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Abstract

In this article we substantially extend the classi�cation of combinatorial 3-manifolds with
cyclic automorphism group up to 22 vertices. Moreover, several combinatorial criteria
are given to decide, whether a cyclic combinatorial d-manifold can be generalized to an
in�nite family of such complexes together with a construction principle in the case that
such a family exist. In addition, a new in�nite series of cyclic neighborly combinatorial
lens spaces of in�nitely many distinct topological types is presented.

MSC 2010: 57Q15; 57N10; 57M05
Keywords: combinatorial 3-manifold, cyclic automorphism group, fundamental group,
simplicial complexes, di�erence cycles, lens spaces

1 Introduction

An abstract simplicial complex C can be seen as a combinatorial structure consisting of
tuples of elements of Zn where the elements of Zn are referred to as the vertices of the
complex (cf. [13]). The automorphism group Aut(C) of C is the group of all permutations
σ ∈ Sn which do not change C as a whole. If Aut(C) acts transitively on the vertices,
C is called a transitive simplicial complex. The most basic types of transitive simplicial
complexes are the ones which are invariant under the cyclic Zn-action v ↦ v + 1 mod n,
i. e. all complexes C, such that Zn is a subgroup of Aut(C). Such complexes are called
cyclic simplicial complexes.

Many types of cyclic combinatorial structures have been investigated under several dif-
ferent aspects of combinatorics (see for example [14, Part V] for a work on cyclic Steiner
systems in the �eld of design theory). This article is written in the context of combina-
torial topology. Hence, we will concentrate on combinatorial manifolds, a special class of
simplicial complexes, which are de�ned as follows: An abstract simplicial complex M is
said to be pure, if all of its tuples are of length d+1, where d is referred to as the dimension
of M . If, in addition, any vertex link of M , i. e. the boundary of a simplicial neighborhood
of a vertex of M , is a triangulated (d − 1)-sphere endowed with the standard piecewise
linear structure, M is called a combinatorial d-manifold. There are several articles about
cyclic combinatorial d-manifolds, see [12, 17] for many examples and further references.

One major advantage when dealing with simplicial complexes with large automorphism
groups is that the complexes can be described e�ciently just by the generators of its
automorphism group and a system of orbit representatives of the complex under the group
action. In the case of a cyclic automorphism group, the situation is particularly convenient.
Since, possibly after a relabeling of the vertices, the whole complex does not change under
a vertex-shift of type v ↦ v + 1 mod n, two tuples are in one orbit if and only if the
di�erences modulo n of its vertices are equal. Hence, we can compute a system of orbit
representatives by just looking at the di�erences modulo n of the vertices of all tuples of
the complex. This motivates the following de�nition.
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De�nition 1.1 (Di�erence cycle). Let ai ∈ N, 0 ≤ i ≤ d, n ∶= ∑d
i=0 ai and Zn = ⟨(0,1, . . . , n−

1)⟩. The simplicial complex

(a0 ∶ . . . ∶ ad) ∶= Zn⟨0, a0, . . . ,Σ
d−1
i=0 ai⟩

is called di�erence cycle of dimension d on n vertices where G⟨⋅⟩ denotes the G-orbit of
⟨⋅⟩. The number of elements of (a0 ∶ . . . ∶ ad) is referred to as the length of the di�erence
cycle. If a complex C is a union of di�erence cycles of dimension d on n vertices and λ is
a unit of Zn such that the complex λC (obtained by multiplying all vertex labels modulo
n by λ) equals C, then λ is called a multiplier of C.

Note that for any unit λ ∈ Z×
n, the complex λC is combinatorially isomorphic to C.

In particular, all λ ∈ Z×
n are multipliers of the complex ⋃λ∈Z×n λC by construction. The

de�nition of a di�erence cycle above is equivalent to the one given in [13].

In the following, we will describe cyclic simplicial complexes and cyclic combinatorial
manifolds as a set of di�erence cycles. In this way, a lot of problems dealing with cyclic
combinatorial manifolds can be solved in an elegant way. In particular, they play an
important role in most of the proofs presented in this article.

Most calculations presented in this work were done with the help of a computer. In
particular, the GAP-package simpcomp [6, 5, 7] as well as GAP [8] itself was used to handle
di�erence cycles, permutation groups and quotients of free groups.

2 Classi�cation of cyclic 3-manifolds

Neighborly combinatorial 3-manifolds with dihedral automorphism with up to 19 vertices
as well as neighborly combinatorial 3-manifolds with cyclic automorphism group with up
to 14 vertices have already been classi�ed by Kühnel and Lassmann in 1985, see [12]. More
recently, a more general classi�cation of all transitive combinatorial manifolds with up to
13 vertices and all transitive combinatorial d-manifolds with d ∈ {2,3,9,10,11,12} and up
to 15 vertices was presented by Lutz in [17]. All classi�cations are based on an algorithm
�rst described in [12]. As of Version 1.3, the classi�cation algorithm is also available within
simpcomp. This allows to extend any kind of classi�cation of transitive simplicial complexes
without the need for any further programming.

In a series of computer calculations, we computed all cyclic combinatorial 3-manifolds
with up to 22 vertices. This led to the following result.

Theorem 2.1 (Classi�cation of cyclic combinatorial 3-manifolds). There are exactly 59519
(connected) combinatorial 3-manifolds with cyclic automorphism group with up to 22 ver-
tices. These complexes split up into 6070 combinatorial types and at least 54 topological
types.
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In particular, we have triangulations of the following topological 3-manifolds:

1. The 3-sphere S3. The smallest cyclic triangulation is the boundary of the 4-simplex

B∆4 = {(1 ∶ 1 ∶ 1 ∶ 2)}.

2. The 3-dimensional Klein bottle S2 " S1. The smallest cyclic triangulation is the
minimal and tight 9-vertex triangulation �rst described by Altshuler and Steinberg in
[2, Complex N9

51], given by the di�erence cycles

{(1 ∶ 1 ∶ 2 ∶ 5), (1 ∶ 1 ∶ 5 ∶ 2), (1 ∶ 2 ∶ 1 ∶ 5)}.

3. The orientable 3-dimensional sphere bundle S2 × S1. The smallest cyclic triangula-
tion is the minimal 10-vertex triangulation �rst described by Kühnel and Lassmann
[13, Complex M3

2 (10)] as a generalization of Altshuler and Steinberg's 9-vertex 3-
dimensional Klein bottle, given by the di�erence cycles

{(1 ∶ 1 ∶ 2 ∶ 6), (1 ∶ 1 ∶ 6 ∶ 2), (1 ∶ 2 ∶ 1 ∶ 6)}.

4. The twofold connected sum of the orientable 3-dimensional sphere bundle (S2×S1)#2.
The smallest cyclic triangulation is the minimal 12-vertex triangulation �rst described
by Kühnel and Lassmann in [12, Complex 512].

{(1 ∶ 2 ∶ 3 ∶ 6), (1 ∶ 2 ∶ 4 ∶ 5), (1 ∶ 5 ∶ 1 ∶ 5), (2 ∶ 2 ∶ 2 ∶ 6), (2 ∶ 3 ∶ 3 ∶ 4)}

5. A lens space of type L(3,1). The smallest cyclic triangulation is the minimal 14-
vertex triangulation �rst described by Kühnel and Lassmann in [12, Complex 314].
For an alternative proof of its topological type see Theorem 4.1.

{(1 ∶ 1 ∶ 1 ∶ 11), (1 ∶ 2 ∶ 4 ∶ 7), (1 ∶ 4 ∶ 2 ∶ 7), (1 ∶ 4 ∶ 7 ∶ 2), (2 ∶ 4 ∶ 4 ∶ 4), (2 ∶ 5 ∶ 2 ∶ 5)}

6. The real projective 3-space RP 3. The smallest cyclic complex has 15 vertices and was
�rst described by Kühnel and Lassmann in [12, Complex 215].

{(1 ∶ 1 ∶ 1 ∶ 12), (1 ∶ 2 ∶ 3 ∶ 9), (1 ∶ 5 ∶ 7 ∶ 2), (2 ∶ 3 ∶ 3 ∶ 7), (3 ∶ 4 ∶ 3 ∶ 5), (3 ∶ 4 ∶ 4 ∶ 4)}

7. The prism manifold or cube space∗ P2 = S3/Q8, where the fundamental group Q8

denotes the quaternion group of order 8. The smallest cyclic complex has 15 vertices
and was �rst described by Kühnel and Lassmann in [12, Complex 815].

{(1 ∶ 1 ∶ 1 ∶ 12), (1 ∶ 2 ∶ 4 ∶ 8), (1 ∶ 6 ∶ 6 ∶ 2), (2 ∶ 4 ∶ 3 ∶ 6), (3 ∶ 4 ∶ 4 ∶ 4)}

8. The 3-torus T3∗∗∗. The smallest cyclic complex has 15 vertices and is locally minimal,
i. e. it cannot be reduced by bistellar moves without inserting additional vertices �rst.
The complex was �rst described by Kühnel and Lassmann in [12, Complex III15].

{(1 ∶ 2 ∶ 4 ∶ 8), (1 ∶ 2 ∶ 8 ∶ 4), (1 ∶ 4 ∶ 2 ∶ 8), (1 ∶ 4 ∶ 8 ∶ 2), (1 ∶ 8 ∶ 2 ∶ 4), (1 ∶ 8 ∶ 4 ∶ 2)}
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9. The �at manifold B2
∗∗∗with fundamental group

⟨a, b ∣ ab2 = b2a, a2b = ba2⟩.
The smallest cyclic complex is centrally symmetric, has 16 vertices and is due to Lutz
in [16, Complex 31655

10]. The complex was �rst described in [17, p. 89] where no proof
of its topological type was given.

{(1 ∶ 1 ∶ 3 ∶ 11), (1 ∶ 1 ∶ 4 ∶ 10), (1 ∶ 3 ∶ 2 ∶ 10), (2 ∶ 3 ∶ 4 ∶ 7), (2 ∶ 4 ∶ 7 ∶ 3), (2 ∶ 7 ∶ 3 ∶ 4)}

10. The spherical manifold S3/SL(2,3) of tetrahedral type∗ with fundamental group
SL(2,3) (the binary tetrahedral group) of order 24. The smallest cyclic complex has
16 vertices and was �rst described by Lutz in [16, Complex 3161

31].

{(1 ∶ 1 ∶ 3 ∶ 11), (1 ∶ 1 ∶ 4 ∶ 10), (1 ∶ 3 ∶ 2 ∶ 10), (2 ∶ 3 ∶ 8 ∶ 3), (2 ∶ 4 ∶ 6 ∶ 4), (3 ∶ 5 ∶ 3 ∶ 5)}

11. The connected sum (S2 ×S1)#5. The smallest cyclic complex has 16 vertices and can
be found in [16, Complex 3161

41].

{(1 ∶ 2 ∶ 5 ∶ 8), (1 ∶ 2 ∶ 6 ∶ 7), (1 ∶ 3 ∶ 4 ∶ 8), (1 ∶ 3 ∶ 5 ∶ 7), (2 ∶ 5 ∶ 3 ∶ 6), (2 ∶ 6 ∶ 2 ∶ 6), (3 ∶ 4 ∶ 4 ∶ 5)}

12. The Poincaré homology sphere∗ Σ3 with fundamental group SL(2,5). The smallest
cyclic complex has 17 vertices and can be found in [16, Complex 3171

21].

{(1 ∶ 1 ∶ 1 ∶ 14), (1 ∶ 2 ∶ 4 ∶ 10), (1 ∶ 6 ∶ 8 ∶ 2), (2 ∶ 3 ∶ 4 ∶ 8), (2 ∶ 3 ∶ 6 ∶ 6), (2 ∶ 4 ∶ 5 ∶ 6), (4 ∶ 4 ∶ 4 ∶ 5)}

13. The S1-bundle over the real projective plane S1 × RP 2 of Heegaard genus 2. The
smallest cyclic complex has 17 vertices, is locally minimal and was �rst described
by Kühnel and Lassmann (see [12, Complex IV17]) and identi�ed by Lutz (see [16,
Complex 3172

13]).

{(1 ∶ 1 ∶ 1 ∶ 14), (1 ∶ 2 ∶ 12 ∶ 2), (2 ∶ 3 ∶ 9 ∶ 3), (3 ∶ 4 ∶ 4 ∶ 6), (3 ∶ 4 ∶ 6 ∶ 4), (3 ∶ 5 ∶ 3 ∶ 6), (3 ∶ 6 ∶ 4 ∶ 4)}

14. A lens space of type L(8,3). The smallest cyclic complex has 18 vertices. For a proof
of its topological type see Theorem 4.1.

{(1 ∶ 1 ∶ 1 ∶ 15), (1 ∶ 2 ∶ 4 ∶ 11), (1 ∶ 4 ∶ 2 ∶ 11), (1 ∶ 4 ∶ 11 ∶ 2), (2 ∶ 4 ∶ 8 ∶ 4), (2 ∶ 5 ∶ 2 ∶ 9), (2 ∶ 7 ∶ 2 ∶ 7), (4 ∶ 4 ∶ 4 ∶ 6)}

15. A non-orientable manifold M15 with homology groups (Z,Z2
2⊕Z,Z2,0) and Heegaard

genus 3. The smallest cyclic complex has 18 vertices and is locally minimal.

{(1 ∶ 1 ∶ 1 ∶ 15), (1 ∶ 2 ∶ 5 ∶ 10), (1 ∶ 4 ∶ 3 ∶ 10), (1 ∶ 4 ∶ 11 ∶ 2), (3 ∶ 4 ∶ 5 ∶ 6), (3 ∶ 5 ∶ 6 ∶ 4), (3 ∶ 6 ∶ 3 ∶ 6), (3 ∶ 6 ∶ 4 ∶ 5)}

16. A lens space of type L(5,1). The smallest cyclic complex has 18 vertices.

{(1 ∶ 1 ∶ 1 ∶ 15), (1 ∶ 2 ∶ 5 ∶ 10), (1 ∶ 5 ∶ 2 ∶ 10), (1 ∶ 5 ∶ 10 ∶ 2), (2 ∶ 5 ∶ 2 ∶ 9), (2 ∶ 6 ∶ 4 ∶ 6), (2 ∶ 7 ∶ 2 ∶ 7), (4 ∶ 4 ∶ 4 ∶ 6)}

17. A triangulation of K2 × S1∗∗∗ with fundamental group

⟨a, b, c ∣ ab = ba, ac = ca, bcb = c⟩.
The smallest cyclic complex has 18 vertices.

{(1 ∶ 1 ∶ 3 ∶ 13), (1 ∶ 1 ∶ 6 ∶ 10), (1 ∶ 3 ∶ 1 ∶ 13), (1 ∶ 6 ∶ 8 ∶ 3), (1 ∶ 7 ∶ 6 ∶ 4), (2 ∶ 3 ∶ 7 ∶ 6), (2 ∶ 6 ∶ 4 ∶ 6)}
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18. The �at manifold B4
∗∗∗ with fundamental group

⟨a, b ∣ ab2 = b2a, b = a2ba2⟩.

The smallest cyclic complex has 18 vertices and is locally minimal.

{(1 ∶ 1 ∶ 3 ∶ 13), (1 ∶ 1 ∶ 13 ∶ 3), (1 ∶ 3 ∶ 1 ∶ 13), (2 ∶ 3 ∶ 6 ∶ 7), (2 ∶ 6 ∶ 2 ∶ 8), (2 ∶ 6 ∶ 7 ∶ 3), (2 ∶ 7 ∶ 2 ∶ 7), (2 ∶ 7 ∶ 3 ∶ 6)}

19. The connected sum (S2 × S1)#7. The smallest cyclic complex has 18 vertices.

{(1 ∶ 1 ∶ 7 ∶ 9), (1 ∶ 1 ∶ 8 ∶ 8), (1 ∶ 7 ∶ 2 ∶ 8), (2 ∶ 3 ∶ 4 ∶ 9), (2 ∶ 3 ∶ 6 ∶ 7), (3 ∶ 3 ∶ 3 ∶ 9), (3 ∶ 4 ∶ 5 ∶ 6), (4 ∶ 5 ∶ 4 ∶ 5)}

20. The connected sum (S2 " S1)#7. The smallest cyclic complex has 18 vertices.

{(1 ∶ 1 ∶ 7 ∶ 9), (1 ∶ 1 ∶ 9 ∶ 7), (1 ∶ 7 ∶ 1 ∶ 9), (2 ∶ 3 ∶ 4 ∶ 9), (2 ∶ 3 ∶ 6 ∶ 7), (3 ∶ 3 ∶ 3 ∶ 9), (3 ∶ 4 ∶ 5 ∶ 6), (4 ∶ 5 ∶ 4 ∶ 5)}

21. A manifold M21 with homology group (Z,Z4 ⊕ Z,Z,Z) of Heegaard genus at least 2
and at most 3. The smallest cyclic complex has 20 vertices.

{(1 ∶ 1 ∶ 1 ∶ 17), (1 ∶ 2 ∶ 4 ∶ 13), (1 ∶ 6 ∶ 8 ∶ 5), (1 ∶ 8 ∶ 6 ∶ 5), (1 ∶ 8 ∶ 9 ∶ 2), (2 ∶ 4 ∶ 5 ∶ 9), (3 ∶ 4 ∶ 4 ∶ 9), (4 ∶ 4 ∶ 5 ∶ 7)}

22. A non-orientable manifold M22 with homology groups (Z,Z3 ⊕ Z,Z2,0) of Heegaard
genus 2. The smallest cyclic complex has 20 vertices.

{(1 ∶ 1 ∶ 1 ∶ 17), (1 ∶ 2 ∶ 5 ∶ 12), (1 ∶ 5 ∶ 2 ∶ 12), (1 ∶ 5 ∶ 12 ∶ 2), (2 ∶ 5 ∶ 4 ∶ 9), (2 ∶ 6 ∶ 6 ∶ 6), (2 ∶ 9 ∶ 4 ∶ 5), (4 ∶ 5 ∶ 4 ∶ 7)}

23. A prism manifold∗ P7, determined by its fundamental group D7×Z2 of order 28. The
smallest cyclic complex has 20 vertices and is locally minimal.

{(1 ∶ 1 ∶ 1 ∶ 17), (1 ∶ 2 ∶ 15 ∶ 2), (2 ∶ 3 ∶ 12 ∶ 3), (3 ∶ 4 ∶ 6 ∶ 7), (3 ∶ 4 ∶ 7 ∶ 6), (3 ∶ 5 ∶ 3 ∶ 9), (3 ∶ 6 ∶ 3 ∶ 8), (3 ∶ 6 ∶ 4 ∶ 7), (4 ∶ 6 ∶ 4 ∶ 6)}

24. The connected sum (S2 × S1)#6. The smallest cyclic complex has 20 vertices.

{(1 ∶ 1 ∶ 3 ∶ 15), (1 ∶ 1 ∶ 4 ∶ 14), (1 ∶ 3 ∶ 5 ∶ 11), (1 ∶ 5 ∶ 5 ∶ 9), (1 ∶ 8 ∶ 2 ∶ 9), (2 ∶ 3 ∶ 7 ∶ 8), (2 ∶ 4 ∶ 5 ∶ 9), (3 ∶ 5 ∶ 5 ∶ 7), (3 ∶ 7 ∶ 3 ∶ 7)}

25. The �at manifold G2
∗∗∗ with fundamental group

⟨a, b, c ∣ aba = b, cbc = b, ac = ca⟩.

The smallest cyclic complex has 20 vertices.

{(1 ∶ 1 ∶ 3 ∶ 15), (1 ∶ 1 ∶ 6 ∶ 12), (1 ∶ 3 ∶ 1 ∶ 15), (1 ∶ 6 ∶ 10 ∶ 3), (1 ∶ 7 ∶ 2 ∶ 10), (1 ∶ 9 ∶ 6 ∶ 4), (2 ∶ 3 ∶ 7 ∶ 8), (2 ∶ 6 ∶ 5 ∶ 7), (4 ∶ 6 ∶ 4 ∶ 6)}

26. The connected sum (S2 " S1)#6. The smallest cyclic complex has 20 vertices.

{(1 ∶ 1 ∶ 3 ∶ 15), (1 ∶ 1 ∶ 8 ∶ 10), (1 ∶ 3 ∶ 7 ∶ 9), (1 ∶ 4 ∶ 6 ∶ 9), (1 ∶ 8 ∶ 5 ∶ 6), (1 ∶ 9 ∶ 4 ∶ 6), (2 ∶ 3 ∶ 5 ∶ 10), (3 ∶ 5 ∶ 5 ∶ 7), (3 ∶ 7 ∶ 3 ∶ 7)}

27. The connected sum (S2 × S1)#4. The smallest cyclic complex has 20 vertices.

{(1 ∶ 2 ∶ 2 ∶ 15), (1 ∶ 2 ∶ 4 ∶ 13), (1 ∶ 4 ∶ 5 ∶ 10), (1 ∶ 6 ∶ 4 ∶ 9), (1 ∶ 9 ∶ 1 ∶ 9), (2 ∶ 2 ∶ 4 ∶ 12), (2 ∶ 6 ∶ 9 ∶ 3), (3 ∶ 4 ∶ 4 ∶ 9), (4 ∶ 5 ∶ 5 ∶ 6)}
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28. The connected sum (S2 " S1)#9. The smallest cyclic complex has 20 vertices.

{(1 ∶ 2 ∶ 7 ∶ 10), (1 ∶ 2 ∶ 8 ∶ 9), (1 ∶ 4 ∶ 5 ∶ 10), (1 ∶ 4 ∶ 11 ∶ 4), (1 ∶ 10 ∶ 5 ∶ 4), (2 ∶ 6 ∶ 2 ∶ 10), (2 ∶ 6 ∶ 6 ∶ 6), (2 ∶ 7 ∶ 3 ∶ 8), (3 ∶ 7 ∶ 3 ∶ 7)}

29. The �at manifold G3
∗∗∗ with fundamental group

⟨a, b ∣ (ba)2 = a−1b2, (ba−1)2 = ab2⟩.

The smallest cyclic complex has 21 vertices.

{(1 ∶ 1 ∶ 1 ∶ 18), (1 ∶ 2 ∶ 1 ∶ 17), (1 ∶ 3 ∶ 5 ∶ 12), (1 ∶ 5 ∶ 3 ∶ 12), (1 ∶ 5 ∶ 6 ∶ 9), (1 ∶ 11 ∶ 6 ∶ 3), (3 ∶ 5 ∶ 8 ∶ 5), (4 ∶ 5 ∶ 6 ∶ 6)}

30. A manifold M30 with homology groups (Z,Z2 ⊕ Z3,Z2 ⊕ Z2,0) of Heegaard genus 4.
The smallest cyclic complex has 21 vertices.

{(1 ∶ 1 ∶ 1 ∶ 18), (1 ∶ 2 ∶ 1 ∶ 17), (1 ∶ 3 ∶ 6 ∶ 11), (1 ∶ 6 ∶ 3 ∶ 11), (1 ∶ 6 ∶ 11 ∶ 3), (3 ∶ 5 ∶ 6 ∶ 7), (3 ∶ 5 ∶ 8 ∶ 5), (3 ∶ 6 ∶ 7 ∶ 5), (3 ∶ 7 ∶ 5 ∶ 6)}

31. A manifold M31 with homology groups (Z,Z3 ⊕ Z6 ⊕ Z,Z2,0) of Heegaard genus 3.
The smallest cyclic complex has 21 vertices.

{(1 ∶ 1 ∶ 1 ∶ 18), (1 ∶ 2 ∶ 5 ∶ 13), (1 ∶ 4 ∶ 3 ∶ 13), (1 ∶ 4 ∶ 14 ∶ 2), (3 ∶ 4 ∶ 3 ∶ 11), (3 ∶ 5 ∶ 6 ∶ 7), (3 ∶ 6 ∶ 6 ∶ 6), (3 ∶ 6 ∶ 7 ∶ 5), (3 ∶ 7 ∶ 5 ∶ 6)}

32. A manifold M32 with homology groups (Z,Z2
3 ⊕ Z,Z2,0) of Heegaard genus 3. The

smallest cyclic complex has 21 vertices.

{(1 ∶ 1 ∶ 1 ∶ 18), (1 ∶ 2 ∶ 6 ∶ 12), (1 ∶ 4 ∶ 4 ∶ 12), (1 ∶ 4 ∶ 14 ∶ 2), (2 ∶ 5 ∶ 4 ∶ 10), (2 ∶ 6 ∶ 3 ∶ 10), (3 ∶ 4 ∶ 10 ∶ 4), (3 ∶ 6 ∶ 6 ∶ 6), (3 ∶ 10 ∶ 4 ∶ 4)}

33. A manifold M33 with homology groups (Z,Z2
2 ⊕ Z2,Z ⊕ Z2,0) of Heegaard genus 4.

The smallest cyclic complex has 21 vertices and is locally minimal.

{(1 ∶ 2 ∶ 3 ∶ 15), (1 ∶ 2 ∶ 13 ∶ 5), (1 ∶ 5 ∶ 2 ∶ 13), (1 ∶ 7 ∶ 4 ∶ 9), (1 ∶ 11 ∶ 4 ∶ 5), (2 ∶ 3 ∶ 3 ∶ 13), (2 ∶ 6 ∶ 4 ∶ 9), (2 ∶ 10 ∶ 4 ∶ 5), (4 ∶ 6 ∶ 4 ∶ 7)}

34. A manifold M34 with homology groups (Z,Z7 ⊕ Z2,Z2,Z) of Heegaard genus 3. The
smallest cyclic complex has 21 vertices.

{(1 ∶ 2 ∶ 4 ∶ 14), (1 ∶ 2 ∶ 5 ∶ 13), (1 ∶ 6 ∶ 5 ∶ 9), (1 ∶ 7 ∶ 9 ∶ 4), (1 ∶ 11 ∶ 3 ∶ 6), (1 ∶ 14 ∶ 2 ∶ 4), (3 ∶ 4 ∶ 3 ∶ 11), (3 ∶ 5 ∶ 9 ∶ 4), (3 ∶ 6 ∶ 5 ∶ 7)}

35. The connected sum (S2 × S1)#12. The smallest cyclic complex has 21 vertices.

{(1 ∶ 2 ∶ 4 ∶ 14), (1 ∶ 2 ∶ 11 ∶ 7), (1 ∶ 6 ∶ 3 ∶ 11), (1 ∶ 9 ∶ 4 ∶ 7), (2 ∶ 4 ∶ 7 ∶ 8), (3 ∶ 3 ∶ 3 ∶ 12), (3 ∶ 4 ∶ 5 ∶ 9), (3 ∶ 6 ∶ 7 ∶ 5), (3 ∶ 9 ∶ 4 ∶ 5)}

36. The prism manifold∗ P8 = S3/Q32, determined by its fundamental group Q32 which
denotes the generalized quaternion group of order 32. The smallest cyclic complex
has 22 vertices.

{(1 ∶ 1 ∶ 1 ∶ 19), (1 ∶ 2 ∶ 1 ∶ 18), (1 ∶ 3 ∶ 15 ∶ 3), (3 ∶ 4 ∶ 3 ∶ 12), (3 ∶ 5 ∶ 6 ∶ 8), (3 ∶ 5 ∶ 8 ∶ 6), (3 ∶ 6 ∶ 3 ∶ 10), (3 ∶ 6 ∶ 5 ∶ 8), (3 ∶ 7 ∶ 3 ∶ 9), (5 ∶ 6 ∶ 5 ∶ 6)}

37. The prism manifold∗ P4 = S3/Q16, determined by its fundamental group Q16 which
denotes the generalized quaternion group of order 16. The smallest cyclic complex
has 22 vertices.

{(1 ∶ 1 ∶ 1 ∶ 19), (1 ∶ 2 ∶ 3 ∶ 16), (1 ∶ 5 ∶ 7 ∶ 9), (1 ∶ 12 ∶ 7 ∶ 2), (2 ∶ 3 ∶ 3 ∶ 14), (2 ∶ 6 ∶ 7 ∶ 7), (3 ∶ 4 ∶ 8 ∶ 7), (3 ∶ 4 ∶ 10 ∶ 5), (4 ∶ 4 ∶ 4 ∶ 10)}
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38. A lens space of type L(15,4). The smallest cyclic complex has 22 vertices. For a
proof of its topological type see Theorem 4.1.

{(1 ∶ 1 ∶ 1 ∶ 19), (1 ∶ 2 ∶ 4 ∶ 15), (1 ∶ 4 ∶ 2 ∶ 15), (1 ∶ 4 ∶ 15 ∶ 2), (2 ∶ 4 ∶ 12 ∶ 4), (2 ∶ 5 ∶ 2 ∶ 13), (2 ∶ 7 ∶ 2 ∶ 11), (2 ∶ 9 ∶ 2 ∶ 9), (4 ∶ 4 ∶ 4 ∶ 10), (4 ∶ 6 ∶ 4 ∶ 8)}

39. A manifold M39 with homology groups (Z,Z,Z,Z) and a fundamental group di�erent
to Z. The smallest cyclic complex has 22 vertices.

{(1 ∶ 1 ∶ 1 ∶ 19), (1 ∶ 2 ∶ 5 ∶ 14), (1 ∶ 7 ∶ 12 ∶ 2), (2 ∶ 4 ∶ 5 ∶ 11), (2 ∶ 4 ∶ 11 ∶ 5), (2 ∶ 5 ∶ 4 ∶ 11), (2 ∶ 8 ∶ 2 ∶ 10), (2 ∶ 12 ∶ 3 ∶ 5), (4 ∶ 5 ∶ 4 ∶ 9), (5 ∶ 6 ∶ 5 ∶ 6)}

40. A lens space of type L(7,1). The smallest cyclic complex has 22 vertices. For a proof
of its topological type see below.

{(1 ∶ 1 ∶ 1 ∶ 19), (1 ∶ 2 ∶ 5 ∶ 14), (1 ∶ 7 ∶ 12 ∶ 2), (2 ∶ 5 ∶ 2 ∶ 13), (2 ∶ 7 ∶ 2 ∶ 11), (2 ∶ 8 ∶ 4 ∶ 8), (2 ∶ 9 ∶ 2 ∶ 9), (2 ∶ 12 ∶ 3 ∶ 5), (4 ∶ 6 ∶ 4 ∶ 8), (4 ∶ 6 ∶ 6 ∶ 6)}

41. A manifold M41 with homology groups (Z,Z5 ⊕ Z,Z2,0) of Heegaard genus 2. The
smallest cyclic complex has 22 vertices and is locally minimal.

{(1 ∶ 1 ∶ 5 ∶ 15), (1 ∶ 1 ∶ 15 ∶ 5), (1 ∶ 5 ∶ 1 ∶ 15), (2 ∶ 3 ∶ 2 ∶ 15), (2 ∶ 3 ∶ 8 ∶ 9), (2 ∶ 8 ∶ 4 ∶ 8), (2 ∶ 8 ∶ 9 ∶ 3), (2 ∶ 9 ∶ 2 ∶ 9), (2 ∶ 9 ∶ 3 ∶ 8), (4 ∶ 4 ∶ 4 ∶ 10)}

42. A manifoldM42 with homology groups (Z,Z3,Z2⊕Z2,0) of Heegaard genus 3, di�erent
to (S2 " S1)#3. The smallest cyclic complex has 22 vertices and is locally minimal.

{(1 ∶ 1 ∶ 5 ∶ 15), (1 ∶ 1 ∶ 15 ∶ 5), (1 ∶ 5 ∶ 1 ∶ 15), (2 ∶ 5 ∶ 3 ∶ 12), (2 ∶ 8 ∶ 4 ∶ 8), (2 ∶ 9 ∶ 2 ∶ 9), (2 ∶ 9 ∶ 3 ∶ 8), (2 ∶ 11 ∶ 4 ∶ 5), (3 ∶ 8 ∶ 4 ∶ 7), (3 ∶ 10 ∶ 4 ∶ 5)}

43. The connected sum (S2 " S1)#12. The smallest cyclic complex has 22 vertices.

{(1 ∶ 1 ∶ 9 ∶ 11), (1 ∶ 1 ∶ 10 ∶ 10), (1 ∶ 9 ∶ 2 ∶ 10), (2 ∶ 3 ∶ 6 ∶ 11), (2 ∶ 3 ∶ 8 ∶ 9), (3 ∶ 4 ∶ 4 ∶ 11), (3 ∶ 4 ∶ 11 ∶ 4), (3 ∶ 6 ∶ 5 ∶ 8), (3 ∶ 11 ∶ 4 ∶ 4), (5 ∶ 6 ∶ 5 ∶ 6)}

44. A manifold M44 with homology groups (Z,Z4 ⊕ Z2,Z2 ⊕ Z,0) of Heegaard genus 3.
The smallest cyclic complex has 22 vertices.

{(1 ∶ 2 ∶ 4 ∶ 15), (1 ∶ 2 ∶ 13 ∶ 6), (1 ∶ 4 ∶ 2 ∶ 15), (1 ∶ 4 ∶ 8 ∶ 9), (1 ∶ 12 ∶ 3 ∶ 6), (2 ∶ 4 ∶ 8 ∶ 8), (2 ∶ 12 ∶ 3 ∶ 5), (2 ∶ 13 ∶ 3 ∶ 4), (3 ∶ 5 ∶ 8 ∶ 6)}

45. A homology sphereM45 with unknown but very large∗∗ fundamental group of Heegaard
genus 2. The smallest cyclic complex has 19 vertices.

{(1 ∶ 1 ∶ 1 ∶ 16), (1 ∶ 2 ∶ 6 ∶ 10), (1 ∶ 8 ∶ 8 ∶ 2), (2 ∶ 6 ∶ 3 ∶ 8), (3 ∶ 6 ∶ 4 ∶ 6), (4 ∶ 5 ∶ 4 ∶ 6), (4 ∶ 5 ∶ 5 ∶ 5)}

46. A manifold M46 with homology groups (Z,Z3,0,Z) and unknown but very large∗∗
fundamental group of Heegaard genus 2. The smallest cyclic complex has 20 vertices.

{(1 ∶ 1 ∶ 5 ∶ 13), (1 ∶ 1 ∶ 6 ∶ 12), (1 ∶ 5 ∶ 2 ∶ 12), (2 ∶ 5 ∶ 2 ∶ 11), (2 ∶ 6 ∶ 6 ∶ 6), (2 ∶ 7 ∶ 4 ∶ 7), (3 ∶ 4 ∶ 3 ∶ 10), (3 ∶ 4 ∶ 9 ∶ 4), (3 ∶ 7 ∶ 3 ∶ 7)}

47. A manifold M47 with homology groups (Z,Z2
3,0,Z) and unknown but very large∗∗

fundamental group of Heegaard genus at least 2 and at most 3. The smallest cyclic
complex has 20 vertices.

{(1 ∶ 1 ∶ 3 ∶ 15), (1 ∶ 1 ∶ 4 ∶ 14), (1 ∶ 3 ∶ 4 ∶ 12), (1 ∶ 5 ∶ 2 ∶ 12), (2 ∶ 3 ∶ 6 ∶ 9), (2 ∶ 4 ∶ 9 ∶ 5), (2 ∶ 9 ∶ 3 ∶ 6), (3 ∶ 4 ∶ 4 ∶ 9)}

48. A manifold M48 with homology groups (Z,Z2
2,0,Z) and unknown but very large∗∗

fundamental group of Heegaard genus 2. The smallest cyclic complex has 21 vertices.

{(1 ∶ 1 ∶ 1 ∶ 18), (1 ∶ 2 ∶ 7 ∶ 11), (1 ∶ 9 ∶ 9 ∶ 2), (2 ∶ 7 ∶ 3 ∶ 9), (3 ∶ 7 ∶ 4 ∶ 7), (4 ∶ 6 ∶ 4 ∶ 7), (4 ∶ 6 ∶ 5 ∶ 6), (5 ∶ 5 ∶ 5 ∶ 6)}
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49. A manifold M49 with homology groups (Z,Z3⊕Z9,0,Z) and unknown but very large∗∗
fundamental group of Heegaard genus 2. The smallest cyclic complex has 21 vertices.

{(1 ∶ 1 ∶ 1 ∶ 18), (1 ∶ 2 ∶ 1 ∶ 17), (1 ∶ 3 ∶ 6 ∶ 11), (1 ∶ 6 ∶ 3 ∶ 11), (1 ∶ 6 ∶ 11 ∶ 3), (3 ∶ 5 ∶ 3 ∶ 10), (3 ∶ 5 ∶ 8 ∶ 5), (3 ∶ 6 ∶ 6 ∶ 6), (3 ∶ 7 ∶ 3 ∶ 8)}

50. A manifoldM50 with homology groups (Z,Z5⊕Z10,0,Z) and unknown but very large∗∗
fundamental group of Heegaard genus 2. The smallest cyclic complex has 21 vertices
and is locally minimal.

{(1 ∶ 1 ∶ 3 ∶ 16), (1 ∶ 1 ∶ 4 ∶ 15), (1 ∶ 3 ∶ 10 ∶ 7), (1 ∶ 5 ∶ 8 ∶ 7), (2 ∶ 3 ∶ 6 ∶ 10), (2 ∶ 4 ∶ 10 ∶ 5), (2 ∶ 6 ∶ 3 ∶ 10), (2 ∶ 6 ∶ 8 ∶ 5), (3 ∶ 6 ∶ 3 ∶ 9)}

51. A manifold M51 with homology groups (Z,Z2
4,0,Z) and unknown but very large∗∗

fundamental group of Heegaard genus 2. The smallest cyclic complex has 21 vertices
and is locally minimal.

{(1 ∶ 1 ∶ 3 ∶ 16), (1 ∶ 1 ∶ 4 ∶ 15), (1 ∶ 3 ∶ 10 ∶ 7), (1 ∶ 5 ∶ 8 ∶ 7), (2 ∶ 3 ∶ 6 ∶ 10), (2 ∶ 4 ∶ 10 ∶ 5), (2 ∶ 6 ∶ 3 ∶ 10), (2 ∶ 6 ∶ 8 ∶ 5), (3 ∶ 6 ∶ 6 ∶ 6)}

52. A manifold M52 with homology groups (Z,Z5,0,Z) and unknown but very large∗∗
fundamental group of Heegaard genus 2. The smallest cyclic complex has 21 vertices.

{(1 ∶ 1 ∶ 1 ∶ 19), (1 ∶ 2 ∶ 17 ∶ 2), (2 ∶ 3 ∶ 4 ∶ 13), (2 ∶ 7 ∶ 10 ∶ 3), (3 ∶ 4 ∶ 8 ∶ 7), (3 ∶ 5 ∶ 4 ∶ 10), (3 ∶ 5 ∶ 7 ∶ 7), (4 ∶ 6 ∶ 4 ∶ 8), (4 ∶ 6 ∶ 6 ∶ 6)}

53. A manifold M53 with homology groups (Z,Z8,0,Z) and unknown but very large∗∗
fundamental group of Heegaard genus 2. The smallest cyclic complex has 21 vertices.

{(1 ∶ 1 ∶ 3 ∶ 17), (1 ∶ 1 ∶ 4 ∶ 16), (1 ∶ 3 ∶ 2 ∶ 16), (2 ∶ 3 ∶ 14 ∶ 3), (2 ∶ 4 ∶ 12 ∶ 4), (3 ∶ 5 ∶ 3 ∶ 11), (3 ∶ 8 ∶ 3 ∶ 8), (4 ∶ 6 ∶ 6 ∶ 6)}

54. A manifold M54 with homology groups (Z,Z24,0,Z) and unknown but very large∗∗
fundamental group of Heegaard genus at least 2 and at most 3. The smallest cyclic
complex has 22 vertices and is locally minimal.

{(1 ∶ 1 ∶ 3 ∶ 17), (1 ∶ 1 ∶ 4 ∶ 16), (1 ∶ 3 ∶ 2 ∶ 16), (2 ∶ 3 ∶ 7 ∶ 10), (2 ∶ 4 ∶ 2 ∶ 14), (2 ∶ 6 ∶ 8 ∶ 6), (2 ∶ 7 ∶ 2 ∶ 11), (2 ∶ 7 ∶ 10 ∶ 3), (2 ∶ 9 ∶ 2 ∶ 9), (2 ∶ 10 ∶ 3 ∶ 7)}

∗∗ �very large� in this context means that GAP wasn't able to calculate the size of the
fundamental group due to extremely large orders of its generators. In particular, the fun-
damental group might be of in�nite order.

Proof. The complexes were found using the classi�cation algorithm for transitive combi-
natorial manifolds integrated to the software package simpcomp.

Most of the topological distinctions were done via comparison of the simplicial homology
groups and the fundamental group of the complexes:

� The manifolds of type (S2 ×S1)#k and (S2 "S1)#k were identi�ed by calculating the
fundamental group and applying Kneser's conjecture, proved by Stallings in 1959
(see [25]) together with [9, Theorem 5.2].

� By the elliptization conjecture (stated by Thurston in [27, Chapter 3], recently proved
by Perelman, see [20, 22, 21]), the topological type of a spherical 3-manifold distinct
from a lens space is already determined by the isomorphism type of its (�nite) fun-
damental group. These cases are marked by ∗ in the list above.
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� The fundamental group distinguishes all �at 3-manifolds by a theorem of Bieberbach
(see [3] and [18, page 4]). On the other hand, all other 3-manifolds with a fundamental
group containing Z3 are known to be the connected sum of a �at 3-manifold with some
other 3-manifold (cf. [15]). Hence, all 3-manifolds with the fundamental group of a
�at manifold have to be prime (as all �at manifolds are prime and the fundamental
group of some 3-manifold M determines the length of a prime decomposition of M ,
cf. [25] and [9, Theorem 5.2]) and thus are �at. Altogether, a 3-manifold with the
fundamental group of a �at manifold is determined by its fundamental group. These
cases are marked by ∗∗∗ in the list above.

For more information about the spherical case in the classi�cation of 3-manifolds see
[26, 19], for more about �at 3-manifolds see [3, 18, 11].

Now let us prove that complex 16 - which will be denoted by C in the following - is
homeomorphic to the lens space L(5,1):

Figure 2.1 shows the slicing, i. e. the pre-image of a polyhedral Morse function or regular
simplexwise linear function (see [10]) as described in [24], of C between the odd labeled
vertices and the even labeled vertices. Here, the slicing is a torus. Also, both the span of
the odd and the span of the even labeled vertices is a solid torus and hence C is a manifold
of Heegaard genus 1. For the 1-homology of the two tori T− ∶= B(span(0,2, . . . ,16)) and
T+ ∶= B(span(1,3, . . . ,17)) we choose a basis as follows:

α− ∶= ⟨0,10,4,14,8,0⟩
β− ∶= ⟨0,12,6,0⟩

and

α+ ∶= ⟨1,11,5,15,9,1⟩
β+ ∶= ⟨1,13,7,1⟩

such that H1(T±) = ⟨α±, β±⟩, H1(span(0,2, . . . ,16)) = ⟨β−⟩ and H1(span(1,3, . . . ,17)) =
⟨β+⟩.

Now, we want to express α− in terms of α+ and β+. With the help of the slicing (the
thick line in Figure 2.1 denotes a path homologous to α− in the slicing) we see that α− can
be transported to the path

⟨17,15,7,5,3,13,11,3,1,17,9,7,17⟩

which entirely lies in T+. This path is homologous to −5 times β+ and 4 times α+ and hence
the topological type of C must be L(−5,4) ≅ L(5,1).

In the following, we will prove that complex 40 - which will be denoted by D - is
homeomorphic to the lens space L(7,1):

Figure 2.2 shows the slicing of D between the odd labeled vertices and the even labeled
vertices which is a torus. Also, both the span of the odd and the span of the even labeled
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Figure 2.1: Slicing of C between the odd labeled and the even labeled vertices together
with the boundary of the two solid tori spanned by the even and by the odd vertices.
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Figure 2.2: Slicing of D between the odd labeled and the even labeled vertices together
with the boundary of the two solid tori spanned by the even and by the odd vertices.
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vertices is a solid torus and hence D is a manifold of Heegaard genus 1. For the 1-homology
of the two tori T− ∶= B(span(0,2, . . . ,16)) and T+ ∶= B(span(1,3, . . . ,17)) we choose a basis
as follows:

α− ∶= ⟨0,8,18,6,16,4,14,0⟩
β− ∶= ⟨0,2,4,0⟩

and

α+ ∶= ⟨1,9,19,7,17,5,15,1⟩
β+ ∶= ⟨1,3,5,1⟩

such that H1(T±) = ⟨α±, β±⟩, H1(span(0,2, . . . ,16)) = ⟨β−⟩ and H1(span(1,3, . . . ,17)) =
⟨β+⟩.

Once again, we want to express α− in terms of α+ and β+. With the help of the slicing
(the thick line in Figure 2.2 denotes a path homologous to α− in the slicing) we see that
α− can be transported to the path

⟨21,19,17,15,7,5,3,17,15,13,5,3,1,15,13,11,3,1,21,13,11,9,7,21⟩

which entirely lies in T+. This path is homologous to −7 times β+ and −1 times α+ and
hence the topological type of D must be L(−7,−1) ≅ L(7,1).

For the identi�cation of the exact topological type of the complexes number 5, 14 and
38 see Theorem 4.1. For the complexes 1 � 13 see the indicated sources. The topological
type of the other complexes has to be left open at this point.

The exact number of complexes, combinatorial types, homological types and locally
minimal complexes, sorted by vertex numbers, can be found in Table 1.

A list of all occurring �nite fundamental groups of cyclic 3-manifolds with 22 or less
vertices which GAP was able to compute, is shown in Table 2. A list of all homological
types of cyclic combinatorial 3-manifolds with 22 or less vertices is listed in Table 3.

Remark 2.2. Note that there exist a lot of examples of topologically distinct 3-manifolds
which cannot be distinguished by comparison of the homology groups or the Heegaard
genus. In addition, as the fundamental group is given by the edge group which is a
quotient of a free group, recognizing its isomorphism type is not always possible. Hence,
we can expect the number of topologically distinct cyclic combinatorial 3-manifolds with
22 or less vertices to be larger than indicated in Theorem 2.1.
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Table 1: The classi�cation of cyclic combinatorial 3-manifolds with up to 22 vertices

n # compl. # dist. c. # loc. min. c. # dist. lmc. # hom. types

5 1 1 1 1 1

6 1 1 0 0 1

7 3 1 0 0 1

8 3 2 0 0 1

9 6 2 3 1 2

10 19 8 0 0 3

11 40 6 0 0 2

12 56 20 0 0 4

13 135 15 0 0 2

14 258 50 0 0 4

15 217 34 1 1 5

16 742 107 12 2 7

17 1272 89 24 2 6

18 1818 319 24 4 15

19 4797 279 63 4 5

20 7670 1008 66 9 19

21 11931 1038 198 18 20

22 30550 3090 230 23 23

1st column: number of vertices n,
2nd column: number of cyclic combinatorial 3-manifolds,
3rd column: number of combinatorially distinct cyclic combinatorial 3-manifolds
4th column: number of locally minimal cyclic combinatorial 3-manifolds
5th column: number of combinatorially distinct locally minimal cyclic combinatorial
3-manifolds,
6th column: number of homological types of cyclic combinatorial 3-manifolds.

Table 2: Finite fundamental groups of cyclic combinatorial 3-manifolds.

fundamental group 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 × × × × × × × × × × × × × × × × × ×
C15 ×
C2 × × × × ×
C3 × × × × ×
C5 × ×
C7 ×
C7 ⋊C4 ×
C8 × × ×
Q16 ×
Q32 ×
Q8 × × ×
SL(2,3) × ×
SL(2,5) × ×
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Table 3: Homological types of cyclic combinatorial 3-manifolds.

homology groups 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
(Z,0,0,Z) × × × × × × × × × × × × × × × × × ×
(Z,Z2,0,Z) × × × × ×
(Z,Z2 ⊕ Z2,0,Z) × × × ×
(Z,Z3,0,Z) × × × × ×
(Z,Z3 ⊕ Z3,0,Z) × ×
(Z,Z3 ⊕ Z9,0,Z) ×
(Z,Z4,0,Z) ×
(Z,Z4 ⊕ Z4,0,Z) ×
(Z,Z5,0,Z) × ×
(Z,Z5 ⊕ Z10,0,Z) ×
(Z,Z7,0,Z) ×
(Z,Z8,0,Z) × × ×
(Z,Z15,0,Z) ×
(Z,Z24,0,Z) ×
(Z,Z,Z2,0) × × × × × × × × × × × × × ×
(Z,Z,Z,Z) × × × × × × ×
(Z,Z⊕ Z2,Z2,0) × × × × ×
(Z,Z⊕ Z2 ⊕ Z2,Z2,0) × ×
(Z,Z⊕ Z2 ⊕ Z2,Z,Z) ×
(Z,Z⊕ Z3,Z2,0) × ×
(Z,Z⊕ Z3,Z,Z) ×
(Z,Z⊕ Z3 ⊕ Z3,Z2,0) ×
(Z,Z⊕ Z3 ⊕ Z6,Z2,0) ×
(Z,Z⊕ Z4,Z2,0) × × ×
(Z,Z⊕ Z4,Z,Z) ×
(Z,Z⊕ Z5,Z2,0) ×
(Z,Z2,Z⊕ Z2,0) × × × × × × ×
(Z,Z2,Z2,Z) × ×
(Z,Z2 ⊕ Z2,Z⊕ Z2,0) × × × ×
(Z,Z2 ⊕ Z2 ⊕ Z2,Z⊕ Z2,0) ×
(Z,Z2 ⊕ Z4,Z⊕ Z2,0) ×
(Z,Z2 ⊕ Z7,Z2,Z) ×
(Z,Z3,Z2 ⊕ Z2,0) ×
(Z,Z3,Z3,Z) × × × × × × × ×
(Z,Z3 ⊕ Z2,Z2 ⊕ Z2,0) ×
(Z,Z4,Z4,Z) ×
(Z,Z5,Z5,Z) ×
(Z,Z6,Z5 ⊕ Z2,0) ×
(Z,Z6,Z6,Z) ×
(Z,Z7,Z6 ⊕ Z2,0) ×
(Z,Z7,Z7,Z) ×
(Z,Z9,Z8 ⊕ Z2,0) ×
(Z,Z12,Z11 ⊕ Z2,0) ×
(Z,Z12,Z12,Z) × ×

It is interesting to see that some of the homological types of the complexes do not
occur for certain integers. Especially, if n is a prime number, the number of homologically
distinct complexes seems to be limited. In particular, we believe the following to be true.

Conjecture 2.3. Let M be a combinatorial 3-manifold with cyclic automorphism group
homeomorphic to the total space of the orientable sphere bundle over the circle S2 × S1.
Then M has an even number of vertices.
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3 In�nite series of combinatorial manifolds

It has always been interesting to see, how cyclic combinatorial manifolds or other highly
symmetric complexes can be generalized to a whole family of objects sharing this property.
See for example the in�nite series of the so-called Altshuler tori with dihedral automorphism
group [1, Theorem 4], a family of several in�nite series of combinatorial manifolds by
Kühnel and Lassmann in [13], a neighborly in�nite series of the 3-dimensional Klein bottle
in [12] and a neighborly in�nite series of the 3-torus in [4].

In the case of combinatorial complexes with cyclic automorphism group, a generaliza-
tion of a given complex to an in�nite series of such triangulations with increasing number
of vertices seems somewhat natural. One way to see this uses slicings of combinatorial
3-manifolds as described in [23, Section 4.2]. The idea is to generalize a slicing of a combi-
natorial 3-manifold extending the cyclic symmetry. More generally, in the case of a cyclic
combinatorial 3-manifold represented by a set of di�erence cycles, there is a simple com-
binatorial condition whether a given triangulation can be generalized to an in�nite family
of cyclic complexes or not.

Theorem 3.1. Let M = {d1, . . . , dm} be a combinatorial 3-manifold with n vertices, repre-
sented by m di�ernce cycles di = (a0

i ∶ . . . ∶ a3
i ), 1 ≤ i ≤ m. Without loss of generality let us

assume that a3
i ≥ a

j
i for all 1 ≤ i ≤m, 0 ≤ j ≤ 2.

Then the complex Mk = {d1,k, . . . , dm,k} with di,k = (a0
i ∶ . . . ∶ a3

i + k), 1 ≤ i ≤ m, is a
combinatorial manifold for all k ∈ N0 if and only if a3

i > a0
i + . . . + a2

i for all 1 ≤ i ≤m.

In order to prove Theorem 3.1 let us �rst take a look at a few lemma.

Lemma 3.2. Let (a0 ∶ . . . ∶ ad) be a di�erence cycle of dimension d on n vertices and
1 ≤ k ≤ d + 1 the smallest integer such that k ∣ (d + 1) and ai = ai+k, 0 ≤ i ≤ d − k. Then
(a0 ∶ . . . ∶ ad) is of length ∑k−1

i=0 ai = nk
d+1 .

Proof. We set m ∶= nk
d+1 and compute

⟨0 +m,a0 +m, . . . , (Σd−1
i=0 ai) +m⟩ = ⟨Σk−1

i=0 ai,Σ
k
i=0ai, . . . ,Σ

d−1
i=0 ai,0, a1, . . . ,Σ

k−2
i=0 ai⟩

= ⟨0, a0, . . . ,Σ
d−1
i=0 ai⟩

(all entries are computed modulo n). Hence, for the length l of (a0 ∶ . . . ∶ ad) we have l ≤ nk
d+1

and since k is minimal with k ∣ (d + 1) and ai = ai+k, the upper bound is attained.

Lemma 3.3. Let (Mk)k∈N0 be an in�nite series of cyclic combinatorial 3-manifolds with
n + k vertices represented by the union of m di�erence cycles of full length, that is, the
length of the di�erence cycles equals the number of vertices n + k of the complex. Then we
have for the f -vector of the series

f (lkM0(0))) = f (lkMk
(0))) = (2m + 2,6m,4m)

for all k ∈ N0. In particular, the number of vertices of lkMk
(0) does not depend on the value

of k.
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Proof. Since Mk is the union of m di�erence cycles of full length, we have for the number
of tetrahedra f3(Mk) = m(n + k) for all k ∈ N0. Furthermore, as Mk is cyclic, all vertices
are contained in the same number of tetrahedra which has 4 vertices. By the fact that any
facet of lkMk

(0) corresponds to a facet in Mk containing 0 it follows that for the number

of triangles of the link f2(lkMk
(0)) = 4m(n+k)

n+k = 4m holds, which is independent of k. Since
for all k ∈ N0 Mk is a combinatorial 2-sphere, all edges of lkMk

lie in exactly two triangles,
hence f1(lkMk

(0)) = 6m. Finally, the Euler characteristic of the 2-sphere is 2, and by the
Euler-Poincaré formula we have f0(lkMk

(0)) = 2m + 2.

Let us now come to the proof of Theorem 3.1.

Proof. Now letM = {d1, . . . , dm} be a combinatorial 3-manifold with n vertices, represented
by m di�ernce cycles di = (a0

i ∶ . . . ∶ a3
i ), 1 ≤ i ≤m, such that a3

i > a0
i + . . .+a2

i for all 1 ≤ i ≤m.
For the link of vertex 0 in M we then have:

lkM(0) =
m

⋃
i=1

2

⋃
j=−1

⟨−
j

∑
k=0

aki , . . . ,−aji , a
j+1
i , . . .

2

∑
k=j+1

aki ⟩ (3.1)

which has to be a triangulated 2-sphere, as M is a combinatorial 3-manifold. Since a3
i >

n
2 > a0

i + . . . + a2
i for all 1 ≤ i ≤m, the vertices vj ∈ {0, . . . n − 1} of lkM(0) can be mapped to

the vertices of lkMk
(0), k ∈ N0, as follows:

vj ↦ { vj if vj < n
2

vj + k if vj ≥ n
2 .

This yields a combinatorial isomorphism between lkM(0) and lkMk
(0). Since M and Mk

are cyclic, all vertex links are isomorphic. Altogether it follows that Mk is a combinatorial
manifold for all k ∈ N0.

This part of the proof can be generalized to combinatorial d-manifolds, d arbitrary, see
Theorem 3.7.

Conversely, let M = {d1, . . . , dm} be a combinatorial 3-manifold with n vertices, repre-
sented by m di�ernce cycles di = (a0

i ∶ . . . ∶ a3
i ), 1 ≤ i ≤ m, such that Mk = {d1,k, . . . , dm,k}

with di,k = (a0
i ∶ . . . ∶ a3

i + k), 1 ≤ i ≤ m, is a combinatorial manifold for all k ∈ N0. Now, let
us suppose that there exist a k̃ ∈ N0 such that a3

i + k̃ = a0
i + . . .+a2

i for one di�erence cycle di
and a3

j + k̃ ≥ a0
j + . . .+ a2

j for all other 1 ≤ j ≤m. Since a3
j + k̃ ≥ a0

j + . . .+ a2
j and a

l
j > 0 for all

1 ≤ j ≤m, 0 ≤ l ≤ 3, it follows by Lemma 3.2 that all di�erence cycles of Mk̃ and Mk̃+1 have
full length. By Lemma 3.3 it now follows that the links of vertex 0 in Mk̃ and Mk̃+1 have

the same f -vector. On the other hand, since a3
i + k̃ = a0

i + . . .+a2
i but a

3
j + k̃+1 > a0

j + . . .+a2
j

for all 1 ≤ j ≤m, we can see by looking at the vertices of lkMk̃
(0) that lkMk̃+1(0) has to have

strictly more vertices than the link of vertex 0 in Mk̃. This is a contradiction to Lemma
3.3.

Remark 3.4. Theorem 3.1 shows, how a single cyclic combinatorial 3-manifold can be
extended to an in�nite number of combinatorial 3-manifolds by adding an arbitrary positive
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integer to the largest entry in every di�erence cycle. More generally, we will talk about
in�nite series of cyclic combinatorial d-manifolds whenever the in�nite family of complexes
is constructed by adding multiples of a positive integer k ∈ N to certain entries of the
di�erence cycles of a combinatorial d-manifold M of arbitrary dimension d. In contrast to
that, in Section 4 we will look at an in�nite series with an increasing number of di�erence
cycles. Hence, in�nite series of combinatorial d-manifolds can be de�ned in various ways.
As a consequence, in every context attention has to be payed what exactly is meant by an
in�nite series of combinatorial manifolds.

In the following, we will require an in�nite series of cyclic combinatorial manifolds to
start with the smallest complex that is a combinatorial manifold, that is, the complex M−1

must not be a combinatorial manifold.

Corollary 3.5. Let (Mk)k∈N0 be an in�nite series of cyclic combinatorial 3-manifolds such
that M−1 is not a combinatorial manifold, then M0 has an odd number of vertices.

Proof. This follows immediately by the fact, that ∆j ∶= adj −a0
j−. . .−ad−1

j > 0 for all 1 ≤ j ≤m
in M0. If the mimimum over all ∆j, 1 ≤ j ≤m, is greater than 1, M−1 is a combinatorial 3-
manifold by Theorem 3.1 andM0 is not the smallest member of that in�nite series. Hence,
∆i = 1 for some 1 ≤ i ≤m and n = 2adi + 1.

Another direct consequence from the classi�cation and Theorem 3.1 is the following
result.

Corollary 3.6. There are exactly 396 combinatorially distinct dense in�nite series of com-
binatorial 3-manifolds starting with a triangulation with less than 23 vertices.

So far, we just considered in�nite series of cyclic combinatorial manifolds that have
members for all integers n ≥ n0 for n0 su�ciently large. However, the notion of an in�nite
series of combinatorial manifolds as described in Remark 3.4 is more general. In fact, there
are other (weaker) formulations of in�nite series of cyclic combinatorial d-manifolds: In
the following, we will call a series Nk of order l, l ∈ N, if there exist an integer n0 ∈ N such
that there are triangulations with n = n0 + k ⋅ l vertices in Nk for all k ∈ N. It will usually
be denoted as (Nk)k∈lN0 . The case l = 1 contains all other cases. It coincides with the
previously described series and will be referred to as a dense series.

There is an analogue to the �rst half of Theorem 3.1 for in�nite series of combinatorial
d-manifolds of order l, 1 < l ≤ d, which can be formulated as follows.

Theorem 3.7. Let N = {d1, . . . , dm} be a combinatorial d-manifold with n vertices, repre-
sented by m di�ernce cycles di = (a0

i ∶ . . . ∶ adi ), 1 ≤ i ≤m.
Then there is a combinatorial d-manifold Nk = {d1,k, . . . , dm,k} with di,k = (ã0

i,k ∶ . . . ∶
ãdi,k), 1 ≤ i ≤m, for all k ∈ N0, if for all 1 ≤ i ≤m there exist a partition (l0, . . . , ld) of l ∈ N
allowing zero entries such that

(lj + 1)n
l + 1

> aji >
ljn

l + 1
,

0 ≤ j ≤ d. In this case we have ãji,k = a
j
i + ljk, 0 ≤ j ≤ d.
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Proof. The proof is completely analogue to the one of the �rst part of Theorem 3.1. Here,
too, we look at a relabeling of the vertices of the link lkN(0) in order to transform it to
lkNk

(0).
The relabeling is given by

vj ↦ vj + ⌊(d + 1)vj
n

⌋k.

The �rst half of Theorem 3.1 corresponds to the case d = 3 and l = 1.

Theorem 3.7 de�nes series of order l, 1 ≤ l ≤ d, by a purely combinatorial criterion.
Since all dense series contain series of order l, the following characterisation of higher order
series is interesting.

Lemma 3.8. Let (Nk)k∈lN be an in�nite series of combinatorial d-manifolds of order l,
1 ≤ l ≤ d, with n + lk vertices given by a partition (l0, . . . , ld) of l, lj ≥ 0, and Nk = {(ã0

1,k ∶
. . . ∶ ãd1,k), . . . , (ã0

m,k ∶ . . . ∶ ãdm,k)} such that ãji,k = a
j
i + ljk, 0 ≤ j ≤ d, where the aji , 1 ≤ i ≤ m,

0 ≤ j ≤ d, denote the entries of the di�erence cycles of N0. Then all but �nitely many
members of (Nk)k∈lN are contained in a dense series, if l is a unit in Zn.

Proof. By multiplying Nk by l we get lNk = {(la0
1,k ∶ . . . ∶ lad1,k), . . . , (la0

m,k ∶ . . . ∶ ladm,k)}.
Hence, we have laji,k = la

j
i + lljk = la

j
i − ljn which is independent of k. By adding n + lk to

each of the adi , 1 ≤ i ≤m, we have ∑d
j=0 lã

j
1,k = n + lk.

Now, if k = 0, N0 has n vertices, and l is a unit in Zn, the multiplied complex lN0

is a combinatorial manifold and, thus, all di�erences of lN0 are non-zero. Since, in lNk,
only adi,k depends on k it follows, that for k ≥ k0 su�ciently large we can i) rearrange all
di�erences such that all di�erences are greater than zero and ii) Theorem 3.7 in the case
l = 1 can be applied. Hence, all Nk, k ≥ k0, are contained in an in�nite dense series of
combinatorial d-manifolds.

Corollary 3.9. Let (Nk)k∈2N be an in�nite series of cyclic combinatorial d-manifolds of
order 2, which is not contained in a dense series. Then the number of vertices of N0 has
to be even.

Proof. This follows immediately since 2 is a unit in Zn for all n ≡ 1(2).

Since Theorem 3.7 is valid for arbitrary dimensions, an extended classi�cation of cyclic
combinatorial manifolds of higher dimensions would certainly lead to further interesting
results. However, this is work in progress.

4 An in�nite series of neighborly lens spaces of varying

topological types

All in�nite series described in Section 3 have a constant number of di�erence cycles. Hence,
by Lemma 3.3, at most one member of the series can be 2-neighborly. In particular, in�nite
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series of neighborly cyclic combinatorial 3-manifolds must consist of an increasing number
of di�erence cycles.

Moreover, even if we consider all known neighborly series as well, only few topologically
distinct 3-manifolds occur in these series. For example, there are a lot of series known with
members of type S2 × S1 or S2 " S1 (see [12] or [23, Section 4.2]), S3 (the the boundary
of the cyclic 4-polytopes), T3 or B2 (see [4], [13] or series number 17 from Corollary 3.6,
SCSeries(17,k) in simpcomp) or the series with number 30, 42 and 356 from Corollary 3.6
(SCSeries(30,k), SCSeries(42,k) and SCSeries(356,k) in simpcomp) which contain a
few more combinatorial 3-manifolds and up to three distinct topological types per series.

Additionally, series with in�nitely many topologically distinct members exist � but the
members have increasing dimension (for example the simplices ∆d, the cross polytopes βd,
the boundary of the cyclic polytopes δC(d + 1, n), the in�nite series of d-tori Td in [?] or
the series Md

k in [13]).
Thus, neighborly series of combinatorial 3-manifolds which additionally have members

of many di�erent topological types would be interesting to investigate. Unfortunately, due
to the higher complexity, such series are hard to �nd. However, using the large amount
of complexes from the classi�cation described in Section 2, the following in�nite series of
topologically distinct lens spaces could be constructed.

Theorem 4.1. The complex

Lk ∶= { (1 ∶ 1 ∶ 1 ∶ 11 + 4k), (1 ∶ 2 ∶ 4 ∶ 7 + 4k), (1 ∶ 4 ∶ 2 ∶ 7 + 4k), (1 ∶ 4 ∶ 7 + 4k ∶ 2) }
k

⋃
i=0

{ (2 ∶ 5 + 2i ∶ 2 ∶ 5 + 4k − 2i), (4 ∶ 2 + 2i ∶ 4 ∶ 4 + 4k − 2i) } (4.1)

is a combinatorial 3-manifold with n = 14 + 4k, k ≥ 0, vertices. It is homeomorphic to the
lens space L((k + 2)2 − 1, k + 2).

Proof. Obviously, Lk has n = 14 + 4k vertices. By looking at Figure 4.1 we can verify that
the link lkLk

(0) of vertex 0 in Lk is a triangulated 2-sphere. Hence, as Lk has transitive
symmetry it follows immediately that Lk is in fact a combinatorial 3-manifold for all k ≥ 0.
Furthermore, we can see that lkLk

(0) has 13 + 4k vertices and thus Lk is 2-neighborly. To

determine the exact topological type of Lk we will proceed as follows:

1. For all k ≥ 0, determine a Heegaard splitting T −
k ∪Sk

T +
k of Lk of genus 1,

2. draw the center torus Sk of the splitting as a slicing (see Figure 4.2),

3. choose a base H1(BT −
k ) = ⟨α−k , β−k ⟩ of the 1-homology of the boundary of the lower

solid torus T −
k such that H1(T −

k ) = ⟨β−k ⟩,

4. do the same for the upper solid torus T +
k such that H1(BT +

k ) = ⟨α+k , β+k ⟩ and H1(T +
k ) =

⟨β+k ⟩,

5. determine the homological type of α−k in H1(BT +
k ) � by construction this will be a

torus knot which will determine the topological type of Lk.
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Figure 4.1: Link of vertex 0 of Lk � a triangulated 2-sphere with 13 + 4k vertices.

1. For all k ≥ 0, the span of the even labeled vertices T −
k ∶= span({0,2, . . . , n−1}) as well

as the span of the odd labeled vertices T +
k ∶= span({1,3, . . . , n}) (which is combinatorially

isomorphic to T −
k by the cyclic symmetry) form a solid torus and hence the slicing between

the odd and the even vertices Sk ∶= S({0,2,...},{1,3,...})(Lk) is a triangulated torus.
To see this note that T −

k together with T +
k are exactly the di�erence cycles

T −
k ∪ T +

k =
k

⋃
i=0

{ (4 ∶ 2 + 2i ∶ 4 ∶ 4 + 4k − 2i) } ⊂ Lk.

Since the gcd of 4, 2 + 2i and 4 + 4k − 2i, 0 ≤ i ≤ k, is 2 for all k ≥ 0, both T −
k and T +

k are
disjoint but connected and we have

T −
k ≅ T +

k ≅
k

⋃
i=0

{ (2 ∶ 1 + i ∶ 2 ∶ 2 + 2k − i) } =∶ Tk.

For k = 0 we have T0 = {(1 ∶ 1 ∶ 1 ∶ 4)} ≅ B2×S1. Now let k ≥ 1. Tk consists of k+1 di�erence
cycles and we will note δi ∶= (2 ∶ 1+ i ∶ 2 ∶ 2+ 2k − i). δi shares two triangles per tetrahedron
with δ2+i, 0 ≤ i ≤ k − 2, δk−1 shares two triangles per tetrahedron with δk, k ≥ 1, δ1 shares
two triangle per tetrahedron with itself and δ0 shares two triangles per tetrahedron with
BTk and hence contains the complete boundary of Tk. Altogether, we have the following
collapsing sheme of Tk:
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δ0∂Tk δ1 δ2 δ3 δ4 δk−4 δk−3 δk−2 δk−1 δk

Thus, Tk collapses onto δ1 = (2 ∶ 2 ∶ 2 ∶ 1 + 2k) and since the modulus of δ1 is odd we have
δ1 ≅ (1 ∶ 1 ∶ 1 ∶ 4 + 2k) ≅ B2 × S1. As a direct consequence, T −

k ∪Sk
T +
k de�nes a Heegaard

splitting of Lk of genus 1 and Lk is homeomorphic to the 3-sphere, S2 ×S1 or a lens space
L(p, q).

2. The center piece of the Heegaard splitting Sk ∶= S({0,2,...},{1,3,...})(Lk) is shown in
Figure 4.2. It is interesting to see that apart from T −

k and T +
k the di�erence cycles (1 ∶

2 ∶ 4 ∶ 7 + 4k) and (1 ∶ 4 ∶ 2 ∶ 7 + 4k) are the only ones which do not contain two odd and
two even labels per tetrahedron and thus are the only ones which are not sliced by Sk in
a quadrilateral. Hence, Sk consists of only 28 + 8k triangles but (2 + k)(14 + 4k) + 7 + 2k =
4k2 + 24k + 35 quadrilaterals. Its complete f -vector is

f(Sk) = (4k2 + 28k + 49,8k2 + 60k + 112, (8k + 28)∆, (4k2 + 24k + 35)◻).

3. and 4. In order to �nd a suitable basis ofH1(BT −
k ) as indicated above, let us �rst take

a look at BT −
k itself which is shown in Figure 4.3. We choose the Basis ofH1(BT −

k ) = ⟨α−k , β−k ⟩
to be

α−k = ⟨0,4,8, . . . , n − 6,0⟩
β−k = ⟨0,6,12,18,22,26, . . . , n − 4,0⟩

or in the case that n < 26 as indicated in Figure 4.3. By construction, α−k is contractible in
T −
k and H1(T −

k ) = ⟨β−K⟩.
For H1(BT +

k ) = ⟨α+k , β+k ⟩ we choose analogously

α+k = ⟨1,5,9, . . . , n − 5,1⟩
β+k = ⟨1,7,13,19,23,27, . . . , n − 3,1⟩

and hence H1(T +
k ) = ⟨β+K⟩.

5. To �nish the proof we will express α−k in terms of α+k and β
+
k . This is done by a map

φ ∶ H1(BT −
k ) → H1(BT +

k ) which lifts any path in Lk passing only even labeled vertices (a
path in BT −

k ) to a homologically equivalent path passing only odd labeled vertices (a path
in BT +

k ). The image of a path under φ can be determined with the help of the slicing Sk.
In the case of α−k it is the thick line in Figure 4.2 and results in the following path:

φ(α−k) = ⟨ n − 7, n − 9, n − 11, . . . ,9,7,1, n − 1, n − 3,
n − 3, n − 5, n − 7, . . . ,13,11,5,3,1,
1, n − 1, n − 3 . . . ,17,15,9,7,5,
. . .
n − 13, n − 15, n − 17, . . . ,3,1, n − 5, n − 7 ⟩.

(4.2)
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Figure 4.2: Slicing of Lk between the odd labeled and the even labeled vertices � a trian-
gulated torus.
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Figure 4.3: Fundamental domain of the boundary of T −
k together with the basis ⟨α−k , β−k ⟩

of H1(BT −
k ) for selected values of k and in greater generality.

By taking a closer look to Figure 4.3 we see that all edges of a path of type ⟨s, s − 2⟩ in
both BT −

k and BT +
k go from the left upper corner of a square of the grid to the lower right

corner (↘) whereas an edge of type ⟨s, s − 6⟩ is simply going down in the grid (↓). Hence,
φ(α−k) has (k + 2)(2k + 2) + 2k + 1 segments of type ↘ and k + 3 segments of type ↓ which
results in the vector (2k2 + 8k + 5,2k2 + 9k + 8) on the integer grid with basis (→, ↓) (cf.
Figure 4.3 where BT +

k is obtained from BT −
k by the shift v ↦ (v + 1) mod n of all vertex

labels).
On the other hand, we know that α+k corresponds to the vector (k + 2,−1) and β+k to

(k − 1,−3) on the grid for BT +
k with basis (→, ↓). Thus, to express φ(α−k) in terms of α+k

and β+k we have to solve the following system of equations:

I. (k + 2)q + (k − 1)p = 2k2 + 8k + 5
II. − q − 3p = 2k2 + 9k + 8

(4.3)

which results in the solution

q = k2 + 3k + 1; p = −k2 − 4k − 3

and hence
φ(α−k) = (k2 + 3k + 1)α+k + (−k2 − 4k − 3)β+k .

Furthermore, note that L(p, q1) ≅ L(p, q2) if and only if q1 ≡ ±q±1
2 mod p from which it

follows that
Kk ≅ L((k + 2)2 − 1, k + 2).
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The series Lk can be modi�ed into a series of 3-spheres which only di�ers to Lk in the
part which is disjoint to slicing. Hence, Theorem 4.1 shows that combinatorial surgery of
in�nitely many essentially di�erent types can be applied in a setting respecting the cyclic
symmetry of the underlying combinatorial manifolds. The following corollary, which is a
direct implication of Theorem 4.1, summarizes the �ndings of this section under a more
general point of view.

Corollary 4.2. There are in�nitely many topologically distinct combinatorial (prime) 3-
manifolds with transitive cyclic automorphism group.
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2011/026 Müeller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression

2011/025 Felber, T.; Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent static forecasting of
stationary and ergodic time series via local averaging and least squares estimates

2011/024 Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of stationary and
ergodic time series

2011/023 Györfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional independence

2011/022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance
based on first and second nearest neighbors

2011/021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels

2011/020 Frank, R.L.; Geisinger, L.: Refined Semiclassical Asymptotics for Fractional Powers of the
Laplace Operator

2011/019 Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian on a
bounded domain

2011/018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks

2011/017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
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2011/004 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part II — Gain-
Scheduled Control
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2009/001 Brehm, U.; Kühnel, W.: Lattice triangulations of E3 and of the 3-torus
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