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On the Magnetic Pekar Functional and the Existence of

Bipolarons

M. Griesemer, F. Hantsch and D. Wellig

Universität Stuttgart, Fachbereich Mathematik

70550 Stuttgart, Germany

Abstract

First, this paper proves the existence of a minimizer for the Pekar functional
including a constant magnetic field and possibly some additional local fields that
are energy reducing. Second, the existence of the aforementioned minimizer is used
to establish the binding of polarons in the model of Pekar-Tomasevich including
external fields.

1 Introduction

The Pekar functional including external electric and magnetic potentials is given by∫ (
|DAϕ|2 + V |ϕ|2

)
dx−

∫
|ϕ(x)|2|ϕ(y)|2

|x− y|
dxdy (1)

where DA := −i∇ + A and ϕ ∈ H1
A(R3). The letters V and A denote (real-valued)

scalar and vector potentials associated with the external electric and magnetic fields
−∇V and curlA. Since ϕ denotes the wave function of a quantum particle (electron)
we impose the constraint that ∫

|ϕ|2 dx = 1. (2)

The functional (1) arises e.g. in the study of the ground state energy of the polaron
[5, 11] and in the analysis of a self-gravitating quantum particle [14]. Depending on
the context, the Euler-Lagrange equation associated with (1), (2) is called Choquard
equation or Schrödinger-Newton equation. The time-dependent version of the Euler-
Lagrange equation describes the dynamics of interacting many-boson systems in the
mean field limit [6]. We are interested in the question whether the functional (1)
subject to (2) has a minimizer, and we shall give a positive answer for a class of
potentials including all previously considered cases. Second, we shall use the existence
of a minimizer to prove binding of polarons in the model of Pekar and Tomasevich with
an external magnetic field.

In the case A = 0 and V = 0 it is a well-known result, due to Lieb [10], that the
Pekar functional (1), (2) possesses a unique, rotationally symmetric minimizer, which
moreover can be chosen pointwise positive. For the existence part a second proof has

1



been given by Lions as an application of his concentration compactness principle [12].
Lions also considered the case of non-vanishing V ≤ 0. In this paper we establish
existence of a minimizer for constant magnetic fields and vanishing V , as well as for
certain local perturbations of this field configuration. For example, if curlA is constant,
V (x) = −|x|−1, then (1) has a minimizer as well. More generally, the Pekar functional
has a minimizer for any local perturbation of the fields A(x) = (B ∧ x)/2, V = 0 that
leads to a reduction of the energy. We give examples of non-linear vector potentials for
which this trapping assumption is satisfied.

In the second part of the paper we address the question of binding of two polarons
subject to given electromagnetic fields A, V in the model of Pekar and Tomasevich.
For A = 0, V = 0 this question has been studied by Miyao, Spohn and by Lewin and
answered in the affirmative for admissible values of the electron-electron repulsion close
to the critical one [13, 9]. In fact, Lewin proved the binding of any given number of
polarons by establishing a Van der Waals type interaction between two polaron clusters.
This method makes use of a spherical invariance which is broken by the presence of
a magnetic field. We here describe a much softer argument to explain the binding of
two polarons that works for any given A, V and requires nothing but the existence of
a minimizer for (1), (2). This argument is based on the observation that the product
ψ ⊗ ψ of two copies of a minimizer ψ of (1), (2) does not solve the Euler-Lagrange
equation of the Pekar-Tomasevich functional and hence cannot be a minimizer of this
functional. This argument does not depend on the presence of external fields and
seems to be novel. It can be extended to multipolaron systems, and this will be done
in subsequent work.

In a companion paper we derive estimates on the ground state energy of the Fröhlich
polaron subject to electromagnetic fields A, V in the limit of strong electron-phonon
coupling, α → ∞. For fields A, V that are suitably rescaled with α, it turns out that
this ground state energy is correctly given by α2 times the minimum of (1), (2) up
to errors of smaller order. In view of the results of the present paper the binding of
Fröhlich polarons subject to strong external fields and large α will follow. In the case
A = 0, V = 0 a similar result has previously been established by Miyao and Spohn on
the bases of [5, 11, 10]. In the physical literature the existence of Fröhlich bipolarons
in the presence of magnetic fields is studied e.g. in [2].

Solutions to the Choquard equation with magnetic field have very recently been
studied in [4, 3]. In [3] infinitely many solutions are found whose symmetry corresponds
to the symmetry of A. Constant magnetic fields seem to be excluded, however. The
constrained minimization problem (1), (2) with non-vanishing magnetic field does not
seem to have been studied yet. Nevertheless, as our methods are not new, we would
not be surprised if some of our results on the existence of a minimizer for (1),(2) with
A 6= 0 could be inferred from existing results in the literature.

Section 2 is devoted to the problem of existence of minimizers for (1), (2); in Sec-
tion 3 the binding of polarons is established. There is an appendix where technical
auxiliaries are collected.
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2 The Magnetic Pekar Functional

This section contains all our results on the existence of a minimizer for the Pekar
functional, as well as the main parts of the proofs. Some technical auxiliaries have
been deferred to the appendix.

The minimal assumptions that we shall make throughout the paper, are that A, V
are real-valued with Ak, V ∈ L2

loc(R3) and that V is infinitesimally small with respect
to −∆, V � −∆. This means that for every ε > 0 there exists Cε ∈ R such that

‖V ϕ‖ ≤ ε‖∆ϕ‖+ Cε‖ϕ‖

for all ϕ ∈ C∞0 (R3). Here and henceforth ‖ · ‖ denotes an L2-norm. Every potential
V that admits a decomposition V = V1 + V2 with V1 ∈ L2(R3) and V2 ∈ L∞(R3) is
infinitesimally small w.r.t. −∆.

We define DA := −i∇+A and

H1
A(R3) =

{
ϕ ∈ L2(R3) | DAϕ ∈ L2(R3; C3)

}
.

Equipped with the norm ‖ϕ‖2A := ‖DAϕ‖2 + ‖ϕ‖2 this space is complete and C∞0 (R3)
is dense. This means that the quadratic form 〈DAϕ,DAϕ〉 is closed on H1

A(R3) and
that C∞0 (R3) is a core. The unique self-adjoint operator associated with this form is
denoted D2

A.
We define the Pekar functional EA,V (ϕ) by the expression (1). For the domain of

this functional we take
{
ϕ ∈ H1

A(R3)|
∫
|ϕ|2dx = 1

}
unless explicitly stated otherwise.

In particular, by a minimizer of EA,V we mean a vector ϕ from this domain. It is not
hard to see, using the Hardy and the diamagnetic inequalities, that EA,V is bounded
below and that every minimizing sequence is bounded in H1

A(R3), see Lemma A.2. We
set

CA,V (λ) := inf
{
EA,V (ϕ)

∣∣ϕ ∈ H1
A(R3), ‖ϕ‖2 = λ

}
(3)

where λ > 0. As a preparation for the proofs of the theorems of this section we first
establish a few general properties of the Pekar functional (1) and its lower bounds (3).
To this end, and for use throughout the paper, we introduce the following notation:

Vϕ(x) :=
∫
|ϕ(y)|2

|x− y|
dy, D(ρ) :=

∫
ρ(x)ρ(y)
|x− y|

dxdy,

where usually ρ = ρϕ := |ϕ|2.

Lemma 2.1. Under the above minimal assumptions on V,A, the following is true:

(i) If EA,V (ϕn) → CA,V (1) and ϕn → ϕ as n → ∞, then EA,V (ϕ) = CA,V (1) and
ϕn → ϕ in H1

A(R3).
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(ii) If EA,V (ϕ) = CA,V (1), then ϕ is an eigenvector of D2
A + V − 2Vϕ associated with

the lowest eigenvalue of this operator, which is CA,V (1)−D(ρϕ).

(iii) The map λ 7→ CA,V (λ) is continuous.

(iv) If lim infn→∞D(ρϕn) > 0 for every (normalized) minimizing sequence of EA,V ,
then for all λ ∈ (0, 1),

CA,V (1) < CA,V (λ) + CA,V (1− λ).

Proof. (i) Since (ϕn) is bounded in H1
A(R3) and ϕn → ϕ we see that ϕn ⇀ ϕ in

H1
A(R3), and hence that EA,V (ϕ) ≤ lim infn→∞ EA,V (ϕn), by Lemma A.2, (ii). It

follows that EA,V (ϕ) = CA,V (1) = limn→∞ EA,V (ϕn) and, using Lemma A.2 again,
that ‖DAϕn‖2 → ‖DAϕ‖2. This proves (i).

(ii) We claim that

EA,V (ψ) ≤
〈
ψ, (D2

A + V − 2Vϕ)ψ
〉

+D(ρϕ) (4)

for any given ψ ∈ H1
A(R3). This follows from 0 ≤ D(ρϕ − ρψ) = D(ρϕ) + D(ρψ) −

2〈ψ, Vϕψ〉. If ϕ is a minimizer of EA,V , then it follows from (4) that for every normalized
ψ ∈ H1

A(R3),

CA,V (1) ≤
〈
ψ, (D2

A + V − 2Vϕ)ψ
〉

+D(ρϕ)

with equality if ψ = ϕ. This proves part (ii).
(iii) Clearly for all λ > 0,

CA,V (λ) = λ · inf
{
‖DAϕ‖2 + 〈ϕ, V ϕ〉 − λD(ρϕ)

∣∣‖ϕ‖ = 1
}
. (5)

We see that g(λ) = CA,V (λ)/λ is the infimum of linear functions of λ. It follows that
g is concave and hence continuous.

(iv) It suffices to show that

CA,V (λ) > λCA,V (1) for all λ ∈ (0, 1). (6)

Then CA,V (1 − λ) > (1 − λ)CA,V (1) and the asserted inequality follows. Since, by
(5), CA,V (λ) ≥ λCA,V (1), it remains to exclude equality. Again by (5), the equality
CA,V (λ) = λCA,V (1) would imply the existence of a normalized sequence (ϕn) with
‖DAϕn‖2 + 〈ϕn, V ϕn〉 − λD(ρϕn)→ CA,V (1). A fortiori, this sequence would be mini-
mizing for EA,V and D(ρϕn)→ 0, in contradiction with the assumption.

Lemma 2.2. If A is linear with B = curlA, then

(i) C0,0(1) ≤ CA,0(1) ≤ C0,0(1) + |B|, and C0,0(1) < 0.

(ii) If (ϕn) is a minimizing sequence for EA,0 then lim infn→∞D(ρϕn) > 0.
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Proof. The inequality C0,0(1) ≤ CA,0(1) follows from the diamagnetic inequality, and
C0,0(1) < 0 follows from a simple variational argument. By combining (4) with the
enhanced binding inequality of Lieb [1], we conclude that, for ϕ ∈ H1(R3) with ‖ϕ‖ = 1,

CA,0(1) ≤ inf σ(D2
A − 2Vϕ) +D(ρϕ)

≤ inf σ(−∆− 2Vϕ) +D(ρϕ) + |B|
≤ 〈ϕ, (−∆− 2Vϕ)ϕ〉+D(ρϕ) + |B|
= E0,0(ϕ) + |B|.

To prove (ii), suppose that D(ρϕn)→ 0 as n→∞ for some minimizing sequence (ϕn)
of EA,0. Then

CA,0(1) = lim
n→∞

EA,0(ϕn) = lim
n→∞

‖DAϕn‖2 ≥ |B|, (7)

which is in contradiction with the fact that CA,0(1) ≤ C0,0(1) + |B| < |B|, by (i).

Theorem 2.3. Suppose that A is linear. Then there exists a ϕ ∈ H1
A(R3) with∫

|ϕ|2 dx = 1 such that
EA,0(ϕ) = CA,0(1),

and every minimizing sequence for EA,0 has a subsequence that converges to a minimizer
after suitable translations and phase shifts.

Remark. The Pekar functional EA,0 with a linear vector potential A is invariant under
magnetic translations ψ 7→ ψv, v ∈ R3, where

ψv(x) := e−iχ(x)ψ(x− v), χ(x) := A(v) · x, v ∈ R3. (8)

This means that minimizing sequences will in general not be relatively compact. By
the concentration compactness principle every minimizing sequence has a subsequence
that becomes relatively compact upon suitable translations of the type (8).

Proof. Let (ϕn) be a minimizing sequence for EA,0 and let (ϕnk
) be the subsequence

given by Lemma A.1. We shall exclude vanishing and dichotomy in order to conclude
compactness of the sequence of suitably shifted functions. In the following we use ρn
as a short hand for ρϕn .

Vanishing does not occur. We show that vanishing implies D(ρnk
)→ 0 as k →∞,

which contradicts Lemma 2.2 (ii). To this end we use that D(ρϕ) =
∫
Vϕρϕ dx ≤ ‖Vϕ‖∞

where ϕ ∈ L2(R3) is normalized. For every R > 0, by the Hölder and the magnetic
Hardy inequalities,

|Vϕnk
(x)| ≤

∫
BR(x)

|ϕnk
(y)|2

|x− y|
dy +

1
R

≤ 2‖DAϕnk
‖

(∫
BR(x)

|ϕnk
(y)|2 dy

)1/2

+
1
R
.

Since supk ‖DAϕnk
‖ <∞, vanishing implies ‖Vϕnk

‖∞ → 0 and D(ρnk
)→ 0 as k →∞.
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Dichotomy does not occur. Suppose dichotomy holds, that is, there exists some
λ ∈ (0, 1), such that for every ε > 0 there exists k0 ∈ N and bounded sequences (ϕ(1)

k ),
(ϕ(2)

k ) in H1
A(R3) having the properties (a)–(d) from Lemma A.1. Then, from (a), (c)

and the continuity of ϕ 7→ D(ρϕ), Lemma A.2, we see that for k ≥ k0∣∣D(ρnk
)−D(ρ(1)

k )−D(ρ(2)
k )
∣∣

≤
∣∣D(ρnk

)−D(|ϕ(1)
k + ϕ

(2)
k |

2)
∣∣+
∣∣D(|ϕ(1)

k + ϕ
(2)
k |

2)−D(ρ(1)
k )−D(ρ(2)

k )
∣∣

= δ(ε) + o(1), (k →∞),

where δ(ε) = o(1) as ε→ 0. It follows that, using Lemma 2.1 (iii) and Lemma A.1 (d),

CA,0(1)

= lim
k→∞

EA,0(ϕnk
)

≥ lim inf
k→∞

[
EA,0(ϕnk

)− EA,0(ϕ(1)
k )− EA,0(ϕ(2)

k )
]

+ CA,0(λ) + CA,0(1− λ) + o(1)

≥ lim inf
k→∞

∫
R3

|DAϕnk
|2 − |DAϕ

(1)
k |

2 − |DAϕ
(2)
k |

2 dx+ CA,0(λ) + CA,0(1− λ) + o(1)

≥ CA,0(λ) + CA,0(1− λ) + o(1), (ε→ 0).

This proves that CA,0(1) ≥ CA,0(λ)+CA,0(1−λ) for some λ ∈ (0, 1), which contradicts
Lemma 2.1 (iv).

Compactness. Since vanishing and dichotomy have been excluded, the subsequence
(ϕnk

) must have the compactness property of Lemma A.1. Let χk(x) := A(yk) · x with
yk ∈ R3 given by this lemma, and let unk

(x) = eiχk(x)ϕnk
(x + yk). Then, for every

ε > 0 there exists R > 0 such that∫
BR(0)

|unk
|2dx ≥ 1− ε for all k. (9)

The phase χk has been chosen in such a way that A(x) +∇χk(x) = A(x+ yk), which
implies that ‖DAunk

‖ = ‖DAϕnk
‖. It follows that EA,0(unk

) = EA,0(ϕnk
) and that

(unk
) is bounded in H1

A(R3). Hence there exists a u ∈ H1
A(R3) and a subsequence of

(unk
), denoted by (unk

) as well, such that

unk
⇀ u, in H1

A(R3), (10)

and therefore unk
⇀ u in L2(R3). We claim that ‖u‖ = 1 and hence that unk

→ u

in L2(R3). Indeed, since A is locally bounded, (10) implies that unk
→ u locally in

L2(R3), and by (9) we conclude that

1 ≥ ‖u‖2 ≥
∫
BR(0)

|u|2 dx = lim
k→∞

∫
BR(0)

|unk
|2 dx ≥ 1− ε

for every ε > 0. The theorem now follows from Lemma 2.1 (i).

We say A is asymptotically linear if there exists a linear vector potential A∞ such
that

|A(x)−A∞(x)| → 0, as |x| → ∞.
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In addition we shall assume that A ∈ L3
loc(R3) whenever A is asymptotically linear.

This technical assumption ensures, e. g. that H1
A(R3) = H1

A∞
(R3) and that the norms

of these spaces are equivalent (see Lemma A.3).
To ensure relative compactness of minimizing sequences we shall impose one of the

following trapping assumptions:

(T1) V (−∆ + 1)−1 is compact and

CA,V (1) < CA,0(1).

(T2) V (−∆ + 1)−1 is compact, A is asymptotically linear and

CA,V (1) < CA∞,0(1).

Further below we shall give examples of potentials that satisfy either (T1) or (T2).

Theorem 2.4. Suppose that one of the trapping assumptions (T1) or (T2) is satisfied.
Then every minimizing sequence of EA,V has a convergent subsequence, the limit being
a minimizer.

Remark. If V (−∆+1)−1 is compact and A is asymptotically linear, then the inequality
CA,V (1) < CA∞,0(1) is not only sufficient, but also necessary for the conclusion of
Theorem 2.4 to hold.

Proof. Let (ϕn) be a minimizing sequence for EA,V . After passing to a subsequence we
may assume that ϕn ⇀ ψ in H1

A(R3). We claim that ψ = 0 is in contradiction with
(T1) and (T2). Indeed, if ϕn ⇀ 0 then 〈ϕn, V ϕn〉 → 0, by Lemma A.4, which implies
that CA,V (1) ≥ CA,0(1) in contradiction with (T1). If A is asymptotically linear, then
DAϕn = DA∞ϕn+(A−A∞)ϕn where (A−A∞)ϕn → 0 by Lemma A.3. It follows that

CA,V (1) = lim
n→∞

EA,V (ϕn) = lim
n→∞

EA∞,0(ϕn) ≥ CA∞,0(1).

This is in contradiction with (T2).
Using that the weak limit of a minimizing sequence cannot vanish, we conclude,

from Lemma A.2 (iii), that
lim inf
n→∞

D(ρϕn) > 0

for every minimizing sequence (ϕn). It follows that λ 7→ CA,V (λ) is subadditive in the
sense of Lemma 2.1. We now use this to show that a weakly convergent minimizing
sequence (ϕn) is in fact strongly convergent. To this end suppose that ϕn ⇀ ψ where
λ := ‖ψ‖2 ∈ (0, 1) and consider the decomposition ϕn = ψ + (ϕn − ψ) =: ψ + βn.
Clearly, βn ⇀ 0 in H1

A(R3) and ‖βn‖2 → 1− λ. We claim that

EA,V (ϕn) = EA,V (ψ) + EA,V (βn) + o(1), (n→∞). (11)

The kinetic and potential energy ‖DAϕn‖2 + 〈ϕn, V ϕn〉 decompose as desired, which is
a direct consequence of the weak convergence βn ⇀ 0 in H1

A(R3) and the compactness
of V (−∆ + 1)−1. It is not hard to see, using βn → 0 locally in L2(R3), that

D(ρψ+βn) = D(ρψ) +D(ρβn) + o(1), (n→∞).
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From (11) we see that

EA,V (ϕn) ≥ CA,V (λ) + CA,V (‖βn‖2) + o(1)

= CA,V (λ) + CA,V (1− λ) + o(1)

for n → ∞, by the continuity of CA,V (Lemma 2.1 (iii)). Thus CA,V (1) ≥ CA,V (λ) +
CA,V (1− λ) which contradicts the subadditivity of CA,V , i.e. Lemma 2.1 (iv).

Since we have shown that ‖ψ‖ < 1 is impossible, we conclude that ‖ψ‖ = 1 and
ϕn → ψ in L2(R3). The theorem now follows from Lemma 2.1 (i).

Examples:

1) Suppose A is any C1-vector potential for which EA,0 has a minimizer ϕ, see
Theorems 2.3 and 2.4. Then the Euler-Lagrange equation satisfied by ϕ is a
Schrödinger equation and hence ϕ cannot vanish a.e. on a non-trivial open set,
see [8]. It follows that

∫
V |ϕ|2 dx < 0 for every potential V ≤ 0 with the property

that V < 0 on some non-empty open set. If, moreover, V (−∆ + 1)−1 is compact,
then (T1) is satisfied.

2) We choose V = 0 and we define the vector potential A by A = AR where

AR(x) =

{
0, |x| < R

A∞(x), |x| ≥ R

and A∞(x) = (−Bx2, 0, 0). We claim that CA,0(1) < CA∞,0(1) for B ≥ 4 and
R sufficiently large. Indeed, by Lemma A.2, EA∞,0(ϕ) = ‖DA∞ϕ‖2 − D(ρϕ) ≥
B − 2‖ϕ‖3‖DA∞ϕ‖ ≥ 0, while CAR,0(1)→ C0,0(1) < 0 as R→∞.

The following corollary summarizes the conclusions of Example 1) above and The-
orem 2.4.

Corollary 2.5. Suppose that V (−∆ + 1)−1 is compact, V ≤ 0, and V < 0 on some
non-empty open set. Then EA,V has a minimizer, provided EA,0 has a minimizer and
A belongs to C1. In particular EA,V has a minimizer for every linear vector potential
A.

3 Binding of Polarons

Let V and A satisfy the minimal assumption introduced in the previous section. The
magnetic Pekar-Tomasevich functional EA,VU : H1

(A,A)(R
6)→ R is defined by

EA,VU (ψ) :=
2∑

k=1

∫ (
|DA,xk

ψ(x1, x2)|2 + V (xk)|ψ(x1, x2)|2
)
dx1dx2

+ U

∫
|ψ(x1, x2)|2

|x1 − x2|
dx1dx2 −

∫
ρ(x1)ρ(x2)
|x1 − x2|

dx1dx2,
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where

ρ(x) :=
∫

(|ψ(x, y)|2 + |ψ(y, x)|2)dy

denotes the density. The minimal energy of EA,VU is defined by

CA,VU = inf
{
EA,VU (ψ)

∣∣∣ψ ∈ H1
(A,A)(R

6), ‖ψ‖ = 1
}
.

Theorem 3.1. Suppose that EA,V possesses a minimizer ϕ0; see Theorem 2.3, Theo-
rem 2.4, and Corollary 2.5. Then there exists UA > 2 such that for 2 < U < UA we
have

CA,VU < 2CA,V (1).

Proof. Since CA,VU is continuous with respect to U it suffices to prove that CA,VU <

2CA,V (1) for U = 2. By a straightforward computation

EA,VU=2(ϕ0 ⊗ ϕ0) = 2EA,V (ϕ0) = 2CA,V (1),

and it remains to prove that ϕ0 ⊗ ϕ0 is not a minimizer of EA,VU=2. To this end, suppose
ϕ0 ⊗ ϕ0 were a minimizer of EA,VU=2. Then it would have to solve the Euler equation of
the functional, which implies that〈

η ⊗ η
∣∣∣∑2

k=1(D2
A,xk

+ V (xk)− 4Vϕ0(xk)) + 2|x1 − x2|−1 − E
∣∣∣ϕ0 ⊗ ϕ0

〉
= 0 (12)

for some E and all η ∈ H1
A(R3). We claim that (12) cannot be true for all η. Since

ϕ0 minimizes EA,V , we know from Lemma 2.1 (ii), that (D2
A + V − 2Vϕ0)ϕ0 = λϕ0 for

some λ ∈ R. Hence equation (12) reduces to〈
η ⊗ η

∣∣∣2λ− E − 2
∑2

k=1 Vϕ0(xk) + 2|x1 − x2|−1
∣∣∣ϕ0 ⊗ ϕ0

〉
= 0 (13)

for all η ∈ H1
A(R3). Since Vϕ0 is bounded while |x1 − x2|−1 is positive and unbounded,

we can choose r > 0 so that for all z ∈ R3 and all x1, x2 ∈ Br(z),

g(x1, x2) := 2λ− E − 2
2∑

k=1

Vϕ0(xk) + 2|x1 − x2|−1 ≥ 1. (14)

Let χ(r,z) ∈ C∞0 (R3; [0, 1]) with χ(r,z)(x) = 1 for x ∈ Br/2(z) and χ(r,z)(x) = 0 for
x 6∈ Br(z). In view of (14) the choice η = χ(r,z)ϕ0 in (13) leads to

0 =
〈
χ(r,z)ϕ0 ⊗ χ(r,z)ϕ0 |g|ϕ0 ⊗ ϕ0

〉
≥

(∫
Br/2(z)

|ϕ0(x)|2 dx

)2

,

for all z ∈ R3. It follows that ϕ0 = 0 in contradiction with ‖ϕ0‖ = 1.

9



A Appendix

The following is a variant of the Lions’ concentration compactness principle, Lemma
III.1, in [12], the only difference being that D = −i∇ is replaced by DA in our version.
This does not affect the proof.

Lemma A.1 (Concentration Compactness Lemma). Suppose that A : R3 → R3 is real-
valued and in L2

loc(R3). Let (ϕn)n∈N be a bounded sequence in H1
A(R3), let ρn = |ϕn|2

and suppose ∫
ρn(x)dx = 1 for all n ∈ N.

Then there exists a subsequence (ϕnk
) which has one of the following three properties:

1. Compactness: There exists a sequence (yk)k≥0 ⊂ R3 such that for all ε > 0 there
is R > 0 with ∫

BR(yk)
ρnk

(x)dx ≥ 1− ε for all k ≥ 0.

2. Vanishing: For all R > 0 :

lim
k→∞

(
sup
y∈R3

∫
BR(y)

ρnk
(x)dx

)
= 0.

3. Dichotomy: There exists λ ∈ (0, 1) such that for every ε > 0 there exists k0 ∈ N
and bounded sequences (ϕ(1)

k ), (ϕ(2)
k ) in H1

A(R3) satisfying,

(a) ‖ϕnk
− (ϕ(1)

k + ϕ
(2)
k )‖ = δ(ε), k ≥ k0,

(b) |‖ϕ(1)
k ‖

2 − λ| ≤ ε, |‖ϕ(2)
k ‖

2 − (1− λ)| ≤ ε, k ≥ k0,

(c) dist(supp(ϕ(1)
k ), supp(ϕ(2)

k ))→∞ (k →∞),

(d) lim inf
k→∞

∫ (
|DAϕnk

(x)|2 − |DAϕ
(1)
k (x)|2 − |DAϕ

(2)
k (x)|2

)
dx ≥ 0,

where δ(ε)→ 0 as ε→ 0 in property (a).

Lemma A.2. Under our minimal assumptions on A, V the following is true:

(i) D(ρϕ) ≤ 2‖ϕ‖3‖DAϕ‖ for all ϕ ∈ H1
A(R3).

(ii) On bounded subsets of H1
A(R3) the maps ϕ 7→ 〈ϕ, V ϕ〉 and ϕ 7→ D(ρϕ) are

continuous w.r.t. the norm of L2(R3).

(iii) In H1
A(R3) the map ϕ 7→ D(ρϕ) is weakly lower semi-continuous.

(iv) For every ε ∈ (0, 1) there exists Cε such that for all ϕ ∈ H1
A(R3)

‖DAϕ‖2 ≤
1

1− ε
EA,V (ϕ) + Cε

(
‖ϕ‖2 + ‖ϕ‖6

)
.
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Proof. (i) We have D(ρϕ) =
∫
ρϕ(x)Vϕ(x)dx ≤ ‖ρϕ‖1‖Vϕ‖∞, where

‖Vϕ‖∞ ≤ ‖ϕ‖
(∫

|ϕ(y)|2

|x− y|2
dy

)1/2

≤ 2‖ϕ‖‖∇|ϕ|‖,

by the Hölder and the Hardy inequalities. (i) now follows from the diamagnetic in-
equality |∇|ϕ|| ≤ |DAϕ|.

(ii) The continuity of ϕ 7→ D(ρϕ) follows from

|D(ρϕ)−D(ρψ)| =
∣∣∣∣∫ (ρϕ(x)− ρψ(x)

)(
Vϕ(x) + Vψ(x)

)
dx

∣∣∣∣
≤ ‖ρϕ − ρψ‖1

(
‖Vϕ‖∞ + ‖Vψ‖∞

)
where ‖ρϕ−ρψ‖1 ≤ ‖ϕ−ψ‖(‖ϕ‖+‖ψ‖) and ‖Vϕ‖∞ ≤ 2‖DAϕ‖‖ϕ‖, by (i). We now turn
to the map ϕ 7→ 〈ϕ, V ϕ〉. The assumption V � −∆ is equivalent to |V | � −∆ which
implies that |V | ≤ ε(−∆) + Cε for all ε > 0. From here the continuity of ϕ 7→ 〈ϕ, V ϕ〉
is easily established.

(iii) Let χ ∈ C∞0 (R3; [0, 1]) with χ(x) = 1 for |x| ≤ 1 and let χR(x) := χ(x/R).
The weak convergence ϕn ⇀ ϕ in H1

A(R3) implies the norm convergence χRϕn → χRϕ

in L2(R3). This can be seen from Lemma A.4 with the choice V = χ2
R. Since the

sequence (χRϕn) is bounded in H1
A(R3), it follows from (ii) that lim infn→∞D(ρϕn) ≥

lim infn→∞D(χ2
Rρϕn) = D(χ2

Rρϕ) for all R > 0 and the desired inequality is obtained
using monotone convergence.

(iv) The assumption V � −∆ and the diamagnetic inequality imply that εD2
A +V

is bounded below for every ε > 0. With the help of (i) the inequality in (iv) now easily
follows.

Lemma A.3. (i) If A1, A2 belong to L3
loc(R3; R3) and A1−A2 is uniformly bounded

in the complement of some compact set, then H1
A1

(R3) = H1
A2

(R3) and the cor-
responding norms ‖ · ‖A1 and ‖ · ‖A2 are equivalent.

(ii) If A is asymptotically linear, then the linear map H1
A(R3) → L2(R3; C3), ϕ 7→

(A−A∞)ϕ is compact.

Remark. Further embedding results similar to Lemma A.3 can be found in [7].

Proof. (i) Suppose that |A1 −A2| ≤ C in the complement of the compact set K ⊂ R3.
Then, for all ϕ ∈ C∞0 (R3), ‖DA2ϕ‖ ≤ ‖DA1ϕ‖+ ‖(A1 −A2)ϕ‖ and

‖(A1 −A2)ϕ‖2 ≤
∫
K
|A1 −A2|2|ϕ|2dx+ C2‖ϕ‖2

≤
(∫

K
|A1 −A2|3dx

)2/3

‖ϕ‖26 + C2‖ϕ‖2.

Since ‖ϕ‖6 ≤ const‖DA1ϕ‖ by the Sobolev and the diamagnetic inequalities, it follows
that ‖DA2ϕ‖ ≤ const‖ϕ‖A1 for all ϕ ∈ C∞0 (R3). This extends to all ϕ ∈ H1

A1
(R3) and

then proves the lemma since the roles of A1 and A2 are interchangeable.
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(ii) The boundedness of the map has been established in the proof of (i). To
prove the compactness, let (ϕn) be a bounded sequence in H1

A(R3). After passing to a
subsequence we may assume that ϕn ⇀ ϕ in H1

A(R3). By the Sobolev inequality, the
sequence (|ϕn−ϕ|2) is bounded in L3(R3), which is a reflexive Banach space. Hence we
may assume that |ϕn−ϕ|2 ⇀ ψ in L3(R3) by passing to a subsequence once more. We
claim that ψ = 0. Indeed, from ϕn ⇀ ϕ in H1

A(R3) it follows that
∫
χ|ϕn −ϕ|2 dx→ 0

for χ ∈ C∞0 (R3), as explained in the proof of Lemma A.2 (iii). On the other hand,∫
χ|ϕn − ϕ|2 dx →

∫
χψ dx because C∞0 (R3) ⊂ L3/2(R3), which is the dual of L3(R3).

Thus
∫
χψ dx = 0 for all χ ∈ C∞0 (R3), which implies ψ = 0. Hence |ϕn − ϕ|2 ⇀ 0

in L3(R3) and it is easy to see that (A − A∞)(ϕn − ϕ) → 0 in L2(R3; C3) using that
|A− A∞| ≤ ε on the complement of some ball BR and that χBR

|A− A∞|2 belongs to
L3/2(R3), the dual of L3(R3).

Lemma A.4. In addition to the minimal assumptions on A, V , suppose that V (−∆ +
1)−1 is compact. Then the map ϕ 7→ 〈ϕ, V ϕ〉 is weakly continuous in H1

A(R3).

Proof. The compactness of V (−∆ + 1)−1 implies that V (D2
A + 1)−1 is compact [1]. By

interpolation it follows that (D2
A+1)−1/2V (D2

A+1)−1/2 is compact, which implies that
ϕ 7→ 〈ϕ, V ϕ〉 is weakly continuous.
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2010/010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a
regression function

2010/009 Geisinger, L.; Laptev, A.; Weidl, T.: Geometrical Versions of improved Berezin-Li-
Yau Inequalities

2010/008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
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