marginal distribution PX . Namely, [20] assumes that the eigenfunctions of
the integral operator associated to the kernel k of H are (almost) uniformly bounded. This
assumption, however, cannot be easily guaranteed, neither in practice nor in theory. This issue is
partially addressed in [30], where the eigenfunction assumption is replaced by a weaker assumption
in terms of inclusions of certain interpolation spaces of H and L2(PX). While in practice, these
inclusions can not be checked either, there are, at least, certain combinations of H and L2(PX) in
which they are satisfied. For example, if X ⊂ Rd is a bounded domain satisfying some standard
regularity assumptions and H is a Sobolev space Wm

2 (X) of sufficient smoothness m, that is
m > d/2, then [30] shows that the inclusion assumptions made in this article are satisfied and that
the resulting learning rates for SVMs are minimax optimal. While this result is interesting from
a theoretical point of view, in practice Sobolev spaces of large order m are rarely used for SVMs,
probably because of computational issues.

The discussion so far may already indicate the fact that most articles, including the three
establishing optimal rates, only consider the case, where H is fixed during the training process.
This scenario, however, is rather unrealistic, since in most applications, H is chosen in a data-
dependent way. For example, for input domains X ⊂ Rd, the standard way of using SVMs is to
equip them with Gaussian RBF kernels kγ defined by

kγ (x, x′) = exp

(
−
‖x− x′‖22

γ2

)
, x, x′ ∈ X ,



3

and to determine the free width parameter γ > 0 in a data-dependent way, e.g., by cross-validation.
Despite the dominance of this approach, however, only a very few articles analyze the learning
behaviour of SVMs with Gaussian kernels. To be more concrete, the currently best learning rates
have been established in [31, 35]. Here we note that in both articles the authors actually consider
binary classification, although a closer look reveals that at least the results of [35] can also be
applied to least squares regression. Indeed, if the conditional mean is assumed to be contained in
the Sobolev space W s

2 (X) for some s > 0, then [35] establish rates of the form

n−
s

s+2d+2 .

Unfortunately, these rates are far from the known minimax rates n−
2s

2s+d of this setting, and up
to now, it has been unknown, whether SVMs with Gaussian kernels can actually achieve these
minimax rates, as their good empirical performance may suggest, or whether they can only learn
with sub-optimal rates like classical kernel rules with Gaussian kernels do. The first goal of this
paper is to answer this question. More precisely, we show that SVMs with least squares loss and
Gaussian kernels can learn with rate

n−
2s

2s+d+ξ (3)
for all ξ > 0. In other words, we establish learning rates that are arbitrarily close to the minimax
rates. Moreover, we show that these rates can be achieved by a simple but completely data-driven
procedure that splits the data set D into a training and a validation set. Our second goal is to
show that these rates as well as the adaptivity to the unknown smoothness s is preserved when
considering quantile regression, instead. More precisely, we show under mild additional assump-
tions on the conditional distributions that the conditional quantile functions f∗ are approximated
by SVM decision functions in the L2-norm (1) with rate (3). Moreover, it turns out that splitting
D into a training and validation set again leads to learning procedure that is fully adaptive to the
unknown smoothness s.

In the remainder of this section we introduce some assumptions and notations used throughout
the paper. We begin with the input space X ⊂ Rd, which is assumed to be a non-empty, open,
and bounded set whose boundary ∂X has Lebesgue measure 0. Moreover, we only consider the
case of bounded regression, that is, Y := [−M,M ] for some M > 0. We further assume that P is a
probability measure on X×Y whose marginal distribution PX on X is absolutely continuous with
respect to the Lebesgue measure µ on X. In addition, the corresponding density of PX is assumed
to be bounded away from 0 and ∞. Recall that in this case the space Lp(PX), p ∈ (0,∞), equals
the space Lp(µ) and that the corresponding norms are equivalent. For the sake of simplicity, we
thus restrict the formulations of our main results to the case, where PX is the uniform distribution
on X. Because of the described equivalence, however, it is straightforward to see that all results
actually hold for the more general case in which PX only has a Lebesgue density that is bounded
away from 0 and ∞.

Since we consider both least squares regression and quantile regression, it is helpful to consider
some concepts in a generic way. To this end, we say that a function L : Y × R→ [0,∞) is a loss
function, if it is measurable. In the following, L will be either the least squares loss or the pinball
loss introduced in Section 4. Moreover, for a measurable f : X → R, the L-risk is defined by

RL,P (f) :=
∫
X×Y

L (y, f (x)) dP (x, y)

and the Bayes L-risk is the smallest possible L-risk, that is

R∗L,P := inf {RL,P (f) | f : X → R measureable} .

Since P lives on X × [−M,M ], both the conditional mean and the conditional quantiles are
[−M,M ]-valued. It therefore suffices to consider [−M,M ]-valued estimators of these quantities.
To make this precise, we denote the clipped value of some t ∈ R by Ût, that isÛt :=


−M if t < −M
t if t ∈ [−M,M ]
M if t > M .
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It is easy to check that the risks of both the least squares loss and the pinball loss satisfy

RL,P( Ûf ) ≤ RL,P (f) ,

for all f : X → R. In other words, clipping the decision functions at ±M does not increase the
L-risk, and hence we will always consider clipped versions of the SVM decision functions. Finally,
since we do not consider SVMs with a fixed kernel, a notation that is slightly more detailed than
(2) is helpful. Namely, if Hγ is the RKHS of the Gaussian RBF kernel kγ , then we write

fD,λ,γ = arg min
f∈Hγ

λ ‖f‖2Hγ +RL,D (f) , (4)

where again, L is one of the above loss functions.
The rest of this paper is organized as follows: The next section presents some upper bounds

on the regularization error of SVMs using Gaussian kernels. These bounds are then used to
derive new oracle inequalities for the least squares loss and for the pinball in Sections 3 and 4,
respectively. In these sections we also present and discuss the learning rates that result from these
oracle inequalities. In particular, it turns out that the rates are (essentially) minimax optimal
if the target function is contained in some Sobolev or Besov spaces. Section 5 finally presents,
besides some technical lemmata, the proofs of our results.

2 Estimates on the approximation error

In this section, we present some approximation results that are essential to describe the infinite
sample behaviour for fixed regularization parameter λ and kernel width γ. These results will turn
out to be essential in the following sections, where we derive oracle inequalities and learning rates
for SVMs with Gaussian kernels.

To formulate the approximation results, we need to introduce some function spaces that are
later assumed to contain the target function. Let us begin by introducing some notations. We
denote the Lebesgue spaces of order p with respect to the measure ν by Lp(ν) and for the Lebesgue
measure µ on X ⊂ Rd we write Lp(X) := Lp(µ). Furthermore, BE denotes the closed unit ball
of a Banach space E. In particular, for the d-dimensional Euclidean space `d2, we write B`d2 . For
s ∈ R, bsc is the greatest integer smaller or equal s and dse is the smallest integer greater or equal
s. Let us now recall the modulus of smoothness from, e.g. [11, p. 44], [12, p. 398], and [3, p. 360]:

Definition 2.1. Let X ⊂ Rd be a subset with non-empty interior, ν be an arbitrary measure on
X, and f : X → Rd be a function with f ∈ Lp (ν) for some p ∈ (0,∞). For r ∈ N, the r-th
modulus of smoothness of f is defined by

ωr,Lp(ν) (f, t) = sup
‖h‖2≤t

‖4rh (f, · )‖Lp(ν) , t ≥ 0 ,

where ‖ · ‖2 denotes the Euclidean norm and the r-th difference 4rh (f, · ) is defined by

4rh (f, x) =

{∑r
j=0

(
r
j

)
(−1)r−j f (x+ jh) if x ∈ Xr,h

0 if x /∈ Xr,h

for h = (h1, . . . , hd) ∈ [0,∞)d and Xr,h := {x ∈ X : x+ sh ∈ X ∀ s ∈ [0, r]}.

It is well-known, see e.g. [15, Equation (2.1)], that the modulus of smoothness with respect to
Lp (X) satisfies

ωr,Lp(X) (f, t) ≤
(

1 +
t

s

)r
ωr,Lp(X) (f, s) , (5)
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for all f ∈ Lp (X) and all s > 0. Moreover, the modulus of smoothness can be used to define the
scale of Besov spaces. Namely, for 1 ≤ p, q ≤ ∞, α > 0, r := bαc + 1, and an arbitrary measure
ν, the Besov space Bαp,q (ν) is

Bαp,q (ν) :=
{
f ∈ Lp (ν) : |f |Bαp,q(ν) <∞

}
,

where, for 1 ≤ q <∞, the seminorm |· |Bαp,q(ν) is defined by

|f |Bαp,q(ν) :=
(∫ ∞

0

(
t−αωr,Lp(ν) (f, t)

)q dt
t

) 1
q

,

and, for q =∞, it is defined by

|f |Bαp,∞(ν) := sup
t>0

(
t−αωr,Lp(ν) (f, t)

)
.

In both cases, the norm of Bαp,q (ν) can be defined by ‖f‖Bαp,q(ν) := ‖f‖Lp(ν)+|f |Bαp,q(ν), see e.g. [11,
pp. 54/55] and [12, p. 398]. In addition, for q = ∞, we often write Bαp,∞ (ν) = Lip∗ (α,Lp (ν))
and call Lip∗ (α,Lp (ν)) the generalized Lipschitz space of order α. Finally, if ν is the Lebesgue
measure on X, we write Bαp,q (X) := Bαp,q (ν)

It is well-known, see e.g. [13, p. 25 and p. 44], that the Sobolev spaces Wα
p (Rd) fall into the

scale of Besov spaces, namely

Wα
p (Rd) ⊂ Bαp,q(Rd) (6)

for α ∈ N, p ∈ (1,∞), and max{p, 2} ≤ q ≤ ∞. Moreover, for p = q = 2 we actually have equality,
that is Wα

2 (Rd) = Bα2,2(Rd) with equivalent norms.
For our results, we need to extend functions f : X → R to functions f̂ : Rd → R such that the

smoothness properties of f described by some Sobolev or Besov space are preserved by f̂ . Our
main tool for this task is the following classical theorem.

Theorem 2.2 (Stein’s Extension Theorem). Let X be a bounded Lipschitz domain. Then there
exists a linear operator E mapping functions f : X → R to functions Ef : Rd → R with the
following properties:

(a) E (f)|X = f , that is, E is an extension operator.

(b) E continuously maps Wm
p (X) into Wm

p

(
Rd
)

for all p ∈ [1,∞] and all integers m ≥ 0. That
is, there exist constants am,p ≥ 0, such that, for every f ∈Wm

p (X), we have

‖Ef‖Wm
p (Rd) ≤ am,p ‖f‖Wm

p (X) . (7)

(c) E continuously maps Bαp,q (X) into Bαp,q
(
Rd
)

for all p ∈ (1,∞), q ∈ (0,∞] and all α > 0.
That is, there exist constants aα,p,q ≥ 0, such that, for every f ∈ Bαp,q (X), we have

‖Ef‖Bαp,q(Rd) ≤ aα,p,q ‖f‖Bαp,q(X) .

For more detailed conditions on X ensuring the existence of E, we refer to [26, p. 181] and
[1, p. 83]. Property (c) follows from (a) and (b) by some interpolation argument since Bαp,q can
be described by the interpolation space (Wm0

p ,Wm1
p )θ,q of the real method, where q ∈ [1,∞],

p ∈ (1,∞), θ ∈ (0, 1) and m0,m1 ∈ N0 satisfying m0 6= m1 and α = m0(1 − θ) + m1θ, see [34,
pp. 65/66] for more details. In the following, we always assume that we do have such an extension
operator E.

Throughout the paper we further assume that the boundary of X has zero Lebesgue measure,
which for bounded Lipschitz domains is obviously satisfied. Note that if this assumption is satisfied,
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the uniform distribution on X can be identified with the uniform distribution on the interior and
the closure of X, and hence we will not distinguish between them in terms of notation. Similarly,
we typically view the uniform distribution on X as a probability measure defined on Rd rather than
on X, that is, our notation does not distinguish between these two formally different measures,
either.

To derive oracle inequalities for SVMs we have to estimate the regularization error

min
f∈Hγ

λ ‖f‖2Hγ +RL,P(f)−R∗L,P .

The following two results construct a function f for which both the regularization term λ ‖f‖2Hγ
and the excess risk RL,P(f)−R∗L,P are small. To construct this function the next two theorems
use, for r ∈ N, and γ > 0, the function K : Rd → R defined by

K (x) :=
r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2

K jγ√
2

(x) (8)

where Kγ (x) := exp
(
−γ−2‖x‖22

)
for all x ∈ Rd.

Now, the first result will be used to bound the excess risk.

Theorem 2.3. Let X ⊂ Rd be a domain such that we have an extension operator E of the form
described in Theorem 2.2, PX be the uniform distribution on X and f ∈ L∞ (X). Furthermore,
let f̃ be defined by

f̃ (x) :=
(
γ
√
π
)− d2 Ef (x) , x ∈ Rd . (9)

Then, for r ∈ N, γ > 0, and q ∈ [1,∞), we have Ef ∈ Lq(PX) and

‖K ∗ f̃ − f‖qLq(PX) ≤ Cr,q ω
q
r,Lq(Rd)

(Ef, γ/2) ,

where Cr,q is a constant only depending on r, q and the volume vol(X) of X.

The second result will be used to bound the regularization term. In addition, it provides a
very useful supremum bound.

Theorem 2.4. Let g ∈ L2

(
Rd
)
, Hγ be the RKHS of the Gaussian RBF kernel kγ over X ⊂ Rd

with γ > 0 and K : Rd → R be defined by (8) for a fixed r ∈ N. Then we have K ∗ g ∈ Hγ with

‖K ∗ g‖Hγ ≤ (2r − 1) ‖g‖L2(Rd) .

Moreover, if g ∈ L∞
(
Rd
)
, then

|K ∗ g (x)| ≤
(
γ
√
π
) d

2 (2r − 1) ‖g‖L∞(Rd)

holds for all x ∈ X.

To illustrate the use of the two theorems above, we fix g := f̃ := (γ
√
π)−

d
2 Ef∗, where f∗ :

X → R is a function satisfying RL,P(f∗) = R∗L,P. Then it will turn out that Theorems 2.3 and
2.4 yield

min
f∈Hγ

λ ‖f‖2Hγ +RL,P(f)−R∗L,P

≤ λ‖K ∗ f̃‖2Hγ +RL,P(K ∗ f̃)−R∗L,P
≤ λ(2r − 1)2(γ

√
π)−d ‖Ef∗‖2L2(Rd) + c‖K ∗ f̃ − f∗‖2L2(PX)

≤ λ(2r − 1)2(γ
√
π)−d ‖Ef∗‖2L2(Rd) + cCr,2 ω

2
r,L2(Rd) (Ef∗, γ/2) , (10)
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where the crucial intermediate estimateRL,P(K∗f̃)−R∗L,P ≤ c‖K∗f̃−f∗‖2L2(PX) will be discussed
in Sections 3 and 4. Moreover, note that Theorem 2.4 also implies the estimate

|K ∗ f̃ | ≤ (γ
√
π)

d
2 (2r − 1)‖f̃‖L2(Rd) ≤ (2r − 1)‖Ef∗‖L2(Rd) ,

which will be important when applying concentration inequalities.
Besides the above bounds on the approximation properties of Hγ , we will also need to control

the capacity of Hγ in terms of entropy numbers. To this end, the following definition recalls entropy
numbers for the sake of completeness (cf. [6] or [28, Definition A.5.26] for more information).

Definition 2.5. Let S : E → F be a bounded, linear operator between the normed spaces E and
F and i ≥ 1 be an integer. Then the i-th (dyadic) entropy number of S is defined by

ei (S) := inf

ε > 0 : ∃t1, . . . , t2i−1 ∈ SBE such that SBE ⊂
2i−1⋃
j=1

(tj + εBF )


where the convention inf ∅ :=∞ is used.

For the empirical distribution DX associated to the data set DX := (x1, . . . , xn) ∈ Xn, [28,
Theorem 7.34] and [28, Corollary 7.31] immediately yield the following lemma regarding the ca-
pacity of Hγ .

Lemma 2.6. Let PX be a distribution on X ⊂ B`d2 , kγ be the Gaussian RBF kernel over X with
width γ ∈ (0, 1] and Hγ be the associated RKHS. Then, for all ε > 0 and 0 < p < 1, there exists
a constant cε,p ≥ 0 such that

EDX∼PnX
ei (id : Hγ → L2 (DX)) ≤ cε,pγ−

(1−p)(1+ε)d
2p i−

1
2p

for all i ≥ 1 and n ≥ 1.

3 Learning rates for least squares SVMs

In this section, we consider the non-parametric least squares regression problem based on the least
squares loss L : Y × R→ [0,∞) defined by L (y, t) = (y − t)2. It is well known that, for this loss,
the function f∗L,P : X → R defined by f∗L,P (x) = EP (Y |x), x ∈ X, is the only function for which
the Bayes risk is attained. Furthermore, some simple and well-known transformations show

RL,P (f)−R∗L,P =
∫
X

∣∣f − f∗L,P∣∣2 dPX =
∥∥f − f∗L,P∥∥2

L2(PX)
. (11)

In other words, the motivating estimate (10) is satisfied for c = 1.
In the following, we present our main results including the optimal rates for LS-SVMs using

Gaussian kernels.

Theorem 3.1. Let X ⊂ B`d2 be a bounded domain with µ(∂X) = 0 such that we have an extension
operator E in the sense of Theorem 2.2. Furthermore, let M > 0, Y := [−M,M ], and P be a
distribution on X×Y such that PX is the uniform distribution on X. Assume that we have a fixed
version f∗L,P of the regression function such that f∗L,P (x) = EP (Y |x) ∈ [−M,M ] for all x ∈ X.
Assume further that, for α ≥ 1 and r := bαc + 1, there exists a constant c > 0 such that, for all
t ∈ (0, 1], we have

ωr,L2(Rd)

(
Ef∗L,P, t

)
≤ c tα . (12)

Then, for all ε > 0 and p ∈ (0, 1), there exists a constant K > 0 such that for all n ≥ 1, ρ ≥ 1,
γ ∈ (0, 1], and λ > 0, the SVM using the RKHS Hγ and the least squares loss L satisfies

λ ‖fD,λ,γ‖2Hγ +RL,P( ÛfD,λ,γ)−R∗L,P ≤ Kλγ−d +Kc2γ2α +K
γ−(1−p)(1+ε)d

λpn
+
Kρ

n

with probability Pn not less than 1− e−ρ.
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With the help of this oracle inequality we can derive learning rates for the learning method
(4).

Corollary 3.2. Let ε > 0, p ∈ (0, 1) and ρ ≥ 1 be fixed. Under the assumptions of Theorem 3.1
and with

λn = c1n
− 2α+d

2α+2αp+dp+(1−p)(1+ε)d ,

γn = c2n
− 1

2α+2αp+dp+(1−p)(1+ε)d ,

we have, for all n ≥ 1,

RL,P( ÛfD,λn,γn)−R∗L,P ≤ Cn
− 2α

2α+2αp+dp+(1−p)(1+ε)d

with probability Pn not less than 1− e−ρ. Here, c1 > 0 and c2 > 0 are user-specified constants and
C > 0 is a constant independent of n.

It is rather easy to check that Theorem 3.1, Corollary 3.2, as well as the following Theorem 3.3
actually hold, if PX is only Lebesgue absolutely continuous with bounded Lebesgue density. In-
deed, the crucial result Theorem 2.3 also holds for such distributions, and the remaining arguments
used to prove Theorem 3.1 and its consequences apply to all marginal distributions PX .

To clarify the rates achieved in Corollary 3.2, we note that, for every ξ > 0, we can find
ε, p ∈ (0, 1) sufficiently close to 0 such that the learning rate in Corollary 3.2 is at least as fast as

n−
2α

2α+d+ξ . (13)

To achieve these rates, however, we need to set λn and γn as in Corollary 3.2, which in turn requires
us to know α. Since in practice we usually do not know this value nor its existence, we now show
that a standard training/validation approach, see e.g. [28, Chapters 6.5, 7.4, 8.2], achieves the
same rates adaptively, i.e. without knowing α. To this end, let Λ := (Λn) and Γ := (Γn) be
sequences of finite subsets Λn,Γn ⊂ (0, 1]. For a data set D := ((x1, y1) , . . . , (xn, yn)), we define

D1 := ((x1, y1) , . . . , (xm, ym))
D2 := ((xm+1, ym+1) , . . . , (xn, yn))

where m :=
⌊
n
2

⌋
+ 1 and n ≥ 4. We will use D1 as a training set by computing the SVM decision

functions

fD1,λ,γ := arg min
f∈Hγ

λ ‖f‖2Hγ +RL,D1 (f) , (λ, γ) ∈ Λn × Γn (14)

and use D2 to determine (λ, γ) by choosing a (λD2 , γD2) ∈ Λn × Γn such that

RL,D2

( ÛfD1,λD2 ,γD2

)
= min

(λ,γ)∈Λn×Γn
RL,D2

( ÛfD1,λ,γ

)
. (15)

In the following, we call this training/validation approach TV-SVM. For suitably chosen candidate
sets Λn and Γn that only depend on n and d, the next theorem establishes the rates (13) for TV-
SVMs.

Theorem 3.3. Under the assumptions of Theorem 3.1 we fix sequences Λ := (Λn) and Γ := (Γn)
of finite subsets Λn,Γn ⊂ (0, 1] such that Λn is an εn-net of (0, 1] and Γn is an δn-net of (0, 1]
with εn ≤ n−1 and δn ≤ n−

1
2+d . Furthermore, assume that the cardinalities |Λn| and |Γn| grow

polynomially in n. Then, for all ξ > 0 and ρ ≥ 1, the TV-SVM producing the decision functions
fD1,λD2 ,γD2

satisfies

Pn
(
RL,P( ÛfD1,λD2 ,γD2

)−R∗L,P ≤ Cξ,τ n−
2α

2α+d+ξ
)
≥ 1− e−ρ (16)

where Cξ,τ > 0 is a constant independent of n.
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What is left to do is to relate Assumption (12) with the function spaces introduced in Section
2. This is the goal of the following two results.

Corollary 3.4. Let X ⊂ B`d2 be bounded domain with µ(∂X) = 0 such that we have an extension
operator E in the sense of Theorem 2.2. Furthermore, let M > 0, Y := [−M,M ], and P be a
distribution on X×Y such that PX is the uniform distribution on X. If, for some α ∈ N, we have
f∗L,P ∈ Wα

2 (X), then, for all ξ > 0, both the SVM considered in Corollary 3.2 and the TV-SVM
considered in Theorem 3.3 learn with the rate

n−
2α

2α+d+ξ .

Again, this result also holds for distributions PX that have a bounded Lebesgue density. More-
over, for the uniform distribution PX , or more generally, for distributions PX having a Lebesgue
density that is bounded away from 0 and infinity, it is well-known that the minmax rate for
α > d/2 and target f∗ satisfying functions f∗L,P ∈ Wα

2 (X) is n−
2α

2α+d . Modulo ξ, our rate is
therefore asymptotically optimal in a minmax sense.

Similar to Corollary 3.4 we can show assumption (12) and essentially asymptotically optimal
learning rates if the regression function is contained in a Besov space.

Corollary 3.5. Let X ⊂ B`d2 be a domain such that we have an extension operator E in the sense
of Theorem 2.2. Furthermore, let M > 0, Y := [−M,M ], and P be a distribution on X × Y such
that PX is the uniform distribution on X. If, for some α ≥ 1, we have f∗L,P ∈ Bα2,∞(X), then, for
all ξ > 0, both the SVM considered in Corollary 3.2 and the TV-SVM considered in Theorem 3.3
learn with the rate

n−
2α

2α+d+ξ .

Recall that we have ei( id : Bα2,∞(X) → L2(PX)) ∼ i−
α
d , see e.g. [13, p. 151]. Therefore and

since Bα2,∞(X) is continuously embedded into the space `∞(X) of all bounded functions on X, we
obtain by [33, Theorem 2.2] that n−

2α
2α+d is the optimal learning rate in a minimax sense for α > d

(cf. [30, Theorem 13]). In other words, for α > d, the learning rates obtained in Corollary 3.5 are
again asymptotically optimal modulo ξ.

Let us now compare our results with previously obtained learning rates for SVMs. To begin
recall that there have already been made several investigations on learning rates for SVMs using
the least squares loss, see e.g. [9, 10, 25, 5, 20] and the references therein. In particular, optimal
rates have been established in [5], if f∗P ∈ H, and the eigenvalue behavior of the integral operator
associated to H is known. Moreover, for f∗P 6∈ H, the articles [20] and [30] establish learning rates
of the form n−β/(β+p), where β is a parameter describing the approximation properties of H and p
is a parameter describing the eigenvalue decay. In both cases, however, additional assumptions on
the interplay between H and L2(PX) are required, and [20] actually considers a different exponent
in the regularization term of (4). On the other hand, [30] shows that the rate n−β/(β+p) is often
asymptotically optimal in a minmax sense. In particular, the latter is the case for H = Wm

2 (X),
f ∈ W s

2 (X), and s ∈ (d/2,m], that is, when using a Sobolev space as the underlying RKHS
H, then all target functions contained in a Sobolev of lower smoothness s > d/2 can be learned
with the asymptotically optimal rate n−

2s
2s+d . Here we note that the condition s > d/2 ensures by

Sobolev’s embedding theorem that W s
2 (X) consists of bounded functions, and hence Y = [−M,M ]

does not impose an additional assumption on f∗L,P. If s ∈ (0, d/2], then the results of [30] still yield
the above mentioned rates, but we no longer know whether they are optimal in a minmax sense,
since Y = [−M,M ] does impose an additional assumption. In addition, note that for Sobolev
spaces this result, modulo an extra log factor, has already been proved by [14].

These results suggest that by using a fixed C∞-kernel such as the Gaussian RBF kernel, one
could actually learn the entire scale of Sobolev spaces with the above mentioned rates. Unfortu-
nately, however, there are good reasons to believe that this is not the case. Indeed, [24] shows
that for many analytic kernels the approximation error can only have polynomial decay if f∗L,P is
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analytic, too. In particular, for Gaussian kernels with fixed width γ and f∗L,P 6∈ C∞, the approx-
imation error does not decay polynomially fast, see [24, Proposition 1.1.], and if f∗L,P ∈ W s

2 (X),
then, in general, the approximation error function only has a logarithmic decay. Since it seems
rather unlikely that these poor approximation properties can be balanced by superior bounds on
the estimation error, the above-mentioned results indicate that Gaussian kernels with fixed width
may have a poor performance. This conjecture is justified by many empirical experience gained
throughout the last decade. Beginning with [31], research has thus focused on the learning per-
formance of SVMs with varying widths. The result that is probably the closest to ours is [35].
Although these authors actually consider binary classification using convex loss functions includ-
ing the least squares loss, it is relatively straightforward to translate their findings to our least
squares regression scenario. The resulting learning rate is n−

s
s+2d+2 , again under the assumption

f∗L,P ∈W s
2 (X) for some s > 0. Clearly, this is significantly worse than our rates. Furthermore, [36]

treats the case, where X is isometrically embedded into a t-dimensional, connected and compact
C∞-submanifold of Rd. In this case, it turns out that the resulting learning rate does not depend
on the dimension d, but on the intrinsic dimension t of the data. Namely, the authors establish
the rate n−

s
8s+4t modulo a logarithmic factor, where s ∈ (0, 1] and f∗L,P ∈ Lip (s). Note that this

rate is better than ours only if t < d−14s
8 , that is, e.g. for s = 1, if d > 8t+ 14.

Another direction of research that can be applied to Gaussian kernels with varying widths
are multi-kernel regularization schemes, see [38, 21, 37] for some results in this direction. For
example, [38] establishes learning rates of the form n−

2m−d
4(4m−d) +ξ whenever f∗L,P ∈ Wm

2 (X) for
some m ∈ (d/2, d/2 + 2), where again ξ > 0 can be chosen to be arbitrarily close to 0. Again all
these rates are far from being optimal, so that it seems fair to conclude that our results represent
a significant advance. Furthermore, we can conclude that, in terms of asymptotical minmax rates,
multi-kernel approaches applied to Gaussian RBFs cannot provide any significant improvement
over a simple training/validation approach for determining the kernel width and the regularization
parameter, since the latter already leads to rates that are optimal modulo an arbitrarily small ξ
in the exponent.

4 Learning rates for SVMs for Quantile Regression

The goal of this section is to derive learning rates for SVMs for quantile regression. To this end,
recall that the goal of quantile regression is to estimate the conditional τ -quantile, i.e. the set
valued function

F ∗τ,P(x) := {t ∈ R : P (Y ≤ t|x) ≥ τ and P (Y ≥ t|x) ≥ 1− τ} ,

where τ ∈ (0, 1) is a fixed constant. Throughout this section, we assume Y := [−1, 1] and that
F ∗τ,P consists of singletons, i.e. there exists an f∗τ,P : X → [−1, 1], such that F ∗τ,P(x) = {f∗τ,P(x)}
for PX -almost all x ∈ X. In the following, f∗τ,P is called the conditional τ -quantile function. To
estimate the latter one can use the so-called τ -pinball loss Lτ : Y × R→ [0,∞) represented by

ψ(r) :=

{
−(1− τ)r, if r < 0
τr, if r ≥ 0

where r := y − t and Lτ (y, t) = ψ(r). Recall that the conditional τ -quantile function is, modulo
PX -zero sets, the only function that minimizes the Lτ -risk, that is R∗Lτ ,P = RLτ ,P(f∗τ,P).

To derive meaningful learning rates for SVMs for quantile regression, we need to introduce
some characteristics of the distribution P that make it possible to compare the excess Lτ -risk of
some estimator fD to the distance

‖fD − f∗τ,P‖Lv(PX) .

For that purpose, let Q be a distribution on R with support suppQ ⊂ [−1, 1] and τ -quantile

F ∗τ (Q) := {t ∈ R : Q ((−∞, t]) ≥ τ and Q ([t,∞)) ≥ 1− τ} .
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Recall that F ∗τ (Q) is a bounded and closed interval, i.e. F ∗τ (Q) = [t∗min, t
∗
max] with t∗min :=

minF ∗τ (Q) and t∗max := maxF ∗τ (Q). Since we assumed that F ∗τ,P consists of singletons, we also
assume that F ∗τ (Q) consists of singletons, i.e. t∗min = t∗max =: t∗ and F ∗τ (Q) = {t∗}. The next
definition describes the concentration of Q around the τ -quantile t∗.

Definition 4.1. A distribution Q with suppQ ⊂ [−1, 1] is said to have a τ -quantile t∗ of lower
type q ∈ (1,∞), if there exist constants αQ ∈ (0, 2] and bQ > 0 such that

Q ((t∗ − s, t∗)) ≥ bQsq−1

Q ((t∗, t∗ + s)) ≥ bQsq−1

for all s ∈ [0, αQ]. Moreover, Q has a τ -quantile of type q = 1, if Q({t∗}) > 0. In this case we
define αQ := 2 and bQ := min{τ −Q((−∞, t∗)), Q((−∞, t∗])− τ}, where we note that this implies
bQ > 0. For q ≥ 1, we finally write κQ := bQα

q−1
Q .

Definition 4.1 has already been introduced in [29, Section 2], where more details including
examples that go beyond the ones we discuss below can be found.

Since we are interested in distributions P on X × R and not only in distributions Q on R, we
extend Definition 4.1 to such P.

Definition 4.2. Let p ∈ (0,∞], q ∈ [1,∞), and P be a distribution on X × R with supp P(·|x) ⊂
[−1, 1] for PX-almost all x ∈ X. Then P is said to have a τ -quantile of lower p-average type q, if
P( · |x) has a τ -quantile of lower type q for PX-almost all x ∈ X, and the function κ : X → [0,∞]
defined, for PX-almost all x ∈ X, by

κ(x) := κP(·|x) ,

where κP(·|x) = bP(·|x)α
q−1
P(·|x) is defined in Definition 4.1, satisfies κ−1 ∈ Lp(PX).

Definition 4.1 describes the concentration around t∗ by lower bounds. Analogously, the next
definition measures the concentration of Q around t∗ by upper bounds.

Definition 4.3. A distribution Q on [−1, 1] is said to have a τ -quantile of upper type q ∈ [1,∞),
if there exists a constant bQ > 0 such that

Q ((t∗ − s, t∗)) ≤ bQsq−1

Q ((t∗, t∗ + s)) ≤ bQsq−1

for all s ∈ [0, 2].

By setting q = 1 and bQ = 1, we see that Q always has a τ -quantile of upper type q. On the
other hand, for q > 1 Definition 4.3 actually classifies the set of all distributions on [−1, 1].

Next, we define quantiles of upper p-average type q analogously to the quantiles of lower
p-average type q.

Definition 4.4. Let p ∈ (1,∞], q ∈ [1,∞), and P be a distribution on X × [−1, 1]. Then P is
said to have a τ -quantile of upper p-average type q, if P( · |x) has a τ -quantile of upper type q for
PX-almost all x ∈ X, and the function ϕ : X → [0,∞] defined, for PX-almost all x ∈ X, by
ϕ(x) := bP( · |x), satisfies ϕ ∈ Lp(PX).

Let us now present some examples to illustrate the notion of quantiles of upper and lower
p-average type q.

Example 4.5. Let ν be a distribution on [−1, 1] having a bounded Lebesgue density h, i.e.
h(y) ≤ b for some b ∈ (0,∞) and Lebesgue-almost all y ∈ [−1, 1]. Then a simple integration yields
that ν has a τ -quantile of upper type q = 2 for all τ ∈ (0, 1). Here, we set bν := b.

In addition, we assume that P is a distribution on X × [−1, 1] with X ⊂ Rd and such that
for PX -almost all x ∈ X, PX is absolutely continuous with respect to the Lebesgue measure µ.
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Furthermore, assume that the corresponding densities f( · , x) := dP( · |x)
dµ|[0,1]

are uniformly bounded,
that is, f(y, x) ≤ b for Lebesgue-almost all y ∈ [−1, 1]. Then, for p = ∞, P has a τ -quantile of
upper p-average type q = 2 with ϕ(x) := b.

If we further assume that, for PX -almost all x ∈ X, the density f( · , x) of P( · |x) is bounded
away from 0, i.e. f(y, x) ≥ b̂ for some 0 < b̂ ≤ b for Lebesgue-almost all y ∈ [−1, 1], then, for
p =∞, P also has a τ -quantile of lower p-average type q = 2 with κ(x) := 2b̂.

Example 4.6. Let δt∗ be the Dirac measure at t∗ ∈ (0, 1), ν be a distribution on [−1, 1] with
ν({t∗}) = 0 and Q := αν + (1 − α)δt∗ for some α ∈ [0, 1). By [29, Example 2.4] we know
that, for τ ∈ (αν((−∞, t∗)), αν((−∞, t∗)) + 1 − α), {t∗} is a τ -quantile of lower type q = 1 with
κQ := min{τ − αν((−∞, t∗)), αν((−∞, t∗)) + 1− α− τ}.

Now assume P is a distribution on X × [−1, 1] such that each conditional distribution P( · |x)
is of the above form Q, where t∗ may depend on x but ν and α do not. Then, for p =∞, P has a
τ -quantile of lower p-average type q = 1. Moreover, for p = ∞, P also has a τ -quantile of upper
p-average type q = 1.

Let us now return to our initial goal of comparing the excess Lτ -risk of some estimator fD to
the distance ‖fD − f∗τ,P‖Lv(PX). To this end we first recall from [29, Theorem 2.7] the following
so-called self-calibration inequality

‖f − f∗τ,P‖Lv(PX) ≤ 21− 1
q q

1
q ‖κ−1‖

1
q

Lp(PX)(RLτ ,P(f)−R∗Lτ ,P)
1
q , (17)

which holds for p ∈ (0,∞], q ∈ [1,∞), v := pq
p+1 , and all f : X → [−1, 1], whenever P is a

distribution that has a τ -quantile of lower p-average type q. Initially, our statistical analysis will
provide oracle inequalities for the excess Lτ -risk, and hence self-calibration inequalities provide a
natural mean to translate such oracle inequalities into bounds on the distance ‖fD − f∗τ,P‖Lv(PX).
Interestingly, however, if we want to use the approximation results from Section 2, we also need
inverse self-calibration inequalities. In this respect we first note that the Lipschitz continuity of
Lτ immediately yields

RLτ ,P(f)−R∗Lτ ,P ≤ ‖f − f
∗
τ,P‖L1(PX) (18)

for all f : X → [−1, 1]. For our purposes, this estimate can be substantially improved by the next
theorem.

Theorem 4.7. Let P be a distribution on X×[−1, 1] that has a τ -quantile of upper p-average type q
with p ∈ (1,∞] and q ∈ [1,∞). In addition, assume that, for all x ∈ X, we have P({f∗τ,P(x)}|x) =
0. Then we have

RLτ ,P(f)−R∗Lτ ,P ≤ q
−1‖bP( · |x)‖Lp(PX)‖f − f∗τ,P‖

q
Lu(PX) (19)

for all f : X → [−1, 1], where u := pq
p−1 .

To see that (19) is indeed an improvement of (18) we consider f0 := K ∗ f̃ with K and f̃ as in
(8) and (9). Assuming a standard bound on the modulus of continuity, see (21) below, we then
obtain

RLτ ,P(f0)−R∗Lτ ,P ≤ ‖f0 − f∗τ,P‖L1(PX) ≤ c1 ωr,L1(Rd) (Ef, γ/2) ≤ c2γα

from (18), while (19) yields

RLτ ,P(f0)−R∗Lτ ,P ≤ c3‖f0 − f∗τ,P‖
q
Lu(PX) ≤ c4 (ωur,Lu(Rd) (Ef, γ/2))

q
u ≤ c5γqα ,

for suitable positive constants c1, . . . , c5. Since γ ∈ (0, 1], it is obvious that the second estimate is
tighter than the first one whenever q > 1.
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Theorem 4.8. Let X ⊂ B`d2 be a domain such that we have an extension operator E in the sense
of Theorem 2.2. Furthermore, let Y := [−1, 1], and P be a distribution on X × Y such that PX is
the uniform distribution on X. For τ ∈ (0, 1) let f∗τ,P : X → [−1, 1] be the conditional τ -quantile
function. Assume that there exist constants ϑ ∈ [0, 1] and V ≥ 22−ϑ such that the variance bound

EP(Lτ ◦ Ûf − Lτ ◦ f∗τ,P)2 ≤ V ·
(
EP(Lτ ◦ Ûf − Lτ ◦ f∗τ,P)

)ϑ
(20)

is satisfied for all f : X → R and that P has a τ -quantile of upper p-average type q with p ∈ (1,∞]
and q ∈ [1,∞). Furthermore, assume that, for α ≥ 1 and r := bαc + 1, there exists a constant
c > 0 such that, for all t ∈ (0, 1], we have

ωr,Lu(Rd)(Ef
∗
τ,P, t) ≤ ctα . (21)

Then, for all ε > 0 and ς ∈ (0, 1), there exists a constant C > 0 such that for all n ≥ 1, ρ ≥ 1,
γ ∈ (0, 1], and λ > 0, the SVM using the RKHS Hγ and the pinball loss Lτ satisfies

λ ‖fD,λ,γ‖2Hγ +RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P

≤ C

(
λγ−d + γqα +

(
γ−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

+
( ρ
n

) 1
2−ϑ

+
ρ

n

)
with probability Pn not less than 1− e−ρ.

Similarly to Theorem 3.1 and its corollaries, Theorem 4.8 and its consequences below actu-
ally hold, whenever PX has a bounded Lebesgue density. Our next goal is to illustrate these
consequences. We begin with a general form of the learning rates that result from Theorem 4.8 .

Corollary 4.9. Let ε > 0, ς ∈ (0, 1), and ρ ≥ 1 be fixed. Under the assumptions of Theorem 4.8
and with

λn = c1n
− qα+d
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d ,

γn = c2n
− 1
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d ,

we have, for all n ≥ 1,

RLτ ,P( ÛfD,λn,γn)−R∗Lτ ,P ≤ Cn
− qα
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d (22)

with probability Pn not less than 1− e−ρ. Here, c1 > 0 and c2 > 0 are user-specified constants and
C > 0 is a constant independent of n.

Analogously to Corollary 3.2, for every ξ > 0 we can find ε, ς ∈ (0, 1) that are sufficiently close
to 0 such that the learning rate in Corollary 4.9 is at least as fast as

n−
qα

qα(2−ϑ)+d+ξ .

To achieve the learning rate (22), λn and γn have to be set as in Corollary 4.9. To this end, we
again have to know α and ϑ, which is usually not the case in practice. Nevertheless, we derive the
same learning rates without knowing neither α nor ϑ by the same standard training/validation
approach of Section 3.

Theorem 4.10. Under the assumptions of Theorem 4.8 we fix sequences Λ := (Λn) and Γ := (Γn)
of finite subsets Λn,Γn ⊂ (0, 1] such that Λn is an εn-net of (0, 1] and Γn is an δn-net of (0, 1]
with εn ≤ n−1 and δn ≤ n−

1
1+d . Furthermore, assume that the cardinalities |Λn| and |Γn| grow

polynomially in n. Then, for all ξ > 0 and ρ ≥ 1, the TV-SVM using Lτ satisfies

Pn
(
RLτ ,P( ÛfD1,λD2 ,γD2

)−R∗Lτ ,P ≤ Cξ,τ n
− qα
qα(2−ϑ)+d+ξ

)
≥ 1− e−ρ

with a constant Cξ,τ > 0.
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To apply Theorems 4.8 and 4.10 the variance bound (20) has to be fulfilled for the τ -pinball
loss. But unfortunately, unlike for the least squares loss, (20) generally does not hold for some
ϑ > 0. However, if P has a lower quantile type, then the following result taken from [29, Theorem
2.8] establishes non-trivial variance bounds.

Theorem 4.11. Let Lτ be the τ -pinball loss, τ ∈ (0, 1), F ∗τ,P consist of singletons and P be a
distribution that has a τ -quantile of lower p-average type q with p ∈ (0,∞] and q ∈ [1,∞). Then,
for ϑ := min{ 2

q ,
p
p+1}, V := 22−ϑqϑ‖κ−1‖ϑLp(PX), and all f : X → R, we have

EP(Lτ ◦ Ûf − Lτ ◦ f∗τ,P)2 ≤ V ·
(
EP(Lτ ◦ Ûf − Lτ ◦ f∗τ,P)

)ϑ
.

Let us now combine this variance bound with the previous results. For the sake of simplicity,
we restrict our considerations to distributions P that have both a τ -quantile of lower and upper p-
average type q. Let us begin with the probably most realistic example (p, q) = (∞, 2), cf. Example
4.5.

Corollary 4.12. Let P be a distribution that has a τ -quantile of lower and upper p-average type
q for q = 2 and p =∞. Under the assumptions of Theorems 4.8 and 4.11 we then obtain for the
SVM considered in Corollary 4.9 that, for all ξ > 0 and ρ ≥ 1,

Pn
(
RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P ≤ Cξ,τ n

− 2α
2α+d+ξ

)
≥ 1− e−ρ

and

Pn
(
‖ ÛfD,λ,γ − f∗τ,P‖2L2(PX) ≤ C

′
ξ,τn

− 2α
2α+d+ξ

)
≥ 1− e−ρ ,

with constants Cξ,τ > 0 and C ′ξ,τ := 4‖κ−1‖L∞(PX)Cξ,τ . In particular, these learning rates are
obtained, if f∗τ,P ∈ Wα

2 (PX) or f∗τ,P ∈ Bα2,∞(PX). Moreover, the same learning rates can be
obtained for the TV-SVM considered in Theorem 4.10.

Note that the convergence rates above equal the rates we achieved for the least squares SVMs
in Section 3 (cf. Corollaries 3.4 and 3.5).

Let us now again quickly discuss the influence of the assumed upper quantile type. To this
end, assume that we are not using a possibly non-trivial upper quantile type. Then, as discussed
in front of Theorem 4.8, we can only use the estimate

RLτ ,P(f0)−R∗Lτ ,P ≤ ‖f0 − f∗τ,P‖L1(PX) ≤ Cr,1cγα, (23)

in the corresponding proof, where f0 := K ∗ f̃ with K and f̃ as in (8) and (9). Assuming that P
has a τ -quantile of lower p-average type q with p =∞ and q = 2, i.e. v = 2 and ϑ = 1, then (23)
and (17) yield

‖ ÛfD,λ,γ − f∗τ,P‖2L2(PX) ≤ Cn
− α
α+d+ξ

for all ξ > 0. Clearly, this rate is significantly worse than that of Corollary 4.12.
In addition, we consider distributions P having a τ -quantile of upper p-average type q with

p =∞ and q 6= 2 in the following corollary, where we omit the obvious proof.

Corollary 4.13. Let p = ∞. Under the assumptions of Theorem 4.8 and of Theorem 4.11 we
obtain

ϑ =

{
1 , if q < 2 ,
2
q , if q > 2 .

Then, for the SVM considered in Corollary 4.9 as well as for the TV-SVM considered in Theorem
4.10, we obtain, for all ξ > 0,

‖ ÛfD,λ,γ − f∗τ,P‖
q
Lq(PX) ≤

{
Cn−

qα
qα+d+ξ , if q < 2 ,

Cn−
qα

2α(q−1)+d+ξ , if q > 2 .

with a constant C > 0.
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Like learning rates for least squares regression, learning rates for quantile regression have
already been obtained in the literature, although it seems fair to say that the latter regression
problem has attracted less attention. Let us begin the discussion of such rates with the case of
SVMs. Probably the first result in this direction is [32], where a learning rate of n−

1
2 for the excess

risk is shown under some assumptions including that f∗τ,P is contained in the RKHS used by the
SVM. An approach similar to ours is used in [19] to estimate the distance of the SVM estimator
to f∗τ,P. There, the authors show for example, that if f∗τ,P is contained in some known Hγ and the
following calibration inequality

‖f − f∗τ,P‖L1(PX) ≤ c
√
RLτ ,P(f)−R∗Lτ ,P

is satisfied, then modulo some logarithmic factor, the rate n−2/3 can be achieved for ‖fD,λn,γ −
f∗τ,P‖L1(PX). Unfortunately, assuming that f∗τ,P is contained in the used RKHS is rather restrictive
(for the Gaussian case this assumption implies arbitrarily large values of α, see [28, Theorem
4.48]), and the technical hurdles are known to be significantly easier than for the general case.
Nonetheless, it seems interesting that their rates can be essentially recovered by our results when
setting p = 1, q = 2, and α =∞. Moreover, both articles also discuss algorithmic aspects of SVMs
for quantile regression. Finally, [29] achieves our rate n−

2α
2α+d if H = Wα

2 (X) for some α > d
2 , P

has a τ -quantile of lower p-average type q with p =∞ and q = 2, and, again, f∗τ,P ∈ H.
The Sobolev setting is also treated in [23], where the author considers a penalized estimate

with hypothesis space Wα
p [a, b]. In particular, he obtains the same learning rate as we do for d = 1.

In [18] a partially linear quantile regression model is considered, where the parametric component
learns with rate n−

1
2 .

Finally, in [17, Chapter 7] presents learning rates for a polynomial model and locally polynomial
quantile regression estimators. Here, the rate n−

2α
2α+d lnn is achieved, where α describes the order

of smoothness. In fact, the author refers to [7], where a similar rate is also achieved for arbitrary
Lp-norms with 1 ≤ p <∞.

5 Proofs

5.1 Proofs of Section 2

In Section 2 we presented two theorems that estimate parts of the regularization error. Let us
begin with the proofs of these theorems. To this end, we need the convention 00 := 1.

Proof of Lemma 2.3. First of all, we show Ef ∈ Lq(PX). Because of the assumption f ∈ L∞ (X),
we have f ∈ Lq (X) and Ef ∈ Lq

(
Rd
)

for all 1 ≤ q ≤ ∞. In addition,

‖Ef‖Lq(PX) =
(∫

Rd
|Ef (x)|q dPX (x)

) 1
q

=
(∫

X

|f (x)|q dPX (x)
) 1
q

≤ ‖f‖∞ <∞

holds, i.e. f ∈ Lq(PX) and Ef ∈ Lq(PX) for all q ∈ [1,∞). It remains to show∥∥∥K ∗ f̃ − f∥∥∥q
Lq(PX)

≤ Cr,q ωqr,Lq(Rd)
(Ef, γ/2) .

To this end, we use the translation invariance of the Lebesgue measure and Kγ (u) = Kγ (−u)
(u ∈ Rd) to obtain, for x ∈ X,

K ∗ f̃ (x) =
∫

Rd

r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2

K jγ√
2

(x− t) f̃ (t) dt

=
r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2
∫

Rd
K γ√

2

(
x− t
j

)
f̃ (t) dt
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=
r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2
∫

Rd
K γ√

2
(h) f̃ (x+ jh) jd dh

=
∫

Rd

(
2

γ
√
π

) d
2

K γ√
2

(h)

 r∑
j=1

(
r

j

)
(−1)1−j

f̃ (x+ jh)

 dh .

With this we can derive, for q ≥ 1,∥∥∥K ∗ f̃ − f∥∥∥q
Lq(PX)

=
∫
X

∣∣∣K ∗ f̃ (x)− f (x)
∣∣∣q dPX (x)

=
∫

Rd

∣∣∣∣∣∣
∫

Rd

(
2

γ
√
π

) d
2

K γ√
2

(h)

 r∑
j=1

(
r

j

)
(−1)1−j

f̃ (x+ jh)

 dh− Ef (x)

∣∣∣∣∣∣
q

dPX (x)

=
∫

Rd

∣∣∣∣∣∣
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)

( r∑
j=1

(
r

j

)
(−1)2r+1−j

Ef (x+ jh)

)
− Ef (x)

 dh

∣∣∣∣∣∣
q

dPX (x)

=
∫

Rd

∣∣∣∣∣∣
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)

 r∑
j=0

(
r

j

)
(−1)2r+1−j

Ef (x+ jh)

 dh

∣∣∣∣∣∣
q

dPX (x)

=
∫

Rd

∣∣∣∣∣
∫

Rd
(−1)r+1

(
2
γ2π

) d
2

K γ√
2

(h)4rh (Ef, x) dh

∣∣∣∣∣
q

dPX (x) .

Next, Hölder’s inequality yields, for q > 1,∥∥∥K ∗ f̃ − f∥∥∥q
Lq(PX)

≤
∫

Rd

((∫
Rd

(
2
γ2π

) d
2

K γ√
2

(h) dh︸ ︷︷ ︸
=1

) q−1
q
(∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h) |4rh (Ef, x)|q dh

) 1
q
)q

dPX (x)

=
∫

Rd

∫
Rd

(
2
γ2π

) d
2

K γ√
2

(h) |4rh (Ef, x)|q dh dPX (x)

=
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)
∫

Rd
|4rh (Ef, x)|q dPX (x) dh

=
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h) ‖4rh (Ef, ·)‖qLq(PX) dh

≤
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)ωqr,Lq(PX) (Ef, ‖h‖2) dh . (24)

Moreover, for q = 1, we have∥∥∥K ∗ f̃ − f∥∥∥
L1(PX)

=
∫

Rd

∣∣∣∣∣
∫

Rd
(−1)r+1

(
2
γ2π

) d
2

K γ√
2

(h)4rh (Ef, x) dh

∣∣∣∣∣ dPX (x)

≤
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)
∫

Rd
|4rh (Ef, x)| dPX (x) dh

≤
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)ωr,L1(PX) (Ef, ‖h‖2) dh .
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Consequently, (24) holds for all q ≥ 1. Furthermore, we have

ωqr,Lq(PX) (Ef, t) = sup
‖h‖2≤t

∫
Rd

∣∣∣ r∑
j=0

(
r

j

)
(−1)r−j Ef (x+ jh)

∣∣∣qdPX (x)

≤ µ (X)−1 sup
‖h‖2≤t

∫
Rd

∣∣∣ r∑
j=0

(
r

j

)
(−1)r−j Ef (x+ jh)

∣∣∣qdµ (x)

= µ (X)−1
ωq
r,Lq(Rd)

(Ef, t)

≤ µ (X)−1

(
1 +

2t
γ

)rq
ωq
r,Lq(Rd)

(
Ef,

γ

2

)
for t ≥ 0, where we used (5). Together with (24) this implies

∥∥∥K ∗ f̃ − f∥∥∥q
Lq(PX)

≤
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)µ(X)−1

(
1 +

2 ‖h‖2
γ

)rq
ωq
r,Lq(Rd)

(
Ef,

γ

2

)
dh

= µ(X)−1ωq
r,Lq(Rd)

(
Ef,

γ

2

)∫
Rd

(
2
γ2π

) d
2

K γ√
2

(h)
(

1 +
2 ‖h‖2
γ

)rq
dh . (25)

Because
(

2
γ2π

) d
2
K γ√

2
(·) is the density of a probability measure on Rd,

(
1 +

2 ‖h‖2
γ

)rq
≤
(

1 +
2 ‖h‖2
γ

)drqe
≤
drqe∑
i=0

(
drqe
i

)(
2
γ
‖h‖2

)i
and Hölder’s inequality yield∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)
(

1 +
2 ‖h‖2
γ

)rq
dh

≤
drqe∑
i=0

(
drqe
i

)(
2
γ

)i ∫
Rd
‖h‖i2

(
2
γ2π

) d
2

K γ√
2

(h) dh

≤
drqe∑
i=0

(
drqe
i

)(
2
γ

)i(∫
Rd
‖h‖2i2

(
2
γ2π

) d
2

K γ√
2

(h) dh

) 1
2

. (26)

Since, for s ≥ 0 and an integer i ≥ 0, the function s 7→ si is convex, we have for every integer
i ≥ 0 the transformation d∑

j=1

h2
j

i

= di

 d∑
j=1

1
d
h2
j

i

≤ di
d∑
j=1

1
d

(
h2
j

)i
= di−1

d∑
j=1

h2i
j .

Note that d
i−1
2i is just the embedding constant of `d2i to `d2. This embedding constant leads to∫

Rd
‖h‖2i2

(
2
γ2π

) d
2

K γ√
2

(h) dh =
∫

Rd
‖h‖2i2

(
2
γ2π

) d
2

exp

(
−

2 ‖h‖22
γ2

)
dh

≤ di−1

(
2
γ2π

) d
2 d∑
j=1

∫
Rd
h2i
j

d∏
l=1

exp
(
−2h2

l

γ2

)
d (h1, . . . , hd)

= di−1

(
2
γ2π

) d
2 d∑
j=1

(
γ2π

2

) d−1
2
∫

R
h2i
j exp

(
−

2h2
j

γ2

)
dhj
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= di−1

(
2
γ2π

) 1
2

2d
∫ ∞

0

t2i exp
(
−2t2

γ2

)
dt

= 2di
(

2
γ2π

) 1
2
∫ ∞

0

t2i exp
(
−2t2

γ2

)
dt . (27)

With the substitution t = (γ
2

2 u)
1
2 , the functional equation Γ(t+1) = tΓ(t) of the Gamma function

Γ, and Γ
(

1
2

)
=
√
π we have∫ ∞
0

t2i exp
(
−2t2

γ2

)
dt =

1
2
γ√
2

(
γ2

2

)i ∫ ∞
0

u(i+ 1
2 )−1 exp (−u) du

=
1
2
γ√
2

(
γ2

2

)i
Γ
(
i+

1
2

)
=

1
2
γ√
2

(
γ2

2

)i
Γ
(

1
2

) i∏
j=1

(
j − 1

2

)

=
1
2
γ√
2

(
γ2

2

)i√
π

i∏
j=1

(
j − 1

2

)
. (28)

Together, (27) and (28) lead to∫
Rd
‖h‖2i2

(
2
γ2π

) d
2

K γ√
2

(h) dh ≤ di
(
γ2

2

)i i∏
j=1

(
j − 1

2

)
,

and with (26) we obtain

∫
Rd

(
2
γ2π

) d
2

K γ√
2

(h)
(

1 +
2 ‖h‖2
γ

)rq
dh ≤

drqe∑
i=0

(
drqe
i

)(
2
γ

)idi(γ2

2

)i i∏
j=1

(
j − 1

2

) 1
2

=
drqe∑
i=0

(
drqe
i

)
(2d)

i
2

i∏
j=1

(
j − 1

2

) 1
2

,

where the empty product is defined to equal one. Finally, (25) implies∥∥∥K ∗ f̃ − f∥∥∥q
Lq(PX)

≤ Cr,q ωqr,Lq(Rd)

(
Ef,

γ

2

)
for Cr,q := µ(X)−1

∑drqe
i=0

(drqe
i

)
(2d)

i
2
∏i
j=1

(
j − 1

2

) 1
2 .

Proof of Lemma 2.4. We define, for all j ∈ N and x ∈ X,

gj (x) :=
(

2
jγ
√
π

) d
2

K γ√
2

(
x

j

)
. (29)

By [28, Proposition 4.46] we obtain

gj ∗ g ∈ Hjγ (X) ⊂ Hγ (X)

for all j ∈ N. Due to the properties of the convolution, we finally obtain

K ∗ g =
r∑
j=1

(
r

j

)
(−1)1−j

j−
d
2 (gj ∗ g) ∈ Hγ (X) .
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Moreover, for the estimation of the norm we have

‖K ∗ g‖Hγ ≤
r∑
j=1

j
d
2

∥∥∥∥∥
(
r

j

)
(−1)1−j

j−
d
2

(
2

jγ
√
π

) d
2

exp

(
−

2 ‖·‖22
j2γ2

)
∗ g

∥∥∥∥∥
Hjγ

≤
r∑
j=1

j
d
2

(
r

j

)
j−

d
2 ‖g‖L2(Rd)

= (2r − 1) ‖g‖L2(Rd) ,

where we used [28, Proposition 4.46] in the first two steps. Finally, for all x ∈ X and g ∈ L∞
(
Rd
)
,

Hölder’s inequality implies

|K ∗ g (x)| ≤ sup
x̂∈X
|K ∗ g (x̂)|

≤ sup
x̂∈X

∫
Rd
|K (x̂− t) g (t)| dt

≤ ‖g‖L∞(Rd)

r∑
j=1

(
r

j

)(
γ
√
π
) d

2 sup
x̂∈X

∫
Rd

(
2

j2γ2π

) d
2

exp

(
−

2 ‖x̂− t‖22
(jγ)2

)
dt

=
(
γ
√
π
) d

2 (2r − 1) ‖g‖L∞(Rd) .

5.2 Proofs related to the least squares SVMs

To prove Theorem 3.1 we first deduce an oracle inequality for the least squares loss by specializing
[28, Theorem 7.23].

Theorem 5.1. Let X ⊂ B`d2 , Y := [−M,M ] ⊂ R be a closed subset with M > 0 and P be a
distribution on X × Y . Furthermore, let L : Y × R → [0,∞) be the least squares loss, kγ be
the Gaussian RBF kernel over X with width γ ∈ (0, 1] and Hγ be the associated RKHS. Fix an
f0 ∈ Hγ and a constant B0 ≥ 4M2 such that ‖L ◦ f0‖∞ ≤ B0. Then, for all fixed ρ ≥ 1, λ > 0,
ε > 0 and p ∈ (0, 1), the SVM using Hγ and L satisfies

λ ‖fD,λ,γ‖2Hγ +RL,P
( ÛfD,λ,γ

)
−R∗L,P

≤ 9
(
λ ‖f0‖2Hγ +RL,P (f0)−R∗L,P

)
+ Cε,p

γ−(1−p)(1+ε)d

λpn
+

(
3456M2 + 15B0

)
(1 + ln 3)ρ

n

with probability Pn not less than 1− e−ρ, where Cε,p is a constant only depending on ε, p and M .

Proof. First of all, note that, for all t ∈ R and y ∈ [−M,M ], the least squares loss satisfies
L(y,Ût ) ≤ L (y, t), i.e. it can be clipped at M > 0 (see [30, section 1]). Furthermore, the least
squares loss is locally Lipschitz continuous with the local Lipschitz constant |L|a,1 = 2 (a+M) for
a > 0 in the sense of [28, Definition 2.18]. See [28, Example 7.3] to verify that the least squares
loss satisfies the supremum bound

L (y, t) = (y − t)2 ≤ 4M2

and the variance bound

EP

(
L ◦ Ûf − L ◦ f∗L,P)2

≤ 16M2EP

(
L ◦ Ûf − L ◦ f∗L,P)
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for all y ∈ Y, t ∈ [−M,M ] and f ∈ Hγ with constants B := 4M2, V := 16M2 and ϑ :=
1. Consequently, the assertion follows from [28, Theorem 7.23] and Lemma 2.6 with Cε,p :=
C(max{cε,p, 4M2})2p, cε,p as in Lemma 2.6 and a constant C ≥ 1 which corresponds to the
constant K of [28, Theorem 7.23]. Finally, a variable transformation adjusts Pn not to be less
than 1− e−ρ.

Now, we can prove the oracle inequality introduced in Theorem 3.1 on the basis of Theorem
5.1.

Proof of Theorem 3.1. First of all, we want to apply Theorem 5.1 for f0 := K ∗ f̃ with

K (x) :=
r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2

exp

(
−

2 ‖x‖22
j2γ2

)

and

f̃ (x) :=
(
γ
√
π
)− d2 Ef∗L,P (x)

for all x ∈ Rd. The choice f∗L,P (x) ∈ [−M,M ] for all x ∈ X implies f∗L,P ∈ L2 (X) and the latter
together with X ⊂ B`d2 and (7) yields

‖f̃‖L2(Rd) =
(
γ
√
π
)− d2 ‖Ef∗L,P‖L2(Rd)

≤
(
γ
√
π
)− d2 a0,2‖f∗L,P‖L2(X)

≤
(

2
γ
√
π

) d
2

a0,2M , (30)

i.e. f̃ ∈ L2

(
Rd
)
. Because of this and Theorem 2.4

f0 = K ∗ f̃ ∈ Hγ

is satisfied. Since f∗L,P (x) = EP (Y |x) ∈ [−M,M ] for all x ∈ X, we have f∗L,P ∈ L∞ (X) as well
as E(f∗L,P) ∈ L∞

(
Rd
)
. The latter yields f̃ ∈ L∞

(
Rd
)

with

‖f̃‖L∞(Rd) =
(
γ
√
π
)− d2 ‖ E(f∗L,P)‖L∞(Rd)

≤ a0,∞
(
γ
√
π
)− d2 ‖ f∗L,P‖L∞(X)

≤ a0,∞
(
γ
√
π
)− d2 M ,

where a0,∞ denotes the constant introduced in (7). With this and Theorem 2.4,

|K ∗ f̃ (x) | ≤
(
γ
√
π
) d

2 (2r − 1) ‖f̃‖L∞(Rd) ≤ a0,∞ (2r − 1)M

holds for all x ∈ X. Next, for all (x, y) ∈ X × Y and a := max {a0,∞, 1}, we achieve

L(y,K ∗ f̃ (x)) = (y −K ∗ f̃ (x))2

= y2 − 2y(K ∗ f̃ (x)) + (K ∗ f̃ (x))2

≤M2 + 2a0,∞ (2r − 1)M2 + a2
0,∞ (2r − 1)2

M2

≤ 4ra2M2 .

and

‖L ◦ f0‖∞ = sup
(x,y)∈X×Y

|L (y, f0 (x))| = sup
(x,y)∈X×Y

∣∣∣L(y,K ∗ f̃ (x)
)∣∣∣ ≤ 4ra2M2 =: B0 .
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Furthermore, (11) and Lemma 2.3 yield

RL,P (f0)−R∗L,P = RL,P
(
K ∗ f̃

)
−R∗L,P

=
∥∥∥K ∗ f̃ − f∗L,P∥∥∥2

L2(PX)

≤ Cr,2 ω2
r,L2(Rd)

(
Ef∗L,P,

γ

2

)
≤ Cr,2 c2γ2α ,

where we used the assumption

ωr,L2(Rd)

(
Ef∗L,P,

γ

2

)
≤ cγα

for γ ∈ (0, 1], α ≥ 1, r = bαc+ 1 and a constant c > 0 in the last step. By Theorem 2.4 and (30)
we know

‖f0‖Hγ = ‖K ∗ f̃‖Hγ ≤ (2r − 1) ‖f̃‖L2(Rd) ≤ (2r − 1)
(

2
γ
√
π

) d
2

a0,2M .

Therefore, Theorem 5.1 and the above choice of f0 yield, for all fixed ρ ≥ 1, λ > 0, ε > 0 and
p ∈ (0, 1), that the SVM using Hγ and L satisfies

λ ‖fD,λ,γ‖2Hγ +RL,P
( ÛfD,λ,γ

)
−R∗L,P

≤ 9

(
λ (2r − 1)2

(
2

γ
√
π

)d
a2

0,2M
2 + Cr,2c

2γ2α

)

+ Cε,p
γ−(1−p)(1+ε)d

λpn
+

(
3456 + 15 · 4ra2

)
M2(ln(3) + 1)ρ

n

≤ C1λγ
−d + 9Crc2γ2α + Cε,p

γ−(1−p)(1+ε)d

λpn
+
C2ρ

n

with probability Pn not less than 1 − e−ρ and with constants C1 := 9 (2r − 1)2 2dπ−
d
2 a2

0,2M
2,

C2 := (ln(3) + 1)
(
3456 + 15 · 4ra2

)
M2, a := max {a0,∞, 1}, Cr := Cr,2 only depending on r and

µ(X) and Cε,p as in Theorem 5.1.

With the help of the oracle inequality achieved in Theorem 3.1 the learning rate stated in
Corollary 3.2 can be shown in a few steps.

Proof of Corollary 3.2. In a first step, Theorem 3.1 can be applied which yields

λn ‖fD,λn,γn‖
2
Hγn

+RL,P
( ÛfD,λn,γn

)
−R∗L,P ≤ C1λnγ

−d
n + 9Crc2γ2α

n + Cε,p
γ
−(1−p)(1+ε)d
n

λpnn
+
C2ρ

n

≤ C̃
(
λnγ

−d
n + γ2α

n + γ−(1−p)(1+ε)d
n λ−pn n−1 + n−1

)
with probability Pn not less than 1− e−ρ and a constant C̃ := max

{
C1, 9Crc2, Cε,p, C2ρ

}
. In the

next step [28, Lemma A.1.6.] shows that the sequences

λn = c1n
− 2α+d

2α+2αp+dp+(1−p)(1+ε)d

and

γn = c2n
− 1

2α+2αp+dp+(1−p)(1+ε)d
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with arbitrary constants c1 > 0 and c2 > 0 minimize

λnγ
−d
n + γ2α

n + γ−(1−p)(1+ε)d
n λ−pn n−1 = c3n

− 2α
2α+2αp+dp+(1−p)(1+ε)d ,

where c3 > 0 is a constant. With this, we finally obtain

λn ‖fD,λn,γn‖
2
Hγn

+RL,P
( ÛfD,λn,γn

)
−R∗L,P ≤ C̃

(
c3n
− 2α

2α+2αp+dp+(1−p)(1+ε)d + n−1
)

≤ Cn−
2α

2α+2αp+dp+(1−p)(1+ε)d

with the constant C := C̃ (c3 + 1).

Next, we want to prove Theorem 3.3. To this end, we need the following technical lemma.

Lemma 5.2. We fix finite sequences Λ := (Λn) and Γ := (Γn) of finite subsets Λn,Γn ⊂ (0, 1] such
that Λn is an εn-net of (0, 1] and Γn is an δn-net of (0, 1] with 0 < εn < ĉ n−

2α+d
2α+2αp+dp+(1−p)(1+ε)d ,

a constant ĉ > 0 and δn > 0. Then, for all ε > 0, p ∈ (0, 1), d > 0, α > 0 and all n ≥ 1, we have

inf
(λ,γ)∈Λ×Γ

(
λγ−d + γ2α + n−1λ−pγ−(1−p)(1+ε)d

)
≤ c

(
n−

2α
2α+2αp+dp+(1−p)(1+ε)d + δ2α

n

)
,

where c > 0 is a constant independent of n, Λ, εn, Γ, and δn.

Proof. Without loss of generality, we may assume that Λ and Γ are of the form Λ = {λ1, . . . , λm}
and Γ = {γ1, . . . , γl} with λi−1 < λi and γj−1 < γj for all i = 2, . . . ,m and j = 2, . . . , l.
Furthermore, we fix a minimizer (λ∗, γ∗) of the function (λ, γ)→ λγ−d+γ2α+n−1λ−pγ−(1−p)(1+ε)d

defined on [0, 1]2. [28, Lemma A.1.6.] shows that λ∗ = c1n
− 2α+d

2α+2αp+dp+(1−p)(1+ε)d with a constant
c1 > 0. This implies εn ≤ ĉ

c1
λ∗. It is easy to see that

λi − λi−1 ≤ 2εn and γj − γj−1 ≤ 2δn (31)

hold for all i = 1, . . . ,m and j = 1, . . . , l. Furthermore, there exist indices i ∈ {1, . . . ,m} and
j ∈ {1, . . . , l} such that λi−1 ≤ λ∗ ≤ λi and γj−1 ≤ γ∗ ≤ γj . Together with (31) this yields
λ∗ ≤ λi ≤ λ∗ + 2εn and γ∗ ≤ γj ≤ γ∗ + 2δn. Using this result and [28, Lemma A.1.6.], we obtain

inf
(λ,γ)∈Λ×Γ

(
λγ−d + γ2α + n−1λ−pγ−(1−p)(1+ε)d

)
≤ λiγ−dj + γ2α

j + n−1λ−pi γ
−(1−p)(1+ε)d
j

≤ (λ∗ + 2εn) (γ∗)−d + (γ∗ + 2δn)2α + n−1 (λ∗)−p (γ∗)−(1−p)(1+ε)d

≤ (1 + 2
ĉ

c1
)λ∗ (γ∗)−d + (γ∗ + 2δn)2α + n−1 (λ∗)−p (γ∗)−(1−p)(1+ε)d

≤ c2
(
λ∗ (γ∗)−d + (γ∗)2α + n−1 (λ∗)−p (γ∗)−(1−p)(1+ε)d + δ2α

n

)
= c2 min

λ,γ∈[0,1]

(
λγ−d + γ2α + n−1λ−pγ−(1−p)(1+ε)d

)
+ c2δ

2α
n

≤ c2 c3 n−
2α

2α+2αp+dp+(1−p)(1+ε)d + c2δ
2α
n

≤ c
(
n−

2α
2α+2αp+dp+(1−p)(1+ε)d + δ2α

n

)
with constants c2 > 0, c3 > 0 and c := max {c2 c3, c2} independent of n, Λ, εn, Γ, and δn.

Proof of Theorem 3.3. Let m be defined by m :=
⌊
n
2

⌋
+ 1, i.e. m ≥ n

2 . Then Theorem 3.1 yields
with probability Pm not less than 1− |Λn × Γn| e−ρ

RL,P( ÛfD1,λ,γ)−R∗L,P ≤
c1
2

(
λγ−d + γ2α +

γ−(1−p)(1+ε)d

λpm
+
ρ

m

)
≤ c1

(
λγ−d + γ2α +

γ−(1−p)(1+ε)d

λpn
+
ρ

n

)
(32)
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for all (λ, γ) ∈ Λn × Γn simultaneously. Here, c1 > 0 is a constant independent of n, ρ, λ, and γ.
Furthermore, [28, Theorem 7.2], n−m ≥ n

2 − 1 ≥ n
4 , and ρn := ρ+ ln(1 + |Λn × Γn|) yield

RL,P( ÛfD1,λD2 ,γD2
)−R∗L,P < 6

(
inf

(λ,γ)∈Λn×Γn
RL,P( ÛfD1,λ,γ)−R∗L,P

)
+ 512M2 ρn

n−m

< 6
(

inf
(λ,γ)∈Λn×Γn

RL,P( ÛfD1,λ,γ)−R∗L,P
)

+ 2048M2 ρn
n

(33)

with probability Pn−m not less than 1− e−ρ. With (32), (33) and Lemma 5.2 we can conclude

RL,P( ÛfD1,λD2 ,γD2
)−R∗L,P

< 6
(

inf
(λ,γ)∈Λn×Γn

RL,P( ÛfD1,λ,γ)−R∗L,P
)

+ 2048M2 ρn
n

≤ 6c1

(
inf

(λ,γ)∈Λn×Γn

(
λγ−d + γ2α +

γ−(1−p)(1+ε)d

λpn

)
+
ρ

n

)
+ 2048M2 ρn

n

≤ 6c1
(
c
(
n−

2α
2α+2αp+dp+(1−p)(1+ε)d + δ2α

n

)
+
ρ

n

)
+ 2048M2 ρn

n

≤
(
6c1c+ 6c1ρ+ 2048M2ρn

)
n−

2α
2α+2αp+dp+(1−p)(1+ε)d + 6c1cδ2α

n

≤
(
12c1c+ 6c1ρ+ 2048M2ρn

)
n−

2α
2α+2αp+dp+(1−p)(1+ε)d

with probability Pn not less than 1− (1 + |Λn × Γn|) e−ρ. With a variable transformation Pn can
be adjusted such that it is not less than 1− e−ρ.

In the end, it remains to show that learning method (4) yields learning rates for regression
functions contained in Sobolev or Besov spaces.

Proof of Corollary 3.4. The assumption f∗L,P ∈ Wα
2 (PX) implies f∗L,P ∈ Wα

2 (X). Then the ex-
tension operator E in the sense of Theorem 2.2 yields Ef∗L,P ∈ Wα

2

(
Rd
)

and finally (6) implies
Ef∗L,P ∈ Bα2,∞(Rd) = Lip∗(α,L2(Rd)). By the definition of Lip∗(α,L2(Rd)) we obtain

ωr,L2(Rd)

(
Ef∗L,P, t

)
≤ c tα , t > 0

for a suitable constant c > 0. With this, all assumptions of Corollary 3.2 and of Theorem 3.3 are
satisfied and hence we obtain the learning rate

n−
2α

2α+2αp+dp+(1−p)(1+ε)d .

Finally, for every ξ > 0 we can find ε, p ∈ (0, 1) sufficiently close to 0 such that the latter learning
rate is at least as fast as

n−
2α

2α+d+ξ .

Proof of Corollary 3.5. For α ≥ 1, f∗L,P ∈ Bα2,∞(PX) implies f∗L,P ∈ Bα2,∞(X), since PX is the
uniform distribution on X. With the help of the extension operator E in the sense of Theorem 2.2
f∗L,P ∈ Bα2,∞(X) yields Ef∗L,P ∈ Bα2,∞(Rd) = Lip∗(α,L2(Rd)). By the definition of Lip∗(α,L2(Rd))
we again obtain

ωr,L2(Rd)

(
Ef∗L,P, t

)
≤ c tα , t > 0

for α ≥ 1 and a suitable constant c > 0. Now the assertion follows just as in the proof of Corollary
3.4.
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5.3 Proofs related to SVMs for Quantile Regression

Let Q be a distribution on R with suppQ ⊂ [−1, 1] and, for τ ∈ (0, 1), Lτ be the τ -pinball loss.
We define the inner Lτ -risk by

CLτ ,Q(t) :=
∫
Y

Lτ (y, t) dQ(y), t ∈ R,

and the minimal inner Lτ -risk by C∗Lτ ,Q := inft∈R CLτ ,Q(t). With this definition we first present
an estimate of the inner Lτ -risk in the following lemma and afterwards we can prove Theorem 4.7
that estimates the excess risk.

Lemma 5.3. Let Q be a distribution on R with suppQ ⊂ [−1, 1] that has a τ -quantile of upper type
q > 1. For τ ∈ (0, 1), let F ∗τ,Q consist of singletons, i.e. there exists an t∗ ∈ R with F ∗τ,Q = {t∗}.
Furthermore, let Q({t∗}) = 0. Then

CLτ ,Q(t)− C∗Lτ ,Q ≤
bQ
q
|t− t∗|q

holds for all t ∈ R.

Proof. [29, Proposition 4.1] yields

CLτ ,Q(t∗ + t)− C∗Lτ ,Q =
∫ t

0

Q ((t∗, t∗ + s)) ds ≤
∫ t

0

bQs
q−1ds ≤ bQ

q
tq

and

CLτ ,Q(t∗ − t)− C∗Lτ ,Q =
∫ t

0

Q ((t∗ − s, t∗)) ds ≤
∫ t

0

bQs
q−1ds ≤ bQ

q
tq (34)

for all t ≥ 0. With this, we have, for t ≥ t∗,

CLτ ,Q(t)− C∗Lτ ,Q = CLτ ,Q(t∗ + (t− t∗))− C∗Lτ ,Q ≤
bQ
q

(t− t∗)q =
bQ
q
|t− t∗|q .

The case t < t∗ follows analogously with (34).

Proof of Theorem 4.7. With Lemma 5.3 and the choice Q := P( · |x) for all x ∈ X, we obtain

RLτ ,P(f)−R∗Lτ ,P =
∫
X

∫
Y

Lτ (y, f(x)) dP(y|x)dPX(x)−
∫
X

∫
Y

Lτ (y, f∗τ,P(x)) dP(y|x)dPX(x)

=
∫
X

CLτ ,P( · |x)(f(x))− C∗Lτ ,P( · |x) dPX(x)

≤
∫
X

bP( · |x)

q
|f(x)− f∗τ,P(x)|q dPX(x)

= q−1‖bP( · |x)‖Lp(PX)‖f − f∗τ,P‖
q
Lu(PX)

for every f : X → [−1, 1].

Proof of Theorem 4.8. By [28, Section 9.3 and Lemma 2.23.] we know that, for all τ ∈ (0, 1),
the τ -pinball loss Lτ is Lipschitz continuous and can be clipped at M = 1 for Y := [−1, 1].
Furthermore, for all τ ∈ (0, 1), the supremum bound is satisfied for the τ -pinball loss, since

Lτ (y, t) = max{τ, 1− τ}|y − t| ≤ 2 =: B

holds for all y ∈ Y and all t ∈ [−1, 1]. By Lemma 2.6 we know that, for all ε > 0 and 0 < ς < 1,
there exists a constant cε,ς ≥ 0 such that

EDX∼PnX
ei (id : Hγ → L2 (DX)) ≤ cε,ςγ−

(1−ς)(1+ε)d
2ς i−

1
2ς
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for all i ≥ 1 and n ≥ 1.
Since we assume that there exist constants ϑ ∈ [0, 1] and V ≥ B2−ϑ = 22−ϑ such that the

variance bound (20) is satisfied for all f : X → R, we can apply [28, Theorem 7.23]. To this end,
we choose f0 := K ∗ f̃ , where K : Rd → R is defined by (8) and

f̃ (x) :=
(
γ
√
π
)− d2 Ef∗τ,P (x)

for all x ∈ Rd. Because of f∗τ,P(x) ∈ [−1, 1] for all x ∈ X, we know ‖f∗τ,P‖L2(X) ≤ 2
d
2 . This yields

‖f̃‖L2(Rd) = (γ
√
π)−

d
2 ‖Ef∗τ,P‖L2(Rd) ≤ (γ

√
π)−

d
2 a0,2‖f∗τ,P‖L2(X) ≤ 2

d
2 (γ
√
π)−

d
2 a0,2

and f̃ ∈ L2(Rd). Next, Theorem 2.4 implies f0 ∈ Hγ and

‖f0‖Hγ = (2r − 1)‖f̃‖L2(Rd) ≤ (2r − 1)2
d
2 (γ
√
π)−

d
2 a0,2 .

Because of ‖f∗τ,P‖L∞(X) ≤ 1 we have

‖f̃‖L∞(Rd) = (γ
√
π)−

d
2 ‖Ef∗τ,P‖L∞(Rd)

≤ (γ
√
π)−

d
2 a0,∞‖f∗τ,P‖L∞(X)

≤ (γ
√
π)−

d
2 a0,∞ ,

i.e. f̃ ∈ L∞(Rd). With this, Theorem 2.4 yields

|K ∗ f̃(x)| ≤ (γ
√
π)

d
2 (2r − 1)‖f̃‖L∞(Rd) ≤ a0,∞(2r − 1) (35)

for all x ∈ X. Furthermore, for all (x, y) ∈ X × Y , the latter implies

Lτ (y,K ∗ f̃(x)) ≤ |y −K ∗ f̃(x)|
≤ 1 + (2r − 1)a0,∞

≤ 2ra,

where a := max{a0,∞, 1}. With this, we obtain

‖Lτ ◦ f0‖∞ = sup
(x,y)∈X×Y

|Lτ (y,K ∗ f̃(x))| ≤ 2ra =: B0,

where B0 = 2ra ≥ 2 = B. In addition, we have to estimate the excess risk RLτ ,P(f0)−R∗Lτ ,P. To
this end, we apply Theorem 4.7 and Theorem 2.3 and derive

RLτ ,P(f0)−R∗Lτ ,P ≤ q
−1‖bP( · |x)‖Lp(PX)‖f0 − f∗τ,P‖

q
Lu(PX)

= q−1‖bP( · |x)‖Lp(PX)‖K ∗ f̃ − f∗τ,P‖
q
Lu(PX)

≤ q−1‖bP( · |x)‖Lp(PX)

(
Cr,uω

u
r,Lu(Rd)(Ef

∗
τ,P,

γ

2
)
) q
u

≤ q−1‖bP( · |x)‖Lp(PX)C
q
u
r,uc

qγqα ,

where we used (21). Finally, [28, Theorem 7.23] yields that, for all fixed ρ > 0 and λ > 0, the
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SVM using Hγ and Lτ satisfies

λ ‖fD,λ,γ‖2Hγ +RLτ ,P
( ÛfD,λ,γ

)
−R∗Lτ ,P

≤ 9(λ‖f0‖2Hγ +RLτ ,P(f0)−R∗Lτ ,P)

+ c1

(
c2ςε,ςγ

−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

+ 3
(

72V ρ
n

) 1
2−ϑ

+
15B0ρ

n

≤ 9
(
λ(2r − 1)22d(γ

√
π)−da2

0,2 + q−1‖bP( · |x)‖Lp(PX)C
q
u
r,uc

qγqα
)

+ c1

(
c2ςε,ςγ

−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

+ 3
(

72V ρ
n

) 1
2−ϑ

+
15 · 2raρ

n

≤ C

(
λγ−d + γqα +

(
γ−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

+
( ρ
n

) 1
2−ϑ

+
ρ

n

)

with probability Pn not less than 1− e−ρ and a constant C > 0 depending on r, d, a0,2, a0,∞, q,
p, ‖bP( · |x)‖Lp(PX), ε, ς, ϑ, and V .

With the help of the just proven oracle inequality we now derive the learning rates of Corollary
4.9.

Proof of Corollary 4.9. Theorem 4.8 yields

λn ‖fD,λn,γn‖
2
Hγn

+RL,P
( ÛfD,λn,γn

)
−R∗L,P

≤ c

λnγ−dn + γqαn +

(
γ
−(1−ς)(1+ε)d
n

λςnn

) 1
2−ς−ϑ+ϑς

+
( ρ
n

) 1
2−ϑ

+
ρ

n

 ,

where c > 0 is a constant. In addition, we know by [28, Lemma A.1.6.] that the sequences

λn = c1n
− qα+d
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d

and

γn = c2n
− 1
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d

with arbitrary constants c1 > 0 and c2 > 0 minimize

λnγ
−d
n + γqαn +

(
γ
−(1−ς)(1+ε)d
n

λςnn

) 1
2−ς−ϑ+ϑς

≤ c3n−
qα

qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d ,

where c3 > 0 is a constant. With this, we finally obtain

λn ‖fD,λn,γn‖
2
Hγn

+RL,P
( ÛfD,λn,γn

)
−R∗L,P

≤ c
(
c3 n

− qα
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d +

( ρ
n

) 1
2−ϑ

+
ρ

n

)
≤ Cn−

qα
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d

with probability Pn not less than 1− e−ρ and with the constant C := c(c3 + ρ
1

2−ϑ + ρ).

To prove Theorem 4.10 we need the following lemma.
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Lemma 5.4. We fix finite sequences Λ := (Λn) and Γ := (Γn) of finite subsets Λn,Γn ⊂ (0, 1]
such that Λn is an εn-net of (0, 1] and Γn is an δn-net of (0, 1] with a constant ĉ > 0, 0 < εn <

ĉ n−
qα+d

qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d , and δn > 0. Then, for all ε > 0, ς ∈ (0, 1), ϑ ∈ [0, 1], q ∈ [1,∞),
d > 0, α > 0 and all n ≥ 1, we have

inf
(λ,γ)∈Λ×Γ

(
λγ−d + γqα +

(
λ−ςn−1γ−(1−ς)(1+ε)d

) 1
2−ς−ϑ+ϑς

)
≤ c

(
n−

qα
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d + δqαn

)
with a constant c > 0 independent of n, Λ, εn, Γ, and δn.

Proof. Let (λ∗, γ∗) be the minimizer of the function

(λ, γ)→ λγ−d + γqα +
(
λ−ςn−1γ−(1−ς)(1+ε)d

) 1
2−ς−ϑ+ϑς

defined on [0, 1]2. [28, Lemma A.1.6.] shows that λ∗ = c1n
− qα+d
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d with

a constant c1 > 0. This implies εn ≤ ĉ
c1
λ∗. Now the proof follows analogously to the proof of

Lemma 5.2.

Proof of Theorem 4.10. Let m be defined by m :=
⌊
n
2

⌋
+ 1, i.e. m ≥ n

2 . Therefore, Theorem 4.8
yields with probability Pm not less than 1− |Λn × Γn| e−ρ

RLτ ,P( ÛfD1,λ,γ)−R∗Lτ ,P ≤
c1
2

(
λγ−d + γqα +

(
γ−(1−ς)(1+ε)d

λςm

) 1
2−ς−ϑ+ϑς

+
( ρ
m

) 1
2−ϑ

+
ρ

m

)

≤ c1

(
λγ−d + γqα +

(
γ−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

+
( ρ
n

) 1
2−ϑ

+
ρ

n

)
(36)

for all (λ, γ) ∈ Λn × Γn simultaneously. Here, c1 > 0 is a constant. Furthermore, [28, Theorem
7.2], n−m ≥ n

2 − 1 ≥ n
4 , and ρn := ρ+ ln(1 + |Λn × Γn|) yield

RLτ ,P( ÛfD1,λD2 ,γD2
)−R∗Lτ ,P < 6

(
inf

(λ,γ)∈Λn×Γn
RLτ ,P( ÛfD1,λ,γ)−R∗Lτ ,P

)
+ 4

(
8V ρn
n−m

) 1
2−ϑ

< 6
(

inf
(λ,γ)∈Λn×Γn

RLτ ,P( ÛfD1,λ,γ)−R∗Lτ ,P
)

+ 4
(

32V ρn
n

) 1
2−ϑ

(37)

with probability Pn−m not less than 1− e−ρ. With (36), (37) and Lemma 5.4 we can conclude

RLτ ,P( ÛfD1,λD2 ,γD2
)−R∗Lτ ,P

< 6
(

inf
(λ,γ)∈Λn×Γn

RLτ ,P( ÛfD1,λ,γ)−R∗Lτ ,P
)

+ 4
(

32V ρn
n

) 1
2−ϑ

≤ 6c1

(
inf

(λ,γ)∈Λn×Γn

(
λγ−d + γqα +

(
γ−(1−ς)(1+ε)d

λςn

) 1
2−ς−ϑ+ϑς

)
+
( ρ
n

) 1
2−ϑ

+
ρ

n

)

+ 4
(

32V ρn
n

) 1
2−ϑ

≤ 6c1

(
c
(
n−

qα
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d + δqαn

)
+
( ρ
n

) 1
2−ϑ

+
ρ

n

)
+ 4

(
32V ρn
n

) 1
2−ϑ

≤
(

6c1(2c+ ρ
1

2−ϑ + ρ) + 4 (32V ρn)
1

2−ϑ
)
n−

qα
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d
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with probability Pn not less than 1− (1 + |Λn × Γn|) e−ρ. With a variable transformation Pn can
be adjusted such that it is not less than 1− e−ρ. Finally, for every ξ > 0, we can find ε, ς ∈ (0, 1)
sufficiently close to 0 such that n−

qα
qα(2−ς−ϑ+ϑς)+qας+dς+(1−ς)(1+ε)d is at least as fast as

n−
qα

qα(2−ϑ)+d+ξ .

Proof of Theorem 4.11. If ϑ := min{ 2
q ,

p
p+1}, we know by [29, Theorem 2.8] that, for all f : X →

[−1, 1], there exists an f∗τ,P : X → [−1, 1] with f∗τ,P(x) ∈ F ∗τ,P(x) for PX -almost all x ∈ X such
that the variance bound (20) is satisfied with V = 22−ϑqϑ‖ν−1‖ϑLp(Px). Since F ∗τ,P consists of
singletons, the variance bound is fulfilled for all f : X → [−1, 1] with f∗τ,P.

Proof of Corollary 4.12. For q = 2 and p =∞, Theorem 4.11 and Corollary 4.9 immediately yield
ϑ = 1, V = 4‖κ−1‖L∞(PX) and, for every ξ > 0,

Pn
(
RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P ≤ Cξ n

− 2α
2α+d+ξ

)
≥ 1− e−ρ

with a constant Cξ > 0. Finally, the self calibration inequality (17) yields

‖ ÛfD,λ,γ − f∗τ,P‖2L2(PX) ≤ 4‖κ−1‖L∞(PX)

(
RLτ ,P( ÛfD,λ,γ)−R∗Lτ ,P

)
≤ Cn−

2α
2α+d+ξ ,

for all ξ > 0 and C := 4‖κ−1‖L∞(PX)Cξ.
Now, if f∗τ,P ∈ Wα

2 (PX) we also have Ef∗τ,P ∈ Wα
2

(
Rd
)

by the proof of Corollary 3.4. Next,
(6) implies Ef∗τ,P ∈ Bα2,∞(Rd) = Lip∗(α,L2(Rd)) and therefore we obtain

ωr,L2(Rd)

(
Ef∗τ,P, t

)
≤ c tα , t > 0 ,

for a suitable constant c > 0. This yields the assertions by the first part of the corollary. To
prove the assertion for f∗τ,P ∈ Bα2,∞(PX), we proceed in the same way using the proof of Corollary
3.5.
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2008/006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian
data using nonparametric regression and a reduced number of nested Monte Carlo
steps
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