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ON CERTAIN EXOTIC 4-MANIFOLDS OF AKHMEDOV AND PARK

ABSTRACT. In an article from 2008, A. Akhmedov and B. D. Park constructed irreducible symplectic
4-manifolds homeomorphic but not diffeomorphic to the manifolds CP 2#3CP 2 and 3CP 2#5CP 2.
These manifolds are constructed by using generalized fibre sums. In this note we describe an explicit
splitting of the second (co-)homology of these manifolds adapted to their construction as fibre sums. We
also calculate the canonical classes of the symplectic structures. This gives a new proof for a formula
derived by A. Akhmedov, R. İ. Baykur and B. D. Park.
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1. INTRODUCTION

In their article [4], A. Akhmedov and B. D. Park constructed simply-connected irreducible sym-
plectic 4-manifolds U and V homeomorphic to CP 2#3CP 2 and 3CP 2#5CP 2. In particular, being
irreducible under connected sum, U and V are not diffeomorphic to these manifolds and hence deter-
mine exotic smooth structures. The construction of these manifolds uses the generalized fibre sum,
that we will recall in Section 2. It turns out that, even though the building blocks in this construc-
tion have non-trivial fundamental group, the manifolds U and V obtained as multiple fibre sums are
simply-connected.

The second (co-)homology of a generalized fibre sum of two 4-manifolds admits a canonical de-
composition, see [8]. In this note we want to describe this splitting for the manifolds U and V . This
will also allow us to determine the canonical classes of the symplectic structures (a formula for the
canonical class has also been derived in a different way in [3]). It is also quite easy to see with these
methods that the manifolds U and V have vanishing first integral homology. We will, however, not
repeat the difficult part in [4] and show that U and V are simply-connected. To understand why the
manifolds U and V have vanishing first integral homology without going through the calculation of
their fundamental groups was one of the starting points for the following discussion. In general we
will see that the calculations on the level of homology are fairly simple.

2. GENERALIZED FIBRE SUMS

In the following, we use for a topological space Y the abbreviations H∗(Y ) and H∗(Y ) to denote
the homology and cohomology groups of Y with Z-coefficients. The homology class of an embedded,
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2 ON CERTAIN EXOTIC 4-MANIFOLDS OF AKHMEDOV AND PARK

oriented surface and the surface itself are often denoted by the same symbol. Poincaré duality is often
suppressed, so that a class and its Poincaré dual are denoted by the same symbol.

LetM andN be smooth, closed, oriented 4-manifolds and ΣM and ΣN closed, oriented, embedded
surfaces of the same genus g in M and N . We assume that both surfaces represent homology classes
of self-intersection zero. Then their normal bundles are trivial. We choose trivializations of their
normal bundles corresponding to framings of the tubular neighbourhoods as νΣM = ΣM ×D2 and
νΣN = ΣN × D2. Let φ : ΣM → ΣN be an orientation preserving diffeomorphism. Then the
generalized fibre sum of M and N along ΣM and ΣN is defined as

X = M ′ ∪Φ N
′

where M ′ and N ′ denote the manifolds with boundary ΣM × S1 and ΣN × S1 obtained by deleting
the interior of the tubular neighbourhoods of the surfaces and Φ is an orientation reversing diffeomor-
phism Φ : ∂M ′ → ∂N ′ that preserves the S1 fibration, reverses orientation on the circles and covers
the diffeomorphism φ between the surfaces. For example in the fixed framing we can consider the
diffeomorphism

Φ: ΣM × S1 → ΣN × S1,

(x, z) 7→ (φ(x), z̄),
(1)

where the bar denotes complex conjugation. In general, the smooth structure of the 4-manifold X can
depend on the choice of the covering diffeomorphism Φ. We choose one such covering and denote
the resulting manifold by

X = M#φN.

We can specify the diffeomorphism φ : ΣM → ΣN equivalently by choosing embeddings

iM : Σg →M

iN : Σg → N

that realize the surfaces ΣM and ΣN as images of a fixed closed surface Σg of genus g. Then we
choose as φ the diffeomorphism iN ◦ (i−1

M |ΣM
).

If M and N are symplectic manifolds and ΣM , ΣN symplectically embedded, then the generalized
fibre sum X admits a symplectic structure. See references [6] and [9] for the original construction.

3. CONSTRUCTION OF THE EXOTIC CP 2#3CP 2

Let K be a knot in S3. Denote a tubular neighbourhood of K by νK ∼= S1 × D2. Let m be a
fibre of the circle bundle ∂νK → K and use an oriented Seifert surface for K to define a section
l : K → ∂νK. The circles m and l are called the meridian and the longitude of K. Let MK be the
closed 3-manifold obtained by 0-surgery on K, defined as

MK = (S3 \ int νK) ∪f (S1 ×D2).

where the gluing diffeomorphism f maps in homology ∂D2 onto the longitude l. One can show that
MK has the same integral homology as S2 × S1. The meridian m, which bounds the fibre in the
normal bundle to K in S3, becomes non-zero in the homology of MK and defines a generator in
H1(MK). The longitude l is null-homotopic in MK since it bounds one of the D2-fibres glued in.
This copy of D2 determines together with the Seifert surface of K a closed, oriented surface in MK

which intersects m once and generates H2(MK).
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Let K be the left-handed trefoil knot in S3. Then according to equation (1) in [4], the fundamental
group of MK is given by

π1(MK) = 〈a, b|aba = bab, a−1b−2a−1b4 = 1〉.
Hence in homology we have again H1(MK) = Z generated by a = b which are equal, under appro-
priate choice of orientation, to the class of the generator m.

The knot K is a genus one fibred knot, hence MK is a T 2-bundle over S1. It has a section S1 →
MK whose image is equal to b. Consider the 4-manifold S1 ×MK . It is a T 2-bundle over T 2 with
section S = x× b, where x denotes the S1-factor. In particular, the inclusion induced map H1(S)→
H1(S1 ×MK) is an isomorphism. Let F denote a fibre of this bundle. Then according to [4] we can
write F = γ1 × γ2 where the curves γ1 and γ2 are homotopic to a−1b and b−1aba−1. In homology,
both γ1 and γ2 vanish, hence the inclusion induced homomorphism H1(F ) → H1(S1 ×MK) is the
zero map. Both S and F are embedded tori of self-intersection zero. We have H2(S1 ×MK) = Z2,
generated by S and F . The intersection form is given in this basis by

QS1×MK
=

(
0 1
1 0

)
.

By a construction of W. P. Thurston [10], the manifold S1 ×MK admits a symplectic structure
such that both S and F are symplectic submanifolds.

Lemma 1. The canonical class of the symplectic manifold S1 ×MK is given by KS1×MK
= 0.

Proof. This follows from the adjunction formula

2g − 2 = Σ2
g +KΣg,

since both generators S and F are symplectic. �

Consider two copies of S1 ×MK and embeddings

i1 : T 2 → S1 ×MK

i2 : T 2 → S1 ×MK

whose images are S and F and which map the standard generators of π1(T 2) to {x, b} and {γ1, γ2},
respectively.

Definition 2. Let YK denote the symplectic fibre sum (S1 ×MK)#ψ(S1 ×MK), where the diffeo-
morphism ψ : S → F is given by i2 ◦ i−1

1 .

In other words [5], YK is obtained by knot surgery with the left-handed trefoil knot on S1 ×MK

along the fibre F . It is known that knot surgery does not change the integral homology groups and the
intersection form on H2 and that rim tori do not exist in the knot surgered manifold (this also follows
with the methods in [8]). Hence we have:

Lemma 3. H1(YK) = Z2 and H2(YK) = Z2.

The calculation of the first homology of YK of course also follows from the calculation of its
fundamental group in [4].

The generators of H2(YK) can be described as follows: We can consider push-offs of the surface S
in the first copy and F in the second copy of S1 ×MK into the boundary of their tubular neighbour-
hoods. If we choose the gluing diffeomorphism as in equation (1), then both push-offs get identified
to a torus TYK of self-intersection zero inside YK . This is one generator of H2(YK). The second
generator is a surface Σ of genus 2 and self-intersection zero in YK obtained by sewing together a
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punctured fibre from the first copy and a punctured section from the second copy of S1×MK . By the
Gompf construction [6] we can assume that Σ is symplectic. The intersection form on the generators
TYK and Σ is given by

QYK =

(
0 1
1 0

)
.

Lemma 4. The canonical class of the symplectic manifold YK is given by KYK = 2TYK .

Proof. This follows from the adjunction formula since both generators TYK and Σ are symplectic. �

We can also describe the inclusion induced map H1(Σ) → H1(YK). Consider the following part
of the Mayer-Vietoris sequence for YK :

. . .→ H1(T 2 × S1)→ H1(S1 ×MK \ νS)⊕H1(S1 ×MK \ νF )→ H1(YK)→ 0.

In S1×MK \ νS we have the punctured fibre and in S1×MK \ νF the punctured section which sew
together to define the surface Σ. Since S · F = 1, both the section and the fibre represent indivisible
elements in homology. This implies that the meridians to these surfaces are zero in the homology of
the complements of the tubular neighbourhoods and we have isomorphisms

H1(S1 ×MK \ νS) ∼= H1(S1 ×MK \ νF ) ∼= H1(S1 ×MK).

The Mayer-Vietoris sequence reduces to

H1(T 2)
i1⊕i2−→ H1(S1 ×MK)⊕H1(S1 ×MK)→ H1(YK)→ 0.

Hence H1(YK) is isomorphic to the cokernel of i1⊕ i2. The map i1 on homology is an isomorphism,
whereas the map i2 is the zero map. It follows that the inclusion maps the generators of the punctured
section to the generators of H1(YK) and the generators of the punctured fibre to zero. In the notation
of [4], the groupH1(YK) has generators y, d and the inclusion maps the standard generators ofH1(Σ)
to {y, d, 0, 0} in that particular order.

The manifold YK is the first building block for U . The second building block is the manifold
Q = (S1 ×MK)#2CP 2. In Q there is a symplectic surface Σ′ of genus 2 and self-intersection zero,
obtained by symplectically resolving the intersection point of a torus fibre F and a torus section S in
S1 ×MK and then blowing up at two points.

Let h, z denote the generators of H1(Q) = H1(S1 ×MK) = Z2 corresponding to the generators
b, x we had previously. Then the inclusion maps the standard generators of H1(Σ′) to {z, h, 0, 0} in
that particular order. Choose embeddings of a reference surface of genus 2

iYK : Σ2 → YK

iQ : Σ2 → Q

whose images are Σ and Σ′ and which map the standard generators of H1(Σ2) to {y, d, 0, 0} and
{0, 0, z, h}, respectively.

Definition 5. Let U denote the fibre sum YK#φQ, where the diffeomorphism φ : Σ → Σ′ is given
by iQ ◦ i−1

YK
.

Proposition 6. Rim tori do not exist in the fibre sumU . The 4-manifoldU is a homology CP 2#3CP 2.

Proof. We use the results from [8]. According to [8, Corollary 45], H1(U) is isomorphic to the
cokernel of the map iYK ⊕ iQ : H1(Σ2) → H1(YK) ⊕ H1(Q). Since this map is an isomorphism,
H1(U) = 0. Similarly, according to [8, Theorem 51], the subgroup of rim tori in the second homology
of U is isomorphic to the cokernel of the map i∗YK + i∗Q : H1(YK) ⊕H1(Q) → H1(Σ2). Since this
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map is also an isomorphism, rim tori do not occur in the 4-manifold U . Finally, the formulae in [8,
Corollary 40] show that b+2 (U) = 1 and b−2 (U) = 3. �

The 4-manifold U is symplectic, since the surfaces Σ and Σ′ are symplectically embedded. In [4]
the gluing diffeomorphism φ is specified on the level of fundamental groups and it is shown that U is
simply-connected and irreducible. Hence the manifold U is an exotic CP 2#3CP 2.

We now describe the splitting of H2(U) adapted to the fibre sum. We decompose the second
homology of the manifold Q as

H2(Q) = ZΣ′ ⊕ ZBQ ⊕ P (Q),

where BQ is a surface in Q with Σ′ · BQ = 1 and P (Q) denotes the orthogonal complement of
ZΣ′ ⊕ ZBQ with respect to the intersection form. The direct sum decomposition holds, because the
intersection form is unimodular on the subgroup ZΣ′ ⊕ ZBQ, see [7, Lemma 1.2.12]. Similarly, we
have a decomposition

H2(YK) = ZΣ⊕ ZTYK .

In this case the subgroup P (YK) is zero. The push-offs of the surfaces Σ and Σ′ determine a surface
ΣU in U of genus 2 and self-intersection 0. The punctured surfaces BQ and TYK sew together to
define a surface BU of genus equal to the genus of BQ plus one. The surface BU has self-intersection
B2
Q since the torus TYK has self-intersection 0. Since rim tori and the dual vanishing (or split) classes

do not exist in U , [8, Theorem 59] shows that

H2(U) = ZΣU ⊕ ZBU ⊕ P (Q).

The subgroup P (Q) is orthogonal to the first two summands. The restriction of the intersection form
to ZΣU ⊕ ZBU is of the form (

0 1
1 B2

Q

)
and the intersection form on P (Q) is the one induced from Q. Note that there is an isomorphism
H2(U) ∼= H2(Q) preserving the intersection form obtained by mapping Σ′ to ΣU , BQ to BU and the
identity on P (Q).

We now determine the canonical class of U , which depends on the choice of the surface BQ.

Proposition 7. Let E1, E2 denote the exceptional spheres in Q. Then the canonical classes of the
symplectic 4-manifolds Q and U are given by

KQ = E1 + E2

and

KU = (2 +KQBQ − 2B2
Q)ΣU + 2BU + (KQ − 2BQ − (KQBQ − 2B2

Q)Σ′).

In the formula for KU the term KQ − 2BQ − (KQBQ − 2B2
Q)Σ′ is an element of P (Q).

Proof. The formula for KQ follows from Lemma 1 and the adjunction formula for the exceptional
spheres. According to [8, Theorem 89], the canonical class of U is given by

KU = KQ + bUBU + (ηU + η′U )ΣU ,
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where

KQ = KQ − (2g − 2)BQ − (KQBQ − (2g − 2)B2
Q)Σ′ ∈ P (Q)

bU = 2g − 2

ηU = KYKTYK + 1− (2g − 2)T 2
YK

η′U = KQBQ + 1− (2g − 2)B2
Q.

In our case, g = 2 and KYK is given by Lemma 4. �

For instance, we can choose as BQ the section S or the fibre F in S1×MK . In both cases B2
Q = 0

and KQBQ = 0, hence
KU = 2ΣU + 2BU + (KQ − 2BQ).

With the formula for the intersection form of U it follows that K2
U = 6, as expected from the formula

K2
U = 2e(U) + 3σ(U).

4. CONSTRUCTION OF THE EXOTIC 3CP 2#5CP 2

The first building block for the exotic 4-manifold V is R = T 4#2CP 2. Fix a factorization T 4 =
T 2 × T 2 and choose a symplectic structure on T 4 such that both tori are symplectically embedded.
Symplectically resolving the intersection point of the two tori and blowing up twice we obtain a
symplectic surface Σ′′ of genus 2 and self-intersection zero in R.

Let αi, i = 1, . . . , 4, denote the generator of H1(R) = H1(T 4) corresponding to i-th circle factor.
Then the inclusion maps the standard generators of H1(Σ′′) to {α1, α2, α3, α4} in that particular
order. In particular, the inclusion induced map H1(Σ′′)→ H1(R) is an isomorphism.

To describe the second building block of the manifold V , we consider two copies of the mani-
fold YK constructed above. Recall that in YK there is a symplectic surface Σ of genus 2 and self-
intersection zero. If y, d denote the generators of H1(YK) then the inclusion maps the standard gen-
erators of H1(Σ) to {y, d, 0, 0}. Let t, s denote generators of the second copy of YK corresponding to
y, d. Choose embeddings of a reference surface of genus 2

iYK1
: Σ2 → YK

iYK2
: Σ2 → YK

whose images are the surfaces Σ in the first and second copy of YK and which map the standard
generators of H1(Σ2) to {y, d, 0, 0} and {0, 0, t, s}, respectively.

Definition 8. LetXK denote the symplectic fibre sum YK#ψYK , where the diffeomorphism ψ : Σ→
Σ is given by iYK2

◦ i−1
YK1

.

Lemma 9. Rim tori do not exist in the fibre sum XK . We have H1(XK) = 0 and H2(XK) = Z2.

Proof. By construction, the map iYK1
⊕ iYK2

: H1(Σ2) → H1(YK) ⊕ H1(YK) is an isomorphism.
Hence H1(XK), which is isomorphic to the cokernel of this map, vanishes. Similarly, i∗YK1

+ i∗YK2
:

H1(YK) ⊕H1(YK) → H1(Σ2) is an isomorphism. Therefore, rim tori do not exist in the fibre sum
XK . Finally, the claim that b2(XK) = 2 follows from [8, Corollary 40]. �

This lemma has also been proved in [1]. We can describe the splitting of the second homology of
XK adapted to the fibre sum as follows. The second homology of the first copy of YK splits as

H2(YK) = ZΣ⊕ ZTYK .
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and similarly for the second copy. The push-offs of the surfaces Σ in the first and second copy
determine a symplectic surface ΣXK

of genus 2 and self-intersection zero in XK . The punctured tori
TYK in the first and second copy of YK sew together to determine a surface BXK

of genus 2 and self-
intersection zero in XK . By the Gompf construction we can assume that BXK

is symplectic. Since
rim tori and vanishing classes do not exist in YK , we have

H2(XK) = ZΣXK
⊕ ZBXK

.

The intersection form in this basis is given by

QXK
=

(
0 1
1 0

)
hence XK is a homology S2 × S2.

Lemma 10. The canonical class of the symplectic manifold XK is given by KXK
= 2ΣXK

+ 2BXK
.

Proof. This follows from the adjunction formula since both surfaces ΣXK
and BXK

are symplectic.
�

We choose embeddings of a reference surface of genus 2

iR : Σ2 → R

iXK
: Σ2 → XK

whose images are the surfaces Σ′′ and ΣXK
and which map the standard generators of H1(Σ2) to

{α1, α2, α3, α4} and {0, 0, 0, 0}, respectively.

Definition 11. Let V denote the symplectic fibre sum R#φXK , where the diffeomorphism φ : Σ′′ →
ΣXK

is given by iXK
◦ i−1

R .

Proposition 12. Rim tori do not exist in the fibre sum V . The 4-manifold V is a homology 3CP 2#5CP 2.

Proof. By construction, the map iR ⊕ iXK
: H1(Σ2) → H1(R) ⊕ H1(XK) = H1(R) is an iso-

morphism. Hence H1(V ), which is isomorphic to the cokernel of this map, vanishes. Similarly,
i∗R + i∗XK

: H1(R) ⊕H1(XK) = H1(R) → H1(Σ2) is an isomorphism. Therefore, rim tori do not
exist in the fibre sum V . Finally, the claim that b+2 (V ) = 3 and b−2 (V ) = 5 follows again from [8,
Corollary 40]. �

In [4] it is shown that V is simply-connected and irreducible. Hence the manifold V is an exotic
3CP 2#5CP 2.

We describe the splitting of H2(V ) adapted to the fibre sum. We first decompose the second
homology of the manifold R as

H2(R) = ZΣ′′ ⊕ ZBR ⊕ P (R),

where BR is a surface in R with Σ′′ · BR = 1 and P (R) denotes the orthogonal complement of
ZΣ′′ ⊕ ZBR with respect to the intersection form. We also have a decomposition

H2(XK) = ZΣXK
⊕ ZBXK

,

where both ΣXK
and BXK

are surfaces of genus 2 and self-intersection zero. The push-offs of the
surfaces Σ′′ and ΣXK

determine a surface ΣV in V of genus 2 and self-intersection 0. The punctured
surfaces BR and BXK

sew together to define a surface BV of genus equal to the genus of BR plus
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two. The surface BV has self-intersection B2
R. Since rim tori and the dual vanishing classes do not

exist in V , [8, Theorem 59] shows that

H2(V ) = ZΣV ⊕ ZBV ⊕ P (R).

The subgroup P (R) is orthogonal to the first two summands. The restriction of the intersection form
to ZΣV ⊕ ZBV is of the form (

0 1
1 B2

R

)
and the intersection form on P (R) is the one induced from R. There is again an isomorphism
H2(V ) ∼= H2(R) preserving the intersection form.

We determine the canonical class of V , depending on the choice of the surface BR.

Proposition 13. Let E1, E2 denote the exceptional spheres in R. Then the canonical classes of the
symplectic 4-manifolds R and V are given by

KR = E1 + E2

and
KV = (4 +KRBR − 2B2

R)ΣV + 2BV + (KR − 2BR − (KRBR − 2B2
R)Σ′′).

In the formula for KV the term KR − 2BR − (KRBR − 2B2
R)Σ′′ is an element of P (R).

Proof. The first claim follows because KT 4 = 0. According to [8, Theorem 89], the canonical class
of V is given by

KV = KR + bVBV + (ηV + η′V )ΣV ,

where

KR = KR − (2g − 2)BR − (KRBR − (2g − 2)B2
R)Σ′′ ∈ P (R)

bV = 2g − 2

ηV = KRBR + 1− (2g − 2)B2
R

η′V = KXK
BXK

+ 1− (2g − 2)B2
XK

.

In our case, g = 2 and KXK
is given by Lemma 10. �

For example, we can take as BR one of the torus factors in T 4 = T 2 × T 2. Then B2
R = 0 and

KRBR = 0, hence
KV = 4ΣV + 2BV + (KR − 2BR).

With the formula for the intersection form we have K2
V = 14, as expected.

Remark 14. In [2], A. Akhmedov constructed irreducible symplectic 4-manifolds Y and X homeo-
morphic to CP 2#5CP 2 and 3CP 2#7CP 2 using generalized fibre sums. The building blocks of X
and Y are the manifolds XK and YK and Z = T 2 × S2#4CP 2. The manifold Z admits a Lefschetz
fibration with fibres of genus 2. Let Σ′2 denote a regular fibre and a1, b1 the generators ofH1(Z) in the
notation of [2]. Then the inclusion induced homomorphism maps the standard generators of H1(Σ′2)
to {a1, b1,−a1,−b1} in that particular order.

The manifold Y is obtained as a generalized fibre sum of YK and Z. Using similar arguments as
before one can show that rim tori do not exist in the fibre sum Y and calculate the canonical class.
The manifoldX , homeomorphic to 3CP 2#7CP 2 and obtained as a fibre sum ofXK and Z, however,
does contain rim tori. The subgroup of rim tori in the second homology of X is given by the cokernel
of the inclusion induced homomorphism H1(Z) → H1(Σ2) and hence is isomorphic to Z2. There
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also exists a dual subgroup of vanishing classes. If R(X) and S′(X) denote the groups of rim tori
and vanishing classes, then in a similar way as before

H2(X) = ZΣX ⊕ ZBX ⊕ P (Z)⊕R(X)⊕ S′(X).

In this case the canonical class of X contains a rim tori contribution that depends on the choice of
covering diffeomorphism Φ used in the construction of the fibre sum. See [8, Theorem 89] for the
general formula.
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2011/016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines
2011/015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function
2011/014 Müller, S.; Dippon, J.: k-NN Kernel Estimate for Nonparametric Functional Regression in

Time Series Analysis
2011/013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
2011/012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of characteris-

tic two
2011/011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
2011/010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with

special holonomy
2011/009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
2011/008 Stroppel, M.: Orthogonal polar spaces and unitals
2011/007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppe-

nalgebra
2011/006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic

spaces
2011/005 Ginoux, N.; Semmelmann, U.: Imaginary Khlerian Killing spinors I
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