Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors

Paola Gloria Ferrario, Harro Walk
Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors

Paola Gloria Ferrario, Harro Walk
Abstract
In this paper we consider first an estimator of the residual variance treated by Evans (and Jones) (2005, 2008) and by Liitiäinen et al. (2008, 2010), based on first and second nearest neighbors given an independent and identically distributed sample. Its strong consistency and strong Cesàro consistency are shown under mere boundedness and square integrability, respectively, of the dependent variable Y. Moreover, in view of the local variance, a correspondingly modified estimator of local averaging (partitioning) type is proposed, and strong L_1-consistency (for bounded Y) and rate of convergence (for bounded X and Y under Lipschitz continuity of the regression and the local variance function) are established.

Key words: regression function, residual variance, local variance, partitioning estimation, nearest neighbors, strong consistency, rate of convergence.

AMS Subject classification: 62G05, 62G20.
1 Introduction

Let \(Y \) be a square integrable real valued random variable and let \(X \) be a \(d \)-dimensional random vector, taking values in the space \(\mathbb{R}^d \). The task of regression analysis is to estimate \(Y \) given \(X \), i.e., to find a measurable function \(f : \mathbb{R}^d \to \mathbb{R} \), such that \(f(X) \) is a "good approximation" of \(Y \), that is, \(|f(X) - Y|\) has to be "small". The "closeness" of \(f(X) \) to \(Y \) is typically measured by the so-called mean squared error of \(f \),

\[
 E\{(Y - f(X))^2\}.
\]

It is well known that the regression function \(m \) minimizes this error (where \(m := E\{Y|X = x\} \)),

\[
 V := \min_{f} E\{(Y - f(X))^2\} = E\{(Y - m(X))^2\}. \quad (1)
\]

\(V \), the so-called residual variance, is a measure of how close we can get to \(Y \) using any measurable function \(f \). It indicates how difficult a regression problem is. Since the distribution of \(m \), and therefore \(m \), are unknown, one is interested in estimating \(V \) by use of data observations

\[
 D_n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}, \quad (2)
\]

which are independent copies of \((X, Y)\).

A related interesting problem is the estimation of the local variance (or conditional variance), defined as

\[
 \sigma^2(x) := E\{(Y - m(X))^2|X = x\} = E\{Y^2|X = x\} - m^2(x). \quad (3)
\]

It holds

\[
 V = E\{\sigma^2(X)\}. \quad (4)
\]

Liitiäinen et al. [12], with generalization in [13], investigated an estimator of the residual variance \(V \), introduced by Evans (and Jones) [5, 6], which is based on first and second nearest neighbors. They obtained mean square convergence under bounded conditional fourth moment of \(Y \) and convergence order \(O(n^{-2/d}) \) for \(d \geq 2 \) under finite suitable moments of \(X \) and under Lipschitz continuity of \(m \). It simplifies an estimator given in Devroye et al. [3], based on first nearest neighbors. References for the estimation of the local variance function, incl. the case of fixed design, are Müller and Stadtmüller [15, 16], Stadtmüller and Tsybakov [23], Ruppert et al. [21], Härdle and Tsybakov [9], Spokoiny [22], Pan and Wang [20], Hall et al. [8], Müller et al. [17], Neumann [19], Munk et al. [18], Kohler [10], Brown and Levine [1], and Cai et al. [2].

In this paper, first we show strong consistency of the (global) residual variance estimation sequence of Evans (and Jones) [5, 6] and Liitiäinen et al. [12, 13], under boundedness of \(Y \) and show strong consistency of the sequence of arithmetic means in the general case \(E\{Y^2\} < \infty \) (Section 2).

In Section 3 for the estimation of the local variance function \(\sigma^2 \) on the basis of data \(\{2\} \), we propose an estimation sequence \((\sigma^2_n) \) of local averaging, namely partitioning, type. It is a modification of the (global) residual variance estimator and uses again first and second nearest neighbors. We show strong \(L_1 \)-consistency, that is, \(\int |\sigma^2_n(x) - \sigma^2| \mu(dx) \to 0 \) a.s., under mere boundedness of \(Y \) (\(\mu \) denoting the distribution of \(X \)).

Finally, in Section 4 we establish its rate, imposing Lipschitz conditions on \(\sigma^2 \) and on \(m \) together with boundedness of \(X \) and \(Y \).

2 Residual Variance Estimation

In the literature different paradigms how to construct nonparametric estimates are treated. Besides the least squares approach, local averaging paradigms are used, especially kernel estimates, partitioning estimates and \(k \)-th nearest neighbor estimates. A reference is Györfi et al. [7].

For given \(i \in \{1, \ldots, n\} \), the first nearest neighbor of \(X_i \) among \(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n \) is defined as \(X_{N[i, 1]} \) with

\[
 N[i, 1] := \min_{1 \leq j \leq n, j \neq i} d(X_i, X_j), \quad (5)
\]
here ρ is a metric (typically the Euclidean one) in \mathbb{R}^d. The k-th nearest neighbor of X_i among $X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n$ is defined as $X_{N[i,k]}$ via generalization of definition 6:

$$N[i,k] := N_n[i,k] := \arg \min_{1 \leq j \leq n, \ j \neq i, \ j \notin \{N[i,1], \ldots, N[i,k-1]\}} \rho(X_i, X_j),$$

by removing the preceding neighbors. If ties occur, a possibility to break them is given by taking the minimal index or by adding independent components Z_i, uniformly distributed on $[0,1]$, to the observation vectors X_i (see [7], Lemma 6.1 and Corollary 6.1 together with Lemma 6.3). To make the proof is based on the McDiarmid inequality (see, e.g., [7], Theorem A.2) and properties of the nearest neighbors (see [7], pp. 86, 87). The latter possibility to break ties allow us to assume throughout the paper that ties occur with probability zero.

Hence, we get a reorder of the data according to increasing values of the distance of the variable X_j ($j \in \{1, \ldots, n\} \setminus \{i\}$) from the variable X_i ($i = 1, \ldots, n$). Correspondingly to that, we get also a new order for the variables Y_j:

$$(X_{N[i,1]}, Y_{N[i,1]}), \ldots, (X_{N[i,k]}, Y_{N[i,k]}), \ldots, (X_{N[i,n-1]}, Y_{N[i,n-1]}).$$

In the following $N[i,1]$ and $N[i,2]$ will be used. For the residual variance V, Evans (and Jones) [5, 6] introduced and Liitiäinen et al. [12, 13] analyzed (and generalized) the estimator

$$V_n = \frac{1}{n} \sum_{i=1}^{n} (Y_i - Y_{N[i,1]}) (Y_i - Y_{N[i,2]}),$$

in view of square mean consistency and rate of convergence. We shall establish strong consistency.

Theorem 2.1 If $|Y| \leq L$ for some $L \in \mathbb{R}_+$, then

$$V_n \to V \quad \text{a.s.} \quad (n \to \infty).$$

The proof is based on the McDiarmid inequality (see, e.g., [7], Theorem A.2) and properties of nearest neighbors (see [7], Lemma 6.1 and Corollary 6.1 together with Lemma 6.3). To make the paper more self-contained, we state them in the following lemmas.

Lemma 2.2 (McDiarmid inequality) Let Z_1, \ldots, Z_n be independent random variables taking values in a set A and assume that $f : A^n \to \mathbb{R}$ satisfies

$$\sup_{z_1, \ldots, z_n, \ z'_i \in A} |f(z_1, \ldots, z_n) - f(z_1, \ldots, z_{i-1}, z'_i, z_{i+1}, \ldots, z_n)| \leq c_i, \quad 1 \leq i \leq n.$$

Then, for all $\epsilon > 0$,

$$P\{f(Z_1, \ldots, Z_n) - Ef(Z_1, \ldots, Z_n) \geq \epsilon\} \leq e^{-\frac{2\epsilon^2}{\sum_{i=1}^{n} c_i^2}},$$

and

$$P\{Ef(Z_1, \ldots, Z_n) - f(Z_1, \ldots, Z_n) \geq \epsilon\} \leq e^{-\frac{2\epsilon^2}{\sum_{i=1}^{n} c_i^2}}.$$
b) for any integrable function f and any $k \leq n - 1$,

$$
\sum_{j=1}^{k} E\{|f(X_{N[1,j]})|\} \leq k\gamma_d E\{|f(X_1)|\},
$$

Here $\gamma_d < \infty$ depends only on d.

Proof of Theorem 2.1 In the first step we show

$$
EV_n \to V
$$

(asymptotic unbiasedness), using only square integrability of Y, compare [13], proof of Theorem 2.2.

With the notations

$$
b_{i,j} = m(X_i) - m(X_j)
$$

$$
r_i = Y_i - m(X_i),
$$

we can write, according to [12] and [13]:

$$
E\left\{Y_i - Y_{N[i,1]}\right\}(Y_i - Y_{N[i,2]}) = E\left\{b_{i,N[i,1]}(r_i - r_{N[i,2]})\right\} + E\left\{b_{i,N[i,2]}(r_i - r_{N[i,1]})\right\} + E\left\{b_{i,N[i,1]}b_{i,N[i,2]}\right\}.
$$

As shown in [12] and [13] via conditioning with respect to X_1, \ldots, X_n,

$$
E\left\{b_{i,N[i,1]}(r_i - r_{N[i,2]})\right\} = E\left\{b_{i,N[i,2]}(r_i - r_{N[i,1]})\right\} = 0,
$$

and

$$
E\left\{(r_i - r_{N[i,1]}) (r_i - r_{N[i,2]})\right\} = E\{r_i^2\} = E\{(Y_i - m(X_i))^2\} = V.
$$

Further

$$
E\left\{b_{i,N[i,1]}b_{i,N[i,2]}\right\} \leq E\left\{|(m(X_i) - m(X_{N[i,1]})) (m(X_i) - m(X_{N[i,2]}))|\right\}.
$$

Thus, because the X_i’s are identically distributed,

$$
|EV_n - V| \leq E\left\{|(m(X_1) - m(X_{N[1,1]})) (m(X_1) - m(X_{N[1,2]}))|\right\} \leq \frac{1}{2} E\left\{|m(X_1) - m(X_{N[1,1]})|^2\right\} + \frac{1}{2} E\left\{|m(X_1) - m(X_{N[1,2]})|^2\right\}.
$$

Because the set of continuous functions on \mathbb{R}^d with compact support is dense in $L_2(\mu)$ (see, e.g., [4], Chapter 4, Section 8.19, or [7], Theorem A.1), for an arbitrary $\epsilon > 0$ one can choose a continuous function \tilde{m} with compact support such that $E\{|m(X_1) - \tilde{m}(X_1)|^2\} \leq \epsilon$. Then

$$
E\{|m(X_1) - m(X_{N[1,1]})|\} \leq 3E\{|(m - \tilde{m})(X_1)|^2\} + 3E\{|(m - \tilde{m})(X_{N[1,1]})|^2\}
$$

$$
+ 3E\{|(\tilde{m}(X_1) - \tilde{m}(X_{N[1,1]}))^2\}.
$$

By Lemma 2.3 (with $k_n = 1$) and continuity of \tilde{m}, one has

$$
\tilde{m}(X_{N[1,1]}) \to \tilde{m}(X_1) \quad a.s.,
$$

thus, by boundedness of \tilde{m},

$$
E\{|\tilde{m}(X_1) - \tilde{m}(X_{N[1,1]})|^2\} \to 0.
$$

Further, by Lemma 2.4,

$$
E\{|(m - \tilde{m})(X_{N[1,1]})|^2\} \leq \gamma_d E\{|(m - \tilde{m})(X_1)|^2\} \leq \gamma_d \epsilon.
$$

Therefore

$$
\limsup_{n \to \infty} E\{|m(X_1) - m(X_{N[1,1]})|^2\} \leq 3(1 + \gamma_d)\epsilon,
$$

4
thus
\[E\{|m(X_1) - m(X_N|1,1)|^2\} \to 0. \]

Analogously one obtains \(E\{|m(X_1) - m(X_N|1,2)|^2\} \to 0. \) Thus
\[E\{|m(X_1) - m(X_N|1,1)||m(X_1) - m(X_N|1,2)|\} \to 0, \tag{10} \]
and \(\text{[8]} \) is obtained.

In the second step we show
\[V_n - EV_n \to 0 \quad \text{a.s.} \tag{11} \]

Set
\[T_n := \sum_{i=1}^{n}(Y_i - Y_N[i,1])(Y_i - Y_N[i,2]). \]

Now in view of an application of Lemma 2.2, let \((X_1, Y_1), \ldots, (X_n, Y_n), (X_1', Y_1'), \ldots, (X_n', Y_n')\) be independent and identically distributed \((d + 1)\)-dimensional random vectors. For fixed \(j \in \{1, \ldots, n\}\) replace \((X_j, Y_j)\) by \((X_j', Y_j')\), which leads to \(T_{n,j}\). Noticing \(|Y_i| \leq L\), we have
\[|T_n - T_{n,j}| \leq 8L^2 + 8L^2 \cdot 2 \cdot 2\gamma d = 8(1 + 4\gamma d)L^2, \tag{12} \]
where the first term of the right-hand side results from summand \(i = j\) and the second term results from summands \(i \in \{1, \ldots, n\} \setminus \{j\}\), because replacement of \(X_j\) by \(X_j'\) has an influence on the first and second nearest neighbors of some, but at most \(2\gamma d\) (by Lemma 2.4 a), of the random vectors \(X_1, \ldots, X_{j-1}, X_{j+1}, \ldots, X_n\). By Lemma 2.2 for each \(\epsilon > 0\) we obtain
\[
\begin{align*}
P\{|V_n - EV_n| \geq \epsilon\} &= P\{|T_n - ET_n| \geq \epsilon n\} \\
&\leq 2e^{-2\epsilon^2n^2/n(8(1 + 4\gamma d)L^2)^2},
\end{align*}
\]
thus \(\text{[11]}\) by the Borel-Cantelli lemma. \(\text{[8]}\) and \(\text{[11]}\) yield the assertion.

The following theorem states that the boundedness assumption in Theorem 2.1 on \(Y\) can be omitted if for estimation of \(V\) the sequence \(((V_1 + \ldots, V_n)/n)\) of arithmetic means insted of \((V_n)\) is used.

Theorem 2.5 In the general case \(E\{|Y^2\} < \infty, \)
\[
\frac{V_1 + \ldots, V_n}{n} \to V \quad \text{a.s.}
\]

(strong Cesàro consistency of \((V_n)\)).

It remains an open problem whether \(V_n \to V\) a.s. if \(E\{|Y^2\} < \infty, \)

For the proof of Theorem 2.5 we shall use an Efron-Stein inequality (Lemma 2.6, compare \(\text{[7]}, \text{Theorem A.3}\).

Lemma 2.6 Let \(Z_1, \ldots, Z_n, \tilde{Z}_1, \ldots, \tilde{Z}_n\) be independent \(m\)-dimensional random vectors where the two random vectors \(Z_k\) and \(\tilde{Z}_k\) have the same distribution \((k = 1, \ldots, n)\). For measurable \(f : \mathbb{R}^{m-n} \to \mathbb{R}\) assume that \(f(Z_1, \ldots, Z_n)\) is square integrable. Then
\[
\text{Var}\{f(Z_1, \ldots, Z_n)\} \leq \frac{1}{2} \sum_{k=1}^{n} E\left\{|f(Z_1, \ldots, Z_k, \ldots, Z_n) - f(Z_1, \ldots, \tilde{Z}_k, \ldots, Z_n)|^2\right\}.
\]
Proof of Theorem 2.5. For a real random variable \(U \) we set
\[
U[c] := U1_{\{|U| \leq c\}} + c1_{\{|U|<c\}} - c1_{\{|U|<c\}}, \quad c > 0.
\]
First we show
\[
\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - Y_{N[i,1]} \right) \left(Y_i - Y_{N[i,2]} \right) - \frac{1}{n} \sum_{i=1}^{n} V_{n,i} \to 0 \quad a.s.,
\]
where
\[
V_{n,i} := \left(Y_i^{[\sqrt{\epsilon}] - Y_{N[i,1]}^{[\sqrt{\epsilon}]} \right) \left(Y_i^{[\sqrt{\epsilon}]} - Y_{N[i,2]}^{[\sqrt{\epsilon}]} \right).
\]
Because \(E \{ Y \}^2 < \infty \), a.s. \(Y_i = Y_i^{[\sqrt{\epsilon}]} \) for \(i \) sufficiently large, say, \(i \geq M \) (random). For \(i \in \{ M, M+1, \ldots, n \} \), a.s. \(Y_i = Y_i^{[\sqrt{\epsilon}]} \). By Lemma 2.4.a, for \(p \in \{ 1, \ldots, M \} \) one has \(N[i,1] = p \) for at most \(\gamma_d \) indices \(\in \{1, \ldots, n\} \) and \(N[i,2] = p \) for at most \(2\gamma_d \) indices \(i \in \{1, \ldots, n\} \). Thus a.s.
\[
(Y_i - Y_{N[i,1]}) (Y_i - Y_{N[i,2]}) \neq (Y_i^{[\sqrt{\epsilon}]} - Y_{N[i,1]}^{[\sqrt{\epsilon}]} \right) \left(Y_i^{[\sqrt{\epsilon}]} - Y_{N[i,2]}^{[\sqrt{\epsilon}]} \right)
\]
for at most \((1 + 3\gamma_d)M \) indices \(\in \{1, \ldots, n\} \), which yields the assertion. Therefore it suffices to show
\[
\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{l} \sum_{i=1}^{l} V_{l,i} \right) \to V \quad a.s. \tag{13}
\]
In the second step we show
\[
\frac{1}{n} \sum_{i=1}^{n} E V_{n,i} \to V. \tag{14}
\]
With \(m^{(n)}(x) := E \{ Y^{[\sqrt{\epsilon}]} | X = x \} \) we have
\[
\frac{1}{n} \sum_{i=1}^{n} E V_{n,i} = E V_{n,1}
\]
\[
= E \{ (Y^{[\sqrt{\epsilon}]} - m^{(n)}(X))^2 \}
\]
\[
+ E \{ (m^{(n)}(X_1) - m^{(n)}(X_{N[1,1]})) (m^{(n)}(X_1) - m^{(n)}(X_{N[1,2]})) \},
\]
the latter according to Liitiiäinen et al. [12] [13]. By \(E \{ Y \}^2 < \infty \) and the dominated convergence theorem, \(\int |m^{(n)}(x) - m(x)|^2 \mu(dx) \to 0 \) and thus \(E \{ (Y^{[\sqrt{\epsilon}]} - m^{(n)}(X))^2 \} \to V \). Further \(m \) and also \(m^{(n)} \) can be approximated by a continuous function \(\tilde{m} \) with compact support such that for each \(\epsilon > 0 \) an index \(n_0(\epsilon) \) exists with \(E \{ |m(X) - \tilde{m}(X)|^2 \} \leq \epsilon \) and also
\[
E \{ |m^{(n)}(X) - \tilde{m}(X)|^2 \} \leq \epsilon \quad \text{for} \quad n \geq n_0(\epsilon).
\]
Then we obtain
\[
E \left\{ |m^{(n)}(X_1) - m^{(n)}(X_{N[1,1]})|^2 \right\}
\]
\[
\leq 3E \{ |(m^{(n)} - \tilde{m})(X_1)|^2 \} + 3E \{ |(m^{(n)} - \tilde{m})(X_{N[1,1]})|^2 \} + 3E \{ |\tilde{m}(X_1) - \tilde{m}(X_{N[1,1]})|^2 \}
\]
\[
\leq 3\epsilon + 3\gamma_d \epsilon + o(1),
\]
the latter as in the proof of Theorem 2.4. Therefore
\[
E \left\{ |m^{(n)}(X_1) - m^{(n)}(X_{N[1,1]})|^2 \right\} \to 0
\]
and correspondingly
\[
E \left\{ |m^{(n)}(X_1) - m^{(n)}(X_{N[1,2]})|^2 \right\} \to 0,
\]
thus
\[
E \left\{ (m^{(n)}(X_1) - m^{(n)}(X_{N[1,1]})) (m^{(n)}(X_1) - m^{(n)}(X_{N[1,2]})) \right\} \to 0,
\]
and \(14\) is obtained as well as
\[
\frac{1}{n} \sum_{l=1}^{n} \left(\frac{1}{l} \sum_{i=1}^{l} E V_{l,i} \right) \to V.
\] (15)

In the second step we show
\[
\frac{1}{n} \sum_{l=1}^{n} \left(\frac{1}{l} \sum_{i=1}^{l} (V_{i,i} - E V_{l,i}) \right) \to 0 \text{ a.s.}
\] (16)

It suffices to show
\[
\sum \frac{\text{Var} \left\{ \sum_{i=1}^{n} V_{n,i} \right\}}{n^3} < \infty,
\] (17)

for this implies
\[
\sum \frac{1}{n} \left(\frac{1}{n} \sum_{i=1}^{n} (V_{n,i} - E V_{n,i}) \right)^2 < \infty \text{ a.s.}
\]

and, by the Cauchy-Schwarz inequality and the Kronecker lemma,
\[
\frac{1}{n} \sum_{l=1}^{n} \left| \frac{1}{l} \sum_{i=1}^{l} (V_{i,i} - E V_{l,i}) \right|^2 \leq \frac{1}{n} \sum_{l=1}^{n} \left| \frac{1}{l} \sum_{i=1}^{l} (V_{i,i} - E V_{l,i}) \right|^2 \to 0 \text{ a.s.}
\]

We shall show
\[
\text{Var} \left\{ \sum_{n} V_{n,i} \right\} \leq cn E \left\{ \left(Y'_{\sqrt{\pi}} \right)^4 \right\}, \quad n \in \mathbb{N}
\] (18)

for a suitable finite constant \(c\). This, together with \(E \{ Y^2 \} < \infty\), implies \(17\), because, as is well known (see, e.g., [14], Section 17.3), \(E |U| < \infty\) for a real variable \(U\) implies \(E \left\{ (U[n])^2 \right\} / n^2 < \infty\).

We prove \(18\) by using the Efron-Stein inequality (Lemma [2.6]). Let \(n \geq 2\) be fixed. Replacement of \((X_i, Y_j)\) by \((X'_i, Y'_j)\) for fixed \(j \in \{1, \ldots, n\}\) (where \((X_1, Y_1), \ldots (X_n, Y_n), (X'_1, Y'_1), \ldots, (X'_n, Y'_n)\) are independent and identically distributed) leads from \(T_n := \sum_{i=1}^{n} V_{n,i}, N[j, 1]\) and \(N[j, 2]\) to \(T_{n,j}, N'[j, 1]\) and \(N'[j, 2]\), respectively.

We obtain
\[
|T_n - T_{n,j}| \leq A_{n,j} + B_{n,j} + C_{n,j} + D_{n,j} + E_{n,j} + F_{n,j}
\]

where with \(Z_i = Y_i^{1/\sqrt{\pi}}, Z'_j = Y'_j^{1/\sqrt{\pi}}, Z = Y'_{1/\sqrt{\pi}}\)

\[
A_{n,j} = \sum_{l, q \in \{1, \ldots, n\} \setminus \{j\}} |Z_{j} - Z| |Z_{j} - Z | |Z_{q} - Z | 1 \{ N[j, 1] = l \} 1 \{ N[j, 2] = q \},
\]

\[
B_{n,j} = \sum_{l, q \in \{1, \ldots, n\} \setminus \{j\}} |Z'_{j} - Z| |Z'_{j} - Z | |Z_{q} - Z | 1 \{ N'[j, 1] = l \} 1 \{ N'[j, 2] = q \},
\]

\[
C_{n,j} = \sum_{i, q \in \{1, \ldots, n\} \setminus \{j\}} |Z_{i} - Z_{j} | |Z_{i} - Z_{j} | |Z_{q} - Z | 1 \{ N[i, 1] = j \} 1 \{ N[i, 2] = q \},
\]

\[
D_{n,j} = \sum_{i, q \in \{1, \ldots, n\} \setminus \{j\}} |Z_{i} - Z_{j} | |Z_{i} - Z_{j} | |Z_{q} - Z | 1 \{ N'[i, 1] = j \} 1 \{ N'[i, 2] = q \},
\]

\[
E_{n,j} = \sum_{i, q \in \{1, \ldots, n\} \setminus \{j\}} |Z_{i} - Z_{j} | |Z_{i} - Z_{j} | 1 \{ N[i, 1] = l \} 1 \{ N[i, 2] = q \},
\]
As to the term concerning \(Z\) and for the corresponding expected final sum we obtain the bound
\[
\gamma \gamma \text{ respect to } j \text{ final sum we obtain the bound } \gamma \gamma\]

By the Cauchy-Schwarz inequality applied to the sums defining \(A_{n,j},\ldots,\ F_{n,j}\) and by the inequality \(|a - b|^2|a - c|^2 \leq 8(a^4 + b^4 + c^4)\) we obtain
\[
\mathbb{E} \sum_{j=1}^{n} |T_n - T_{n,j}|^2 \leq 6 \cdot 6 \cdot 8 \mathbb{E} \sum_{j \neq l, j \neq q, q \neq l} (Z_j^4 + Z_l^4 + Z_q^4) 1_{\{N[j,1]=l\}} 1_{\{N[j,2]=q\}}.
\]

As to the term concerning \(Z_j^4\) we sum with respect to \(l\) and \(q\) and for the corresponding expected final sum we obtain the bound \(n \mathbb{E} \{Z^4\}\). As to the term \(Z_l^4\) we sum with respect to \(q\), then with respect to \(j\) using Lemma 2.4b, and for the corresponding expected final sum we obtain the bound \(\gamma_d n \mathbb{E} \{Z^4\}\). As to the term \(Z_q^4\) we sum with respect \(l\), then with respect to \(j\) using Lemma 2.4a and for the corresponding expected final sum we obtain the bound \(2\gamma_d n \mathbb{E} \{Z^4\}\).

Therefore, by Lemma 2.6
\[
\text{Var}(T_n) \leq \frac{1}{2} \cdot 6 \cdot 6 \cdot 8 \cdot (1 + 3\gamma_d) n \mathbb{E} \left\{ \left(Y^{[\sqrt{n}]} \right)^4 \right\},
\]
i.e., (18). Thus (16) is obtained, which together with (15) implies (13).

\section{Local Variance Estimation: Strong Consistency}

\(V_n\) in (7) as an estimator of \(V = \mathbb{E}\{Y - m(X))^2\}\) was treated in Section 2. In this section our aim is to give an estimator of the local variance function \(\sigma^2\) in (3). Recall the relation between the residual and the local variance function in (4).

Our proposal for an appropriate estimator of \(\sigma^2\) is
\[
\sigma^2_n(x) := \frac{\sum_{i=1}^{n} (Y_i - Y_{N[i,1]}) (Y_i - Y_{N[i,2]}) 1_{A_n(x)}(X_i)}{\sum_{i=1}^{n} 1_{A_n(x)}(X_i)}, \quad x \in \mathbb{R}^d
\]
(19)
where \(\mathcal{P}_n = \{A_{n,1}, A_{n,2}, \ldots\}\) is a partition of \(\mathbb{R}^d\) consisting of Borel sets \(A_{n,j} \subset \mathbb{R}^d\), and where the notation \(A_n(x)\) is used for the \(A_{n,j}\) containing \(x\). In this sense we localize the global expression in \(V_n\) by local averaging, in particular by partitioning. Analogously a kernel type estimator could be treated. The next theorem deals with strong consistency of the local variance estimator.

\begin{theorem}
Let \((\mathcal{P}_n)_{n \in \mathbb{N}}\) with \(\mathcal{P}_n = \{A_{n,1}, A_{n,2}, \ldots\}\) be a sequence of partitions of \(\mathbb{R}^d\) such that for each sphere \(S\) centered at the origin
\[
\lim_{n \to \infty} \max_{j : \text{diam } A_{n,j} \to 0} \text{diam } A_{n,j} \to 0
\]
(20)
and, for some \(\rho = \rho(S) \in (0, \frac{1}{2})\)
\[
\# \left\{ j : A_{n,j} \cap S \neq \emptyset \right\} \sim n^\rho.
\]
(21)
Finally, let \(|Y| \leq L\) for some \(L \in \mathbb{R}_+\). Then
\[
\int |\sigma^2_n(x) - \sigma^2(x)| \mu(dx) \to 0 \quad \text{a.s.}
\]
\end{theorem}
Set now
\[\sigma^2_n(x) := \sum_{i=1}^{n} (Y_i - Y_{N[i,1]})(Y_i - Y_{N[i,2]})1_{A_n(x)}(X_i). \tag{22}\]

For the proof of Theorem 3.1 we need Lemma 3.3 which is based on Lemma 3.2 and the McDiarmid inequality (Lemma 2.2). Lemma 3.2 itself is based on the Efron-Stein inequality in Lemma 2.6.

Lemma 3.2 Under (20) and (21), for each sphere \(S\) centered at 0
\[E \left\{ \int_S |\sigma^2(x) - \sigma^2_n(x)|\mu(dx) \right\} \to 0.\]

Proof One has
\[E \left\{ \int_S |\sigma^2(x) - \sigma^2_n(x)|\mu(dx) \right\} \leq \int_S |\sigma^2(x) - E\sigma^2_n(x)|\mu(dx) + E \left\{ \int_S |E\sigma^2_n(x) - \sigma^2_n(x)|\mu(dx) \right\} \leq K_n + M_n.\]

First \(K_n \to 0\) will be shown. According to Liižiūnas et al. \[12,13\] one has
\[E\{(Y_1 - Y_{N[1,1]})(Y_1 - Y_{N[1,2]})|X_1 = z\} = \sigma^2(z) + E\{(m(X_1) - m(X_{N[1,1]}))(m(X_1) - m(X_{N[1,2]}))|X_1 = z\},\]
thus
\[E\sigma^2_n(x) \]
\[= \int \frac{\sigma^2(z)1_{A_n(z)}(z)}{\mu(A_n(x))} \mu(dz) + \int E\{(m(X_1) - m(X_{N[1,1]}))(m(X_1) - m(X_{N[1,2]}))|X_1 = z\}1_{A_n(z)}(z) \mu(dz).\]

Notice
\[\int \left[\int \frac{E\{|m(X_1) - m(X_{N[1,1]})|m(X_1) - m(X_{N[1,2]})|X_1 = z\}1_{A_n(z)}(z)}{\mu(A_n(x))} \mu(dz) \right] \mu(dx) \]
\[= \int \left[\int \frac{E\{|m(X_1) - m(X_{N[1,1]})|m(X_1) - m(X_{N[1,2]})|X_1 = z\}1_{A_n(z)}(x)}{\mu(A_n(x))} \mu(dx) \right] \mu(dz) \]
\[\leq E\{|m(X_1) - m(X_{N[1,1]})|m(X_1) - m(X_{N[1,2]})|\} \to 0\]
by (10). Moreover,
\[\int |\sigma^2(x) - \sigma^2_n(x)|\mu(dx) \to 0.\]

For, because of \(\int |\sigma^2(x)|\mu(dx) < \infty\), as in the proof of Theorem 2.1 for each \(\epsilon > 0\) one can choose a continuous function \(\tilde{\sigma}^2\) with compact support such that
\[\int |\sigma^2(x) - \tilde{\sigma}^2(x)|\mu(dx) < \epsilon,\]

further
\[\int \left| \int \frac{\sigma^2(z)1_{A_n(z)}(z)}{\mu(A_n(x))} \mu(dz) - \int \frac{\tilde{\sigma}^2(z)1_{A_n(z)}(z)}{\mu(A_n(x))} \mu(dz) \right| \mu(dx) \leq \int |\sigma^2(z) - \tilde{\sigma}^2(z)|\mu(dz) < \epsilon,\]
and one then notices

$$\int_S \overline{\sigma^2}(x) - \int \frac{\overline{\sigma^2}(z)1_{A_n(x)}(z)}{\mu(A_n(x))} \mu(dx) \to 0$$

because of uniform continuity of $\overline{\sigma}$ and $\overline{\sigma}$. Therefore $K_n \to 0$. Now M_n will be treated. Set $J_n := \{ j : A_{n,j} \cap S \neq \emptyset \}$ and $l_n := \#J_n$.

$$M_n = \sum_{j \in J_n} E \left\{ \int_{A_{n,j}} \left| \sum_{i=1}^n (Y_i - Y_{N[i,1]})(Y_i - Y_{N[i,2]})1_{A_{n,j}}(X_i) \right| \mu(dx) \right\}$$

$$\leq \frac{1}{n} \sum_{j \in J_n} E \left\{ \sum_{i=1}^n (Y_i - Y_{N[i,1]})(Y_i - Y_{N[i,2]})1_{A_{n,j}}(X_i) \right\}$$

$$\leq \frac{1}{n} \sum_{j \in J_n} \sqrt{\text{Var} \left\{ \sum_{i=1}^n (Y_i - Y_{N[i,1]})(Y_i - Y_{N[i,2]})1_{A_{n,j}}(X_i) \right\}}$$

$$\leq \frac{l_n}{n} \sqrt{\frac{n}{2}(8L^2 + 8L^2 \cdot 2 \cdot 2\gamma d)^2}$$

(by Lemma 2.6 and the derivation of 12)

$$\leq 4\sqrt{2}(1 + 4\gamma d)L^2 \frac{l_n}{\sqrt{n}} \to 0 \quad \text{(by 11)}.$$

Thus the assertion is obtained.

Lemma 3.3 Assume (20) and (21). Let S be an arbitrary sphere centered at 0. Then a constant $c > 0$ exists such that for each $\epsilon > 0$

$$P \left\{ \int_S |\sigma^2(x) - \sigma_n^2(x)| \mu(dx) > 2\epsilon \right\} \leq e^{-\epsilon^2 c n^{1-2\alpha}}$$

for n sufficiently large.

Proof We follow the argument in the proof of Lemma 23.2 in [7]. One has

$$|\sigma^2(x) - \sigma_n^2(x)| = E[|\sigma^2(x) - \sigma_n^2(x)|] + (|\sigma^2(x) - \sigma_n^2(x)| - E|\sigma^2(x) - \sigma_n^2(x)|).$$

But $\int_S E|\sigma^2(x) - \sigma_n^2(x)| \mu(dx) \to 0$ due to Lemma 3.2

Now, in view of an application of McDiarmid’s inequality (Lemma 2.2) replacing (X_i, Y_i) by (X'_i, Y'_i) as in the proof of Theorem 2.1, leads from $\sigma_n^2(x)$ to $\sigma_{n,j}^2(x)$, $(j \in \{1, \ldots, n\})$, where, correspondingly to (12),

$$|\sigma_n^2(x) - \sigma_{n,j}^2(x)| \leq \frac{8(1 + 4\gamma d)L^2}{n \mu(A_n(x))}.$$

Thus

$$\left| \int_S |\sigma^2(x) - \sigma_n^2(x)| \mu(dx) - \int |\sigma^2(x) - \sigma_{n,j}^2(x)| \mu(dx) \right|$$

$$= \left| \int_S (|\sigma^2(x) - \sigma_n^2(x)| - |\sigma^2(x) - \sigma_{n,j}^2(x)|) \mu(dx) \right|$$
Now, using Lemma 2.2, for arbitrary $c > 0$ with some $l_n := \#\{j : A_{n,j} \cap S \neq \emptyset\}$.

Now, concerning
\[
\int_{S} |\sigma_{n}(x) - \sigma_{n}^{2}(x)| \mu(dx)
\]
(due to the triangle inequality $|a - b| \geq ||a| - |b||$)
\[
\leq \frac{8(1 + 4\gamma_{d})L^{2}}{n} \int_{S} \mu(A_{n}(x)) \mu(dx)
\]
\[
\leq \frac{8(1 + 4\gamma_{d})L^{2}}{n} l_{n},
\]
where $l_{n} := \#\{j : A_{n,j} \cap S \neq \emptyset\}$.

Proof of Theorem 3.1

Because Y is bounded, for an arbitrary $\epsilon > 0$ one can choose a sphere S centered at 0, such that
\[
\int_{S} |\sigma_{n}(x) - \sigma_{n}^{2}(x)| \mu(dx) \leq \epsilon.
\]
Therefore it suffices to show $\int_{S} |\sigma_{n}^{2}(x) - \sigma_{n}^{2*}(x)| \mu(dx) \to 0$ a.s. for each sphere S centered at 0. One obtains
\[
\int_{S} |\sigma_{n}^{2}(x) - \sigma_{n}^{2}(x)| \mu(dx)
\]
\[
\leq \int_{S} |\sigma_{n}^{2}(x) - \sigma_{n}^{2*}(x)| \mu(dx) + \int_{S} |\sigma_{n}^{2*}(x) - \sigma_{n}^{2}(x)| \mu(dx)
\]
\[
\leq G_{n} + D_{n}.
\]
But $D_{n} \to 0$ due to Lemma 3.3 and the Borel-Cantelli lemma.

Now, concerning $G_{n},$ similarly to the argument in [7], p. 465,
\[
\int_{S} |\sigma_{n}^{2}(x) - \sigma_{n}^{2}(x)| \mu(dx)
\]
\[
\leq \int_{S} \left| \sum_{i=1}^{n} (Y_{i} - Y_{N,[i,1]})(Y_{i} - Y_{N,[i,2]})1_{A_{n}(x)}(X_{i}) \right| \mu(dx)
\]
\[
- \sum_{i=1}^{n} (Y_{i} - Y_{N,[i,1]})(Y_{i} - Y_{N,[i,2]})1_{A_{n}(x)}(X_{i}) \right| \mu(dx)
\]
\[
\leq 4L^{2} \int_{S} \sum_{i=1}^{n} 1_{A_{n}(x)}(X_{i}) \left| \frac{1}{n\mu(A_{n}(x))} - \frac{1}{\sum_{i=1}^{n} 1_{A_{n}(x)}(X_{i})} \right| \mu(dx)
\]
\[
\leq 4L^{2} \int_{S} \left| \frac{1}{n\mu(A_{n}(x))} - \frac{1}{\sum_{i=1}^{n} 1_{A_{n}(x)}(X_{i})} \right| \mu(dx) \to 0 \text{ a.s.}
\]
(due to (20) and (21)).
4 Rate of Convergence

In this section we establish a rate of convergence for the estimate of the local variance defined in (19). The rate corresponds to the rate obtained in classical regression estimation ([7], Theorems 4.3 and 3.2).

Theorem 4.1 Let \mathcal{P}_n be a cubic partition of \mathbb{R}^d with side length h_n of the cubes ($n \in \mathbb{N}$). Assume that X and Y are bounded. Moreover, assume the Lipschitz conditions

$$|\sigma^2(x) - \sigma^2(t)| \leq C \|x - t\|, \quad x, t \in \mathbb{R}^d,$$

and

$$|m(x) - m(t)| \leq D \|x - t\|, \quad x, t \in \mathbb{R}^d$$

($C, D \in \mathbb{R}_+, \|\| \text{ denoting the Euclidean norm}$).

Then, with

$$h_n \sim n^{-\frac{1}{2d}},$$

for the estimate (19) one gets

$$E \int |\sigma_n^2(x) - \sigma(x)| \mu(dx) = O \left(n^{-\frac{1}{2d}} \right).$$

For the proof of Theorem 4.1 the following lemma will be used.

Lemma 4.2 Assume that X is bounded. Then for some finite constant c,

$$E\{\|X_{N[1,1]} - X_1\|^2\} \leq cn^{-2/\max\{d,2\}},$$

$$E\{\|X_{N[1,2]} - X_1\|^2\} \leq cn^{-2/\max\{d,2\}} \quad (n \in \mathbb{N}).$$

This lemma in its first part is stated for $d \geq 3$ in Györfi et al. [21], Lemma 6.4, and implies the second part according to [7], p. 95. For $d = 2$ (and then obviously also for $d = 1$) it immediately follows from Liitjänen et al. [12], 3.2 (with reference to [11]) and [13], Theorem 3.2.

For our purpose the weaker bound $cn^{-1/(d+2)}$ would suffice.

Proof of Theorem 4.1 Choose $L \in [0, \infty)$ such that $|Y_i| \leq L$ and denote by l_n the number of cubes of the partition \mathcal{P}_n that cover the bounded support of μ. It holds $l_n = O(h_n^{-d})$. c_1, c_2, \ldots will be suitable constants. Set

$$W_{n,i} := (Y_i - Y_{N[i,1]})(Y_i - Y_{N[i,2]}).$$

First, according to [7], p. 465, we note

$$\left| \frac{\sum_{i=1}^n W_{n,i} 1_{A_n}(x)}{\sum_{i=1}^n 1_{A_n}(x)} - \frac{\sum_{i=1}^n W_{n,i} 1_{A_n}(x)}{n \mu(A_n)} \right|$$

$$\leq 4L^2 \left| \frac{\sum_{i=1}^n 1_{A_n}(x)}{n \mu(A_n)} - 1 \right|,$$

further

$$\mathbb{E} \int \left| \frac{\sum_{i=1}^n 1_{A_n}(x_i) - n \mu(A_n)}{n \mu(A_n)} \right| \mu(dx)$$

$$\leq \int \frac{\sqrt{\text{Var}(\sum_{i=1}^n 1_{A_n}(x_i))}}{n \mu(A_n)} \mu(dx)$$

$$\leq \frac{1}{\sqrt{n}} \int \frac{1}{\sqrt{\mu(A_n)}} \mu(dx)$$

$$\leq \frac{1}{\sqrt{n}} \int \frac{1}{\mu(A_n)} \mu(dx)$$

$$\leq \sqrt{\frac{1}{l_n/n}}$$

$$\leq c_1 n^{-\frac{1}{2}} h_n^{-\frac{d}{2}}.$$ (26)
In the second step we show
\[\int \left| \sum_{i=1}^{n} E \left\{ W_{n,i} 1_{A_{n}(x)}(X_{i}) \right\} \right| \sigma^{2}(x) \mu(dx) \leq c_{2} \left(h_{n} + n^{-2/\max\{d,2\}} \right), \] (27)
i.e.
\[\int \left| E \left\{ W_{n,1} 1_{A_{n}(x)}(X_{1}) \right\} \right| \sigma^{2}(x) \mu(dx) \leq c_{2} \left(h_{n} + n^{-2/\max\{d,2\}} \right). \] (28)
According to Liitiänen et al. [12], proof of Theorem 3, or [13], Appendix, via conditioning with respect to \(X_{1}, \ldots, X_{n} \), we have
\[
E \{ W_{n,1} 1_{A_{n}(x)}(X_{1}) \} = E \{ (Y_{1} - m(X_{1}))^{2} 1_{A_{n}(x)}(X_{1}) \} + E \{ (m(X_{1}) - m(X_{N[1,1]})) (m(X_{1}) - m(X_{N[1,2]})) 1_{A_{n}(x)}(X_{1}) \}.
\]
Then
\[
\int \left| E \left\{ (Y_{1} - m(X_{1}))^{2} 1_{A_{n}(x)}(X_{1}) \right\} \right| \sigma^{2}(x) \mu(dx)
= \int \left| \int \frac{\sigma^{2}(t)}{\mu(A_{n}(x))} 1_{A_{n}(x)}(X_{1}) \mu(dt) \right| \sigma^{2}(x) \mu(dx)
\leq \int \left| \int [\sigma^{2}(t) - \sigma^{2}(x)] 1_{A_{n}(x)}(X_{1}) \mu(dt) \right| \mu(dx)
\leq C \int \left| \int \frac{\|t - x\|}{\mu(A_{n}(x))} 1_{A_{n}(x)}(X_{1}) \mu(dt) \right| \mu(dx)
\leq C \sqrt{d} h_{n} \int \frac{1_{A_{n}(x)}(t) \mu(dt)}{\mu(A_{n}(x))} \mu(dx)
\leq C \sqrt{d} h_{n}.
\]
Further
\[
\int \left| E \left\{ (m(X_{1}) - m(X_{N[1,1]})) (m(X_{1}) - m(X_{N[1,2]})) 1_{A_{n}(x)}(X_{1}) \right\} \right| \mu(dx)
\leq \frac{1}{2} \int \left| E \left\{ |m(X_{1}) - m(X_{N[1,1]})|^{2} 1_{A_{n}(x)}(X_{1}) \right\} \right| \mu(dx)
+ \frac{1}{2} \int \left| E \left\{ |m(X_{1}) - m(X_{N[1,2]})|^{2} 1_{A_{n}(x)}(X_{1}) \right\} \right| \mu(dx)
\leq \frac{1}{2} D^{2} \left[E \left\{ \|X_{N[1,1]} - X_{1}\| \right\} + E \left\{ \|X_{N[1,2]} - X_{1}\| \right\} \right]
\leq c_{3} n^{-2/\max\{d,2\}}
\]
by Lemma 1.2. Thus (28) and (27) are obtained.
In the third step we show
\[\int \left| \sum_{i=1}^{n} \frac{W_{n,i} 1_{A_{n}(x)}(X_{i}) - E \{ W_{n,i} 1_{A_{n}(x)}(X_{i}) \}}{n \mu(A_{n}(x))} \right| \mu(dx) \leq c_{4} n^{-\frac{3}{2}} h_{n}^{-\frac{2}{4}}. \] (29)
The left-hand side is bounded by
\[
\int \sqrt{Var\{ \sum_{i=1}^{n} \frac{W_{n,i} 1_{A_{n}(x)}(X_{i})}{n \mu(A_{n}(x))} \}} \mu(dx).
\]
As in the proof of Theorem 2.5 we apply the Efron-Stein inequality (Lemma 2.6) and obtain, compare (18),

\[\text{Var} \left\{ \sum_{i=1}^{n} W_{n,i} 1_{A_{n}(x)}(X_{i}) \right\} \leq c_{5} n L^{4} E \{ 1_{A_{n}(x)}(X) \} = c_{6} n \mu(A_{n}(x)). \]

Further

\[\int \sqrt{\mu(A_{n}(x))} \mu(dx) \leq \sqrt{\int \frac{1}{\mu(A_{n}(x))} \mu(dx)} \leq c_{7} \sqrt{l_{n}} \leq c_{8} h_{n}^{d/2}. \]

Thus (29) is obtained.

In the last step we gather (25), (26), (27), (29) and obtain

\[E \left\{ \int |\sigma_{n}^{2}(x) - \sigma^{2}(x)| \mu(dx) \right\} \leq c_{9} \left(n^{-1} h_{n}^{d/2} + h_{n} + n^{-2/\max(d,2)} \right) \leq c_{10} n^{-1/2 + d/2} \]

by the choice of \((h_{n})\). Thus the assertion is obtained. \(\blacksquare \)

References

Paola Gloria Ferrario
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: paola.ferrario@mathematik.uni-stuttgart.de

Harro Walk
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: harro.walk@mathematik.uni-stuttgart.de
2011/022 Ferrari, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors

2011/021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels

2011/018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks

2011/017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions

2011/015 Ferrari, P.: Nonparametric Local Averaging Estimation of the Local Variance Function

2011/012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of characteristic two

2011/011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes

2011/010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy

2011/008 Stroppel, M.: Orthogonal polar spaces and unitals

2011/007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra

2011/006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces

2011/005 Gionoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I

2011/002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G_2-structures

2010/018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings

2010/017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces

2010/016 Moroianu, A.; Semmelmann, U.: Clifford structures on Riemannian manifolds

2010/015 Grafarend, E.W.; Künnel, W.: A minimal atlas for the rotation group $SO(3)$

2010/014 Weidl, T.: Semiclassical Spectral Bounds and Beyond

2010/013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
2010/012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
2010/008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
2010/005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems
2010/004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
2010/003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
2010/002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
2010/001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
2009/007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems
2009/005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
2009/003 Walk, H.: Strong laws of large numbers and nonparametric estimation
2009/002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
2009/001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^3 and of the 3-torus
2008/006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
2008/004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
2008/003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008/002 Hertweck, M.; Höftert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $PSL(2,q)$
2008/001 Kovařík, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a correction term
2007/006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
2007/005 Frank, R.L.; Loss, M.; Weidl, T.: Polyà's conjecture in the presence of a constant magnetic field

2007/003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides

2007/002 Teufel, E.: Spherical transforms and Radon transforms in Möbius geometry

2007/001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions