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Abstract

Static forecasting of stationary and ergodic time series is considered, i.e., inference of the conditional
expectation of the response variable at time zero given the infinite past. It is shown that the mean
squared error of a combination of suitably defined localized least squares estimates converges to

zero for all distributions where the response variable is square integrable.
AMS classification: Primary 62G05; secondary 62G20.

Key words and phrases: dependent data, forecasting, time series, weak consistency, mean squared

error.

1 Introduction

In this paper we study the so-called static forecasting problem. More precisely, let ((X,,Yy))nez
be a stationary and ergodic sequence of IR? x IR-valued random variables with E {Y}#} < oo
Given the data set

Do ={(X_p,Yo0), oo (X1, Y0)}

and X, we consider the problem to construct estimates m., (X, D:}L) of
E{Y|X° Y .}

such that

—00)

E{|mn(X0,D:;) ~E{Y,|X° Y:;o}f} S0 (n— o0).
For simplification, we have introduced the notation
Z]lg:<Zk:7Zk7+1a"'7Zl)7 k<l

for arbitrary random variables Z,, (n € Z). Both the static forecasting problem and the related,
but more complicated dynamic forecasting problem (including the special case of autoregression),
see, for example, Chapter 27 in Gyorfi et al. (2002), have evolved from the striving for generality
in the estimation of dependent series.

Most of the results in the existing literature provide consistency in some way under the assump-
tion of more or less strong mixing conditions on the data (see, e.g., the monograph by Gyorfi et al.
(1989) for a review). Although there exist models where these conditions are met, they are very
hard to verify - no satisfactory statistical tests are known. Therefore the question arises, whether
there are estimates which are consistent under considerably weaker assumptions, e.g. stationarity

and ergodicity of the data. As for the dynamic forecasting problem, there are several negative



findings, see for example Bailey (1976) or Ryabko (1988), a summary can be found in Gyorfi,
Morvai and Yakowitz (1998).

Concerning static forecasting, based on works of Ornstein (1978) and Algoet (1992), Morvai,
Yakowitz and Gyorfi (1996) proposed an estimator, a modification of which can be shown to be
strongly consistent for all stationary and ergodic data in the above defined sense (see Gyorfi et al.
(2002), Section 27.3). For more results in view of static and dynamic forecasting and concerning
related problems, we refer to the works of Gyorfi, Lugosi and Morvai (1999), Gyorfi and Lugosi
(2000), Gyorfi and Ottucsédk (2007), Morvai, Yakowitz and Algoet (1997), as well as Morvai and
Weiss (2011) who constructed a dynamic forecasting scheme which is strongly consistent in a
Cesaro sense depending on the integrability order of the stationary and ergodic process.

Although the idea of the estimator of Morvai, Yakowitz and Gyorfi (1996) is natural and
although it is easy to define, it can be expected to require large amounts of data, the same applies
to the estimates of Algoet and Ornstein. This drawback makes the algorithms hard to apply, to the
knowledge of the authors none of them has ever been applied to any data sets yet, neither real nor
simulated. This motivates the attempt to derive estimates which can be computed easily, like the
partition estimate for example. Unfortunately, there are negative findings in a static forecasting
setting similar to the one studied in this paper: Gyorfi, Morvai and Yakowitz (1998) showed that
a partitioning estimate which is strongly universally consistent in the case of mixing assumptions
fails to be consistent when the data is only stationary and ergodic. It can therefore be assumed
that one cannot expect to find a “simple” estimate which is strongly universally consistent.

In many applications, it is sufficient, that weak universal consistency holds. Kohler and Walk
(2010) for example derived an optimal rule for exercising an American option by estimating con-
ditional expectations assuming only that the returns of the underlying asset are stationary and
ergodic. In the definition of the estimate, they use techniques from the theory of the prediction of
individual sequences (cf., e.g., Cesa-Bianchi and Lugosi (2006)), which have already been success-
fully applied in connection with portfolio optimization (cf., e.g., Gyorfi, Lugosi and Udina (2006)
and Gyorfi, Udina and Walk (2008)). In this paper we will adapt the ideas of Kohler and Walk
(2010) in order to derive an estimate which is universally consistent for all stationary and ergodic
data.

One of the main tricks in the proof is an averaging of estimates of different sample sizes, which
enables us to derive weak consistency results from Cesaro consistency of the original estimates.
Cesaro consistency of regression estimates in case of stationary and ergodic data was already
studied in Morvai and Weiss (2005), where local averaging estimates in case of a finite alphabet
were analyzed. In contrast, in this article we apply a different estimation principle and use a

combination of simple estimates in order to choose the smoothing parameters of our procedure.



More precisely, we use local modeling combined with techniques from the theory of the predic-
tion of individual sequences in order to define forecasting rules applicable to arbitrary stationary
and ergodic time series. We show that the resulting estimate is consistent whenever the response
variable is square integrable.

We consider several function spaces for our localized least squares estimate. Piecewise constant
functions will lead to an estimate similar to the well-known kernel estimate. In addition, we
consider estimates based on polynomial splines.

The definition of the estimate is given in Section 2, the main results are formulated in Section

3, the proofs are given in Section 4.

2 Definition of the estimate

First of all we choose an elementary estimate (so-called expert) for our problem, which will be a
localized least squares estimate. The idea is to select via the principle of localized least squares
the function, that would have performed best in the past at the task of predicting Y; only with the
knowledge of the string X! 41 YZ’__Jl_i_1 and then to predict Yy according to this very function and
the arguments X° 41 Y:j1+1. The parameter j quantizes how far we look back for our prediction.
We then define our prediction strategy as a convex combination of these experts, where the weights
depend on their performance in the past: The better the performance of the expert in the past,
the more reliable it seems and thus the higher (with respect to the other experts) is the weight we
assign to it.

In order to be able to show consistency of the estimate, we will at some point require boundedness
of the estimate and the response variable, which is why we will also use some truncation techniques.
For j,k,r,s € IN let F; 1 be a set of functions f : (]Rd)j xR77!' - R (with an obvious meaning
in case j = 1). Let K be a kernel function with corresponding bandwidth h, (which both will be

specified later), and choose 0 < t < % Given observed data

d:i = {(l'—na y—n)7 sy (x_1,y_1)} ’

define the corresponding localized least squares estimate as an approximation of
) 0 . 9 iy » . »
arg min B { (X YT = Yol | (X vE) = (220, y—?—s)}

by

mn,(j,k,r,s) () = mn,(j,k:,'r,s) ('7 d:‘:z)

i—J

—j—s—1 ; i 2 (@i it =@y )
ST @ di ) — oy ()] -K( RS Bl G BHTS )

r

= arg min
a gfe}',k . (Ii*j i—J )—(wij —J )
J ijfsfl K i—j—sYi—j—s —j—sY—j—s
i=—n+j+s h.




where the truncation operator is defined as

x if |[2| < L,
Ty(z) =

Lsign(z) else.

This definition only makes sense, if —n+ j+s < —j — s — 1, so we set

T (P @2y dTD)) i > 242541,

Mo, (Gok,rs) (T, d—p,) =

0 else

(with =2 = {(#_pn,Y—n);-- -, (x—j,y—;)}). Forevery (j,k,r,s), this gives us an expert who guesses
the outcome of the next observation with knowledge of the observations of the past and the current
value of the variable X. Here j quantizes how far we look back for our prediction, k is the number
of the function space considered, r describes the bandwidth which we use and s quantizes how
far we look back in the localized least squares problem. The last truncation ensures that for fixed
sample size all estimates are bounded by the same constant. After a certain rounds of play, we
consider for n > 2 the “cumulative loss”

n—1
. . _ 1 i
Ln(]a ]C,’I", S) = Ln((]7 k,’l", 5)7 d—’}z) = n—1 Z (mi,(j,k,r,s) (x—n-‘ri;d—z-m 1) - Tnt (y—n+i))
=1

2

The cumulative loss quantizes how well our prediction strategy performed in the past.
Let (q(j,k,r,s))jkrscN be a probability distribution such that g(; s > 0 for all j,k € IN. Set

¢n, = 8n?! and define weights (depending on the cumulative loss)

_ —(n—1)-L,(j,k,r,s)/c
Wi, (Gokrys) = Ao - € D TR e

and their normalized values

W, (4,k,7,5)

Un,(jukyrs) = =5 :
2 By,5=1 Wn,(@,8,7.,6)

Set

o0

mn(x()a d:»}L) = Z Un,(j,k,'r‘,s) : mn,(j,k,r,s) (3707 d:;)v

7,k,r,s=1
which is a convex combination of the experts with weights v, (j k. rs)- The final estimate 7, is
defined by the arithmetic mean of these convex combinations extending their “backsight” with
growing index 1¢:

. _ 1 _ _
1 (X0, D)) = - > mi(Xo, D7)

i=1



3 Main Results

In order to formulate our main result, we need the notion of sup-norm covering numbers, which

we introduce in the next definition.

Definition 1. Let ¢ > 0 and let G be a set of functions R — IR. Ewvery finite collection of
functions g1, ..., gn : R — R with the property that for every g € G there is a j = jlg) e {1,..,N}
such that

lg = gilloo = suplg(2) — g;(2)| <e,
is called an e-cover of G with respect to ||-|| . Let N (e,G, ||-||.) be the size of the smallest e-cover
of G w.r.t. |||, take N (,G, ||-|l..) = o0 if no finite e-cover exists. Then N (g,G, |-, ) is called

the e-covering number of G w.r.t. ||-|| . and will be abbreviated to N (£,G).

Our main theorem is valid for all (strictly) stationary and ergodic sequences
((X;,Y])) g Here a sequence of IR'-valued random variables (Z;) ez defined on the same proba-
bility space is (strictly) stationary and ergodic if for each B € Bz (where By is the Borel o-algebra

in (R")%) and each k € Z
P{(Z;)jen € B} = P{(Zj1r)jem € B},
and if for each B € By with the property that the event

A={(Zj+k)jez € B}

does not depend on k € Z one has
P(A) € {0,1}
(cf., e.g., Breiman (1968), pp. 118, 119, Doob (1954), Section X.1, or Gyorfi et al. (2002), p. 565).

Throughout the paper we denote the Euclidean norm by ||-||,.

Theorem 1. For j,k € IN let Fj;, be a set of functions such that the following conditions are
satisfied:
N (8, Fj i) < 00 for all e > 0, (1)

and there exists a finite e-cover consisting of piecewise constant functions with respect to a finite
partition.

There exist By, € R (k € IN) with

sup [1fl.e < B < oo 2)
fE]:j,k
for all j and
lim By = oo. (3)
k— o0



J )
Furthermore for all j suppose that for any probability measure u on (]Rd) x IR~ and for every
a)’ j—1
g€ Lo ((IR) x IR ,u)

liminf inf — > du=0. 4
im in felr}jyk/lg fI7 du (4)

k—o0

Assume that ((X;,Y;)),cq is a stationary and ergodic sequence of R? x R-valued random vari-
ables with E{Yoz} < 0. Define the estimate ™, as in Section 2, where the kernel function

KRV SR s given by
K(v) = H (Jolls D),
with a nonincreasing and continuous function H : IRy — IR satisfying
HO)>0 and t-H(t)—0 (t— o).

Suppose that the bandwidth satisfies
lim h, = 0.

=00

Then
E{|mn(X0,D:}L) —E(Y|X° v} )|2} S0 (n— o0).

o0

Next we apply Theorem 1 to piecewise constant functions. In this particular case, the local
modeling estimate is given by a truncated localized kernel estimate which solves the localized least

squares problem in case of bounded piecewise constant functions. Application of Theorem 1 yields

Corollary 1. For every j € IN let {Pj7k = {Ajl k,A?k, . A;V{ck}}k N be a sequence of partitions
; ; , c

J

J . .
of (]Rd) x IR consisting of Borel sets A;k C (]Rd) x IR/~ which satisfy

lim sup diam(Aé- w) =0, (5)
k=00 1<ISN; e AL NS0 7

for every sphere S centered at the origin, where diam(A) denotes the diameter of A CIR'. Set
N; i
fj,k: ZallA;,k ca; € IR, |al| < Bk
1=1

Let B, > 0 (k € IN) be such that
lim S = oo. (6)

k—o0
Let ((X;,Y})) ez be a stationary and ergodic sequence of R? x R-valued random variables with

E {Y§#} < co. Define the estimate 1M, (Xo, D=1) as in Section 2. Then

B{

n(Xo,D"L) — E(Yo| X, Y1

oo

I’} =0 (> o0).



Proof. It is easy to see that we have for the e—supremum norm covering number

N
2 ok

N Fi) < (122 1) 7 <o,
’ €
where [z] denotes the smallest integer greater than or equal to z. Here the functions of the e-cover
can be chosen as piecewise constant with respect to P; ;. Furthermore

sup || flloo = Bk =: B,

€Fj k
with limy_, o Br = 00, so , and hold. It remains to check the denseness condition. Let

J .
1 be a probability measure on (]Rd> x IR~!. As the continuous functions of bounded support
are dense in Ly(u) (cf., e.g., Dunford and Schwartz (1958), Ch. 4, 8.19), it suffices to show that

for each € > 0 and for each continuous function g of compact support and for each K € IN there

exists f € {f: f € Fjk, k> K} such that

[ 17@) = gt ) < e

Choose k such that ||g||,, < Bk. Set

=2

ik

fa) =3 gled )i, (@)
=1

for some fixed 2%, € A%, 1 =1,..,Njp. Then ||fl|l <llgll < Bk, s0o f € Fjp Lete>0be
arbitrary and let C be the support of g. Choose a sphere S centered at the origin with C' C S and
u(S°) < W. Then

_ 2 — 2 2 c
J 7@ = o@f i) < [ 7@) = g ) + 4 gl - ()
5 €
< sup sup  |g(z) —9(y)I" + 5
1§1§Nj,k:A;ykﬂS7$@ w,yeAéyk
By uniform continuity of g on S and by we can now increase k until

sup sup |g(x) —g(y)|* <
1<ISN; kAL NS#D zyeAl

N ™

O
The estimate above locally fits a piecewise constant function to the data. As we will see from
the proof of Theorem 1, these piecewise constant functions are used as approximation of various
multivariate regression functions. In case that some of these regression functions are smooth, a
smooth approximation might achieve a much smaller Ly error than a piecewise constant function.
Therefore we will define next an alternative estimate based on function spaces consisting of poly-

nomial spline functions (i.e., piecewise polynomials which are globally smooth).



Depending on some parameters k € IN, Ly € IR and M € INg, we will define a space of tensor
product spline functions f : IR? — IR. Let Bil, a be the univariate B-spline with degree M, knot

sequence {—Lk + é}leZ’ and support

7 i+ M+1
L4 [T

(cf., e.g., de Boor (1978), Chapter IX or Gyorfi et al. (2002), Section 14.1). For ¢ = (i1, ...,1q4) € V/he
define the tensor product B-spline

BZM (T1,.0yq) = Bgl’M (1)« oo de’M (z4q) .

The tensor product spline space Sy ([—Lk, Lk]d) is then defined as

Sum ([—Lk,Lk]d) = span {BZM . supp (BzM) N [—Lk,Lk]d £ Q)} )

We will now impose some conditions on the parameters of the tensor product space which will

assure that we can apply Theorem 1 to the resulting set of functions.

Corollary 2. For every j € N put l; =d-j+j—1 and consider the following set of functions on
J .
RY (where we identify (IRd> « TR~ and Ile):

l,
Fik = Z ai By o lail < Br oy
i€ :supp (B, ) Nl=Li,Ly]'d 0

where the parameters fulfil M < Mpa.(k) for M. (k) € Ng and where

Br = 00 (k— 00), (7)
Ly — o0 (k— o), (8)
Mmar®)+ 1o L o). )

k

Let ((X;,Yj)),cq e a stationary and ergodic sequence of R? x IR-valued random variables with

E {Y}#} < co. Define the estimate 1, (X, DZ,) as in Section 2. Then

—-n

E{|mn(X0,D:;)—E(Y0|X0 Y—1)|2}—>0 (n — 0.

—0o07 — 00

Proof. Consider the set of functions

_ ) 2
fj,k = Z Qa; BijM ta; € {_Bka _ﬁk +& . _/Bk + \\/BkJ : 6} 5

9
. 1 .
icZi :supp(Bi‘]M) N[=Lx,Li)' #0



where |z| denotes the largest integer less than or equal to z. Using the fact, that the B-splines are
nonnegative and sum up to one (cf. de Boor (1978), p. 109, 110), it can easily be seen that F; x

is an e-supremum norm cover of Fj ;. Thus
Noo (E,ijk) < |~7:j,k| < 00,

where |-| denotes the cardinality of a set. Furthermore ]:'j7k consists of piecewise polynomials with
bounded coefficients. These can be approximated arbitrarily well in supremum norm by piecewise
constant functions and hence holds. By construction of Fj , and hold. As for the
denseness condition, let u be an arbitrary probability measure on IRY. As in Corollary 1, it suf-
fices to show that any continuous function g of bounded support can be approximated arbitrarily
well with respect to the lim inf—condition . Because of and , we may further assume that
l9ll. < Bk and that the support of g is contained in [—Ly, Ly}’

Set L= { (i1, it,) € 27 s supp (B, ar) 0 [~Lis Ll #0}. Fori € I choose u; € supp (BYy, )

and set

l .
[= Zg(ul) 'BifM-
i€l
Because of the fact that the B-splines sum up to one and are nonnegative, we have that || f||, <

lgll., and f € Fji. This implies

[, lota) = 5@ u(da)
R

<ol n (RO L)+ [ o) - £@)f ulde)
[=Lk,Lk]"
< 4llgl - p (RYN [=Le, L7 ) + supg(@) = f(@)]*
x€[—Ly,Li)"
By we have that
1, l;
u(RJ\[—Lk,Lk] )—>o (k — 00).

By using once more the fact that the B-splines sum up to one and are nonnegative we have that,
for given = € [~ Ly, Lx)”,
l .
l9(x) = f(@)] < lg(ws) — g(@)| - By (@)
iel
< sup  g(wi) —g(2)]

) 1
irx€supp(B,”,)

< sup l9(u) = g(v)].
wweRY, [[u—vl| o <(Mimaz (k)+1)/k
Because of @ and the fact that g is continuous and of bounded support we can conclude

sup |g(x) — f(@)]* =0 (k = 00).
IE[*Lk,Lk]lj



4 Proof of Theorem [1

In the proof of Theorem 1 we will apply Lemma 27.3 in Gyorfi et al. (2002), which we reformulate

here as

Lemma 1. For a prediction strategy g based on the sequence of decision functions {g;};, with

gi (IRd)i xR - IR,

define the normalized cumulative prediction error on the string 7,y as

n

L&ﬁZ%E:@N%W§W‘ﬂ0?

i=1

Let hy, ho, ... be a sequence of prediction strategies (experts), and let {q}, be a probability distri-

bution on the set of positive integers. Assume that h;(x},y" 1) € [-B, B] and
€ [-B, B]". Define

Wiy = qp - e~ DLema () /e

with ¢ > 8B2%, and
Wtk

Utk = 53 .
Dim1 Wi

If the prediction strategy g is defined by

t
e(21, 91 thkhk 2h i),

then, for everymn > 1,

- 1
Ly(§) < inf (Ln(hk) i nq’“) .
Here —1n(0) is treated as co.

Proof. See proof of Lemma 27.3 in Gyorfi et al. (2002).

Proof of Theorem The proof will be divided into several steps. In the first step of the

proof we show that the assertion follows from

limsup E {712 Z |Yi — mi(Xi’Dél)lz} < L*,
i=1

n—oo
where

L = E{[Yo - B |x° L))

oo

Because of

E { |1t (Xo, D=}) — E(Yo|X° ., Y1)}

=B { ¥ — i (X0, D1) "} ~ B{ Yo — B X2 2L

10



the assertion of Theorem 1 follows from
E{‘Yo—mn(Xo,Dj}L)\Q} S L' (n— o0). (12)

By we have that
L* < E{]Yo - mn(Xo,D:;)\Q} .

The definition of the estimate, the inequality of Jensen and the stationarity of the data imply

1 e _ L
Yo - E;mi(*x&p

2

E{|YO - mn(Xo,D:}L)|2}

IN

I
31
[
e
—_/
)-<
E
B
AS]

SO follows indeed from .

In the second step of the proof we show that follows in turn from

inf limsupE{’fnn,(j’k,m)(ng_‘_hY_‘HDD )= Y()’}gL*, (13)

g,k s€EN 500

Let 6 > 0 be arbitrary. By using the inequality
1
(a+b)2§(1+6)a2+(1+5)b2 (14)

for arbitrary a,b € R, § > 0 we get

1 - i— 1 1.1 2
(1+90) E; i(X;, Dy v)|” + 1+§)n;m—7’nf(ml :

From Y[ being square integrable, Lebesgue’s dominated convergence theorem and the stationarity

of the sequence we conclude

n

lim sup ( 1+ { Z|Y T (Y7) }—hmsup 1+ Z { — Ty YZ-)P}

n—oo n—oo

=(1+ 5) limsupE{|Yo — Tt (Yo)] }

n— oo

1, ..
S (1 + 5) hmsupE {Y02 1{\Y0|>n"}} = 0
n—oo

11



By Lemma 1 (applied in an obviously modified version for a finite sequence of prediction strategies)

we have

1 i1 2

= |mai(Xi, g™ = Toe (V3)]

i=1
. 1 — . 2 Ing;
i (i X, DY =T (V)] — ¢y - —25002

= j,k,lrr}se]N (n 1:21 ‘mz,(g,k,r,s)( » Lo ) n ( )’ & n ) ,

which implies (noting lim,, . <= = 0)

n—oo ;
=1

) 1o _ -
hmsupE{nZ|mi(Xi,D6 Y= T (Yz)|2}

. . 1 = i— 2 lnq‘,k,r.s
<limsup E { inf <n Z |mi,(j,k,r,s)(Xi,DO 1) — T (Yz)| — - J) }

n— 00 J.k,r,s€N P

. . 1 - Gi— 2
< inf limsupE {n Z |mi7(j7k,r7s) (X, Di) — T (YZ)’ }

T 4krs€EN poyoo =1

Jk,rs€EN p 00

. . 1 — i 2
= inf limsup - gl E {|mi,(j7k,r,s)(Xi7D6 Y — T, (Yz)| }
< i - n=ly __p 2}
< j’k}g}sfemhgsong{!mn,u,k,r,s)(XmDo ) = Tt (V)|

—  inf limsupE{|mn,(j7k7T,s)(X07’D:i)—Tnt (y0)|2}. (15)

Jk,rs€EN p 00

The last equality is due to the stationarity of the sequence. We observe that in the analysis of the

limes superior of my, (jk,rs) We can assume without loss of generality that n > 2j + 2s + 1, thus

2(Js
by definition
M, Gier,s) (X0, DZ3) = Tt (mn,(j,k,r,s)(ngHvY:jlﬂvD:fL)) '

Now from [T (2) — T (y) | < |z — y| for arbitrary y, z € IR we conclude

. _ 2
hmsupE{’mn’(j,kyr’s)(Xo,D_}L) — T (YO)| }

n—oo

. 2
<limsup E { ’mn,(j,k,r,s)(ngHv YL, D5) - YO‘ } :

n—roo

From this and we see that is indeed implied by .

In the following steps of the proof we will show

. 2
inf limSUPE{‘mn,(j,k,m (X240, Y4, D) — YO‘ }

J.kris n—oco

. . . _ 2
< gl B Y5 ~ [} 09)

Let 6 > 0 be arbitrary. By using inequality we get
S 0 -1 —J 2
My (5,k,r,s) (X—j+17 Y7j+17 D—n) - 1/0’

12



N — 1
< U 8) [ gy (X230 Yo, D) = T, ()] 4 (1L 5) [T, (W) = Vo2 (17)

For simplification put z]” := (z]*,y;") for [ < m and define

_ 2
97(z2511) = |f(x0—j+1ayfjl'+1) — T, (yo)|

for f: (IRd)j x IR~ — IR. We notice that M, (j,k,r,s) depends on z:fl and write in this context
. 2
gmn,(j,k,T,s)(29j+1; z220) ‘mn,(] k rs)( i+ Y J+17d j) T, (yo)’
For the same reason we will use below also the notation gf(29j+1; 277).
Let € > 0 be arbitrary. In the third step of the proof we show that for arbitrary j, k,r,s € IN
and € >0

limsup E {gmn,(]‘,k,r,s) (Z°; 415 Z:ﬁt)}

n—oo

SlimSUP//gm71 (Jkr) —]+1’ —”) dP 29,1127 _ ==

n—oo

—J ( —]+1) dP ( n)

—j—s

+3e+ T](,gg, (18)
where

limsupT( ) =o.

jkse
S§—>00

First of all we note that
E {gmn.(j,k,r,s) (Z9j+1; Z:ZL)}
- {E {gmn em (225103 223) Zii}}

[ [ om0 ) AP, ).

Pute; := ﬁ and denote by I’ jE,é a corresponding smallest €;-supremum norm cover of Fj;, consist-
ing of piecewise constant functions. Without loss of generality we can assume that sup,,¢ z< 1 I1h] o <
o

By, so for f € Fji, f € F;,; we have by a? — b? < |a + b |a — b for a,b € R that

lor =97l < 4B |1 = 7l

Choose (depending on z7) f € F;,; with Hf — My, (j ey s)

< g1. Then
o0

0
/gmn,(j,k,r,s)( _j+15 % )dPZOj 1278 =2 ;L(Z—j-i-l)
S /gf( ]+1, )dPZo] Zz= J_Z T'L(Zo_j+1)+€

0
S [ CIET PR COB Y

—j—s —j—
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+/gf(z(ij+1; 2) dP o

—j+1

*/gf( O—J+17 )dPZOJH\Z —z*ﬂf,s(zo—j-%l)

—j—s —J

|Z270=2= i(zo—j-f—l)

As Tg, (Yo) is bounded and F ;kl consists of piecewise constant functions, there exists a finite
partition A;k such that g ¢ can be approximated in supremum norm up to an error of at most €
by a function which is piecewise constant with respect to Ajk. Using this result we see that the

latter difference above can be bounded in absolute value by

4B Y ‘PZ9j+1|Z:i:Z—.j (A) =P o (A +e
A€AS,

—n ]+1‘Z7] s —j—s

Here we have used that for a piecewise constant function h with respect to a finite partition A and

measures v, it holds that

‘/hdu/hdu

We conclude by the martingale convergence theorem (cf., e.g., Loéve (1977), 32.4.A) and dominated

< Nhlloo - D [1(A) = v(A)].

AcA

convergence

limsup E {gmn,(j,k,r,s) (VASIRE Z:j)}

n—0o0

§limsup//gf 413 E )dPZ“JHIZ,J —— (zo_j+1) dPZ:fL(z:£)+25

n— oo A
+ 4B - Z hmsupE{‘E{lA j+1) ‘Z:i} *E{IA (Zng) ’Z:§_s}’}
AEAE n—oo
:limsup//gf it 2 )dPZo D ‘(zo_]—H)dPZ—j (227) +2¢
m su O 4alZZ)_ =221, =
+4B7- Y E{‘E{lA (2%) |72% ) - {14 (ZEJ-H)‘Z:]J-'_SH}
AcAs,
<timsup [ [ ga, o (2500350 g0y oy (2500) AP,y () + 32
n—oo E
w4z > E{|[B{14 (2, ‘Z ] }fE{lA(ZEjH)‘Z:j_SH},
AcAs,

thus holds.
In the fourth step of the proof we show that for arbitrary j, k,r,s € IN and € > 0

timsup [ [ gm0 G s D APy oy () P ()
n—o0 j—s J
—j—s—1 ) R z7 3 —zi79
szfn+j+s Grn,,, 7krs)(Zz?—j+17zf'fL) K( . Ao .
<limsup E

n—c0 S R
2——n+j+s hy

Y

jkrse

+2e, (19)
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with
lim sup T® =o.

jkrse
T—>00

We return to f at the expense of € and proceed with

—3J —j—s "—j—s

/gf(zo_j+1;2:fl) dP o 773 .o (22,41)

—i —i

Jopl:200) K (Z""‘ShTu"j‘s> APz (ul;y)
K (hu) Py (u2; )

‘*"/gf-(zojﬂéz_fz) dP 40 i i (z9j+1)

<

LilZ25i =2

—J Z:ijs_ :gfs
Jo;(u;270) K (hu) APz, (u2; )

—Jj—s

22 —ul),
K <m> dPgo  (u?;_,)

—j—s

Y i
e ()
sup |E {gf(Zng) 1275 = ZJ*S} - 27—z

where the latter term can be bounded by

nd . — .
fEF; S Py
-

This expression tends to 0 as r tends to infinity P,—, -almost surely by Lemma 24.8 in Gyorfi

—j—s

et al. (2002) as F ].Eg is finite. Furthermore dominated convergence can be applied since we deal
with bounded random variables. We continue with the analysis of the remaining term, which can

be rewritten as
i=—ntj+s If\Fimjt15Z—n hy
. —i i—j
—j—s—1 F_j—s Fi—j—s
Zi=—n+j+sK( h )
Jai(u =) K (s Y aP g (w2, )
gf u7j+1’z—n h ZO,J;S u*jfs
+ -
L Py 0
fK By dPZijs(ufjfs)
et o SEVOU Y Rl (e R
Zi:—n—i—j+s gf (Zi—j-i-l’ Z*n) K ( hy
—j—s—1 K z:;:is—z:::;is )
Zz‘:—n+j+s ho

where an upper bound for the last difference is given by

—J —J

E ZO K Z*jfs_Z*jfs —j—s—1 i K Z*jfs_zz:j:fs
95( —j+1) ’ R Zi:7n+j+s gf(zi—j+1) : N —
sup - - — p —
feF‘fEl E K Zig—s_Z:JJ‘—s —j—s—1 K 2:575—22:275
" he Zi=—7t+j+s - h,
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From this we conclude that the left-hand side of is bounded from above by

—j—s—1 7 .Z*]' K Z:]]:—S_Z;:]]:—s
Zi:—n+j+s gmn,(j,k‘,r,s)( i—j+1s —n) ! hr
limsup E

n—o0 Sl g zZ1_—z79_,
i=—n+j+s h

"

+ 2¢

+/ sup E{gf(29j+1) = 22:523}
feF;;
0 e
E gf(Z—j+1)'K .
- =izl
e ()

0 z2) =271,
E{gf(Zj+1)'K< B >}
()

—j—s—1 i LT
S s 9r () K (h>
a —j—s—1 z:,’:,s—zii:i,s
Zi:—n+j+sK %

In order to complete the proof of we are reduced to verifying

Ea I
o ()
s
—j—s—1 ; 271 =),
Zi:j—78L+j+s gf(zzz'—j+1) K <Jhrj)
—j—s5—1 z:jis—z::jfs
Zi:j—fri-j-i-sK <Jhr])

Because of K > c-Ig, . for suitable ¢ > 0, ¥ > 0, where Sp 7 is the ball in (IR%)5+1 x R**! centered

dPZ—j (Z_j )

—j—s > 178

+ lim sup / sup

n—o00 fep;k}

lim sup/ sup
n—oo -fGF]‘Ekl

dP,;(zZ)) = 0. (20)

at 0 with radius 7, we have

22— 27 |
E {K (75,1”) } >c- PZ:;_;S (zij,s + SO}F_M) =0 (21)

P,-; -almost everywhere (cf., e.g., Gyorfi et al. (2002), pp. 499, 500). Let e3 be arbitrary and

; 27]: —ij
Se, =420 ,€(R'xR)*™ : E<(K % >ep.

The boundedness of the considered functions yields

223 —279_
E {gf(Zng) K (Jhrj) }
/ Sujz —J z=3
T e ()

set
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Zl—j—i+31+egf( Zijp1) K <Z5;TZ5>
SOTLK <h>

B {gf(ZEjH) K <Z;ShZJJS> }

Z—j—i+11+sgf( Zijp1) K <Z_5;j_5>

DDA ¢ [
i=—ndits Ao

dPZ*] (Z:ZL

= / sup
552 X(IRd)nf]'*s xIR"—3—s fGF]Ekl

bor Py (55)

.
for some ¢; € R4. By we know

P,y (S5) =0 (e250).

In addition it holds that

P -3

E {gf(ZOjﬂ) K (J;TZJ) }
ZZ_]*’SLJF;JFSQJC( Zijp1) K (W)

G P B
E{gf(ZO”l) K (W)}

2 e
()

/ sup
552 X (Rd)n7j75 xIR"—J—s feFJskl

dP - (223)

= // sup
552 fGFJEkI

Z_] s—1 Z:;'.—efzz-‘:j]-‘,s
i=—n+j+s gf( 2 ]+1) K — |
S - —J
_ —j i—g dP, z7i |zmi Z:ffsfl(z—j—s
jos—l Zj—s"Fizi-s
Z——”‘H+s i
dpP ( —j—s—1
z—i—s—1 Z_n

271 —z7I
Elgs(2°,,,) K (h)}
sl Z:é—s_zf:j,s
i=—n+j+s gf( i— j+1) - K %

Sl K [
i=—n+j+s hr

S/ sup sup
279 €S, FEF]

—j—s
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B o200 K (i)
aes)

; 271 —Z;T1
n72‘1j72s z—]7n+j+8 gf(Z;—j-‘rl) K ( : hy, . )
@)

1 —j—s—1 2 27,
n—2j—2s Zi:*nJerrS K h,

=E sup sup
271 €8, fEF;}

—j—s

s+1
Let R = (]Rd> x R**! be endowed with the Euclidean norm ||-||, and Co(R) be the separable
Banach space of continuous, real valued functions g on R with g(xz) — 0 as ||z|| — oo endowed

with the maximum norm ||-|| and corresponding Borel o-algebra. Because of the continuity of

0
the kernel function K and K(v) — 0 as |[v|| — oo, K (A_hZT*S) is a random element in Co(R)

70 . _ 70
with E { HK ( hZ_S> H } < K(0) < co. The corresponding relation holds for g7 (Z7) - K ( hZ‘S )
Now, the ergodic Theorem 2.1 in Krengel (1985), Chapter 4, yields that almost surely

1 —j—s—1 . . gi=i
— ¥ 7i V. K| Tizizs
n—2j—2s 95(Ziji1) ( hy )

— 0,

i=—n+j+s
—Jj
_E 70 V.| T=izs I js
gf( —g+1) I
1 izttt 77
- - K| —975 | _ gl K[| —175 0.
n—2j - 2s iz_;j+s hy By -

Therefore in the right-hand side of , the numerator and the denominator of the second term

and

almost surely converge to the numerator and the denominator of the first term, respectively, uni-
formly with respect to z:;-;s €S, and f € F;,; (because of the finiteness of Fjs,;). Since the
denominator of the first term is grater than e on S,, we even have uniform convergence of the
fracture. Application of the dominated convergence theorem completes the proof of . Thus

is obtained.

The fifth step of the proof will be to demonstrate

—j—s—1 A N AAN ¢ Zif—s*Zf:f-s
Zl_f’ﬂ+‘]+8gmn ]k:’rs)( i—j+1 —n)' hr

limsupE —
n—oo s—1 zZ~1 s Z;:,]v,s
DRI ¢ (h>
_ 2
< inf E{|f ]+17Y ]+1) TBkYO| } +2€+TJ(/§238 (23)
fefjk

for arbitrary j,k,7,s € IN and € > 0 where

hmsupT( ) _=o.

krse
r—>00
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By definition of the estimate we have

—j—s—1 i I K zZ1_ —z73_,
Ez—fn*Fj*FS e k:rs)( i—j+1 —’ﬂ) ’ T Ry
limsup E —
n—o0 Z j—s—1 Z,JZ, —Z: J],
Z—*n+j+5 hy.
. A A
—Jj— 7 . —j—s izj—s
z*—n+j+9 gf(Zi—j+1) K ( hr >
=limsup E< inf ; P
n—00 FE€Fjk —j—s—1 Z75 ~Z; ],
Zi:—n+j+s K - h.

j—s—1 i zZ1_—z73_,
Z’L_*TLJ"]J"S gf(ZifjJrl) K ( hor
< finf limsup E - -
EFjk n—oo —j—s—1 Z7]_—Zi"]_,
Zi:7n+j+s K h,

I
1j—n+J+s gf( i— j+1) K (Jhrj> .
= inf hmsup/ — — dP ,—;(z_})
fE€Fjk n—oo ijfsfl K (Zfs;jiis) -

i=—n+j+s

1 22d ==l
‘Zl—j:prﬁrs gf( Zi— j+1) K <fw)
s—1 221 =zl
Z’L*]*TLJerrS ( ! h, . )
iz
E {gf(29j+1) K (Z]Shr —= ) } ,
B 279 —z79 ’ dPZ:f{(z_Z‘)
el ()]
22—z,
E {gf(ZOjJrl) K (m) } ,
o ()}
—J z=3
E{gf(29j+1)'K (W)} ,
_ inf / - P, (=71 ),
fEFjk -z, —j—s - I8
R )
where the last equality follows from the proof of . With the same arguments as already used,

we see that this can be bounded by

< inf lim sup/
fE€EFjk n—oo

inf E{g;(Z ]+1)}+2€

fe€Fjk
+/75117p E{gf(Z—j+l)|Z—J siz:j—s}
FeF;;

:? s Z:J] s
_ ‘dPZ i (255,

(L))

where the latter term tends to zero as r tends to infinity by Lemma 24.8 in Gyorfi et al. (2002)
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and dominated convergence. This completes the proof of (23).
We sum up the results of steps three to five of the proof. Noticing , we have shown that for
arbitrary €, > 0

. 2
inf limsupE {‘mn,(j,km (X000, YAy, Do) — YO‘ }

J.k,rs€EN oo

. . _ 2
< j7k71701}fem ((1 +6)- (f}el}?fjk E {‘f(X9j+l7ijl+1) — T, (Yo)] }

1
+ Sjksa +Tjkrss + 75) + (1 + 5) -E {ITBk (Yb) - Y0|2}>

3 2 : 0 —-1 2
< j,k,lrl,lsfell\f ((1 +6)" - (fg}f]k E{|f(ij+17Y—j+l) - YO‘ } + Sjkse

+Tjkme+7-s> +(249) - <1+<13> -E{|Tg, (Yo)—YOQ}>,

where
lim sup Sjgse =0,
5§—00
for arbitrary j, k,
lim sup nkrss =0,
T—00

for arbitrary j, k,s. Using

inf (ajkrs +0;) < lim inf infa;r.s + lim sup by
j,k,r,s( JrTs ) N—o0 j,k>N 7,8 JRTS N—oo kZ]sz

we can conclude

J:k,mis n—oo

. 2
inf limsupE{‘Thn’(jykms)(Xoj+1,Y_jl_H,'D_zl) - Y| }

< 2 1 . . { 0 _‘1 _ 2}
= (1 + 5) ngnoo <j,}§nsz (féI-lrf:jk, E |f(X—]+17Y*j+1) YO|

0 (Sjee +inf Tyrec ) +7- 5))
S T

1 .
o) (1+3) Jim_sup B{|7, (¥) - ¥’}

< 21 . . 0 ) ,41 . 2 ) 2
< (1+0) ngnooj}g]vfg}fjkE{|f(X,JH,Y_]+1) Y| }+7 (1+6) e

The choice of € and § was arbitrary, hence holds.

The only point remaining is to bound
. . . 0 -1 _ 2}
Aty 0, B Y5

by L* which will be the sizth and last step of the proof. Straightforward calculation leads to

_ 2 « _ _ 2
E{|F(X%0, YT ~ Yo"} = 1 + E{[B{IX 00, Y21} — Bl X%, 0, Yo
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_ _ 2
+E{|E{Y0\X91+1’Y—jl+1}*f(ng+1vY—j1+1){ }
Thus

. . . 0 -1 2
dim i B ¥ %l

* . . . 0 -1 0 -1 2
=L+ lelooj}anfN <fg}:f;k E{|E{Y()‘X—j+1’yfj+1} - f(X—j-HvajJrl)‘ }

+ E{|E{KJ\X9007Y:010} - E{YOXOJH»Y_lerlHQ})

< '+ limsup E{ [B{YG| X0, Y21} - B{YIXO, 0 YA )

j—oo

. . . 0 -1 0 -1 4|2
+ i inf iof E{IE{%\X_M,Y_]-H} - F(X200,Y ) } ~

Considering the second term put
W; =E{Yp|X°,,,, Y\, }

The sequence (W), is a martingale satisfying suij]NE{|Wj|2} < E{Y§} < oco. Hence
it converges almost surely and in Lo to a square integrable random variable and the limit is

E{Yy| X%, Y"1} (see Loeve (1977), 32.4.A).

—00)

In a final step, set {; =d-j+ 7 —1and

) = B (X, = 0.y =)

Then, by the inequality of Jensen, m; € Lo (]RIJ',P(XO y-1 )) and

—j+17 =541
E {‘E {Y0|X9j+1yy:jl+1} - f (X9j+17Y:jl+l)‘2}
- E{’ma‘ (X250 Yo) — (XEJ‘H’Y:J'IH)’Q}

= [ mien) ~ 1P P o).

—gtrY g1
J )
where we again identify (le> x IR~ and IRY. This allows us to conclude by that

. . . 0 —1 0 —1 2
dim g BRGNS V) — (X Y0

o o . _ — 2
Shmlnfhmlnffelr}l{kE{‘E{Y0|ng+1,Yij1+1}—f(XEj_H’Y 1 )’ }:0.

j—oo  k—oo -+l

The proof is complete. O
Acknowledgements

The authors would like to thank two anonymous referees and the associate editor for various very

helpful comments.

21



References

[1] Algoet, P. (1992). Universal schemes for predicition, gambling and portfolio selection. Ann.
Probab. 20, pp. 901-941.

[2] Bailey, D. H. (1976). Sequential schemes for classifying and predicting ergodic processes. PhD
thesis, Stanford University.

[3] de Boor, C. (1978). A Practical Guide to Splines. Springer, New York.
[4] Breiman, L. (1968). Probability. Addison-Wesley, Reading, MA.

[5] Cesa-Bianchi, N., and Lugosi, G. (2006). Prediction, Learning, and Games. Cambridge Uni-

versity Press, New York.
[6] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.

[7] Dunford, N., and Schwartz, J.T. (1958). Linear Operators, Part I, General Theory. Interscience
Publ., New York

[8] Gyorfi, L., Hardle, W., Sarda, P., and Vieu, P. (1989). Nonparametric Curve Estimation from
Time Series. Springer-Verlag, New York.

[9] Gyorfi, L., Kohler, M., Krzyzak, A., and Walk, H. (2002). A Distribution-Free Theory of

Nonparametric Regression. Springer Series in Statistics, Springer, New York.

[10] Gyorfi, L., and Lugosi, G. (2000). Strategies for sequential prediction of stationary time series.
Internat. Ser. Oper. Res. Management Sci. 46, pp. 225-248.

[11] Gyérfi, L., Lugosi, G., and Udina, F. (2006). Nonparametric kernel-based sequential invest-
ment strategies. Mathematical Finance 16, pp. 337-357.

[12] Gyorfi, L., Lugosi, G., and Morvai, G. (1999). A simple randomized algorithm for sequential
prediction of ergodic time series. IEEE Trans. Inform. Theory 45, pp. 2642-2650.

[13] Gyorfi, L., Morvai, G., and Yakowitz, S. (1998). Limits to consistent on-line forecasting for
ergodic time series. IEEFE Trans. Inform. Theory 44, pp. 886-892.

[14] Gyérfi, L., and Ottucsak, G. (2007). Sequential prediction of unbounded stationary time series.
IEEE Trans. Inform. Theory 53, pp. 1866—-1872.

[15] Gyorfi, L., Udina, F., and Walk, H. (2008). Nonparametric nearest neighbor based empirical
portfolio selection strategies. Statistics & Decisions 26, pp. 145-157.

22



[16] Kohler, M., and Walk, H. (2010). On optimal exercising of American options in discrete time

for stationary and ergodic data. Submitted for publication.
[17] Krengel, U. (1985). Ergodic Theorems. de Gruyter, Berlin, New York.
[18] Loéve, M. (1977). Probability Theory. 4th ed. Springer-Verlag, Berlin, New York.

[19] Morvai, G., and Weiss, B. (2005). Forward estimation for ergodic time series. Ann. Inst. H.
Poincaré Probab. Statist. 41, pp. 859-870

[20] Morvai, G., and Weiss, B. (2011). Nonparametric sequential prediction for stationary pro-
cesses. Ann. Probab. 39, pp. 1137-1160

[21] Morvai, G., Yakowitz, S., and Algoet, P. (1997). Weakly convergent nonparametric forecasting
of stationary time series. IEEFE Trans. Inform. Theory 43, pp. 483—498.

[22] Morvai, G., Yakowitz, S., and Gyorfi, L. (1996). Nonparametric inference for ergodic stationary
time series. Ann. Statist. 24, pp. 370-379.

[23] Ornstein, D. (1978). Guessing the next output of a stationary process. Israel J. Math. 30, pp.
292-296.

[24] Ryabko, B.Y. (1988). Prediction of random sequences and universal coding. Problems Inform.
Transmission 24, pp. 87-96.

23



Daniel Jones!
Fachbereich Mathematik, Technische Universitat Darmstadt, Schlossgartenstr. 7, 64289 Darm-
stadt, Germany

E-Mail:| jones@mathematik.tu-darmstadt.de

Michael Kohler
Fachbereich Mathematik, Technische Universitat Darmstadt, Schlossgartenstr. 7, 64289 Darm-
stadt, Germany

E-Mail: | kohler@mathematik.tu-darmstadt.de

and Harro Walk
Pfaffenwaldring 57
70569 Stuttgart
Germany

E-Mail:| harro.walk@mathematik.uni-stuttgart.de

24


mailto:jones@mathematik.tu-darmstadt.de
mailto:kohler@mathematik.tu-darmstadt.de
mailto:harro.walk@mathematik.uni-stuttgart.de




Erschienene Preprints ab Nummer 2007/001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2011/025

2011/024

2011/023

2011/022

2011/021
2011/020

2011/019

2011/018

2011/017
2011/016
2011/015

2011/014

2011/013
2011/012

2011/011
2011/010

2011/009

Felber, T.; Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent static
forecasting of stationary and ergodic time series via local averaging and least squares

estimates

Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of station-

ary and ergodic time series

Gyorfi, L.; Walk, H.:  Strongly consistent nonparametric tests of conditional indepen-

dence

Ferrario, PG.; Walk, H.: Nonparametric partitioning estimation of residual and local

variance based on first and second nearest neighbors
Eberts, M.; Steinwart, I.:  Optimal regression rates for SVMs using Gaussian kernels

Frank, R.L.; Geisinger, L.. Refined Semiclassical Asymptotics for Fractional Powers

of the Laplace Operator

Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian

on a bounded domain

Hénel, A.; Schulz, C.; Wirth, J.:  Embedded eigenvalues for the elastic strip with
cracks

Wirth, J.:  Thermo-elasticity for anisotropic media in higher dimensions

Hdllig, K.; Horner, J.:  Programming Multigrid Methods with B-Splines

Ferrario, P: Nonparametric Local Averaging Estimation of the Local Variance Func-
tion

Miiller, S.; Dippon, J.:  k-NN Kernel Estimate for Nonparametric Functional Regres-

sion in Time Series Analysis

Knarr, N.; Stroppel, M.: Unitals over composition algebras

Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of charac-
teristic two

Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes

Jentsch, T.; Moroianu, A.; Semmelmann, U.:  Extrinsic hyperspheres in manifolds

with special holonomy

Wirth, J.:  Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equa-

tions



2011/008

2011/007

2011/006

2011/005
2011/004

2011/003

2011/002
2011/001
2010/018
2010/017

2010/016
2010/015
2010/014
2010/013
2010/012
2010/011

2010/010

2010/009

2010/008

2010/007

2010/006

Stroppel, M.: Orthogonal polar spaces and unitals

Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Grup-

penalgebra

Solanes, G.; Teufel, E..  Horo-tightness and total (absolute) curvatures in hyperbolic

spaces
Ginoux, N.; Semmelmann, U.:  Imaginary Kahlerian Killing spinors |

Scherer, C.W.; Kése, I.E.:  Control Synthesis using Dynamic D-Scales: Part Il —
Gain-Scheduled Control

Scherer, C.W.; Kése, I.E.:  Control Synthesis using Dynamic D-Scales: Part | —
Robust Control

Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G5-structures
Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
Kimmerle, W.; Konovalov, A.:  On integral-like units of modular group rings

Gauduchon, P; Moroianu, A.; Semmelmann, U.:  Almost complex structures on

quaternion-Kahler manifolds and inner symmetric spaces

Moroianu, A.; Semmelmann,U.: Clifford structures on Riemannian manifolds
Grafarend, E.W.; Kihnel, W.: A minimal atlas for the rotation group SO(3)
Weidl, T.: Semiclassical Spectral Bounds and Beyond

Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
Effenberger, F.: Stacked polytopes and tight triangulations of manifolds

Gyorfi, L.; Walk, H.: Empirical portfolio selection strategies with proportional transac-

tion costs

Kohler, M.; Krzyzak, A.; Walk, H.: Estimation of the essential supremum of a regres-

sion function

Geisinger, L.; Laptev, A.; Weidl, T.:  Geometrical Versions of improved Berezin-Li-Yau

Inequalities
Poppitz, S.; Stroppel, M.:  Polarities of Schellhammer Planes

Grundhdfer, T.; Krinn, B.; Stroppel, M.:  Non-existence of isomorphisms between

certain unitals

Hdllig, K.; Horner, J.; Hoffacker, A.:  Finite Element Analysis with B-Splines: Weighted

and Isogeometric Methods



2010/005

2010/004
2010/003

2010/002

2010/001

2009/008
2009/007

2009/006

2009/005
2009/004
2009/003
2009/002
2009/001
2008/006

2008/005

2008/004

2008/003
2008/002

2008/001

Kaltenbacher, B.; Walk, H.:  On convergence of local averaging regression function

estimates for the regularization of inverse problems
Kihnel, W.; Solanes, G.: Tight surfaces with boundary

Kohler, M; Walk, H.:  On optimal exercising of American options in discrete time for

stationary and ergodic data

Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein

Quadric, and Automorphisms of Heisenberg Algebras

Leitner, F.:  Examples of almost Einstein structures on products and in cohomogeneity
one
Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED

Griesemer, M.; Moeller, J.S.:  Bounds on the minimal energy of translation invariant

n-polaron systems

Demirel, S.; Harrell Il, E.M.:  On semiclassical and universal inequalities for eigenval-

ues of quantum graphs

Béchle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
Geisinger, L.; Weidl, T.:  Universal bounds for traces of the Dirichlet Laplace operator
Walk, H.: Strong laws of large numbers and nonparametric estimation

Leitner, F.:  The collapsing sphere product of Poincaré-Einstein spaces

Brehm, U.; Kiihnel, W.: Lattice triangulations of E2 and of the 3-torus

Kohler, M.; Krzyzak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian
data using nonparametric regression and a reduced number of nested Monte Carlo
steps

Kaltenbacher, B.; Schopfer, F.; Schuster, T.: lterative methods for nonlinear ill-posed
problems in Banach spaces: convergence and applications to parameter identification
problems

Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale
singularities

Effenberger, F.; Kiihnel, W.: Hamiltonian submanifolds of regular polytope

Hertweck, M.; Héfert, C.R.; Kimmerle, W.: Finite groups of units and their composition

factors in the integral group rings of the groups PSL(2, q)

Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with

a correction term



2007/006

2007/005

2007/004

2007/003
2007/002

2007/001

Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term

Frank, R.L.; Loss, M.; Weidl, T.:  Polya’s conjecture in the presence of a constant

magnetic field

Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrédinger operators

on metric trees
Lesky, PH.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry

Meister, A.:  Deconvolution from Fourier-oscillating error densities under decay and

smoothness restrictions



	Introduction
	Definition of the estimate
	Main Results
	Proof of Theorem 1

