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Parallel submanifolds of the real 2-Grassmannian

Tillmann Jentsch

January 25, 2012

Abstract

We classify parallel submanifolds of the Grassmannian G+
2 (IR

n+2) which parameterizes the oriented 2-planes of
the Euclidean space IRn+2. Our main result states that every complete parallel submanifold of G+

2 (IR
n+2), which

is not a curve, is contained in some totally geodesic submanifold as a symmetric submanifold. This result holds
also if the ambient space is the non-compact dual of G+

2 (IR
n+2).

1 Introduction

1 Let N be a Riemannian symmetric space. A submanifold of N is called parallel if the second fundamental form is
parallel. D. Ferus [6] has shown that every compact parallel submanifold of a Euclidean space is a special orbit of
some s-representation, called a symmetric R-space. In particular, such a submanifold is invariant under the reflections
in its affine normal spaces, i.e. it is (extrinsically) symmetric. More generally, every complete parallel submanifold of
a space form has this property (see [2, 7, 23, 24]). Note, this fact should be seen as an extrinsic analog of a well known
result from the classification of Riemannian manifolds: every complete and simply connected Riemannian manifold
with parallel curvature tensor is a symmetric space.

More generally, symmetric submanifolds of Riemannian symmetric spaces were studied and classified by H. Naitoh
and others, see [1, Ch. 9.3]. These submanifolds are parallel and intrinsically symmetric (in particular, the induced
Riemannian metric is complete), but not every complete parallel submanifold is extrinsically symmetric unless the
ambient space is a space form. Nevertheless, in the other simply connected rank-one spaces (i.e. the projective
spaces over the complex numbers or the quaternions, the Cayley plane, and their non-compact duals), there is still a
close correspondence between parallel and symmetric submanifolds. Namely, it turns out that every complete parallel
submanifold, which is not a curve, is contained in some totally geodesic submanifold as a symmetric submanifold
(see [1, Ch. 9.4]). Further, recall that a submanifold is called full if it is not contained in any proper totally geodesic
submanifold. In particular, in a simply connected rank-one space, the previous result implies that every full complete
parallel submanifold, which is not a curve, is a symmetric submanifold.

However, in symmetric spaces of higher rank, parallel submanifolds are not well understood yet. Note, here the
situation becomes more involved, since already the classification of the totally geodesic submanifolds is a non-trivial
problem. Hence, it is an interesting fact that at least for the rank-two symmetric spaces the totally geodesic subman-
ifolds are well known due to B.-Y. Chen/T. Nagano [3, 4]2 and S. Klein [14, 15, 16, 17, 18] using different methods.
Thus, it is natural to ask, more generally, for the classification of parallel submanifolds in these ambient spaces.

In this article, we consider parallel submanifolds of the Grassmannian G+
2 (IRn+2) – which parameterizes the ori-

ented 2-planes of the Euclidean space IRn+2 – and its non-compact dual, the symmetric space G+
2 (IRn+2)∗, i.e.

the Grassmannian of time-like 2-planes in the pseudo Euclidean space IRn,2 equipped with the indefinite metric
dx2

1 + · · ·+ dx2
n − dx2

n+1 − dx2
n+2. Note, these are simply connected symmetric spaces of rank two if n ≥ 2.

1Mathematics Subject Classication (2010): 53C35, 53C40, 53C42
2However, the claimed classification of totally geodesic submanifolds of G+

2 (IRn+2) from [3] is incomplete.
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Theorem 1 (Main Theorem). If M is a complete parallel submanifold of the Grassmannian G+
2 (IRn+2) with dim(M) ≥

2, then there exists a totally geodesic submanifold M̄ ⊂ G+
2 (IRn+2) such that M is a symmetric submanifold of M̄ . In

particular, every full complete parallel submanifold of G+
2 (IRn+2), which is not a curve, is a symmetric submanifold.

The analogous result holds for ambient space G+
2 (IRn+2)∗.

We also obtain the classification of higher-dimensional parallel submanifolds in a product of two Euclidean spheres
or two real hyperbolic spaces (see Corollary 1 and Remark 1). Further, we conclude that every higher-dimensional
complete parallel submanifold of G+

2 (IRn+2) is extrinsically homogeneous (see Corollary 2).

Here, we focus our attention on the real Grassmannian G+
2 (IRn+2) and its non-compact dual. For this, we first develop

some general theory on the existence of parallel submanifolds in Riemannian symmetric spaces which is applicable,
in particular, to the other simply connected rank-two spaces (e.g. the Grassmannians of complex or quaternionic
2-planes). Hence, one may hope that it is also possible to classify the parallel submanifolds of these ambient spaces by
means of similar ideas. However, for the proof of Theorem 1 we use a “case by case” strategy and it is by no means
clear whether the analogue of Theorem 1 remains true then.

1.1 Overview

We give an overview on the results presented in this article, an outline of the proof of Theorem 1 included. For
a Riemannian symmetric space N and a submanifold3 M ⊂ N , let TM , ⊥M , h : TM × TM → ⊥M and S :
TM × ⊥M → TM denote the tangent bundle, the normal bundle, the second fundamental form and the shape
operator of M , respectively. Let ∇M and ∇N denote the Levi Civita connection of M and N , respectively, and
∇⊥ be the usual connection on ⊥M (obtained by orthogonal projection of ∇Nξ along TM for every section ξ of
⊥M). Let Sym2(TM,⊥M) denote the vector bundle whose sections are ⊥M -valued symmetric bilinear maps on TM .
Then there is a linear connection on Sym2(TM,⊥M) induced by ∇M and ∇⊥ in a natural way, often called Van der
Waerden-Bortolotti connection.

Definition 1. A submanifold M ⊂ N is called parallel if h is a parallel section of Sym2(TM,⊥M) .

Example 1. A unit speed curve c : J → N is parallel if and only if it satisfies the equation

∇N∂ ∇N∂ ċ = −κ2ċ (1)

for some constant κ ∈ IR . For κ = 0 these curves are geodesics; otherwise, due to K. Nomizu and K. Yano [22], c is
called an (extrinsic) circle.

Example 2. Let M̄ be a totally geodesic submanifold of N (i.e. hM̄ = 0). A submanifold of M̄ is parallel if and only
if it is parallel in N .

Definition 2. A submanifold M ⊂ N is called (extrinsically) symmetric if M is a symmetric space (whose geodesic
symmetries are denoted by σMp , where p ranges over M) and for every point p ∈M there exists an involutive isometry

σ⊥p of N such that

• σ⊥p (M) = M ;

• σ⊥p |M = σMp ;

• the differential Tpσ
⊥
p is the linear reflection in the normal space ⊥pM .

As mentioned already before, every symmetric submanifold is parallel. However, in the situation of Example 2, we do
not necessarily obtain a symmetric submanifold of N even if M is symmetric in M̄ .

3The notion “submanifold” comprizes all connected but possibly only immersed (in particular, not necessarily regular) submanifolds
M ⊂ N , i.e. we are implicitly dealing with isometric immersions f : M → N defined from a connected Riemannian manifold.
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Let M be a parallel submanifold of the symmetric space N and consider the linear space ⊥1
pM := {h(x, y)|x, y ∈W}IR

called the first normal space at p.

Question. Given a pair of linear spaces (W,U) both contained in TpN and such that W⊥U , does there exist some
parallel submanifold M through p with W = TpM and U = ⊥1

pM? In particular, are there natural obstructions
against the existence of such a submanifold?

Let RN denote the curvature tensor of N and recall that a linear subspace V ⊂ TpN is called curvature invariant
if RN (V × V × V ) ⊂ V holds. It is well known that TpM is a curvature invariant subspace of TpN for every
parallel submanifold M . In Section 2.2, we will show that also ⊥1

pM is curvature invariant. Moreover, the curvature
endomorphisms of TpN generated by TpM leave ⊥1

pM invariant and vice versa. This means that (TpM,⊥1
pM) is an

orthogonal curvature invariant pair, see Definition 4 and Proposition 1. As a first illustration of this concept, we classify
the orthogonal curvature invariant pairs (W,U) of the complex projective space CPn, see Example 3. We observe that
here the linear space W ⊕U is complex or totally real (in particular, curvature invariant) unless dim(W ) = 1. Hence,
following the proof of Theorem 1 given below, we obtain the well known result that the analogue of Theorem 1 is true
for ambient space CPn.

In Section 3.1, we will determine the orthogonal curvature invariant pairs of N = G+
2 (IRn+2). Our result is summarized

in Table 1. Note, even if we assume additionally that dim(W ) ≥ 2, there do exist certain orthogonal curvature invariant
pairs (W,U) for which the linear space W⊕U is not curvature invariant (in contrast to the situation where the ambient
space is CPn, see above). Hence, at least at the level of curvature invariant pairs, we can not yet give the proof of
Theorem 1.

Therefore, it still remains to decide whether there actually exists some parallel submanifold M ⊂ G+
2 (IRn+2) such

that (W,U) = (TpM,⊥1
pM) in which case the orthogonal curvature invariant pair (W,U) will be called integrable. In

Section 3.2, by means of a case by case analysis, we will show that if (W,U) is integrable and dim(W ) ≥ 2, then
the linear space W ⊕ U is curvature invariant. For this, we will need some more intrinsic properties of the second
fundamental form of a parallel submanifold of a symmetric space which are derived in Section 2. Further, one can
easily show that all arguments remain valid for ambient space G+

2 (IRn+2)∗.

Proof of Theorem 1. We can assume that n ≥ 2. Fix some p ∈M . Using the results from Section 3.2 mentioned before,
we conclude that the second osculating space OpM := TpM ⊕ ⊥1

pM is a curvature invariant subspace of TpN . Let

expN : TN → N denote the exponential spray. It follows from a result of P. Dombrowski [5] that M̄ := expN (OpM) is a
totally geodesic submanifold of N such that M ⊂ M̄ (“reduction of the codimension”). By construction, ⊥1

qM = ⊥qM
for all q ∈M where the normal spaces are taken in TM̄ , i.e. M is a 1-full complete parallel submanifold of M̄ . Thus
we conclude from Corollary 3 (see below) that M is even a symmetric submanifold of M̄ . The same arguments apply
to ambient space N∗.

Consider the Riemannian product Sk × Sl of two Euclidean unit-spheres with k + l = n and k ≤ l. The map
Sk × Sl → G+

2 (IRn+2), (p, q) 7→ {(p, 0l+1), (0k+1, q)}IR (with 0l := (0, · · · , 0) ∈ IRl) defines a 2-fold isometric covering
onto a totally geodesic submanifold of G+

2 (IRn+2), see [14],[17]. Hence every parallel submanifold of Sk × Sl is also
parallel in G+

2 (IRn+2). Further, consider the totally geodesic embedding ιk,l : Sk → Sk × Sl, p 7→ (p, p) which is a
homothety onto its image by a factor

√
2.

Corollary 1 (Parallel submanifolds of Sk × Sl). Every complete parallel submanifold M ⊂ Sk × Sl with dim(M) ≥ 2
is a product, M = M1 ×M2, of two symmetric submanifolds M1 ⊂ Sk and M2 ⊂ Sl, or is conjugate to a symmetric
submanifold of ιk,l(S

k) via some isometry of Sk × Sl. In the first case, M is a symmetric submanifold of Sk × Sl. In
the second case, M is not symmetric in Sk×Sl unless k = l and M ∼= ιk,l(S

k). The analogous result holds for ambient
space Hk ×Hl, the Riemannian product of two real hyperbolic spaces of sectional curvature −1.

Proof. Let M be a parallel submanifold of Ñ := Sk×Sl. Then M is also parallel in N := G+
2 (IRn+2). Hence, according

to Theorem 1 and its proof, the second osculating space V := TpM ⊕⊥1
pM is a curvature invariant subspace of both

TpN and TpÑ . Using the classification of curvature invariant subspaces of TpN (see Theorem 5), we obtain that there

are only two possibilities: we have V = W1 ⊕W2 where W1 and W2 are subspaces of the first and second factor of Ñ ,
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respectively (Type (tri,j)), or V = { (v, gv) | v ∈W ′0 } for some W ′0 ⊂ Tpιk,l(Sk) and where g is a linear isometry of W ′0
(Type (tr′i)). Further, then M is contained in the totally geodesic submanifold expN (V ) as a symmetric submanifold.

In the first case, M is contained in the totally geodesic submanifold M̄ := expN (W1) × expN (W2) where, of course,
each factor expN (Wi) is a Euclidean unit-sphere, too. If M̄ is the product of two great circles in Sk and Sl, respectively,
then dim(M̄) = 2 and M = M̄ . Otherwise, at least one of the factors of M̄ is a higher-dimensonal Euclidean sphere.
It follows from a result of Naitoh (see Theorem 4) that M = M ′ ×M ′′ where M ′ ⊂ expN (W1) and M ′′ ⊂ expN (W2)
are symmetric submanifolds. Anyway, we obtain that M = M ′ ×M ′′ where M ′ ⊂ Sk and M ′′ ⊂ Sl are symmetric
submanifolds. Therefore, the product M ′ ×M ′′ is symmetric in Ñ .

In the second case, there exists some isometry g̃ on Ñ such that g̃(M) ⊂ ιk,l(S
k). Then g̃(M) is a complete parallel

submanifold of ιk,l(S
k), i.e. a symmetric submanifold since ιk,l(S

k) is a space form. It follows from Theorem 4 that M

is not symmetric in Ñ unless M is totally geodesic. Moreover, a totally geodesic submanifold of ιk,l(S
k) is symmetric

in Ñ if and only if the normal spaces of ιk,l(S
k) are curvature invariant (cf. [1, Ch. 9.3]) which is given only for

M ∼= ιk,l(S
k) and k = l. The result follows.

Remark 1. The analogue of Corollary 1 is true also for ambient space Skr ×Sls, the product of two Euclidean spheres of
arbitrary radii r and s, respectively, and Hk

r ×Hl
s, the product of two Hyperbolic spaces of sectional curvature −1/r2

and −1/s2, respectively.4

A proof of this remark requires similar arguments as presented in this paper and is omitted.

Recall that a submanifold M ⊂ N is called extrinsically homogeneous if a suitable subgroup of the isometry group
I(N) acts transitively on M . In [11, 12], we dealed with the question whether a complete parallel submanifold of
a symmetric space of compact or non-compact type is automatically extrinsically homogeneous. It follows a priori
from [12, Corollary 1.4] that every complete parallel submanifold M of a simply connected compact or non-compact
rank-two symmetric space N without Euclidean factor (e.g. N = G+

2 (IRn+2) or N = G+
2 (IRn+2)∗) is extrinsically

homogeneous provided that the Riemannian space M does not split of (not even locally) a factor of dimension one or
two (e.g. M is locally irreducible and dim(M) ≥ 3). Moreover, then M has even extrinsically homogeneous holonomy
bundle. The latter means the following: there exists a subgroup G ⊂ I(N) such that g(M) = M for every g ∈ G and
G|M is the group which is generated by the transvections of M . Using Theorem 1, we can now prove a stronger result
for N = G+

2 (IRn+2).

Corollary 2 (Homogeneity of parallel submanifolds). Every complete parallel submanifold of G+
2 (IRn+2), which is

not a curve, has extrinsically homogeneous holonomy bundle. In particular, every such submanifold is extrinsically
homogeneous in G+

2 (IRn+2). This result holds also for ambient space G+
2 (IRn+2)∗.

Proof. Let M be a complete parallel submanifold of N := G+
2 (IRn+2) with dim(M) ≥ 2. Then there exists a totally

geodesic submanifold M̄ ⊂ N such that M is a symmetric submanifold of M̄ . In particular, M̄ is intrinsically a
symmetric space. Furthermore, since the rank of N is two, the rank of M̄ is less than or equal to two. It follows
immediately that there are no more than the following possibilities: M̄ is the two-dimensional flat torus, locally a
product IR × M̃ where M̃ is a higher dimensional locally irreducible symmetric space, a higher dimensional locally
irreducible symmetric space, or locally a product of two higher dimensional locally irreducible symmetric spaces (of
course, this can also be explicitely seen from the classification of the totally geodesic submanifolds of N given in [14]).

In the first case, we automatically have M = M̄ (since dim(M) ≥ 2). Hence, we have to show that the totally geodesic
flat M̄ has extrinsically homogeneous holonomy bundle: let ī = k̄⊕ p̄ and i = k⊕ p denote the Cartan decompositions
of the Lie algebras of I(M̄) and I(N), respectively. Then [p̄, p̄] = {0}, since M̄ is flat. Let Ḡ ⊂ I(M̄) denote the
connected subgroup whose Lie algebra is p̄. Then Ḡ is the transvection group of M̄ . Moreover, p̄ ⊂ p, because M̄ is
totally geodesic. Hence, we may take G as the connected subgroup of I(N) whose Lie algebra is p̄.

4Note, totally geodesic submanifolds of Sk
r × Sl

s and Sk
1 × Sl

1 are the same, but it is not a priory clear that both spaces admit the same
higher dimensional parallel submanifolds.
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The remaining cases are handled as follows: since M ⊂ M̄ is symmetric, there exists a distinguished reflection σ⊥p of

M̄ whose restriction to M is the geodesic reflection in p for every p ∈M , see Definition 2. Therefore, these reflections
generate a subgroup of I(M̄) whose connected component acts transitively on M and gives the full transvection group
of M . Thus, it suffices to show that there exists a suitable subgroup of I(N) whose restriction to M̄ is the connected
component of I(M̄):

In the second case, let ī = k̄⊕ p̄, ĩ = k̃⊕ p̃ and i = k⊕ p denote the Cartan decompositions of the Lie algebras of I(M̄),
I(M̃) and I(N), respectively. Then k̄ = k̃ = [p̃, p̃] = [p̄, p̄], where the first and the last equality are related to the special
product structure of M̄ and the second one uses the fact that the Killing form of ĩ is non-degenerate. It follows that
ī = [p̄, p̄] ⊕ p̄. Moreover, p̄ ⊂ p, see above. Hence, every Killing vector field of M̄ is the restriction of some Killing
vector field of N . This proves the second case. In the last two cases, a similar conclusion as in the second one can be
made. The proof works also for the non-compact dual N∗. The result follows.

Note, in the previous theorems, the condition dim(M) ≥ 2 can not be ignored: consider the ambient space G+
2 (IR4)

which is isometric to S2
1/
√

2
× S2

1/
√

2
. Here, a “generic” circle is full but not extrinsically homogeneous (in particular,

not a symmetric submanifold), see [11], Example 1.9.

2 Parallel submanifolds of symmetric spaces

We solve the existence problem for parallel submanifolds of symmetric spaces by means of giving necessary and
sufficient tensorial “integrability conditions” on the 2-jet.5 From this, we derive the fact (already mentioned before)
that (TpM,⊥1

pM) is a curvature invariant pair for every parallel submanifold M . Then we establish a more intrinsic
necessary integrability condition on the 2-jet which involves also the linearized isotropy representation of the ambient
space, see Theorem 3. From this, we easily derive Corollary 4, which, under some additional assumption on the image
of the linearized isotropy representation, gives another obstruction against the existence of a parallel submanifold with
prescribed tangent and first normal space through p. Some of the results mentioned so far were already obtained
in [10, 11], however, for readers convenience, here we will derive them directly from the integrability conditions
mentioned before.

Further, we deal with parallel submanifolds with one-dimensional first normal spaces (see Proposition 2) and parallel
“curved flats” of rank-two spaces (see Proposition 4). Finally, we recall a result of H. Naitoh on symmetric submanifolds
of product spaces (see Theorem 4), which was mentioned already before.

2.1 Existence of parallel submanifolds in symmetric spaces

It was first shown by W. Strübing [23] that a parallel submanifold M of an arbitrary Riemannian manifold is uniquely
determined by its 2-jet (TpM,hp) at some point p ∈ M . Conversely, let a prescribed 2-jet (W,h) at p be given (i.e.
W ⊂ TpN is a subspace and h : W ×W → W⊥ is a symmetric bilinear map). If there exists a parallel submanifold
M ⊂ N through p such that (W,h) is the 2-jet of M , then (W,h) will be called integrable. Note, according to [13,
Theorem 7], for every integrable 2-jet, the corresponding parallel submanifold can be assumed to be complete.

Let U be the subspace of W⊥ which is spanned by the image of h and set V := W ⊕U , i.e. U and V play the roles of
the “first normal space” and the “second osculating space”, respectively. Then the orthogonal splitting V := W ⊕ U
turns so(V ) into a naturally Z2-graded algebra so(V ) = so(V )+⊕ so(V )− where A ∈ so(V )+ or A ∈ so(V )− according
to whether A respects the splitting V = W ⊕ U or A(W ) ⊂ U and A(U) ⊂ W . Further, consider the linear map
h : W → so(TpN) given by

∀x, y ∈W, ξ ∈W⊥ : hx(y + ξ) = −Sξx+ h(x, y) (2)

(where Sξ denotes the shape operator associated with h for every ξ ∈ U in the usual way). Since Sξ = 0 holds for

5Note, such conditions were already claimed in [13]. However, the tensorial conditions stated in [13, Theorem 2] are quite redundant.
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every ξ ∈W⊥ which is orthogonal to U , we actually have

∀x ∈W : hx ∈ so(V )−. (3)

Definition 3. Let a curvature like tensor R on TpN and an R-invariant subspace W of TpN (i.e. R(W ×W ×W ) ⊂W )
be given. A symmetric bilinear map h : W ×W →W⊥ will be called R-semiparallel if

hRx,yz−[hx,hy ] z v = [Rx,y − [hx,hy],hz] v (4)

holds for all x, y, z ∈ W and v ∈ TpN . Here Ru,v : TpN → TpN denotes the curvature endomorphism R(u, v, ·) for
all u, v ∈ TpN . If W is a curvature invariant subspace of TpN and (4) holds for R = RNp , then h is simply called
semiparallel.

In the situation of Definition 3, is easy to see that h is R-semiparallel if and only if (4) holds for all x, y, z ∈ W and
v ∈ V .

Clearly, each linear map A on V induces an endomorphism A· on Λ2V by means of the usual rule of derivation,
i.e. A · u ∧ v = Au ∧ v + u ∧ Av. Let (A·)k denotes the k-th power of A· on Λ2V . Similarly, [A, ·] defines an
endomorphism on so(V ) whose k-th power will be denoted by [A, ·]k. Furthermore, every curvature like tensor
R : TpN × TpN × TpN → TpN can be seen as a linear map R : Λ2TpN → so(V ) characterized by R(u ∧ v) = Ru,v.
The following theorem states the necessary and sufficient “integrability conditions”:6

Theorem 2. Let N be a symmetric space. The 2-jet (W,h) is integrable if and only if

• W is a curvature invariant subspace of TpN ;

• h is semiparallel;

• we have
[hx, ·]kRNy,zv = RN ((hx·)ky ∧ z)v (5)

for all x, y, z ∈W , k = 1, 2, 3, 4 and each v ∈ V .

Proof. In order to apply the main result of [13], consider the space C of all curvature like tensors on TpN and the affine

subspace C̃ ⊂ C which consists, by definition, of all curvature like tensors R on TpN such that W is R-invariant and h
is R-semiparallel. Then we define the one-parameter subgroup Rx(t) of curvature like tensor on TpN characterized by

exp(thx)Rx(t)(u, v, w) = RN (exp(thx)u, exp(thx)v, exp(thx)w) (6)

for all u, v, w ∈ TpN and x ∈ W . According to [13, Theorem 1 and Remark 2], (W,h) is integrable if and only if

Rx(t) ∈ C̃ for all x ∈ W and t ∈ IR (since RN is a parallel tensor). Moreover, if (W,h) is integrable, then one can
show that the function t 7→ Rx(t)(y, z, v) is constant for all x, y, z ∈ W and v ∈ V (see [10, Example 3.7 (a) and
Lemma 3.8]). Conversely, if RNp ∈ C̃ and Rx(t)(y, z, v) is constant in t for all x, y, z ∈ W and v ∈ V , then Rx(t) in C̃
for all t by straightforward arguments.

Let us assume that (W,h) is integrable. Then the previous implies that

exp(thx)RNy,z exp(−thx)v = RNexp(thx)y,exp(thx)zv (7)

Taking the derivatives of (7) with respect to t, we now see that (5) holds for all k ≥ 1.

Conversely, suppose that RNp ∈ C̃ holds. It suffices to show that (5) implies that the function t 7→ Rx(t)(y, z, v) is
constant for all x, y, z ∈W and v ∈ V :

6This result was also obtained in an unpublished paper by E. Heintze.
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Put A := hx, set Σ :=
∑3
i=0(A·)i(Λ2W ) and note that

A · y ∧ z = Ay ∧ z + y ∧Az, (8)

(A·)2y ∧ z = A2y ∧ z + 2Ay ∧Az + y ∧A2z, (9)

(A·)3y ∧ z = A3y ∧ z + 3A2y ∧Az + 3Ay ∧A2z + y ∧A3z, (10)

(A·)4y ∧ z = A4y ∧ z + 4A3y ∧Az + 6A2y ∧A2z + 4Ay ∧A3z + y ∧A4z (11)

for all y, z ∈ W . Since A2W ⊂ U , we hence see that (A·)4(Λ2W ) ⊂ Λ2W + (A·)2(Λ2W ). Therefore, A · Σ ⊂ Σ and,
furthermore, since (5) holds for k = 1, 2, 3, 4, the natural map Λ2TpN → so(TpN), u ∧ v 7→ RNu,v induces a linear map

Σ→ so(V ), ω 7→ RN (ω)|V which is equivariant with respect to the linear actions of the one-dimensional Lie algebra IR
induced by A· and [A, ·] on Σ and so(V ), respectively. Switching to the level of one-parameter subgroups, we obtain
that Rx(t)(ω)v is constant in t for all ω ∈ Σ and v ∈ V , in particular Rx(t)(y, z, v) is constant in t for all x, y, z ∈W ,
v ∈ V .

Remark 2. In the situation of Theorem 2, suppose that (W,h) is integrable. Then we have

[hx1
, . . . [hxk

, RNy,z] . . .]|V = RNhx1
· ··· ·hxk

·y∧z|V (12)

for all x1, . . . , xk, y, z ∈W with k = 1, 2, . . .. Note, here xi 6= xj is possible.

Proof. For Equation (12) with k = 1, 2 see [10, Lemma 3.9]. The proof for k ≥ 3 is done in a similar fashion.

2.2 Curvature invariant pairs

Suppose that (W,h) is an integrable 2-jet at p, set U := {h(x, y)
∣∣x, y ∈W}IR and V := W ⊕U . Then W is a curvature

invariant subspace of TpN and h : W ×W →W⊥ is a semiparallel symmetric bilinear map, hence

RN (W ×W ×W ) ⊂W and RN (W ×W × U) ⊂ U . (13)

In other words, RNx,y(V ) ⊂ V and RNx,y|V ∈ so(V )+ for all x, y ∈W .

Moreover, using (12) with k = 2, we obtain that

RNh(x,x),h(y,y)|V = [hx, [hy, R
N
x,y]]|V +RNSh(x,y)x,y

|V +RNx,Sh(y,y)x
|V (14)

for all x, y ∈ W . Since r.h.s. of (14) leaves V invariant, the same is true for l.h.s. of (14). Furthermore, using that
RNx,y|V ∈ so(V )+, Eq. 3 and the rules for Z2-graded Lie algebras, we see that r.h.s. of (14) defines an element of so(V )+.

Hence the same is true for l.h.s of (14), too. Finally, because h is symmetric, Λ2(U) = {h(x, x) ∧ h(y, y)
∣∣x, y ∈ W}IR

holds. We conclude that (13) holds also with the roles of W and U interchanged, i.e. we have

RN (U × U × U) ⊂ U and RN (U × U ×W ) ⊂W . (15)

Definition 4. Let subspaces W , U of TpN be given. We will call (W,U) a curvature invariant pair if both (13) and (15)
hold. In particular, then W and U both are curvature invariant subspaces of TpN . If additionally W⊥U , then (W,U)
is called an orthogonal curvature invariant pair.

We obtain the first criterion matching on the question posed in Section 1.1 (cf. [10, Corollary 13]):

Proposition 1. Let (W,h) be an integrable 2-jet. Set U := {h(x, y) |x, y ∈ W }IR. Then (W,U) is an orthogonal
curvature invariant pair.
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An (orthogonal) curvature invariant pair (W,U) which is induced by an integrable 2-jet as in Proposition 1 will be
called integrable.

Furthermore, it is known that every complete parallel submanifold of a simply connected symmetric space whose
normal spaces are curvature invariant is even a symmetric submanifold (cf. [1, Proposition 9.3]). Hence we obtain a
result, which was already proved in [10]:

Corollary 3. Every 1-full complete parallel submanifold of a simply connected symmetric space is a symmetric sub-
manifold.

If W is a curvature invariant subspace of TpN , then

hW := {RNx,y
∣∣x, y ∈W}IR. (16)

is a Lie subalgebra of so(TpN). Further, there exist natural representations of hW on both W and W⊥ (obtained
by restriction, respectively). We are interested in the hW -invariant subspaces of U . For this, we recall the following
result, which is a simple consequence of Schur’s Lemma.

Let W⊥ = U1 ⊕ · · · ⊕Uk be a decomposition into hW -irreducible subspaces. After a permutation of the indices, there
exists some r ≥ 1 and a sequence 1 = k1 < k2 < · · · < kr+1 = k + 1 such that Uki

∼= Uki+1
∼= · · · ∼= Uki+1−1 for

i = 1, . . . , r but Uki is not isomorphic to Ukj for i 6= j. Hence, there is also the decomposition W⊥ = ⊕ri=1Ui with
Ui := Uki + Uki+1 · · · + Uki+1−1. Then every irreducible hW -invariant subspace U of W⊥ is contained in some Ui.
Furthermore, the irreducible hW -invariant subspaces of Ui are parameterized by the real projective space IRPki+1−ki−1

(if Uki is irreducible even over C) or the complex projective space CPki+1−ki−1 (otherwise) for i = 1, . . . , r. More
precisely, let λj : Uki → Uki+j be an hW -isomorphism (j = 1, . . . , ki+1 − ki − 1). Further, set λ0 := IdUki

and

λc :=
∑ki+1−ki−1
j=0 cjλj for every c = (c0, . . . , cki+1−ki−1) ∈ IRki+1−ki . Then U := λ(Uki) is an irreducible hW -invariant

subspace of Ui. This gives the claimed parameterization in case Uki is irreducible even over C. The other case is
handled similarly.

Example 3 (Curvature invariant pairs of CPn). Consider the complex projective space N := CPn. Its curvature tensor
is given by RNu,v = −u∧ v − Ju∧ Jv − 2ω(u, v)J for all u, v ∈ TpCPn (where J denotes the complex structure of TpN
and ω(u, v) := 〈Ju, v〉 is the Kähler form). The curvature invariant subspaces of TpN are known to be precisely the
totally real and the complex subspaces. Let us determine the orthogonal curvature invariant pairs (W,U):

If W is totally real, then RNx,y = −x∧y−Jx∧Jy for all x, y ∈W . Hence the Lie algebra hW (see (16)) is given by the

linear space {x∧ y+Jx∧Jy
∣∣x, y ∈W}IR. In the following, we assume that dim(W ) ≥ 2. Consider the decomposition

W⊥ = JW ⊕ (CW )⊥ (here (CW )⊥ means the orthogonal complement of CW in TpN). Then hW acts irreducibly on
J(W ) and trivially on (CW )⊥. Further, Eq. 13 shows that U is hW -invariant. It follows that either J(W ) ⊂ U or
U ⊂ (CW )⊥ (cf. [19, Proposition 2.3]). In the first case, we claim that actually U = J(W ) (and hence V := W ⊕U is
a complex subspace of TpN , cf. [19, Lemma 4.1]):

Let Ũ ⊂ (CW )⊥ be chosen such that U = JW ⊕ Ũ . Clearly, U is not complex, thus U is necessarily totally real,
because U is curvature invariant. Moreover, we have dim(U) ≥ 2, thus hU (defined as above) acts irreducibly on
J(U) = W ⊕ J(Ũ). Since W is hU -invariant (see (15)), we see that this is not possible unless J(Ũ) = {0}. The claim
follows.

In the second case, we claim that U is totally real (and thus V is totally real, too, cf. [19, Lemma 3.2])):

In fact, otherwise U would be a complex subspace of (CW )⊥. Then the Lie algebra hU is given by IRJ ⊕ {x ∧ y +
Jx ∧ Jy

∣∣x, y ∈W}IR. Thus hU acts on U⊥ via IRJ . Further, W is invariant under the action of hU according to (15)
implying that W is complex, a contradiction. The claim follows.

Anyway, the linear space V is curvature invariant unless dim(W ) = 1. Therefore, by means of arguments given in the
proof of Theorem 1, we see that every higher dimensional totally real parallel submanifold of CPn is a Lagrangian
symmetric submanifold of some totally geodesically embedded CPk or a symmetric submanifold of some totally
geodesically embedded IRPk.
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If W is a complex subspace of TpCPn, then hW |W⊥ = IRJ |W⊥ . Hence, if (W,U) is an orthogonal curvature invariant
pair, then both U and V := W ⊕ U are complex subspaces, too. This shows that every complex parallel submanifold
of CPn is a complex symmetric submanifold of some totally geodesically embedded CPk.

2.3 Further necessary integrability conditions

Let N be a symmetric space, K ⊂ I(N) denote the isotropy subgroup at p, k denote its Lie algebra and ρ : k→ so(TpN)
be the linearized isotropy representation. Recall that

RNu,v ∈ ρ(k) (17)

for all u, v ∈ TpN (since N is a symmetric space).

Given a 2-jet (W,h) at p, we set U := {h(x, y)
∣∣x, y ∈W}IR, V := W ⊕ U and

kV := {X ∈ k | ρ(X)(V ) ⊂ V }. (18)

Then there is an induced representation of kV on V . Further, consider the endomorphisms of TpN given by

[hx1 , . . . [hxk
, RNy,z] . . .] (19)

with x1, . . . , xk, y, z ∈W and k ≥ 0. Furthermore, recall that the centralizer of a subalgebra g ⊂ so(V ) is given by

Z(g) := {A ∈ so(V ) | ∀B ∈ g : [A,B] = 0 }. (20)

Using Theorem 2, we will now derive the following necessary integrability condition which also involves the linearized
isotropy representation of the ambient space:

Theorem 3. Let an integrable 2-jet (W,h) be given and set U := {h(x, y)
∣∣x, y ∈ W}IR. The endomorphisms (19)

leave V := W ⊕ U invariant and hence generate a subalgebra g ⊂ so(V ) (by restriction to V ). Further, for every
x ∈W there exist Ax ∈ ρ(kV )|V ∩ so(V )−, Bx ∈ Z(g) ∩ so(V )− such that hx = Ax +Bx.

Proof. Since (W,U) is a curvature invariant pair, we have RNx,y(V ) ⊂ V for all x, y ∈W according to (13). Thus (19)
leaves V invariant also for k > 0, see (2). Further, note that applying [hx, · ] to (19) leaves the form of (19) invariant
with the natural number k increased by one for every x ∈W . Hence [hx, g] ⊂ g. Furthermore, the restriction of (19)
to V belongs to so(V )+ or so(V )− according to whether k is even or odd, see (3) and (13). Therefore, g is a graded
Lie subalgebra of so(V ), i.e. g = g+ ⊕ g− with g+ := g ∩ so(V )+ and g− := g ∩ so(V )−.

Let Ax denote the orthogonal projection of hx onto g with respect to the positive definite symmetric bilinear form on
so(V ) which is given by −trace(A ◦ B) for all A,B ∈ so(V ). Since there is the orthogonal splitting g = g+ ⊕ g− and
hx ∈ so(V )− holds, we immediately see that Ax ∈ so(V )− (cf. [11, Lemma 4.19]). Furthermore, using the invariance
property of the trace form (i.e. trace([A,B]◦C) = trace(A◦ [B,C])), we conclude from [hx, g] ⊂ g that Bx := hx−Ax
centralizes g. Further, we have Bx ∈ so(V )−. It remains to show that g ⊂ ρ(kV )|V :

For this, it suffices to show that the restriction to V of (19) belongs to ρ(kV )|V for every k: because of (17), r.h.s.
of (12) belongs to ρ(kV )|V and so does l.h.s. This proves the theorem.

Given an orthogonal curvature invariant pair (W,U), we set V := W ⊕ U . Then

h := hW |V + hU |V (21)

is a Lie subalgebra of so(V )+. Therefore, restricting the elements of h to W or U defines representations of h on W
and U , respectively. Hence, we introduce the linear spaces of homomorphisms

Hom(W,U) := { ` : W → U | ` is linear }; (22)

Homh(W,U) := { ` ∈ Hom(W,U) | ∀A ∈ h : ` ◦A|W = A ◦ ` }. (23)
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Note that the natural map
so(V )− → Hom(W,U), A 7→ A|W (24)

is actually a linear isomorphism inducing an equivalence

Z(h) ∩ so(V )− ∼= Homh(W,U), (25)

where Z(h) denotes the centralizer of h in so(V ). As a corollary of Theorem 3, we derive the following obstruction
against the integrability of curvature invariant pairs:

Corollary 4. Let an integrable curvature invariant pair (W,U) be given. Set V := W ⊕ U and suppose additionally
that ρ(kV )|V ∩so(V )− = {0}. Let h be the Lie algebra (21). Then there exists a symmetric bilinear map h : W×W → U
with

U = {h(x, y)
∣∣x, y ∈W}IR; (26)

∀x ∈W : h(x, ·) ∈ Homh(W,U). (27)

Proof. Let M be a parallel submanifold through p such that W = TpM and U = ⊥1
pM . Let h be the second

fundamental form at p which defines the subalgebra g ⊂ so(V ) described in Theorem 3. First, we claim that h is a
subalgebra of g (this is actually true for every integrable 2-jet):

Since (19) with k = 0 leaves V invariant and its restriction to V belongs to g, we have A(V ) ⊂ V and A|V ∈ g
for all A ∈ hW . Further, we have seen in the proof of Theorem 3 that g is normalized by hx for every x ∈ W .
Furthermore, because h is a symmetric bilinear map whose image spans U , the linear space Λ2U is spanned by the
2-wedges h(x, x) ∧ h(y, y) with x, y ∈ W . Thus (14) implies that also A(V ) ⊂ V and A|V ∈ g for all A ∈ hU holds.
The claim follows.

Consider the decomposition hx = Ax + Bx given by Theorem 3. Then Ax vanishes, by the strength our assumption,
and hence hx = Bx ∈ Z(g). Since h ⊂ g, we obtain, in particular, that hx ∈ Z(h) ∩ so(V )− for all x ∈ W , i.e.
h(x, ·) ∈ Homh(W,U) according to (25). This finishes our proof.

For a higher-dimensional extrinsic sphere, it is known that the second osculating spaces are curvature invariant, cf. [1,
Theorem 9.2.2]. More generally, we have:

Proposition 2. Let N be a symmetric space, (W,h) be an integrable 2-jet and U := {h(x, y)
∣∣x, y ∈ W}IR. Assume

that dim(U) = 1 and dim(W ) ≥ 2. Choose a unit vector η ∈ U and suppose also that h̃(x, y) := 〈h(x, y), η〉 defines a
non-degenerate bilinear form on W . Then V := W ⊕ U is a curvature invariant subspace of TpN .

Proof. In view of Proposition 1, it remains to show that RNx,η(V ) ⊂ V holds. For this, we may proceed as in the proof
of [1, Theorem 9.2.2]:

We can assume that x 6= 0 in which case there exist y, z ∈ W with h(x, z) = η and h(y, z) = 0 (since h̃ is non-
degenerate and dim(W ) ≥ 2). Hence, using (5) with k = 1, we see that RNx,η = [hz, R

N
x,y] holds on V . The result

follows immediately.

Given a 2-jet (W,h), we set Kern(h) := {x ∈ W |h(x, y) = 0 for all y ∈ W }. Thus Kern(h) = {x ∈ W |h(x) = 0 },
see (24). Further, let hW be the Lie algebra defined by (16).

Proposition 3. Let an integrable 2-jet (W,h) be given. Then Kern(h) is invariant under the action of hW on W .

Proof. The last assertion follows from the curvature invariance of W , the symmetry of h and (4) (cf. [20, Proof of
Lemma 5.1]).

Therefore, in the situation of Proposition 2, the symmetric bilinear form h̃ will be non-degenerate provided that W is
an irreducible hW -module and h 6= 0.
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2.4 Two-dimensional parallel “curved flats”

Let N be a symmetric space, I(N) denote the isometry group, i be its Lie algebra and i = k ⊕ p be the Cartan
decomposition. Recall that a Cartan algebra is a maximal Abelian subalgebra of p whose elements are semisimple
(cf. [8, Remark 1]) and that any two Cartan algebras are conjugate in p via some isometry from the connected
component of I(N). The rank of N is, by definition, the dimension of a Cartan subalgebra of p. If N is of compact or
non-compact type, then every maximal Abelian subalgebra of p is already a Cartan subalgebra. The following is well
known:

Lemma 1. Suppose that N is of compact or non-compact type. Let a linear subspace W ⊂ TpN be given. The
following is equivalent:

(a) W is a curvature isotropic subspace of TpN .

(b) The totally geodesic submanifold expN (W ) is a flat of N .

(c) W is contained in a Cartan subalgebra of p.

(d) The sectional curvature of N vanishes on every 2-plane of W , i.e. 〈RN (u, v, v), u〉 = 0 for all u, v ∈W .

Proposition 4. Suppose that N is a rank-two symmetric space of compact or non-compact type. Let a parallel
submanifold M ⊂ N be given. If dim(M) = 2 and the sectional curvature of N vanishes on TpM for some p ∈ M ,
then there exists an orthonormal basis {e1, e2} of TpM such that h(e1, e2) = 0. Moreover, we have ⊥1

pM = {η1, η2}IR
with ηi := h(ei, ei) and

〈η1, η2〉 = 0, (28)

RNe1,η2 = RNη1,e2 = RNe1,e2 = RNη1,η2 = 0. (29)

In particular, both TpM and ⊥1
pM are curvature isotropic.

Proof. By means of Lemma 1, we have dim(M) = 2 and RNx,y = 0 for all x, y ∈ TpM . Furthermore, it is known
that in this situation the sectional curvature of N vanishes identically along the parallel submanifold M (see [10,
Proposition 3.14]). It follows that RNx,y = 0 for all x, y ∈ TpM and all p ∈ M , i.e. M is a “curved flat” in the sense
of Ferus/Petit. Therefore, since dim(M) = rank(N) = 2, the Riemannian space M is intrinsically flat according to a
result of [8]. Furthermore, Equation (4) shows that R⊥x,yξ = 0 for all ξ ∈ ⊥1

pM . Using the Equations of Gauß, Codazzi
and Ricci for a parallel submanifold, i.e.

∀x, y ∈ TpM : RNx,y = RMx,y ⊕R⊥x,y + [hx,hy] , (30)

we obtain that [hx,hy] = 0 for all x, y ∈ W . Therefore, as an immediate consequence of Theorem 2, we see that

there exists an intrinsically flat parallel submanifold M̃ of the Euclidean space V := OpM with 0 ∈ M̃ , T0M̃ = TpM

and h̃0 = hp. It is known that such M̃ is an (extrinsic) product of either two plane circles (in case dim⊥1
pM = 2)

or a plane circle and a straight line (in case dim⊥1
pM = 1). Let M̃1 × M̃2 be the induced product structure of M̃ .

Choose orthonormal vectors ei of T0M̃i for i = 1, 2 and put ηi := h(ei, ei). Then h(e1, e2) = 0, hence RNe1,η2 |V =

RNe1,h(e2,e2)|V = −RNh(e2,e1),e2
|V = 0 where the second equality uses (5) with k = 1). Applying Lemma 1 again, we

obtain that the curvature endomorphism RNe1,η2 vanishes. Similarly, we can show that RNe2,η1 = 0. Furthermore, (14)

implies that also RNη1,η2 vanishes on V . Using Lemma 1 once more, the result now follows.

2.5 Symmetric submanifolds of product spaces

We recall the following special case of [21, Theorem 2.2]:
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Theorem 4 (H. Naitoh). Suppose that N is a simply connected symmetric space and that the de Rham decomposition
of N has precisely two factors, N = N1 × N2. If M ⊂ N is a symmetric submanifold, then either N1 = N2 and
M = { (p, g(p)) | p ∈ N1 } where g is an isometry of N1 (in particular, then M is totally geodesic) or M is a product
M1 ×M2 of symmetric submanifolds Mi ⊂ Ni for i = 1, 2.

Proof. In fact, in case both factors of N are of compact type, we can immediately apply [21, Theorem 2.2]. In case
both factors of N are of non-compact type, we use the duality between compact and non-compact spaces to pass to
the previous case (note that the results of [21] are mainly based on [21, Lemma 3.1] which is preserved under duality).
In the general case, we decompose N ∼= Nc × Nnc × Ne into its compact, non-compact and Euclidean factor (where
one or more factors may be trivial) and show as in [21, p.562/563] that M splits as a product M = Mc ×Mnc ×Me

of symmetric submanifolds Mc ⊂ Nc, Mnc ⊂ Nnc and Me ⊂ Ne, which finally establishes Theorem 4.

3 Parallel submanifolds of G+
2 (IR

n+2)

Let n ≥ 2 and consider the simply connected compact Hermitian symmetric space N := G+
2 (IRn+2) of rank two

which is given by the oriented 2-planes of IRn+2. In standard notation, we have N ∼= SO(n+ 2)/SO(2)× SO(n). Let
{e1, . . . , en+2} be the standard orthonormal basis of IRn+2 and set p := {en+1, en+2}. Then p is an oriented 2-plane in
IRn+2 and TpN = Hom(IR2, IRn) (here and in the following we identify IR2 ∼= {en+1, en+2}IR and IRn ∼= {e1, . . . , en}IR).

The Hermitian structure on TpN is given by

JN (`) := ` ◦ en+1 ∧ en+2 (31)

for all ` ∈ Hom(IR2, IRn) (here we use the natural isomorphism Λ2(IR2) ∼= so(2) such that en+1 ∧ en+2 is the rotation
in the positive sense by an angle of 90 degree in IR2). Thus TpN is also an n-dimensional complex vector space where
multiplication with the imaginary unit i is given by JN . Further, for every ϕ ∈ IR set

<(ϕ) := { ` ∈ Hom(IR2, IRn) | cos(ϕ)`(en+1) = − sin(ϕ)`(en+2) }. (32)

Then U := {<(ϕ) |ϕ ∈ IR } is a family of real forms of TpN (i.e. maximal totally real subspaces of TpN) and
U = { eiϕ< |ϕ ∈ IR } for every < ∈ U . Following the notation from [14], we thus see that U is a “circle” of real forms.

Let so(n+2) = k⊕p be the Cartan decomposition of so(n+2), i.e. k = so(2)⊕so(n) and p is the orthogonal complement
of k with respect to the positive definite invariant form defined by −trace(A ◦ B) for all A,B ∈ so(n + 2). Then
p = {A ∈ so(n+2) |A(IR2) ⊂ IRn, A(IRn) ⊂ IR2 } and k = [p, p]. Using the natural isomorphism p→ TpN,A 7→ A|IR2 ,
the linearized isotropy representation ρ : k → so(TpN) is given by ρ(A)B = [A,B] for all A ∈ k and B ∈ p. Further,
then we have RN (A,B,C) = −[[A,B], C] for all A,B,C ∈ p (since N is a symmetric space). Thus, we obtain that
ρ(k) = IRJN ⊕ so(<) and

∀u, v ∈ TpN : RNu,v = (〈<(v),=(u)〉 − 〈<(u),=(v)〉)JN −<(u) ∧ <(v)−=(u) ∧ =(v) (33)

for every < ∈ U if the scalar product 〈A,B〉 is chosen as −1/2 trace(A ◦ B) for all A,B ∈ p. Here v = <(v) + i=(v)
denotes the splitting with respect to the decomposition TpN = < ⊕ i< and the Lie algebra so(<) acts on TpN via
Av = A<(v) + iA=(v) for all A ∈ so(<) and v ∈ TpN . For an equivalent description of RN , see [14, p.84, Eq. (16)]
(note that there our metric gets scaled by a factor 1/2).7

Recall that a subspace W ⊂ TpN is called curvature invariant if RN (x, y, z) ∈W for all x, y, z ∈W . This property is
equivalent to W being a Lie triple system in p, i.e. [[W,W ],W ] ⊂W . For the following result see [14, Theorem 4.1]:

Theorem 5 (S. Klein). For N := G+
2 (IRn+2), there are precisely the following curvature invariant subspaces of TpN :

• Type (ck): Let < ∈ U and a k-dimensional subspace W0 ⊂ < be given. Then W := CW0 is curvature invariant.
Here we assume that k ≥ 1.

7Clearly, the curvature tensor itself does not change if one scales the metric by a constant factor, but r.h.s. of (33) depends on the
chosen scaling.
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• Type (trk,l): Let < ∈ U and a pair of orthogonal subspaces W1,W2 of < be given. Then W := W1 ⊕ iW2 is
curvature invariant. Here the dimensions k and l of W1 and W2, respectively, are supposed to satisfy 0 ≤ k ≤ l
and k + l ≥ 2.

• Type (c′k): Let < ∈ U and a subspace W ′ ⊂ < which is equipped with a Hermitian structure I ′ be given. Then
W = { v − iI ′v) | v ∈W ′ } is curvature invariant. Here k ≥ 1 denotes the complex dimension of W ′.

• Type (tr′k): Let < ∈ U , a subspace W ′ ⊂ < which is equipped with a Hermitian structure I ′ and a real form W ′0
of the complex vector space (W ′, I ′) be given. Then W = { v− iI ′v) | v ∈W ′0 } is curvature invariant. Here k ≥ 2
denotes the dimension of W ′0.

• Type (ex3): Let < ∈ U and an orthonormal system {e1, e2} ⊂ < be given. The three-dimensional space W :=
{e1 − ie2, e2 + ie1, e1 + ie2}IR is curvature invariant.

• Type (ex2): Suppose that n ≥ 3. Let < ∈ U and an orthonormal system {e1, e2, e3} ⊂ < be given. The
two-dimensional space W := {2e1 + ie2, e2 + i(e1 +

√
3 e3)}IR is curvature invariant.

• Type (tr1): Let u be a unit vector of TpN . The one-dimensional space IRu is curvature invariant.

Our notation emphasizes that spaces of Type (ck) and (c′k) both are complex of dimension k over C and those of
Type (trk,l) and (tr′k) are totally real of dimension k + l and k, respectively. The spaces of Type (ex2) and (ex3) are
“exceptional” (in the sense that they do not occur in a series).

As was mentioned already at the beginning of this paper, the totally geodesic submanifolds of N were also classified
in [3]. However, there the totally geodesic submanifolds which are associated with curvature invariant subspaces of
Types (ex2) and (ex3) do not occur. For an explicit description of these submanifolds, see [17].

3.1 Curvature invariant pairs of G+
2 (IR

n+2)

In this section, we determine the orthogonal curvature invariant pairs of TpN . Note that (W,U) is a curvature invariant
pair if and only if (U,W ) has this property. Since Theorem 5 provides seven types of curvature invariant subspaces of
TpN , there are, roughly said, 7 · 8/2 = 28 possibilities to consider.

Our approach is roughly explained as follows: given a curvature invariant subspace W , we will first determine the Lie
algebra hW (see (16)) and the hW -invariant subspaces of W⊥. Second, we will also determine those skew-symmetric
endomorphisms which belong to ρ(k) and leave W invariant, see (17). Once this information is available for curvature
invariant subspaces of Type x and y, it will enable us to determine all curvature invariant pairs of Type (x,y).

Lemma 2. Let W be of Type (ck) defined by the data (<,W0).

(a) We have hW = IRJN ⊕ {u ∧ v |u, v ∈W0 }IR.

(b) A subspace of W⊥ is hW -invariant if and only if it is a complex subspace.

(c) Let A ∈ so(<) and c ∈ IR. The endomorphism of TpN which is given by cJN +A leaves W invariant if and only
if A =

∑
i∈I ui ∧ vi + ũi ∧ ṽi with ui, vi ∈ W0 and ũi, ṽi ∈ W⊥0 (where W⊥0 denotes the orthogonal complement

of W0 in <).

Proof. By means of (33), the curvature endomorphism RNiv,v is given by JN for every unit vector v ∈ W0. Further,

RNu,v = RNiu,iv = v ∧ u for all u, v ∈W0 and RNu,iv = 0 if u, v ∈W0 with 〈u, v〉 = 0. Part (a) follows. For (b), note that

hW |W⊥ = IRJN |W⊥ . Part (c) is obvious.

Corollary 5. Suppose that W and U are curvature invariant subspaces of Type (ck) and (cl) with k, l ≥ 1 defined by
the data (<,W0) and (<∗, U0), respectively. If < = <∗ and W0⊥U0, then (W,U) is an orthogonal curvature invariant
pair. Moreover, every orthogonal curvature invariant pair of Type (ck, cl) is obtained in this way.
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Table 1: Orthogonal curvature invariant pairs of G+
2 (IRn+2)

Type Data Conditions Remarks
(ck, cl) (<,W0;<∗, U0) < = <∗, W0⊥U0 —
(tri,j , trk,l) (<,W1,W2;<∗, U1, U2) < = eiϕ<∗, W1 ⊕W2⊥eiϕ(U1 ⊕ U2) ϕ 6= 0 mod π/2
(tri,j , trk,l) (<,W1,W2;<∗, U1, U2) < = <∗, W1 ⊕W2⊥U1 ⊕ U2 (i, l), (j, k) 6= (1, 1)
(tri,j , trk,i) (<,W1,W2;<∗, U1, U2) < = <∗, W1 = U2, W2⊥U1 i ≥ 2, (j, k) 6= (1, 1)
(tri,j , trj,i) (<,W1,W2;<∗, U1, U2) < = <∗, W1 = U2, W2 = U1 i, j ≥ 2
(tr1,j , trk,1) (<,W1,W2;<∗, U1, U2) < = <∗, W1⊥U1, W2⊥U1, W2⊥U2 (j, k) 6= (1, 1),
(tr1,j , trj,1) (<,W1,W2;<∗, U1, U2) < = <∗, W2 = U1 j ≥ 2
(tr1,1, tr1,1) (<,W1,W2;<∗, U2, U2) < = <∗, W1⊥U1, W2⊥U2 —
(tri,j , tr1) (<,W1,W2;u) u ∈ C(W1 ⊕W2)⊥ i, j 6= 1
(tr1j , tr1) (<,W1,W2;u) <(u) ∈W⊥1 , u ∈ CW⊥2 j ≥ 2
(tr1,1, tr1) (<,W1,W2;u) <(u) ∈W⊥1 , =(u) ∈W⊥2 —
(ci, c

′
j) (<,W0;<∗, U ′, I ′) < = <∗, W0⊥U ′ —

(c′i, c
′
j) (<,W ′, I ′;<∗, U ′, J ′) < = <∗, W ′⊥U ′ —

(c′i, c
′
i) (<,W ′, I ′;<∗, U ′, J ′) < = <∗, W ′ = U ′, I ′ = −J ′ —

(tr′k, tri,j) (<,W ′, I ′,W ′0;<∗, U1, U2) < = <∗, W ′⊥U1 ⊕ U2 —
(tr′i, tr1) (<,W ′, I ′,W ′0;u) u ∈ CW ′⊥ —
(tr′i, tr

′
j) (<,W ′, I ′,W ′0;<∗, U ′, J ′, U ′0) < = <∗, W ′⊥U ′ —

(tr′i, tr
′
i) (<,W ′, I ′,W ′0;<∗, U ′, J ′, U ′0) < = <∗, W ′ = U ′,

U ′0 = I ′(W ′0), J ′ = I ′ i ≥ 3
(tr′i, tr

′
i) (<,W ′, I ′,W ′0;<∗, U ′, J ′, U ′0) < = <∗, W ′ = U ′,

U ′0 = exp(ϕI ′)(W ′0), J ′ = −I ′ i ≥ 3
(tr′2, tr

′
2) (<,W ′, I ′,W ′0;<∗, U ′, J ′, U ′0) < = <∗, W ′ = U ′,

U ′0 = J̃(W ′0), J ′ = I ′ J̃ ∈ SU(W ′, Ĩ) ∩ so(W ′)

(ex3, tr1) (<, {e1, e2};u) u = ±1/
√

2 (e2 − ie1) —
(tr1, tr1) (u; v) u⊥v —

Here we use the notation from Theorem 5. Note, if W is of Type tr′2 defined by (<,W ′, I ′,W ′0), a second Hermitian
structure on W ′ is given by Ĩ := e1 ∧ e2 + I ′e1 ∧ I ′e2 for some orthonormal basis {e1, e2} of W ′0.

Proof. Using Lemma 2, the first part of the corollary is obvious. For the last assertion, since the linear space W is
determined also by the tuple (eiϕ<, eiϕW0) for all ϕ ∈ IR, we can assume that < = <∗. Thus the condition W⊥U
implies that W0⊥U0.

Corollary 6. There are no orthogonal curvature invariant pairs (W,U) of Type (ck, tri,j) or (ck, tr1).

Proof. If W is of Type (ck), then any hW -invariant subspace of W⊥ is complex, according to Lemma 2 (b). On the
other hand, if U is of Type (tri,j) or (tr1), then U is totally real. This gives the claim.

Lemma 3. Suppose that W is of Type (trk,l) defined by the data (<,W1,W2).

(a) We have
hW = {u1 ∧ v1 + u2 ∧ v2

∣∣u1, v1 ∈W1, u2, v2 ∈W2}IR. (34)

(b) If k, l ≥ 2, then a subspace of W⊥ is hW -invariant if and only if it is equal to iW1, W2, a subspace of C(W1⊕W2)⊥

or a sum of such spaces (where (W1⊕W2)⊥ denotes the orthogonal complement of W1⊕W2 in <). If k = 1 and
l ≥ 2, then a subspace of W⊥ is hW -invariant if and only if it is equal to W2, a subspace of iW1⊕C(W1⊕W2)⊥

or a sum of such spaces. If k = l = 1, then any subspace of W⊥ is hW -invariant.

(c) Let A ∈ so(<) and c ∈ IR. The endomorphism cJN + A leaves W invariant if and only if c = 0 and A =∑
i∈I u

i
1 ∧ vi1 + ui2 ∧ vi2 + ũi ∧ ṽi with ui1, v

i
1 ∈W1, ui2, v

i
2 ∈W2 and ũi, ṽi ∈ (W1 ⊕W2)⊥.
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Proof. For Part (a), see the proof of Lemma 2. For (b), consider the decomposition W⊥ = iW1 ⊕W2 ⊕C(W1 ⊕W2)⊥

into hW -invariant subspaces. Then hW acts trivially on (W1⊕W2)⊥ and irreducible on both iW1 and W2. In particular,
iW1 or W2 is a trivial hW -module only if k = 1 or l = 1, respectively. Moreover, iW1 and W2 are non-isomorphic hW
modules unless k = l = 1. The result follows. Part (c) is straightforward.

Corollary 7. Let W and U be curvature invariant subspaces of Type (tri,j) and (trk,l) defined by the data (<,W1,W2)
and (<∗, U1, U2), respectively. If one of the following conditions holds, then (W,U) is an orthogonal curvature invariant
pair:

• The real number ϕ is chosen such that < = eiϕ<∗ and eiϕ(U1 ⊕ U2) belongs to the orthogonal complement of
W1 ⊕W2;

• < = <∗, W2 = U1 and W1 = U2;

• < = <∗, W2⊥U1 and W1 = U2;

• i = l = 1, < = <∗, W1⊥U1, W2⊥U1 and W2⊥U2;

• we have i = l = 1, < = <∗ and W2 = U1;

• we have (i, j) = (k, l) = (1, 1), < = <∗, W1⊥U1 and W2⊥U2.

Moreover, every orthogonal curvature invariant pair of Type (tri,j , trk,l) can be obtained in this way.

Proof. Obviously, the pairs (W,U) mentioned above satisfy W⊥U . Further, the fact that these are curvature invariant
pairs is verified by means of Lemma 3. Conversely, let us see that these conditions are also necessary:

We have

u1 = e−iϕeiϕu1 = cos(ϕ)eiϕu1 − i sin(ϕ)eiϕu1,

iu2 = e−iϕeiϕiu2 = sin(ϕ)eiϕu2 + i cos(ϕ)eiϕu2.

Further, eiϕu1 ∈ < and ieiϕu2 ∈ i< for all (u1, u2) ∈ U1 ⊕ U2. Thus, the condition U⊥W implies that

0 = 〈v1, u1〉 = cos(ϕ)〈v1, e
iϕu1〉,

0 = 〈v1, iu2〉 = sin(ϕ)〈v1, e
iϕu2〉,

0 = 〈iv2, u1〉 = − sin(ϕ)〈v2, e
iϕu1〉,

0 = 〈iv2, iu2〉 = cos(ϕ)〈v2, e
iϕu2〉

for all (v1, v2) ∈ W1 ⊕ W2 and (u1, u2) ∈ eiϕ(U1 ⊕ U2). Hence, in case ϕ /∈ π/2Z, we necessarily have eiϕ(U1 ⊕
U2)⊥W1 ⊕W2.

Suppose that ϕ ∈ π/2Z. Interchanging, if necessary, U1 and U2, we can even assume that ϕ = 0, i.e. < = <∗. From
W⊥U it follows that W1⊥U1 and W2⊥U2. By means of (13),(34), then U2 is an hW -invariant subspace of < which is
contained in W⊥2 . Suppose first that i ≥ 2. Then W1 is a non-trivial irreducible hW -module. Using Lemma 3 (b), we
have U2 ⊂ (W1 ⊕W2)⊥ or U2 = W1 ⊕ Ũ for some Ũ ⊂ (W1 ⊕W2)⊥. We claim that the latter is not possible unless
Ũ = {0}:

Since (W,U) is a curvature invariant pair, we know from (15),(34) that W1 is an hU -invariant subspace of U⊥1 .
Moreover, the condition U2 = W1 ⊕ Ũ implies that l ≥ i ≥ 2. Therefore, by means of Lemma 3 (b), we have W1⊥U2

or W1 = U2 ⊕ W̃ for some W̃ ⊂ (U1 ⊕ U2)⊥. We immediately see that this is not possible unless Ũ = {0}.

Thus, we have U2⊥W1 or U2 = W1. Clearly, this conclusion is true also for i = 0.

Similarly, in case j 6= 1, we can show that U1⊥W2 or U1 = W2 (by means of passing from < to i<). In case l 6= 1 or
k 6= 1, we obtain the same conclusions, respectively (by interchanging W and U). This finishes the proof.
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Corollary 8. Let W and U be curvature invariant subspaces of Type (tri,j) and (tr1) defined by the data (<,W1,W2)
and a unit-vector u ∈ TpN , respectively. If one of the following conditions holds, then (W,U) is an orthogonal curvature
invariant pair:

• i, j ≥ 2 and u ∈ C(W1 ⊕W2)⊥;

• i = 1, j ≥ 2, <(u)⊥W1 and u ∈ CW⊥2 ;

• i = j = 1, <(u)⊥W1 and =(u)⊥W2.

Moreover, every orthogonal curvature invariant pair of Type (tri,j , tr1) can be obtained in this way.

Proof. Note, the pair (W,U) is an orthogonal curvature invariant pair if and only if u ∈ W⊥ and hW annihilates the
vector u. If i, j ≥ 2, this is equivalent to u ∈ C(W1 ⊕W2)⊥ according to Lemma 3 (b). If i = 1 and j ≥ 2, we use
the same argument as before; however, now it is allowed that =(u) has a component in W1. The case i ≥ 2, j = 1
also follows (by passing from < to i<). In case i = j = 1, the Lie algebra hW is trivial and the only condition is
u ∈W⊥.

Lemma 4. Suppose that W is of Type (c′k) determined by the data (<,W ′, I ′).

(a) We have hW = {−2〈I ′u, v〉JN − u ∧ v − I ′u ∧ I ′v
∣∣u, v ∈W ′}IR.

(b) A subspace of W⊥ is hW -invariant if and only if it is equal to W̄ , a complex subspace of (CW ′)⊥ or a sum of such
spaces (where W̄ denotes the complex conjugate of W in TpN and (CW ′)⊥ denotes the orthogonal complement
of CW ′ in TpN). In particular, any such space is complex, too.

(c) Let c ∈ IR and A ∈ so(<). The endomorphism cJN + A leaves W invariant if and only if A =
∑
i∈I ui ∧ vi +

I ′ui ∧ I ′vi + ũi ∧ ṽi with ui, vi ∈W ′ and ũi, ṽi ∈W ′⊥.

Proof. Part (a) is straightforward using (33). For (b), note that W̄ is a complex subspace of TpN , i.e. JN (W ) ⊂ W .
Further, we have A(W̄ ) ⊂ W̄ for all A ∈ so(W ′), hence RNu,v(W̄ ) ⊂ W̄ for all u, v ∈ W . Thus W̄ is a h-submodule

of TpN . Furthermore, note that complex conjugation defines an isomorphism W → W̄ of hW -modules and that the
action of hW on W is irreducible (since it is the linearized isotropy representation of the complex projective space
CPk). Therefore, also W̄ is an irreducible hW -module. Moreover, CW ′ = W ⊕ W̄ and hW acts on (CW ′)⊥ via
multiples of JN . Now (b) follows. Part (c) is straightforward.

Corollary 9. Suppose that W is of Type (ck) determined by the data (<,W0) and that U is of Type (c′l) determined by
(<∗, U ′, I ′). If < = <∗ and W0⊥U ′, then (W,U) is an orthogonal curvature invariant pair. Moreover, every orthogonal
curvature invariant pair of Type (ck, c

′
l) can be obtained in this way.

Proof. Obviously, the pairs (W,U) mentioned above satisfy W⊥U . Further, the fact that these are curvature invariant
pairs is verified by means of Lemmas 2 and 4, Parts (a) and (c). Conversely, let us see that these conditions are also
necessary:

Here we can assume that < = <∗ (cf. the proof of Corollary 5). Further, since hW (U) ⊂ U , it follows from Lemma 2 (b)
that U ⊂ CW⊥0 . Then

0 = 〈u− iI ′u, v〉 = 〈u, v〉 (35)

for all u ∈ U ′, v ∈W0, i.e. W0⊥U ′.

Corollary 10. Suppose that W and U are of Type (c′k) and (c′l) determined by the data (<,W ′, I ′) and (<∗, U ′, J ′),
respectively. If one of the following conditions holds, then (W,U) is an orthogonal curvature invariant pair:
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• < = <∗, U ′ = W ′ and I ′ = −J ′;

• < = <∗ and U ′⊥W ′.

Moreover, every orthogonal curvature invariant pair of Type (c′k, c
′
l) can be obtained in this way.

Proof. It is straightforward that the pairs (W,U) mentioned above satisfy W⊥U . Further, the fact that these are
curvature invariant pairs is verified by means of Lemma 4, Parts (a) and (c).

Conversely, the Hermitian structure I ′ extends to W ′⊕iW ′ (via complexification) and the linear space W is determined
also by the data (eiϕ<, eiϕW ′, I ′|eiϕW ′). Hence, we can assume that < = <∗. Further, by means of Lemma 4, either
U ⊂ CW ′⊥ or U = W̄ ⊕ Ũ for some subspace Ũ ⊂ CW ′⊥. In the first case, the condition U⊥W implies that W ′⊥U ′
(see (35)). In the second case, we claim that Ũ = {0}:

Otherwise, l is strictly greater than k. Hence, because hU leaves W invariant, Lemma 4 (b) shows that W ⊂ CU ′⊥.
As above, this implies that W ′⊥U ′. Hence U = W̄ , i.e. W ′ = U ′ and I ′ = −J ′, which finishes the proof.

On the analogy of Corollary 6, we have

Corollary 11. There are no orthogonal curvature invariant pairs of Type (c′k, tri,j) or (c′k, tr1).

Lemma 5. Suppose that W is of Type (tr′k) determined by the data (<,W ′, I ′,W ′0).

(a) The curvature endomorphism RNu−iI′u,v−iI′v is given by −u ∧ v − I ′u ∧ I ′v for all u, v ∈ W ′0. Hence hW =

{u ∧ v + I ′u ∧ I ′v
∣∣u, v ∈W ′0}IR.

(b) An hW -invariant subspace of W⊥ is contained in the orthogonal complement of the complex linear space CW ′,
belongs to a distinguished family F of k-dimensional totally real subspaces of CW ′ ∩W⊥ which can be param-
eterized by the real projective space IRP2 (for k ≥ 3) or the complex projective space CP2 (for k = 2), or is a
direct sum of such spaces.

(c) Let A ∈ so(<) and c ∈ IR be given. Then cJN + A leaves the subspace W invariant if and only if A =
−cI ′ +

∑
i∈I ui ∧ vi + I ′ui ∧ I ′vi + ũi ∧ ṽi with ui, vi ∈ W ′0 and ũi, ṽi ∈ W ′⊥ (were W ′⊥ denotes the orthogonal

complement of W ′ in <).

Proof. Part (a) is straightforward. For (b), note that CW ′ ∩W⊥ = iW ⊕ W̄ ⊕ iW̄ is a decomposition into irreducible,
pairwise equivalent hW -modules. Moreover, if k ≥ 3, then W is an irreducible hW -module even over C whereas W is
reducible over C for k = 2. Part (b) follows

For (c): We have i(v − iI ′v) = I ′v + iv = I ′v − iI ′(I ′v) for all v ∈W ′ and hence JN |W = I ′. In particular, JN |W − I ′
leaves W invariant. This reduces the question to the case c = 0 in which case we have to determine those A which
leave the linear space W ′0 invariant and AI ′v = I ′Av holds for all v ∈W ′0, i.e. A = A1⊕A2⊕Ã with A1 = A2 ∈ so(W ′0)
and Ã ∈ so(W ′⊥). This proves the result.

Using Lemma 5 we have (cf. the proof of Corollary 8):

Corollary 12. Let W and U be of Type (tr′k) and (tr1) defined by the data (<,W ′, I ′,W ′0) and a unit vector u of
TpN , respectively. The pair (W,U) is an orthogonal curvature invariant pair if and only if u belongs to CW ′⊥.

Clearly, subspaces of Type (tr′k) are totally real. Hence Lemma 2 (b) combined with Lemma 4 (b) implies:

Corollary 13. There are no orthogonal curvature invariant pairs (W,U) of Type (tr′i, cj) or (tr′i, c
′
j).
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Corollary 14. Let W and U be of Type (tr′i) and (trk,l) defined by the data (<,W ′, I ′,W ′0) and (<∗, U1, U2), respec-
tively. If < = <∗ and the linear space U1 ⊕ U2 belongs to the orthogonal complement of W ′ in <, then (W,U) is an
orthogonal curvature invariant pair. Every orthogonal curvature invariant pair of Type (tr′i, trk,l) can be obtained in
this way.

Proof. Obviously, the pairs (W,U) mentioned above satisfy W⊥U . Further, the fact that these are curvature invariant
pairs is verified by means of Lemmas 3 and 5, Parts (a) and (c). Conversely, let us see that the conditions are also
necessary:

For the first assertion, note that W is defined also by the data (eiϕ<, eiϕW ′, I ′, eiϕW ′0(−ϕ)) with W ′0(−ϕ) := { cos(ϕ)v−
sin(ϕ)I ′v | v ∈ W ′0 } for every ϕ ∈ IR. Hence we can assume that < = <∗. Now suppose that (W,U) is an orthogonal
curvature invariant pair. Since U is hW -invariant, there exists a decomposition U = U# ⊕ Ũ into hW -invariant
subspaces U# ⊂ CW ′ and Ũ ⊂ CW ′⊥. We claim that the only possibilities are U# = {0}, U# = iW ′0, U# = I ′(W ′0)
or U# = I ′(W ′0)⊕ iW ′0:

First, the condition 〈u, v〉 = 0 for all u ∈ U and v ∈ V implies that

0 = 〈u, v − iI ′v〉 = 〈u, v〉

for all u ∈ U1 and v ∈ W ′0. Hence U1 ⊂ W ′⊥0 , thus U1 ∩W ′ ⊂ I ′(W ′0). Similarly, we can prove that U2 ∩W ′ ⊂ W ′0.
Further, we have

U# = U ∩ CW ′ = U1 ∩W ′ ⊕ i(U2 ∩W ′).

Thus, the hW -invariance of U1 implies that both summands are invariant under the hW action (note, hW ⊂ so(<),
see Lemma 5 (a)). Since this action is irreducible on both W ′0 and I ′(W ′0), it follows from Schur’s Lemma that
U1 ∩W ′ ∈ {{0}, I ′(W ′0)} and U2 ∩W ′ ∈ {{0},W ′0}. Our claim follows.

Next, we claim that U# = {0}. Assume, by contradiction, that I ′(W ′0) ⊂ U . Since dim(W ′0) ≥ 2, there exists a pair of
orthonormal vectors u, v ∈ W ′0. Then {I ′u, I ′v} ⊂ U ∩ < = U1, hence RNI′u,I′v = −I ′u ∧ I ′v leaves W invariant since
(W,U) is a curvature invariant pair. Applying Lemma 5 (c) (with c = 0), we see that this is not possible. By means
of a similar argument, we conclude that iW ′0 is not contained in U . It follows that U# = {0}, i.e. U ⊂ CW ′⊥. Clearly,
this shows that U1 ⊕ U2⊥W ′. This finishes our proof.

Corollary 15. Let W and U be of Type (tr′k) and (tr′l) defined by the data (<,W ′, I ′,W ′0) and (<∗, U ′, J ′, U ′0),
respectively. Further, in case k = 2, let {e1, e2} be an orthonormal basis of W ′0 and let Ĩ be the Hermitian structure of
W ′ defined by e1 ∧ e2 + I ′e1 ∧ I ′e2.

If < = <∗ and one of the following conditions holds, then (W,U) is an orthogonal curvature invariant pair:

• < = <∗ and U ′⊥W ′;

• k ≥ 3, < = <∗, U ′ = W ′, I ′ = J ′ and U ′0 = I ′(W ′0);

• k ≥ 3, U ′ = W ′, I ′ = −J ′ and U ′0 = exp(ϕI ′)(W ′0) for some ϕ ∈ IR;

• k = 2, U ′ = W ′ and there exists some J̃ ∈ SU(W ′, Ĩ) ∩ su(W ′) such that U = J̃(W ).

Moreover, every orthogonal curvature invariant pair of Type (tr′k, tr
′
l) can be obtained in this way.

Proof. In the one direction, we first verify that the given pairs (W,U) satisfy U⊥W . This is straightforward in the
first case. In the second and the third case, we have U = iW and U = eiϕW̄ , respectively, and the result follows. In
the last case, note that f1 := e1 and f2 := I ′e1 define a Hermitian basis of (W ′, Ĩ). Consider the complex matrix (gij)
defined by

gij := 〈fi, J̃fj〉+ i〈Ĩfi, J̃fj〉 (36)
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for i, j = 1, 2. Then (gij) belongs to SU(2) ∩ su(2), hence there exist t ∈ IR and w ∈ C with t2 + |w|2 = 1 such that(
g11 g12

g21 g22

)
=

(
it −w̄
w −it

)
(37)

Using the skew-symmetry of J̃ and (37), we calculate

〈ei − iI ′ei, J̃(ei − iI ′ei)〉 = 〈ei, J̃ei〉+ 〈I ′ei, J̃I ′ei〉 = 0 for i = 1, 2, (38)

〈e2 − iI ′e2, J̃(e1 − iI ′e1)〉 = 〈Ĩf1, J̃f1〉+ 〈Ĩf2, J̃f2〉 = =(g11 + g22) = 0, (39)

〈e1 − iI ′e1, J̃(e2 − iI ′e2)〉 = −〈e2 − iI ′e2, J̃(e1 − iI ′e1)〉 = 0. (40)

This shows that W⊥J̃(W ).

Further, in order to see that the given pairs (W,U) are actually curvature invariant pairs, we proceed as follows: the
first case is handled by means of Lemma 4, (a) and (c). In the next two cases, it easy to see that hW = hU holds.
The latter condition is actually true also in the last case, which is due to the fact that here hW = IRĨ holds and
hU = { J̃ ◦A ◦ J̃−1 |A ∈ hW } (since J̃ ∈ SU(W ′, Ĩ)). Clearly, this implies that (W,U) is a curvature invariant pair.

In the other direction, let (W,U) be an orthogonal curvature invariant pair of Type (tr′k, tr
′
l) defined by the data

(<,W ′, I ′,W ′0;<∗, U ′, J ′, U ′0). We will show that it can be obtained in one of the four ways described before:

Here we can assume that < = <∗ (cf. the proof of Corollary 14). Since U is hW -invariant, we have U = U ] ⊕ Ũ with
U ] ⊂ CW ′ and Ũ ⊂ CW ′⊥, according to Lemma 5 (b). Moreover, the linear space U# is the direct sum of (at most
three) linear spaces which belong to a distinguished family F of k-dimensional subspaces of CW ′. First, we claim that
U# = {0} or k = l:

Suppose that U# 6= {0}. In particular, then l ≥ k. Therefore, since W is an hU -invariant subspace of U⊥ with
dim(W ) = k ≤ l, it follows from Lemma 5 (b) that W ⊂ CU ′⊥ or k = l. If we assume, by contradiction, that
W ⊂ CU ′⊥, then

0 = 〈v − iI ′v, u〉 = 〈v, u〉, (41)

0 = 〈v − iI ′v, iu〉 = −〈I ′v, u〉 (42)

for all u ∈ U ′ and v ∈W ′0, i.e. we obtain that W ′⊥U ′. Hence CW ′⊥CU ′ and, in particular, U# = U ∩ CW ′ = {0}, a
contradiction. We conclude that k = l.

We thus see that either U ∈ F or U ⊂ CW ′⊥. In the latter case, we even have U ′⊥W ′ (see Eqs. (41),(42)). In the
first case, we have, in particular, U ′0 ⊂W ′ and I ′(U ′0) ⊂W ′, hence U ′ = W ′ (since k = l).

Furthermore, we claim that hW = hU :

For this, it suffices (by means of a symmetry argument) to show that hU ⊂ hW . Let A ∈ hU be given. We can
assume, by means of Lemma 5 (a), that A = u1 ∧ u2 + I ′u1 ∧ I ′u2 with u1, u2 ∈ U ′0. Further, A(W ) ⊂ W by
definition of a curvature invariant pair. Since W ′ = U ′, we obtain from Lemma 5 (c), applied to W with c = 0, that
A =

∑
i∈I ui ∧ vi + I ′ui ∧ I ′vi with ui, vi ∈W ′0, i.e. A ∈ hW . This proves our claim.

For k ≥ 3, set `0(v) := I ′v + iv, `1(v) := v + iI ′v and `2(v) := I ′v − iv for all v ∈ W ′0. Then `i is an isomorphism
onto iW , W̄ and iW̄ , respectively. It follows from Schur’s Lemma that there exists (c0 : c1 : c2) ∈ IRP2 such that
U = λ(W ′0) with λ := c0λ0 + c1λ1 + c2λ2. Note λ(v) = c1v+ (c0 + c2)I ′v+ (c0− c2)iv+ c1iI ′v, hence it can not happen
that a := c1 and b := c0 + c2 both vanish (since otherwise U ⊂ i<, which is not possible). Thus, we can assume that
a2 + b2 = 1, i.e. there exists some ϕ ∈ [0, π[ such that

U ′0 = { cos(ϕ)v + sin(ϕ)I ′v | v ∈W ′0 }. (43)

Further, recall that U ′ = W ′ and that this space is equipped with the two complex structures I ′, J ′ such that U ′0 is a
real form with respect to J ′. Furthermore, it follows from (43) that U ′0 is a real form with respect to I ′, too. Since
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moreover k ≥ 3, an application of Schur’s Lemma shows that therefore I ′ = ±J ′ holds. We obtain that (W,U) is a
curvature invariant pair if and only if U = eiϕW or U = eiϕW̄ for some ϕ ∈ IR. It remains to determine under which
conditions the linear spaces W = { v − iI ′v | v ∈W ′0 } and U = eiϕW or U = eiϕW̄ are orthogonal to each other:

Set W ′0(ϕ) := { cos(ϕ)v+sin(ϕ)iI ′v | v ∈W ′0 } and note that eiϕW = { v− iI ′v | v ∈W ′0(ϕ) } and eiϕW̄ = { v+iI ′v | v ∈
W (ϕ) } . We obtain that

〈v − iI ′v, cos(ϕ)u+ sin(ϕ)I ′u∓ iI ′(cos(ϕ)u+ sin(ϕ)I ′u)〉
= 〈v, cos(ϕ)u+ sin(ϕ)I ′u〉 ± 〈I ′v, I ′(cos(ϕ)u+ sin(ϕ)I ′u)〉
= cos(ϕ)〈v, u〉 ± cos(ϕ)〈I ′v, I ′u〉 = cos(ϕ)〈v, u〉 ± cos(ϕ)〈v, u〉

for all u, v ∈ W ′0, i.e. U = eiϕW is orthogonal to W only if ϕ = π/2 mod Zπ/2 and U = eiϕW̄ is always orthogonal
to W . This proves the corollary for k ≥ 3.

For k = 2, we observe that Ĩ equips W ′ with another Hermitian structure such that [I ′, Ĩ] = 0. Further, W ′0 and I ′(W ′0)
both become complex subspaces of (W ′, Ĩ). We recall that any two Hermitian structures of a Euclidean vector space
are conjugate by some orthogonal transformation and any two real forms of a unitary vector space are conjugated
by some unitary transformation, hence there exists some g ∈ SO(W ′) such that J̃ ◦ I ′ ◦ g−1 = J ′ and g(W ′0) = U ′0.
Clearly, then hU = { g ◦A ◦ g−1 |A ∈ hW }. Thus, the condition hW = hU derived above shows that g normalizes hW .
Since furthermore hW = IRĨ, it follows that g commutes or anti-commutes with Ĩ. This shows (W,U) is a curvature
invariant pair if and only if there exists some g ∈ U(W ′, Ĩ) such that either U = g(W ) or U = g(W̄ ). However, the
second case can be omitted since the linear map g0 defined by g0|W ′

0
:= Ĩ|W ′

0
and g0|I′(W ′

0) := −Ĩ|I′(W ′
0) belongs to

U(W ′, Ĩ) and maps W to W̄ . Moreover, since W is invariant under Ĩ, we can even assume that g belongs to the special
unitary group SU(W ′, Ĩ).

It follows that U = g(W ) for some g ∈ SU(W ′, Ĩ). It remains to show that g ∈ su(W ′). Let (gij) be the matrix defined
by (36). Since (gij) ∈ SU(2), there exist z, w ∈ C with |z|2 + |w|2 = 1 such that (37) holds. Using (39), we conclude

from W⊥g(W ) that <(z) = 0, hence (gij) ∈ su(2), i.e. J̃ := g ∈ SU(W ′, Ĩ) ∩ su(W ′). This finishes the proof.

Lemma 6. Suppose there exists some < ∈ U and an orthonormal basis {e1, . . . , en} of < such that W is spanned by
w1 := e1 − ie2, w2 := e2 + ie1 and w3 := e1 + ie2.

(a) hW is the one-dimensional Lie algebra which is generated by JN + e1 ∧ e2.

(b) A subspace of W⊥ is hW -invariant if and only if it is the one-dimensional space IR(e2− ie1), a complex subspace
of C{e1, e2}⊥ or a sum of such spaces..

(c) Let A ∈ so(<) and c ∈ IR be given. Then cJN +A leaves the subspace W invariant if and only if there exist real
numbers cij such that A = c(e1 ∧ e2) +

∑
3≤i<j≤n cijei ∧ ej.

Proof. Part (a) follows fromRNw1,w2
= −2(JN+e1∧e2) andRNw1,w3

= RNw2,w3
= 0. Clearly, W⊥ = IR(e2−ie1)⊕{e1, e2}⊥C

and hW acts trivially on the first factor and by means of JN on the second factor. This proves (b). For (c), the fact
that JN + e1 ∧ e2 leaves W is invariant reduces the problem to the case c = 0. If A leaves W invariant, then
Aw1 = Ae1 − iAe2 must be a linear combination of w2 and w3, say Aw1 = λw2 + µw3. It follows that

µ = 〈λw2 + µw3, e1〉 = 〈Aw1, e1〉 = 〈Ae1 − iAe2, e1〉 = 〈Ae1, e1〉 = 0,

hence Ae1 = λe2 and Ae2 = −λe1. Thus Aw3 = Ae1 + iAe2 = λ(e2 − ie1) ∈ W⊥ ∩W = {0}. It follows that λ = 0.
This implies that Ae1 = Ae2 = 0, i.e. A ∈ so({e3, . . . , en}IR). This proves our claim.

We immediately see:

Corollary 16. Let W and U be of Type (ex3) and (tr1) defined by the data (<, {e1, e2}) and a unit vector u of TpN ,
respectively. Then (W,U) is an orthogonal curvature invariant pair if and only if u = ±1/

√
2 (e2 − ie1).
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Corollary 17. There do not exist any orthogonal curvature invariant pairs of Type (ex3, ck), (ex3, c
′
k), (ex3, tr

′
k),

(ex3, tri,j) or (ex3, ex3).

Proof. Suppose that W is of Type (ex3) defined by the data (<, {e1, e2}). If U is of Type (ck) or (c′k) (k ≥ 1) and W
is a subspace of U⊥ such that hU (W ) ⊂W , then W is necessarily a complex subspace of TpN (cf. Lemmas 2 and 4).
However, Type (ex3) is not complex according to Lemma 6 (c). This shows that (W,U) is not an orthogonal curvature
invariant pair.

Further, if U is of Type (tr′k) (k ≥ 2) or (tri,j) (i + j ≥ 2), then U does neither contain a complex subspace of TpN
nor U is one-dimensional. The result follows from Lemma 6 (b).

Suppose that U is of Type (ex3), too, defined by (<∗, {f1, f2}), and, by contradiction, that (W,U) is a curvature
invariant pair. Then U is defined also by (eiϕ<∗, {f1(ϕ), f2(ϕ)}) with f1(ϕ) := eiϕ(cos(ϕ)f1 + sin(ϕ)f2) and f2(ϕ) :=
eiϕ(− sin(ϕ)f1 + cos(ϕ)f2). Hence we can assume that < = <∗.

By means of Lemma 6 (b) and since dim(U) = 3, there exists the orthogonal decomposition U = IR(e2− ie1)⊕Ũ where
Ũ ⊂ C{e1, e2}⊥ is complex 1-dimensional. Further, an orthogonal decomposition U = U# ⊕ Ũ of a 3-dimensional
subspace U ⊂ TpN into a real 1-dimensional space U# and a complex 1-dimensional space Ũ is unique (if it exists).

Another such decomposition is given by Ũ ] := IR(if2 + f1) and Ũ := {f2 + if1, if2 − f1}IR. Thus, on the one hand, we
conclude that {f1, f2} ⊂ {e1, e2}⊥. On the other hand, if2 + f1 = ±e2 − ie1, a contradiction.

Consider Type (ex2):

Lemma 7. Let < ∈ U and an orthonormal basis {e1, . . . , en} of < be given such that W is spanned by w1 := 2e1 + ie2

and w2 := e2 + i(e1 +
√

3 e3).

(a) The curvature endomorphism R1,2 := RNw1,w2
is given by −JN − e1 ∧ e2 −

√
3 e2 ∧ e3.

(b) A subspace U of W⊥ is invariant under R1,2 if and only if U is either the complex space C(−e1 +
√

3 e3 + i2e2),
belongs to a distinguished family of (real) 2-dimensional subspaces of the linear space

{2e2 + i(−3e1 + 1/
√

3 e3), e1 + 5/
√

3 e3 − 2ie2}IR ⊕ {e4, . . . , en}C, (44)

or is a sum of such spaces.

(c) Let A ∈ so(<) and c ∈ IR. Then cJN +A leaves the subspace W invariant if and only if there exist real numbers
cij such that A = c(e1 ∧ e2 +

√
3 e2 ∧ e3) +

∑
4≤i<j≤n cijei ∧ ej.

Proof. Part (a) is straightforward. For (b), we first verify that the eigenvalues of A := RNw1,w2
(seen as a complex-linear

endomorphism of TpN) are given by {i,−i,−3i}. The complex eigenspace for the eigenvalue −3i is a subspace of W⊥,
given by C(−e1 +

√
3 e3 + i2e2). Furthermore, we have A2 = −Id on the (2n− 4)-dimensional subspace of TpN which

is given by (44), i.e. A defines a second complex structure on (44). This proves (b).

For (c): Since W is curvature invariant, the endomorphism JN + e1 ∧ e2 +
√

3 e2 ∧ e3 leaves W invariant. This reduces
the problem to c = 0. If A(W ) ⊂ W , then Aw1 = dw2 and Aw2 = −dw1 for some d ∈ IR (since A is skew-symmetric
and the length of w1 is given by

√
5 which is also the length of w2). Considering the action of A on the real parts of

w1 and w2, this implies that 2Ae1 = de2, Ae2 = −2de1. Taking also the imaginary parts into account, we see that
Ae2 = d(e1 +

√
3 e3), which gives a contradiction unless d = 0. Then Ae1 = Ae2 = 0 and hence Aw2 = i

√
3Ae3 must

be a multiple of w1, which is not possible unless also Ae3 = 0, i.e. A|{e1,e,e3}IR = 0. This implies the result.

Corollary 18. Suppose that W is of Type (ex2). Then there are no orthogonal curvature invariant pairs (W,U) at
all.
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Proof. Suppose that < ∈ U , {e1, e2, e3} is an orthogonal system of < and W is spanned by w1 := 2e1 + ie2 and
w2 := e2 + i(e1 +

√
3 e3). Suppose furthermore, by contradiction, that there exists some curvature invariant subspace

U of TpN such that (W,U) is an orthogonal curvature invariant pair.

If U is of Type (ck), (c′k) or (ex3), then W is a 2-dimensional hU -invariant subspace of W⊥ but not a complex subspace
of TpN according to Lemma 6 (c). However, this is not possible, because of Part (b) of Lemmas 2, 4 and 6.

Now suppose that U is of Type (tri,j) determined by the data (<∗, U1, U2). Using Lemmas 3 (c) and 7 (a), we see
that hW (U) ⊂ U does not hold.

Similarly, the case that U is of Type (tr1) can not occur.

Suppose that U is of Type (tr′k) (k ≥ 2) determined by (<∗, U ′, I ′, U ′0). Then we can assume that < = <∗. Using
Lemma 5 (b), the fact that W is 2-dimensional linear subspace of TpN which is invariant under hU implies that either
W ⊂ CU ′⊥ or W is a two-dimensional hU -invariant subspace of CU ′.

In the first case, 〈<(wi), u〉 = 〈=(wi), u〉 = 0 for all u ∈ U ′ and i = 1, 2. With i = 1, it follows that 〈e1, u〉 = 〈e2, u〉 = 0,
then the previous with i = 2 implies that also 〈e3, u〉 = 0 for all u ∈ U ′. Thus Lemma 7 (a) and the fact that hW (U) ⊂ U
show that U is a complex subspace of TpN , a contradiction.

In the second case, we have dim(U) = dim(U ′0) = 2 and both <(wi) and =(wi) belong to U ′ for i = 1, 2. Thus we
conclude that {e1, e2, e3} ⊂ U ′. Hence we can extend this orthogonal system to an orthonormal basis {e1, . . . en} of <
such that e4 ∈ U ′. Let {u1, u2} be an orthonormal basis of U ′0. According to Lemma 5, the curvature endomorphism
RNu1−iI′u1,u2−iI′u2

is given by A := −u1 ∧ u2 − I ′u1 ∧ I ′u2. Hence, since (W,U) is a curvature invariant pair, we
obtain that A(W ) ⊂ W . Using Lemma 7 (c) (with c = 0), this fact implies that there exist real numbers cij
such that u1 ∧ u2 + I ′u1 ∧ I ′u2 =

∑
4≤i<j≤n cijei ∧ ej . On the other hand, there exist real numbers dij with

u1 ∧ u2 + I ′u1 ∧ I ′u2 =
∑

1≤i<j≤4 dijei ∧ ej . Since {ei ∧ ej}i<j is a linear independent subset of so(<), we obtain that
cij = dij = 0, hence u1 ∧ u2 + I ′u1 ∧ I ′u2 = 0 which is not possible.

Consider the case that U is of Type (ex2), too. Then there exists some <∗ ∈ U and an orthonormal system {f1, f2, f3}
of <∗ such that U is spanned by u1 := 2f1 + if2 and u2 := f2 + i(f1 +

√
3 f3). Let ϕ be chosen such that eiϕ<∗ = <.

In accordance with Lemma 7, the curvature endomorphism R1,2 := RNu1,u2
is given by −JN +A with A := −f1 ∧ f2−√

3 f2 ∧ f3 ∈ so(<∗) = so(<). We decompose fi = f>i ⊕ f⊥i with respect to the splitting R′ = e−iϕ{e1, e2, e3}IR ⊕
e−iϕ{e4, . . . , en}IR. Since R1,2(W ) ⊂W , Lemma 7 (c) (with c = −1) implies that

e1 ∧ e2 +
√

3 e2 ∧ e3 = f>1 ∧ f>2 +
√

3 f>2 ∧ f>3 .

Comparing the length of the tensors on the left and right hand side above, we see that

〈f>1 , f>1 〉 = 〈f>2 , f>2 〉 = 〈f>3 , f>3 〉 = 1,

i.e. eiϕfi ∈ {e1, e2, e3}IR for i = 1, 2, 3. Hence we can assume that n = 3. Since spaces of Type (ex2) are not complex,
it follows from Lemma 7 (c) that U is spanned also by ũ1 := 2e2 + i(−3e1 + 1/

√
3 e3) and ũ2 := e1 + 5/

√
3 e3 − 2ie2.

A short calculation shows that R̃1,2 := RNũ1,ũ2
is given by 8/3 JN − 4(e1 ∧ e2 +

√
3 e2 ∧ e3). Thus we obtain that R̃1,2

does not leave W invariant. Hence (W,U) is not a curvature invariant pair.

3.2 Integrability of the curvature invariant pairs of G+
2 (IR

n+2)

Let (W,U) be an orthogonal curvature invariant pair of G+
2 (IRn+2) and set V := W ⊕ U . We will assume that

dim(W ) ≥ 2. It remains the question whether (W,U) is integrable. By means of a case by case analysis, we will show
that the answer is “no” unless V is curvature invariant.

Let k denote the isotropy Lie algebra of N := G+
2 (IRn+2) and ρ : k→ so(TpN) be the linearized isotropy representation.

Recall that ρ(k) = IRJN ⊕ so(<). Further, by definition, the Lie algebra kV is the maximal subalgebra of k such that
ρ(kV )|V is a subalgebra of so(V ), see (18). Recall also the definition of the Lie algebra h ⊂ so(V ), see (21).

22



Type (ci, cj) Suppose that W and U are of Type (ci) and (cj) defined by the data (<,W0) and (<∗, U0), respectively,
with < = <∗ and W0⊥U0. Hence V is curvature invariant of Type (ci+j) defined by the data (<,W0 ⊕ U0).

Type (tri,j, trk,l) Let W and U be of Type (tri,j) and (trk,l) defined by the data (<,W1,W2) and (<∗, U1, U2),
respectively. Let ϕ be chosen such that < = eiϕ<∗. Substituting, if necessary, i<∗ for <∗, we can assume that
ϕ ∈ [−π/4, π/4].

• Case i = j = k = l = 1: let v1, v2, u1 and u2 be unit vectors in W1, W2, U1 and U2, respectively. Here we have
〈v1, v2〉 = 〈u1, u2〉 = 〈u1, v1〉 = 〈u2, v2〉 = 0. Further, suppose that (W,U) is integrable. Since W and U both
are two-dimensional curvature isotropic subspaces of TpN , Proposition 4 implies the existence of an orthonormal
basis {e1, e2} of W such that {ηi := h(ei, ei)}i=1,2 is an orthogonal basis of U . Further, RNe1,η2 = 0 = RNe2,η1 ,
see (29). Thus, there exist real numbers q, r, s, t with q2 + r2 6= 0 and s2 + t2 6= 0 such that e1 = qv1 + riv2 and
η2 = su1 + tiu2. Hence,

<(e1) = qv1, (45)

=(e1) = rv2, (46)

<(η2) = s cos(ϕ)eiϕu1 + t sin(ϕ)eiϕu2, (47)

=(η2) = −s sin(ϕ)eiϕu1 + t cos(ϕ)eiϕu2. (48)

Further, Eq. 33 shows that

〈<(e1),=(η2)〉 = 〈<(η2),=(e1)〉, (49)

=(e1) ∧ =(η2) = −<(e1) ∧ <(η2), (50)

〈<(e2),=(η1)〉 = 〈<(η1),=(e2)〉, (51)

=(e2) ∧ =(η1) = −<(e2) ∧ <(η1), (52)

where real and imaginary parts may be taken with respect to <. We claim that the case ϕ 6= 0 can not occur:

Otherwise, we have ϕ 6= 0 mod π/2, hence Corollary 7 shows that {v1, v2, e
iϕu1, e

iϕu2} is an orthonormal basis
of <. Thus, {<(η2),=(η2)} ⊂ {eiϕu1, e

iϕu2}IR according to (47), (48) and neither =(η2) nor <(η2) vanishes
(since otherwise t sin(ϕ) = 0 = s cos(ϕ) or s sin(ϕ) = 0 = t cos(ϕ), respectively, i.e. s = t = 0 anyway which is
not possible). Therefore, if, say, <(e1) does not vanish, then r.h.s. of (50) is non-zero, i.e. {<(e1),<(η2)}IR =
{=(e1),=(η2)}IR is a two-dimensional space in contradiction to (45)-(48).

Hence, ϕ = 0. Let us assume that <(e1) = 0. Then e1 = ±iv2, e2 = ±v1 and r.h.s. of (50) vanishes. It follows
that

0 = 〈e1, η2〉 = 〈=(e1),=(η2)〉.

Since l.h.s. of (50) vanishes, too, we thus we obtain that =(η2) = 0, i.e. there exist λ, µ 6= 0 with η2 = µu1

and η1 = λiu2. Therefore, 〈v2, u1〉 = 0 = 〈v1, u2〉 according to (49),(51). Thus V is curvature invariant of Type
(tr2,2) defined by (R, {v1, u1}IR, {v2, u2}IR). Similarly, if =(e1) = 0, then V is curvature invariant of Type (tr2,2),
too.

If neither <(e1) = 0 nor =(e1) = 0, and, say, <(η2) 6= 0, then there exist λ, µ 6= 0 with <(η2) = λu1 and
<(e1) = µv1. Hence r.h.s. of (50) is given by λµu1∧v1 which is non-zero by the condition 〈u1, v1〉 = 0. Using (50),
we obtain that =(η2) 6= 0 and {v1, u1}IR = {v2, u2}IR, hence {v1, v2, u1, u2}IR = {v1, v2}IR = {u1, u2}IR. The
conditions 〈u1, v1〉 = 〈u2, v2〉 = 0 imply that u2 = ±v1 and u1 = ±v2. In this case, V := W ⊕ U is curvature
invariant of Type (c2) defined by (<, {v1, v2}IR). The possibility =(η2) 6= 0 leads to the same conclusion.

• Case < = <∗, j = k ≥ 2, W2 = U1: then W1⊥U2 or W1 = U2 unless i = l = 1. In case W1 = U2, the linear space
V is curvature invariant of Type ck+l defined by (<, U1⊕W1). Otherwise, we claim that ρ(kV )|V ∩so(V )− = {0}:
Let c ∈ IR, B ∈ so(<), set A := cJN + B and suppose that A(V ) ⊂ V and A|V ∈ so(V )− holds. Then
A(W ) ⊂ U and A(U) ⊂ W . We aim to show that A = 0. Let v ∈ W1. Thus Av ∈ U . It follows that
civ ∈ iU2. In the same way, ciu ∈ iW1 for all u ∈ U2. Hence c = 0 or W1 = U2 which is different case. Hence
A(U1) = B(U1) ⊂W ∩< = W1 and A(W1) ⊂ U1. In other words, setting V1 := W1⊕U1, we have A|V1 ∈ so(V1)−.
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For the same reason, with V2 := W2 ⊕ U2, we have A|V2
∈ so(V2)−. Since 24 is a linear isomorphism, for the

vanishing of A it suffices to show that A|W2
= 0 and A|U1

= 0:

On the one hand, A(W2) = A(U1) ⊂ W1. On the other hand, A(W2) ⊂ U2. Hence A(W2) ⊂ W1 ∩ U2. Further,
the linear space W1 ∩ U2 is trivial if W1⊥U2 or if i = l = 1 and W1 6= U2. Therefore, A|W2

= 0 unless W1 = U2.
Similar considerations show that also A|U1

= 0 unless W1 = U2. This establishes our claim.

Assume, by contradiction, that (W,U) is integrable but W1 6= U2. Then ρ(kV )|V ∩ so(V )− = {0} as was shown
above. Thus there exists a symmetric bilinear map h : W ×W → U satisfying (26),(27) according to Corollary 4.
Note, the Lie algebra h (21) is given by so(W1) ⊕ so(W2) ⊕ so(U2) such that so(W1) ⊕ so(U2) acts as a direct
sum representation on W1 ⊕ iU2 whereas so(W2) acts diagonally on iW2 ⊕ U1 (i.e. A(iv + u) = iAv +Au for all
A ∈ so(W2) and (v, u) ∈W2×U1). Schur’s Lemma implies that Homh(W,U) ⊂ IRJN |iW2

⊕Hom(W1, iU2) (where
the second summand is non-trivial only if i = l = 1). In particular, there exists a linear function λ : W → IR
such that h(x, iy) = λxy for all x ∈ W and y ∈ W2. Further, we have h(x, y) ∈ iU2 for all x ∈ W and y ∈ W1.
Thus, we conclude by the symmetry of h that

h(ix, iy) = λxy = h(iy, ix) = λyx

for all x, y ∈ W2. Since dim(W2) = j ≥ 2, we hence see that λx = 0 for all x ∈ iW2, i.e. h|iW2×iW2
= 0.

Furthermore, we conclude that

h(W1 × iW2) = h(iW2 ×W1) ∈ U1 ∩ iU2 = {0}.

Therefore, h(W ×W ) = h(W1 ×W1) ⊂ iU2, a contradiction, since the image of h spans U and U1 6= {0}.
The case i = l ≥ 2, W2 = U1 also follows (by means of passing from < to i<).

• In the remaining cases, we have W1⊥eiϕU2 or i = l = 1 and, also W2⊥eiϕU1 or j = k = 1. Furthermore, at
least one of the indices {i, j, k, l} is (strictly) greater than 1. In case ϕ = 0, W1⊥U2 and W2⊥U1, we obtain
that V is curvature invariant of Type tri+k,j+l defined by (<,W1 ⊕ U1,W2 ⊕ U2). Otherwise, we claim that
ρ(kV )|V ∩ so(V )− = {0}:
Let c ∈ IR, B ∈ so(<) be given such that A := cJN +B satisfies A(V ) ⊂ V and A|V ∈ so(V )−. Thus A(W ) ⊂ U
and A(U) ⊂ W , hence W1⊥eiϕU2 and W2⊥eiϕU1. Further, substituting, if necessary, i< for <, we can assume
that i ≥ 2. Let v ∈ W1 be a unit vector. Then Av ∈ U , i.e. Av = u1 + iu2 for suitable u1 ∈ U1 and u2 ∈ U2.
Since

eiϕ(Av) = eiϕ(civ +Bv) = ci cos(ϕ)v − c sin(ϕ)v + cos(ϕ)Bv + i sin(ϕ)Bv,

we see that
eiϕu1 = <(eiϕ(Av)) = −c sin(ϕ)v + cos(ϕ)Bv

and
eiϕu2 = =(eiϕ(Av)) = c cos(ϕ)v + sin(ϕ)Bv.

The condition W1⊥eiϕU2 implies that
0 = 〈v, eiϕu2〉 = c cos(ϕ),

thus c = 0 since ϕ ∈ [−π/4, π/4]. Therefore, A ∈ so(<) anyway, in particular, Av ∈ < for all v ∈W1.

Therefore, we have <(eiϕAv) = cos(ϕ)Av = eiϕu1 and =(eiϕAv) = sin(ϕ)Av = eiϕu2. We conclude that

0 = 〈u1, u2〉 = 〈eiϕu1, e
iϕu2〉 = sin(ϕ) cos(ϕ)〈Av,Av〉,

hence ϕ = 0 or Av = 0 for all v ∈ W1. In the same way, we can show that ϕ = 0 or Av = 0 for all v ∈ W2. By
means of Eq. 24, we conclude that A|V = 0 unless ϕ = 0. Suppose now that ϕ = 0. Set V1 := W1 ⊕ U1 and
V2 := W2 ⊕ U2. Note that A|V1 ∈ so(V1)− and A|V2 ∈ so(V2)−. Assume that, say, the condition W1⊥U2 fails.
Then we necessarily have i = l = 1 and W2⊥U1 holds. In particular, there exists v1 ∈ W1 such that the linear
form 〈v1, ·〉 defines an isomorphism U2 → IR. Then,

〈Av, v1〉 = −〈v,Av1〉 = 0.

for all v ∈W2. We conclude that A|W2 = 0 and hence A|V2 = 0 since (24) is a linear isomorphism. For the same
reason, A|U1

= 0 and hence A|V1
= 0. We conclude that A|V = 0. This establishes our claim.
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Assume, by contradiction, that (W,U) is integrable but at least one of the conditions ϕ = 0, W1⊥U2 or W2⊥U1

fails. Then ρ(kV )|V ∩ so(V )− = {0}. Thus, there exists a symmetric bilinear map h : W ×W → U satisfy-
ing (26),(27). Note, the Lie algebra h from (21) is given by so(W1)⊕ so(W2)⊕ so(U1)⊕ so(U2) acting as a direct
sum representation on W1 ⊕ iW2 ⊕ U1 ⊕ iU2 (where one or more summands may be trivial).

First, assume that j ≥ 2. Hence, by means of Schur’s Lemma, Homh(W,U) ⊂ Hom(W1, U). If i 6= 1, then we
even have Homh(W,U) = {0}. Otherwise, if i = 1, we thus see that h(x, y) = h(y, x) = 0 for all x ∈ iW2 and
y ∈W , i.e. h(W ×W ) = h(W1×W1) which spans a one-dimensional space, a contradiction (since dim(U) ≥ 2).
The case i ≥ 2 is handled by the same arguments. Note, the case i = j = 1 can actually not occur (since then
k = l = 1 because of Proposition 4).

Type (tri,j, tr1) Suppose that W is defined by the data (<,W1,W2) and U is one-dimensional spanned by a unit-
vector u.

• Case i = j = 1: Let e1 and e2 be unit vectors of < which generateW1 andW2, respectively. ThenW = IRe1+iIRe2

is a curvature isotropic subspace of TpN . Suppose that (W,U) is integrable. According to Proposition 4, there

exists some unit vector v ∈ W such that RNv,u = 0. Then W̃ := {v, u}IR is a curvature isotropic subspace of
TpN , too. It follows from Theorem 5 that there exists some <∗ ∈ U and an orthonormal system {e′1, e′2} of <∗
with W̃ = {e′1, ie′2}IR. In particular, 〈<∗(v),=∗(v)〉 = 0, where <∗ and =∗ denote taking the real and imaginary
parts with respect to <∗. Further, let ϕ be chosen such that eiϕ<∗ = <. Then we have <(eiϕv) = eiϕ<∗(v) and
=(eiϕv) = eiϕ=∗(v). Hence, on the one hand, 〈<(eiϕv),=(eiϕv)〉 = 〈<∗(v),=∗(v)〉 = 0. On the other hand, since
v ∈W , we may write v = cosφe1 + sinφie2. This gives

cos(ϕ) sin(ϕ)(cos2 φ− sin2 φ) = 0, (53)

i.e. φ = 0 mod π/4Z or ϕ = 0 mod π/2Z.

In the first case, we can assume that φ = π/4, i.e. v = 1/
√

2(e1 + ie2). It remains to determine the possibilities
for u. First, we have u ∈W⊥, i.e.

〈<(u), e1〉 = 〈=(u), e2〉 = 0. (54)

Hence, we may write <(u) = λ1e2 + u1 and =(u) = λ2e1 + u2 with u1, u2 ∈ {e1, e2}⊥. Second, using (33), we
obtain from RNv,u = 0 that

〈<(v),=(u)〉 = 〈<(u),=(v)〉, (55)

<(v) ∧ <(u) = =(v) ∧ =(u). (56)

It follows that λ1 = λ2 and λ1e1 ∧ e2 + e1 ∧ u1 = −λ1e2 ∧ e1 − e2 ∧ u2, i.e. u1 = u2 = 0. We obtain that
u = 1/

√
2(e2 + ie1). Therefore, the linear space W ⊕ IRu is curvature invariant of Type (ex3), determined by

the data (<, {e1, e2}).
In the second case, we can assume that ϕ = 0, i.e. < = <∗. Then {e′1, e′2} is a second orthonormal system of
<, and there exists a linear combination u = λ1e

′
1 + λ2ie′2 with λ2

1 + λ2
2 = 1. If, say, λ2 6= 0, then the condition

0 = 〈u, ie2〉 implies that 〈e′2, e2〉 = 0. Further, note that W ∩ W̃ = IRv. Therefore, there exist µ1, µ
′
1, µ2, µ

′
2 ∈ IR

such that v = µ1e1 + iµ2e2 = µ′1e
′
1 + iµ′2e

′
2. Hence =(v) = µ2e2 = µ′2e

′
2 which together with 〈e′2, e2〉 = 0 implies

that µ2 = µ′2 = 0, i.e. v = ±e1 and e1 = ±e′1. Thus the condition u⊥W shows that u = ±ie′2. Therefore,
W ⊕ IRu is curvature invariant of Type (tr1,2), determined by (<, IRe1, {e2, e

′
2}IR).

• Case i = 1, j ≥ 2: here we have <(u) ∈ W⊥1 and u ∈ CW⊥2 (where W⊥2 denotes the orthogonal complement of
W2 in <). Further, if =(u) = 0, or if <(u) = 0 and u⊥iW1, then W ⊕U is curvature invariant of Type (tr2,j) or
(tr1,j+1) defined by the triple (<,W1 ⊕ U,W2) or (<,W1,W2 ⊕ U), respectively. Otherwise, we claim that the
linear space ρ(kV )|V ∩ so(V )− is trivial:

Let c ∈ IR and B ∈ so(<) be given and suppose that A := cJN ⊕ B satisfies A(V ) ⊂ V and A|V ∈ so(V )−.
Let us write u = u1 + iu2 with u1, u2 ∈ <. Further, let an orthogonal pair of unit-vector v′′1 , v

′′
2 ∈ W2 be given

(such a pair exists since j ≥ 2). Then there exist λi ∈ IR such that Aiv′′i = −cv′′i + iBv′′i = λiu. Comparing the
real parts of the last equation, we obtain that −cv′′i = λiu1 for i = 1, 2, i.e. c = 0 (since v′′1 ∼ v′′2 is not given).
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Suppose, by contradiction, that B|W1
6= 0. Let v1 be a unit vector of W1. Then Bv1 = λu for some λ 6= 0 and

hence u2 = 0, which is a case not in consideration. Hence we can assume that B|W1
= 0. Suppose now, by

contradiction, that B|W2
6= 0. Let v2 be a unit vector of W2 such that Bv2 6= 0. Then u1 = 0 and there exists

λ 6= 0 such that Bv2 = λu2. Hence, using that B|W1
= 0,

0 = 〈v2, Bv1〉 = −〈Bv2, v1〉 = −λ〈u2, v1〉

for all v1 ∈W1. Since λ 6= 0, we obtain that u2 belongs to the orthogonal complement of W1, i.e. we have shown
that <(u) = 0 and u⊥iW1, which is different case. This proves our claim.

Therefore, if we assume that neither the case =(u) = 0 nor the case <(u) = 0 and u⊥iW1 holds but, by
contradiction, that (W,U) is integrable, then there exists a symmetric bilinear map h : W ×W → U satisfy-
ing (26),(27). Note, the Lie algebra h is given by so(W2) acting irreducibly on iW2 and trivially on both W1

and U . Thus, Homh(W,U) = Hom(W1, U). We obtain that h(W1, iW2) = h(iW2,W1) = h(iW2, iW2) = 0. Let
e1 and e2 be unit vectors in W1 and W2, respectively. Thus h(e1, ie2) = 0 and there exists λ 6= 0 such that
h(e1, e1) = λu. Then the linear space IRe1 ⊕ iIRe2 is of Type (tr1,1), i.e. RNe1,ie2 = 0. Therefore, on the one

hand, Eq. 5 (with k = 1) in combination with Lemma 1 yields RNh(e1,e1),ie2
= 0. It follows that RNie2,u = 0, thus

0 = =(u) ∧ =(ie2) + <(u) ∧ <(ie2) = =(u) ∧ e2, therefore =(u) ∼ e2. On the other hand, sine =(u) ∈ W⊥2 , this
implies that =(u) = 0, which is not given.

• i = 0, j ≥ 2 or i ≥ 2, j = 0. Since W is an irreducible hW -module (see Lemma 5), Proposition 2 implies that
here the linear space W ⊕ U is curvature invariant.

• Case i, j ≥ 2 and u⊥C(W1⊕W2): Then Homh(W,U) = {0}. Hence, if we assume, by contradiction, that (W,U)
is integrable, then Corollary 4 implies that ρ(kV )|V ∩ so(V )− is non-trivial. Using similar calculations as in the
previous cases, we see that this implies that <(u) = 0 or =(u) = 0, in which case V is curvature invariant of
Type (tri,j+1) or (tri+1,j), respectively.

Type (c′i, c
′
j) Let W and U be of Type (c′i) and (c′j) defined by the data (<,W ′, I ′) and (<∗, U ′, J ′) with < = <∗.

If U ′ = W ′ and J ′ = −I ′, then U = W̄ and V = W ⊕ W̄ = CW ′ is curvature invariant of Type (ci). If W ′⊥U ′, then
V is curvature invariant of Type (c′i+j) defined by (<,W ′ ⊕ U ′, I ′ ⊕ J ′).

Type (ci, c
′
j) Suppose that W is of Type (ci) determined by the data (<,W0) and U is of Type (c′j) determined

by (<∗, U ′, I ′). Suppose further that < = <∗ and W0⊥U ′ holds. Let u ∈ U ′ be a unit vector and consider A :=
JN + u ∧ I ′u ∈ so(TpN). We observe that A ∈ hU according to Lemma 4. Further, A2 acts by the scalars −2 and −1
on U and W , respectively, hence Homh(W,U) = {0}. Furthermore, we claim that ρ(kV )|V ∩ so(V )− = {0}:

Let c ∈ IR and B ∈ so(<) be given, set A := cJN ⊕ B and suppose that A(V ) ⊂ V and A|V ∈ so(V )−. If v is a unit
vector of W0, then v, iv ∈W and thus

0 = 〈Av, iv〉 = c〈iv, iv〉,

i.e. c = 0. Hence A ∈ so(<) and Av belongs to U ∩ < = {0}, i.e. Aiv = iAv = 0 = Av for all v ∈W0. Thus, A|V = 0.

Therefore, Corollary 4 implies that neither (W,U) nor (U,W ) is integrable.

Type (tri,j, tr
′
k) Suppose that W and U are of Type (tri,j) and (tr′k) determined by the data (<,W1,W2) and

(<∗, U ′, I ′, U ′0), respectively. By means of Corollary 14, we can assume that < = <∗ and that U ′ ⊕ U ′0 belongs to the
orthogonal complement of W1 in <. We claim that the linear space ρ(kV )|V ∩ so(V )− is trivial:

Let c ∈ IR and B ∈ so(<) be given, set A := cJN ⊕ B and suppose that A(V ) ⊂ V and A|V ∈ so(V )− holds. If
v1 ∈ W1, then civ1 is the imaginary part of Av1. Since Av1 ∈ U , we see that Av1 = c(I ′v1 + iv1). In particular,
cI ′v1 ∈ U ′0 ⊂ U ′. Because W1 ∩ U ′ = {0}, this implies c = 0, i.e. A vanishes on W1. In the same way, we can show
that A vanishes on iW2, too. Hence, we see that A|V = 0, since (24) is a linear isomorphism. This establishes our
claim.
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Further, according to Lemma 5, hU acts irreducibly on U and trivially on W . Hence Homh(W,U) = {0}. Therefore,
Corollary 4 implies that neither (W,U) nor (U,W ) is integrable.

Type (tr′i, tr1) Suppose that (W,U) is an integrable orthogonal curvature invariant pair with W and U of Type
(tr′i) and (tr1), respectively. Since W is an irreducible hW -module (see Lemma 5), Proposition 2 shows that here the
linear space W ⊕ U is curvature invariant.

Type (tr′k, tr
′
l) Let W and U be of Type (tr′k) and (tr′l) defined by the data (<,W ′, I ′,W ′0) and (<∗, U ′, J ′, U ′0),

respectively (k, l ≥ 2). We can assume that < = <∗.

Suppose that W ′ is orthogonal to U ′. It follows that W ⊕ U is curvature invariant of Type (trk+l) defined by
(<,W ′ ⊕ U ′, I ′ ⊕ J ′,W ′0 ⊕ U ′0).

Suppose that k = l ≥ 3, U ′ = W ′, U ′0 = exp(ϕI ′)(W ′0) and J ′ = −I ′, i.e. U = e−iϕW̄ for some ϕ ∈ IR. We claim
that (W,U) is not integrable. In order to explain the idea of our proof, first consider the case ϕ = 0. Then, the linear
space V is curvature invariant and the totally geodesic submanifold expN (V ) is isometric to a product Sk × Sk such
that p = (o, o) (where o is some origin of Sk) and, moreover, the linear space W is given by { (x, x) |x ∈ ToSk }. If we
assume, by contradiction, that (W,U) is integrable, then the corresponding complete parallel submanifold through p
would be contained in Sk×Sk by means of reduction of the codimension and, moreover, it would even be a symmetric
submanifold of Sk×Sk according to Corollary 3. But this is not possible, since a symmetric submanifold M ⊂ Sk×Sk

through the point p = (o, o) with TpM = { (x, x) |x ∈ ToSk } is totally geodesic according to Theorem 4. In the general
case, the linear space V is not curvature invariant, but a similar idea shows that (W,U) is not integrable, as follows.

Definition 5. Let A ∈ so(W ′) be given. We say that A is real, holomorphic or anti-holomorphic if A(W ′0) ⊂ W ′0,
A ◦ I ′ = I ′ ◦A or A ◦ I ′ = −I ′ ◦A, respectively.

Consider the linear map Jϕ on W ′ ⊕ iW ′ which is given on W ′0 ⊕ iI ′(W ′0) by Jϕ(v − iI ′v) := e−iϕ(v + iI ′v) and
Jϕ(v+ iI ′v) := −eiϕ(v− iI ′v) for all v ∈W ′0 and which is extended to W ′ ⊕ iW ′ by C-linearity (note, W ′0 ⊕ iI ′(W ′0) is
a real form of W ′ ⊕ iW ′).

Lemma 8. Let W be of Type (tr′k) defined by the data (<,W ′, I ′,W ′0). Set U := e−iϕW̄ and V := W ⊕ U .

(a) Jϕ is a Hermitian structure on W ′ ⊕ iW ′ such that W gets mapped onto U and vice versa. In particular, V is
a complex subspace of W ′ ⊕ iW ′ and Jϕ|V belongs to so(V )−.

(b) Let A ∈ so(W ′) and suppose that A is real. We extend A and I ′ to a complex linear maps on W ′⊕ iW ′. rIf A is
holomorphic, then A commutes with Jϕ for all ϕ ∈ IR. If A is anti-holomorphic, then exp(ϕI ′)◦A anti-commutes
with Jϕ for all ϕ ∈ IR.

Proof. Let {v1, . . . , vk} be an orthonormal basis of W ′0 and set ei := 1/
√

2(vi − iI ′vi). Then {e1, . . . , ek, ē1, . . . ēk} is a
Hermitian basis of W ′⊕ iW ′. We define unitary maps I and J on W ′⊕ iW ′ via I(ei) = iei and I(ēi) = −iēi, J(ei) = ēi
and J(ēi) = −ei. Further, set K := I ◦ J . Since I2 = J2 = −Id and I ◦ J = −J ◦ I, the usual quaternionic relations
hold and Kv = −iv̄ for all v ∈W ′ ⊕ iW ′.

Note that
Jϕ = exp(ϕI) ◦ J = J ◦ exp(−ϕI) = exp(ϕ/2I) ◦ J ◦ exp(−ϕ/2I). (57)

It follows that Jϕ defines another complex structure on W ′ ⊕ iW ′. Since W = {e1, . . . , ek}IR, we see that Jϕ(W ) =
e−iϕW̄ = U . Similarly, since W̄ ⊂ {ē1, . . . , ēk}IR, we obtain that Jϕ(W̄ ) = eiϕW and hence Jϕ(U) = W . This
proves the first part of the lemma. Note that I is the C-linear extension of I ′ to W ′ ⊕ iW ′. Hence, if A ∈ so(W ′)
is holomorphic or anti-holomorphic, then A commutes or anti-commutes with I on W ′ ⊕ iW ′, respectively. If A is
additionally real, then the same is true for J instead of I:

In fact, since A is real, we have A(v̄) = Av for all v ∈W ′, hence A ◦K = K ◦A on W ′ ⊕ iW ′ and thus

A ◦ J = A ◦K ◦ I = K ◦A ◦ I = ±K ◦ I ◦A = ±J ◦A
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where the sign is chosen according to whether A is holomorphic or anti-holomorphic. Our claim follows.

Therefore, if A is real and holomorphic, then A commutes with both J and I, hence A commutes also with Jϕ according
to (57). Suppose that A ∈ so(W ′) is real and anti-holomorphic. Using (57), A ◦ J = −J ◦ A and the fact that A is
anti-holomorphic, we have

Jϕ ◦ exp(ϕI) ◦A = J ◦ exp(−ϕI) ◦ exp(ϕI) ◦A = J ◦A
= −A ◦ J = −A ◦ exp(−ϕI) ◦ Jϕ = − exp(ϕI) ◦A ◦ Jϕ.

Since I = I ′ on W ′ ⊕ iW ′, we see that exp(ϕI ′) ◦A anti-commutes with Jϕ.

Lemma 9. Let W be of Type (tr′k) defined by the data (<,W ′, I ′,W ′0). Set U := e−iϕW̄ for some ϕ ∈ IR and
V := W ⊕ U .

(a) The linear map

F : W ′0 ⊕W ′0 → V, (v, u) 7→ 1/2[v − iI ′v + Jϕ(v − iI ′v) + u− iI ′u− Jϕ(u− iI ′u)]. (58)

is an isometry such that the linear spaces { (v, v) | v ∈W ′0 } and { (v,−v) | v ∈W ′0 } get identified with W and U ,
respectively.

(b) By means of the equivalence W ′0 ⊕W ′0 ∼= V from Part (a), the direct sum Lie algebra so(W ′0) ⊕ so(W ′0) gets
identified with the Lie algebra ρ(kV )|V such that (A,A) ∈ ρ(kV )|V ∩ so(V )+ and (A,−A) ∈ ρ(kV )|V ∩ so(V )− for
every A ∈ so(W ′0).

(c) The complex structure Jϕ|V commutes with every element of ρ(kV )|V ∩ so(V )+ and anti-commutes with every
element of ρ(kV )|V ∩ so(V )−.

Proof. For (a): We have F (v, v) = v − iI ′v ∈ W and F (v,−v) = Jϕ(v − iI ′v) = e−iϕ(v + iI ′v) ∈ e−iϕW̄ = U . Since
dim(W ) = dim(U) = dim(W ′0), we conclude that F is actually a linear isometry onto V which has the properties
described above.

For (b): Given A ∈ so(W ′0), we associate therewith linear maps Â and Ã on W ′ defined by Â(v+I ′v) := Av+I ′Av and
Ã(v+I ′v) := Av−I ′Av. By definition, both Â and Ã are real, further, Â is holomorphic whereas Ã is anti-holomorphic.
Furthermore, we consider the second splitting V = V1 ⊕ V2 with V1 = { v − iI ′v + Jϕ(v − iI ′v) | v ∈ W ′0 } and V2 =
{ v− iI ′v−e−iϕ(v− iI ′v) | v ∈W ′0 }. This splitting induces a monomorphism of Lie algebras so(W ′0)⊕so(W ′0) ↪→ so(V ).
We claim that this monomorphism is explicitely given by

(A,B) 7→ 1/2[(Â+B) + exp(ϕI ′) ◦ (Ã−B)] . (59)

Let A ∈ so(W ′0) be given. We have

1/2(Â+ exp(ϕI ′) ◦ Ã)(v − iI ′v + Jϕ(v − iI ′v) = 1/2[(Av − iI ′Av) + e−iϕ(Av + iI ′Av)

+ e−iϕ(Av + iI ′Av) + eiϕe−iϕ(Av − iI ′Av)] = (Av − iI ′Av) + e−iϕ(Av + iI ′Av);

1/2(Â+ exp(ϕI ′) ◦ Ã)(v − iI ′v − Jϕ(v − iI ′v) = 1/2[(Av − iI ′Av)− e−iϕ(Av + iI ′Av) + e−iϕ(Av + iI ′Av)

− eiϕe−iϕ(Av − iI ′Av)] = 0.

This establishes our claim in case B = 0. For A = 0, a similar calculation works.

Further, we claim that in this way so(W ′0) ⊕ so(W ′0) ∼= ρ(kV )|V such that (A,A) ∼= Â ∈ ρ(kV )|V ∩ so(V )+ and
(A,−A) ∼= exp(ϕI ′) ◦ Ã ∈ ρ(kV )|V ∩ so(V )+:

For “⊆”: We have Â(v± iI ′v) = Av± iI ′Av for all v ∈W ′0 and A ∈ so(W ′0), thus Â maps W to W and U to U (since
Â is C-linear). Further, Â ∈ so(<). This shows that Â ∈ ρ(kV )|V ∩ so(V )+.
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Furthermore, Ã(v ± iI ′v) = Av ∓ iI ′Av and I ′(v ± iI ′v) = ∓i(v ± iI ′v) for all v ∈ W ′0, thus exp(ϕI ′) ◦ Ã maps W to
U and vice versa. Finally, note that exp(ϕI ′) ◦ Ã is in fact self-adjoint since

(exp(ϕI ′) ◦ Ã)∗ = Ã∗ ◦ exp(ϕI ′)∗ = −Ã ◦ exp(−ϕI ′) = − exp(ϕI ′) ◦ Ã .

Hence exp(ϕI ′) ◦ Ã ∈ ρ(kV )|V ∩ so(V )−.

For “⊇”: Conversely, let some A ∈ ρ(kV )|V be given. We will distinguish the cases A ∈ so(V )+ and A ∈ so(V )−.
Anyway, we may write A = cJN |V +B|V with B ∈ so(W ′) and c ∈ IR. Set B′ := cI ′|V +B|V . Note that I ′ = JN on
W + iW and I ′ = −JN on W̄ + iW̄ , hence

A = B′ on W + iW (60)

A = B′ + 2cJN on both W̄ and U. (61)

If A ∈ so(V )+, then A(W ) ⊂W and hence we conclude from (60) that B′ is real and holomorphic; thus B′ = C with
C := B′|W ′

0
. In particular, B′(W̄ ) ⊂ W̄ and hence B′(U) ⊂ U . Thus c = 0 because of (61) and since JN (U) ⊂ U⊥

where U⊥ denotes the orthogonal complement of U in TpN .

If A ∈ so(V )−, then A maps W to U and vice versa, hence B′(W ) ⊂ U because of (60), thus eiϕB′(W ) ⊂ W̄
which shows that the linear endomorphism C := exp(−ϕI ′) ◦ B′ is real and anti-holomorphic on W ′. Hence B′ is
anti-holomorphic, too. Therefore, also exp(−ϕI ′)(B′(W̄ )) ⊂ W , thus B′(U) ⊂ W . We conclude that c = 0 according
to (61) (since JN (U) ⊂ W̄ + iW̄ ⊂W⊥). This establishes our claim. Part (a) follows.

For (c), recall that Â commutes with Jϕ|V whereas Ã anti-commutes with Jϕ|V according to Lemma 8 for every
A ∈ so(W ′0). Hence, the result is a consequence of Part (b) and (59).

Proposition 5. Suppose that W is of Type (tr′k) with k ≥ 3. The curvature invariant pair (W, e−iϕW̄ ) is not
integrable.

Proof. Let W be defined by the data (<,W ′, I ′,W ′0), set U := e−iϕW̄ and V := W ⊕ U . Let g be the subalgebra
of so(V ) described in Theorem 3 and recall that there exist Ax ∈ ρ(kV )|V ∩ so(V )−, Bx ∈ Z(g) ∩ so(V )− such that
hx = Ax +Bx for every x ∈W . We claim that here Bx = 0:

For this, recall that hW |V is a subalgebra of ρ(kV )|V ∩ so(V )+ (see (13) and (17)). Therefore [Jϕ|V , RNx,y|V ] = 0 for all
x, y ∈W and Ax ◦Jϕ|V = −Jϕ|V ◦Ax according to Lemma 9 (c). It follows, on the one hand, that Jϕ|V anti-commutes
with [RNx,y|V , Az] for all x, y, z ∈ W . Assume, by contradiction, that Bx 6= 0 for some x ∈ W . We will show that this

implies, on the other hand, that Jϕ|V commutes with [RNx,y|V , Az] (which is not possible unless [RNx,y|V , Az] = 0, since
Jϕ|V is a complex structure):

Consider the Lie algebra h (21). By means of Lemma 5 (a), we have

h = hW |V = hU |V = {x ∧ y + I ′x ∧ I ′y
∣∣x, y ∈W ′0}IR. (62)

Thus W and U are irreducible h-modules and, moreover, since k ≥ 3, Schur’s Lemma shows that Homh(W,U) is
a one-dimensional space. Hence, because of (25), the linear space Z(h) ∩ so(V )− is one-dimensional, too. Further,
since h ⊂ g (cf. the proof of Corollary 4), we have Bx ∈ Z(g) ∩ so(V )− ⊂ Z(h) ∩ so(V )−. Furthermore, we
have Jϕ|V ∈ Z(h) ∩ so(V )−, too, according to Lemma 8 (a) and Lemma 9 (c). Hence there exists λ 6= 0 with
Jϕ|V = λBx ∈ Z(g). Therefore, since [RNx,y|V , Az] ∈ g, we see that Jϕ|V commutes with [RNx,y|V , Az].

Hence, we conclude that [RNx,y|V ,hz] = [RNx,y|V ,hz − Bz] = [RNx,y|V , Az] = 0 for all x, y, z ∈ W . As remarked above,
this shows that hz ∈ IRJϕ for all z ∈ W . But this would imply that h = 0 since h is injective or zero according to
Proposition 3 (because W is an irreducible hW -module), a contradiction.

Thus Bx = 0, i.e. hx = Ax ∈ ρ(kV )|V for all x ∈W . Let us choose some o ∈ Sk, a linear isometry f : ToS
k →W ′0 and

consider the Riemannian product Ñ := Sk×Sk whose curvature tensor will be denoted by R̃. On the analogy of (58),

F : T(o,o)Ñ → TpN, (x, y) 7→ 1/2[f(x) + f(y)− iI ′(f(x) + f(y)) + Jϕ(f(x)− f(y)− iI ′(f(x)− f(y)))]
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is an isometry onto V such that {F−1 ◦A|V ◦F |A ∈ ρ(kV ) } is the direct sum Lie algebra so(ToS
k)⊕ so(ToS

k). Note,
the latter is the image ρ̃(k̃) of the linearized isotropy representation of Ñ . Put W̃ := F−1(W ), h̃ := F−1 ◦ h ◦ F × F
and Ũ := {h̃(u, v)

∣∣u, v ∈ W̃}IR. Then Ũ = F−1(U) and hence T(o,o)Ñ = W̃ ⊕ Ũ holds. Furthermore, we claim that

(W̃ , h̃) is an integrable 2-jet in T(o,o)Ñ :

Let ι : Sk → Sk × Sk, p 7→ (p, p). Then T(o,o)ι(S
k) = { (x, x) |x ∈ ToSk }, hence F (T(o,o)ι(S

k)) = W , i.e. T(o,o)ι(S
k) =

W̃ . Further, on the one hand, we have

RN (F (x, x), F (y, y), F (z, z)) = RN (f(x)− iI ′f(x), f(y)− iI ′f(y), f(z)− iI ′f(z))

= −f(x) ∧ f(y) f(z) + i(I ′f(x) ∧ I ′f(y))I ′f(z)

for all x, y, z ∈ ToSk according to Lemma 5 (a). On the other hand,

F (x ∧ y z, x ∧ y z) = f(x) ∧ f(y) f(z)− iI ′(f(x) ∧ f(y)f(z))

= f(x) ∧ f(y) f(z)− i(I ′f(x) ∧ I ′f(y))I ′f(z).

This shows that F ◦ R̃N(x,x),(y,y)|W̃ = RNF (x,x),F (y,y) ◦ F |W̃ . Furthermore, (13), (17) and Lemma 9 (b) show that

R̃N(x,x),(y,y) and F−1 ◦RNF (x,x),F (y,y) ◦F both belong to ρ̃(k̃)+, i.e. there exist A,B ∈ so(ToS
k) with R̃N(x,x),(y,y) = A⊕A

and F−1 ◦ RNF (x,x),F (y,y) ◦ F = B ⊕ B. Thus, since the direct sum endomorphism A ⊕ A is uniquely determined by

its restriction to W̃ for every A ∈ so(ToS
k), we conclude that F ◦ R̃N(x,x),(y,y) = RNF (x,x),F (y,y) ◦ F . Therefore, W̃ is

curvature invariant and h̃ is semiparallel in Ñ . Moreover, since hx ∈ ρ(kV )|V for all x ∈W , we have h̃x ∈ ρ̃(k̃) for all
x ∈ W̃ which shows that Eq. 5 for (W̃ , h̃) is implicitly given for all k. Hence, by means of Theorem 2, we obtain that
(W̃ , h̃) is an integrable 2-jet in Ñ .

Thus, there exists a complete parallel submanifold M̃ ⊂ Ñ through (o, o) whose 2-jet is given by (W̃ , h̃). The fact that
T(o,o)Ñ = W̃ ⊕ Ũ holds implies that M̃ is 1-full in Ñ , i.e. extrinsically symmetric according to Corollary 3. Further,

since M̃ is tangent to ι(Sk) at (o, o), there do not exist submanifolds M̃1 ⊂ Sk and M̃2 ⊂ Sl such that M̃ = M̃1 × M̃2.
Therefore, by means of Theorem 4, M̃ is totally geodesic, i.e. h = 0, a contradiction.

Lemma 10. Suppose that k = 2 and W is of Type (tr′k) defined by the data (<,W ′, I ′,W ′0). Let {e1, e2} be an

orthonormal basis of W ′0 and Ĩ := e1 ∧ e2 + I ′e1 ∧ I ′e. Further, let J̃ ∈ SU(W ′, Ĩ) ∩ su(W ′) be given and set
U := J̃(W ). If V := W ⊕ U is not curvature invariant, then ρ(kV )|V ∩ so(V )− = IRJ̃ .

Proof. First, note that J̃2 = −Id, hence J̃ |V ∈ so(V )−. Further, J̃ ∈ SU(W ′, Ĩ) ⊂ so(W ′) ⊂ so(<), thus J̃ |V ∈
ρ(kV )|V ∩ so(V )−. Conversely, let A ∈ ρ(kV ) be given. Then there exist some c ∈ IR and A ∈ so(<) such that
A = cJN + B and A(V ) ⊂ V . Suppose further that A|V ∈ so(V )−. With Ã := cI ′ + B|W ′ , we have Ã ∈ so(W ′)
and A|W = Ã|W , hence Ã(W ) = A(W ) ⊂ J̃(W ), thus J̃(Ã(W )) ⊂ W (since J̃2 = −1). In particular, we have
Ã(W ′0) ⊂ J̃(W ′0) ⊂W ′ and Ã(I ′(W ′0)) ⊂ J̃(I ′(W ′0)) ⊂W ′, thus Ã|W ′ ∈ so(W ′) and C := J̃ ◦ Ã is real and holomorphic
on W ′ (see Definition 5). Further, Ã∗ = −Ã which implies that

J̃ ◦ C = C∗ ◦ J̃ . (63)

We claim that C = λId for some λ ∈ IR or J̃ = ±I ′:

For this, let RH denote the algebra of real and holomorphic maps on W ′. Note, Ĩ is real and holomorphic, hence there
is the splitting RH = RH+ ⊕ RH− with

RH+ := {A ∈ RH |A ◦ Ĩ = Ĩ ◦A },
RH− := {A ∈ RH |A ◦ Ĩ = −Ĩ ◦A }.

Then RH+ = {Id, Ĩ}IR and RH− = {r, r ◦ Ĩ}IR, where r denotes the linear reflection of W ′ in the subspace which is
spanned by {e1, I

′e1}. Further, consider the involution on End(W ′) defined by C 7→ −J̃ ◦C∗ ◦ J̃ . This map preserves
both RH+ and RH− and, furthermore, its fixed points in RH are the solutions to (63). It follows that a solution
to (63) with C ∈ RH decomposes as C = C+ + C− such that C± ∈ RH± and C± is a solution to (63).
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Further, we have J̃ ◦ Ĩ = Ĩ ◦ J̃ = −Ĩ∗ ◦ J̃ since Ĩ is skew-symmetric and commutes with J̃ . Hence a solution to (63)
with C ∈ RH+ is given only if C is a multiple of Id. If C ∈ RH− is a solution to (63), then C ◦ Ĩ is a solution to this
equation, too, since

J̃ ◦ C ◦ Ĩ = C∗ ◦ J̃ ◦ Ĩ = C∗ ◦ Ĩ ◦ J̃ = (I∗ ◦ C)∗ ◦ J̃ = (−Ĩ ◦ C) ◦ J̃ = C ◦ Ĩ ◦ J̃ .

Thus, since RH− is invariant under multiplication from the right by Ĩ, the intersection of the solution space to (63)
with RH− is either trivial or all of RH−. Hence, to finish the proof of our claim, it suffices to show that C := r is not
a solution to (63) unless J̃ = ±I ′:

For this, recall that there exist t ∈ IR and w ∈ C with t2 + |w|2 = 1 such that the matrix of J̃ with respect to the
Ĩ-Hermitian basis {e1, I

′e1} is given by Eqs. (36)-(37). Further, r is the conjugation of W ′ with respect to the complex
structure Ĩ and the real form {e1, I

′e1}IR. In particular, r is a selfadjoint involution on W ′. Hence, if (63) holds for
C := r, then r ◦ J̃ ◦ r = J̃ , i.e. (

it −w̄
w −it

)
=

(
−it −w
w̄ it

)
. (64)

Clearly, this implies that t = 0 and w = ±1, i.e. J̃ = ±I ′.

This proves our claim. Further, if J̃ = ±I ′, then U = I ′(W ) = iW in which case V = W + iW is curvature
invariant of Type (c′2) defined by (<,W ′, I ′). Otherwise, it follows that there exists a ∈ IR with Ã = aJ̃ . Hence
A|V = aJ̃ |V +c(JN |V −I ′|V ). It remains to show that c(JN |V −I ′|V ) = 0: we have JN |W = I ′|W and c(JN |V −I ′|V ) =
A|V −aJ̃ |V ∈ so(V )−. Therefore, since so(V )− → Hom(W,U), A 7→ A|W is an isomorphism, c(JN |V −I ′|V ) = 0. This
finishes our proof.

Proposition 6. In the situation of Lemma 10, the curvature invariant pair (W,U) is not integrable unless V is a
curvature invariant subspace of TpN .

Proof. Suppose that (W,U) is integrable. By definition, this means that there exists a symmetric bilinear map
h : W ×W → U such that (W,h) is an integrable 2-jet with U = {h(x, y)

∣∣x, y ∈W}IR. Consider the Liealgebra g from

Theorem 3. Clearly, Ĩ = RNe1,e2 |V is of the form (19) (with k = 0), hence Ĩ ∈ g. Therefore, according to Theorem 3,

there exists Ax ∈ ρ(kV )|V ∩ so(V )− and Bx ∈ su(V, Ĩ) ∩ so(V )− with hx = Ax + Bx. We assume, by contradiction,
that V is not curvature invariant. Hence ρ(kV )|V ∩ so(V )− = IRJ̃ as a consequence of Lemma 10. We obtain that
Ax ◦ Ĩ = Ĩ ◦Ax, hence [hx, Ĩ] = [Ax, Ĩ] + [Bx, Ĩ] = 0. In other words, we conclude that hx belongs to su(V, Ĩ)∩ so(V )−
for all x ∈W .

Let {I, J,K} be a quaternionic basis of su(V, Ĩ) defined as follows: set I|W := Ĩ|W , I|U = −Ĩ|U , J := J̃ |V and
K := I ◦ J . Since Ĩ commutes with J̃ , we have I ◦ J = −J ◦ I and then the usual quaternionic relations hold, i.e.
I2 = J2 = K2 = −Id, J ◦K = −K ◦ J = I and K ◦ I = −I ◦K = J . Note that I ∈ so(V )+ whereas J,K ∈ so(V )−.
Hence hx ∈ {J,K}IR for all x ∈W . Further, hW acts irreducibly on W which implies that h : W → so(V )− is injective
according to Proposition 3. Hence there exists some x ∈W with hx = K. Further, set y := e1 − iI ′e1, z := e2 − iI ′e2

and recall that RNy,z = −e1 ∧ e2 − I ′e1 ∧ I ′e2 = −Ĩ. Therefore, with x, y, z chosen as above, Eq. (5) with k = 1 means
that

[K, Ĩ] = −RN (Ky ∧ z + y ∧Kz)|V .

Note that l.h.s. of the last Equation vanishes (since K ∈ SU(V, Ĩ)). We claim that r.h.s. does not vanish unless
J̃ = ±I ′:

For this, let r.h.s. be writen as cJ |V +A|V for some c ∈ IR. We claim that A does not vanish on V : we have z = Ĩy,
hence

Ky = IJy = −Ĩ J̃y = −J̃ Ĩy = −J̃z = −Jz,

hence z = JKy = −KJy and Kz = Jy = J̃y, thus

Ky ∧ z + y ∧Kz = z ∧ J̃z + y ∧ J̃y.
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Therefore, using Eq. (33), we obtain

A = J̃e1 ∧ e1 + J̃ je1 ∧ je1 + J̃e2 ∧ e2 + J̃ je2 ∧ je2,

i.e. A = −2J̃ 6= 0 on V . This proves the claim.

In particular, the curvature endomorphism RN (Ky ∧ z + y ∧Kz) is non-trivial on V which implies, by the previous,
that (5) with k = 1 does not hold for all x, y, z ∈ W and v ∈ V . This shows that the curvature invariant pair (W,U)
is not integrable.

Type (ex3, tr1) Let W and U be curvature invariant subspaces of Type (ex3) and (tr1) defined by the data
(<, {e1, e2}) and a unit vector u ∈ TpN , respectively. Then u = ±1/

√
2 (e2 − ie1) and the linear space W ⊕ U is

curvature invariant of Type (c2) defined by the data (<, {e1, e2}IR).
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hano et al., eds), Birkhäuser, Boston, 429-447, 1981.

33



Tillmann Jentsch

Institut fur Geometrie und Topologie
Fachbereich Mathematik
Universitat Stuttgart
Pfaffenwaldring 57
70569 Stuttgart Germany

E-Mail: Tillmann.Jentsch@mathematik.uni-stuttgart.de

34

mailto:Tillmann.Jentsch@mathematik.uni-stuttgart.de




Erschienene Preprints ab Nummer 2007/001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2012/001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian

2011/028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group

2011/027 Griesemer, M.; Hantsch, F.; Wellig, D.: On the Magnetic Pekar Functional and the Existence of Bipolarons

2011/026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression

2011/025 Felber, T.; Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent static forecasting of stationary
and ergodic time series via local averaging and least squares estimates

2011/024 Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of stationary and ergodic time
series

2011/023 Györfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional independence

2011/022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance based on
first and second nearest neighbors

2011/021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels

2011/020 Frank, R.L.; Geisinger, L.: Refined Semiclassical Asymptotics for Fractional Powers of the Laplace
Operator

2011/019 Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded
domain

2011/018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks

2011/017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
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