Universität Stuttgart

Fachbereich Mathematik

Representing homology classes by symplectic surfaces

M. J. D. Hamilton

Preprint 2012/003

Universität Stuttgart

Fachbereich Mathematik

Representing homology classes by symplectic surfaces

M. J. D. Hamilton

Preprint 2012/003

Fachbereich Mathematik Fakultät Mathematik und Physik Universität Stuttgart Pfaffenwaldring 57 D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints

ISSN 1613-8309

@ Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors. $\mbox{\it ET}_{E}X\mbox{-}Style:$ Winfried Geis, Thomas Merkle

REPRESENTING HOMOLOGY CLASSES BY SYMPLECTIC SURFACES

ABSTRACT. We derive an obstruction to representing a homology class of a symplectic 4-manifold by an embedded, possibly disconnected, symplectic surface.

A natural question concerning symplectic 4-manifolds is the following: Given a closed, symplectic 4-manifold (M, ω) and a homology class $B \in H_2(M; \mathbb{Z})$, determine whether there exists an embedded, possibly disconnected, closed symplectic surface representing the class B. This question has been studied by H.-V. Lê and T.-J. Li [8, 9]. One necessary condition is, of course, that $\langle [\omega], B \rangle > 0$. Among other things, it is shown in [9] that a class B with $\langle [\omega], B \rangle > 0$ in a symplectic 4-manifold is always represented by a symplectic *immersion* of a connected surface. It is also noted that an obstruction to representing a homology class B by an embedded, *connected*, symplectic surface comes from the adjunction formula: The integer

$$B^2 + K_M B + 2,$$

where K_M denotes the canonical class of the symplectic 4-manifold (M, ω) , has to be non-negative. This obstruction, however, disappears, if the number of components of the symplectic surface is allowed to grow large. Note that there are examples of classes in symplectic 4-manifolds which are represented by an embedded disconnected symplectic surface, but not by a connected symplectic surface: For example in the two-fold blow-up $X \# 2\overline{\mathbb{CP}^2}$ of a symplectic 4-manifold X the sum of the classes of the exceptional spheres is not represented by a connected symplectic surface according to the adjunction formula. It is the purpose of this article to derive an obstruction to representing a homology class by an embedded, possibly disconnected, symplectic surface.

In [9] it is also shown that for symplectic manifolds M of dimension at least six, every class in $H_2(M; \mathbb{Z})$ on which the symplectic class evaluates positively is represented by a connected embedded symplectic surface. In [8] there is a conjecture which in the case of symplectic 4-manifolds M says that if α is a class in $H_2(M; \mathbb{Z})$ on which the symplectic class evaluates positively, then there exists a positive integer N depending on α such that $N\alpha$ is represented by an embedded, not necessarily connected, symplectic surface. In the examples at the end of this article we give counterexamples to this conjecture in the 4-dimensional case.

The non-existence of an embedded symplectic surface in the class B has the following consequence for the Seiberg-Witten invariants, which we only state in the case $b_2^+ > 1$.

Proposition 1. Let M be a symplectic 4-manifold with $b_2^+(M) > 1$ and $B \neq 0$ an integral second homology class which cannot be represented by an embedded, possibly disconnected, symplectic surface. Then the Seiberg-Witten invariant of the $Spin^c$ -structure $s_{K_M^{-1}} \otimes PD(B)$ is zero, where $s_{K_M^{-1}}$ denotes the $Spin^c$ -structure with determinant line bundle K_M^{-1} induced by a compatible almost complex structure.

Note that if $H_1(M;\mathbb{Z})$ has no 2-torsion (and hence $Spin^c$ -structures are determined by their determinant line bundles), this means that $-K_M + 2PD(B)$ is not a basic class. Proposition 1 is a

Date: September 23, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 57R17, 57N13.

Key words and phrases. 4-manifold, symplectic, branched covering.

consequence of a theorem of Taubes, relating classes with non-zero Seiberg-Witten invariants to embedded symplectic surfaces [14].

In the following, let (M, ω) denote a closed, symplectic 4-manifold and $\Sigma \subset M$ an embedded, possibly disconnected, closed symplectic surface representing a class $B \in H_2(M; \mathbb{Z})$. We always assume that the orientation of M is given by the symplectic form $(\omega \land \omega > 0)$. If the class B is divisible by an integer d > 1, in the sense that there exists a class $A \in H_2(M; \mathbb{Z})$ such that B = dA, then there exists a d-fold cyclic ramified covering $\phi : \overline{M} \to M$, branched along Σ . The branched covering is again a closed, symplectic 4-manifold. This is a well-known fact (the pull-back of the symplectic form ω plus t times a Thom form for the preimage $\overline{\Sigma}$ of the branch locus is for small positive t a symplectic form on \overline{M} ; see [3, 11] for a careful discussion). The invariants of \overline{M} are given by the following formulas [4, p. 243], [5]:

$$K_{\overline{M}} = \phi^* (K_M + (d-1)PD(A))$$
$$K_{\overline{M}}^2 = d(K_M + (d-1)PD(A))^2$$
$$w_2(\overline{M}) = \phi^* (w_2(M) + (d-1)PD(A)_2)$$
$$\sigma(\overline{M}) = d(\sigma(M) - \frac{d^2 - 1}{3}A^2)$$

Here PD denotes the Poincaré dual and $PD(A)_2 \in H^2(M; \mathbb{Z}_2)$ is the mod 2 reduction of PD(A). The second equation follows from the first because the branched covering map has degree d.

Suppose that the branched covering \overline{M} is minimal and not a ruled surface over a curve of genus greater than 1. Then theorems of C. H. Taubes and A.-K. Liu [10, 13] imply that $K_{\overline{M}}^2 \ge 0$. With the formula above, we get the following obstruction on the class A.

Theorem 2. Let (M, ω) be a symplectic 4-manifold, $\Sigma \subset M$ an embedded, possibly disconnected, closed symplectic surface and d > 1 an integer such that $dA = [\Sigma]$ for a class $A \in H_2(M; \mathbb{Z})$. Consider the d-fold cyclic branched cover \overline{M} , branched along Σ . If \overline{M} is minimal and not a ruled surface over a curve of genus greater than 1, then

$$(K_M + (d-1)PD(A))^2 \ge 0.$$

It is therefore important to ensure that the branched covering \overline{M} is minimal and not a ruled surface. First, we have the following lemma.

Lemma 3. Let $\phi : \overline{M} \to M$ be a cyclic d-fold branched covering of closed, oriented 4-manifolds. Then $b_2^+(\overline{M}) \ge b_2^+(M)$.

Proof. With our choice of orientations, the map $\phi : \overline{M} \to M$ has positive degree. By Poincaré duality, the induced map $\phi^* : H^*(M; \mathbb{R}) \to H^*(\overline{M}; \mathbb{R})$ is injective. It maps classes in the second cohomology of positive square to classes of positive square. This implies the claim.

Proposition 4. In the notation of Theorem 2, each of the following two conditions imply that \overline{M} is minimal and has $b_2^+(\overline{M}) > 1$ and hence is not a ruled surface:

- (a) If d is odd assume that M is spin and if d is even assume that PD(A) is characteristic. Also assume that $3\sigma(M) \neq (d^2 1)A^2$.
- (b) Assume that $b_2^+(M) \ge 2$ and there exists an integer $k \ge 2$ such that the class $K_M + (d 1)PD(A)$ is divisible by k.

Proof. Consider the *d*-fold branched covering \overline{M} , branched along Σ . The assumptions in case (a) imply that \overline{M} is spin and that the signature $\sigma(\overline{M})$ is non-zero. According to a theorem of M. Furuta [2] we have $b_2^+(\overline{M}) \ge 3$. Also the symplectic manifold \overline{M} is minimal, because it is spin. In case (b) the lemma implies that $b_2^+(\overline{M}) \ge 2$. In addition, the symplectic manifold \overline{M} is minimal, because its canonical class is divisible by k (a non-minimal symplectic 4-manifold contains a symplectic sphere S with KS = -1).

Example 5. Consider M = K3. Then we have $K_M = 0$. Let $d \ge 3$ be an integer and $A \in H_2(M; \mathbb{Z})$ a class with $A^2 < 0$. Theorem 2 together with Proposition 4 part (b) imply that dA is not represented by an embedded symplectic surface. Note that K3 contains indivisible classes of negative self-intersection which, for a suitable choice of symplectic structure, are represented by symplectic surfaces, for example symplectic (-2)-spheres. Let A be the homology class of such a sphere and $\alpha = 3A$. Then α is a counterexample to Conjecture 1.4 in [8].

Example 6. Let X be a symplectic spin 4-manifold with $b_2^+ > 1$ and M the blow-up $X \# \overline{\mathbb{CP}^2}$. Let E denote the class of the exceptional sphere in M. We have $K_M = K_X + PD(E)$. For every even integer d with $d^2 > K_X^2$, the class dE is not represented by a symplectic surface. Taking for example the blow-up of the K3 surface and $\alpha = 2E$, we get another counterexample to Lê's conjecture.

Note that with this method it is impossible to find a counterexample to Lê's conjecture under the additional assumption that $\alpha^2 > 0$.

In light of the second example, the following conjecture seems natural.

Conjecture. Let M be the blow-up $X \# \overline{\mathbb{CP}^2}$ of a symplectic 4-manifold X and E the class of the exceptional sphere. Then dE is not represented by an embedded symplectic surface for all integers $d \ge 2$.

This conjecture holds by a similar argument as above for X the K3 surface and the 4-torus T^4 .

Remark 7. Branched covering arguments have been used in the past to find lower bounds on the genus of a connected surface representing a divisible homology class in a closed 4-manifold, see [1, 6, 7, 12].

Acknowledgements. I would like to thank D. Kotschick for very helpful comments.

REFERENCES

- 1. J. Bryan, Seiberg-Witten à la Furuta and genus bounds for classes with divisibility, Turkish J. Math. 21, 55–59 (1997).
- 2. M. Furuta, *Monopole equation and the* $\frac{11}{8}$ *-conjecture*, Math. Res. Lett. **8**, no. 3, 279–291 (2001).
- 3. R. E. Gompf, Symplectically aspherical manifolds with non-trivial π_2 , Math. Res. Lett. 5, no. 5, 599–603 (1998).
- 4. R. E. Gompf, A. I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20. Providence, Rhode Island. American Mathematical Society 1999.
- F. Hirzebruch, *The signature of ramified coverings*, in: Global Analysis (Papers in Honor of K. Kodaira), 253–265, Univ. Tokyo Press, Tokyo 1969.
- 6. W. C. Hsiang, R. H. Szczarba, On embedding surfaces in four-manifolds, Proc. Symp. Pure Math. 22, 97–103 (1971).
- D. Kotschick, G. Matić, *Embedded surfaces in four-manifolds, branched covers, and* SO(3)-invariants, Math. Proc. Cambridge Philos. Soc. 117, 275–286 (1995).
- 8. H.-V. Lê, *Realizing homology classes by symplectic submanifolds*, Max-Planck-Institute for Mathematics in the Sciences, Preprint no. 61 (2004).
- T.-J. Li, *Existence of symplectic surfaces*, in: Geometry and topology of manifolds, 203–217, Fields Inst. Commun. 47, AMS 2005.
- 10. A.-K. Liu, Some new applications of general wall crossing formula, Gompf's conjecture and its applications, Math. Res. Lett. **3**, no. 5, 569–585 (1996).

REPRESENTING HOMOLOGY CLASSES BY SYMPLECTIC SURFACES

- 11. F. Pasquotto, On the geography of symplectic manifolds, Ph. D. Thesis, Leiden University 2004.
- 12. V. A. Rohlin, Two-dimensional submanifolds of four-dimensional manifolds, Func. Analysis Appl. 6, 39-48 (1971).
- 13. C. H. Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2, no. 2, 221-238 (1995).
- 14. C. H. Taubes, $SW \Rightarrow Gr$: from the Seiberg-Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9, 845–918 (1996).

M. J. D. Hamilton Universität Stuttgart Fachbereich Mathematik Pfaffenwaldring 57 70569 Stuttgart Germany **E-Mail:** mark.hamilton@mathematik.uni-stuttgart.de

Erschienene Preprints ab Nummer 2007/001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

- 2012/003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
- 2012/002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
- 2012/001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian
- 2011/028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group
- 2011/027 *Griesemer, M.; Hantsch, F.; Wellig, D.:* On the Magnetic Pekar Functional and the Existence of Bipolarons
- 2011/026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression
- 2011/025 Felber, T.; Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent static forecasting of stationary and ergodic time series via local averaging and least squares estimates
- 2011/024 Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of stationary and ergodic time series
- 2011/023 Györfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional independence
- 2011/022 *Ferrario, P.G.; Walk, H.:* Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors
- 2011/021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels
- 2011/020 *Frank, R.L.; Geisinger, L.:* Refined Semiclassical Asymptotics for Fractional Powers of the Laplace Operator
- 2011/019 Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain
- 2011/018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks
- 2011/017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
- 2011/016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines
- 2011/015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function
- 2011/014 *Müller, S.; Dippon, J.:* k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis
- 2011/013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
- 2011/012 *Knarr, N.; Stroppel, M.:* Baer involutions and polarities in Moufang planes of characteristic two
- 2011/011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
- 2011/010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy
- 2011/009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
- 2011/008 Stroppel, M.: Orthogonal polar spaces and unitals
- 2011/007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
- 2011/006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces
- 2011/005 Ginoux, N.; Semmelmann, U.: Imaginary Khlerian Killing spinors I
- 2011/004 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part II Gain-Scheduled Control
- 2011/003 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part I Robust Control
- 2011/002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G₂-structures
- 2011/001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
- 2010/018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
- 2010/017 *Gauduchon, P.; Moroianu, A.; Semmelmann, U.:* Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
- 2010/016 Moroianu, A.; Semmelmann, U.: Clifford structures on Riemannian manifolds

- 2010/015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group SO(3)
- 2010/014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
- 2010/013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
- 2010/012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
- 2010/011 *Györfi, L.; Walk, H.:* Empirical portfolio selection strategies with proportional transaction costs
- 2010/010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function
- 2010/009 *Geisinger, L.; Laptev, A.; Weidl, T.:* Geometrical Versions of improved Berezin-Li-Yau Inequalities
- 2010/008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
- 2010/007 *Grundhöfer, T.; Krinn, B.; Stroppel, M.:* Non-existence of isomorphisms between certain unitals
- 2010/006 Höllig, K.; Hörner, J.; Hoffacker, A.: Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods
- 2010/005 *Kaltenbacher, B.; Walk, H.:* On convergence of local averaging regression function estimates for the regularization of inverse problems
- 2010/004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
- 2010/003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
- 2010/002 *Gulde, M.; Stroppel, M.:* Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
- 2010/001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
- 2009/008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
- 2009/007 *Griesemer, M.; Moeller, J.S.:* Bounds on the minimal energy of translation invariant n-polaron systems
- 2009/006 *Demirel, S.; Harrell II, E.M.:* On semiclassical and universal inequalities for eigenvalues of quantum graphs
- 2009/005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
- 2009/004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator
- 2009/003 Walk, H.: Strong laws of large numbers and nonparametric estimation
- 2009/002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
- 2009/001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^3 and of the 3-torus
- 2008/006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
- 2008/005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems
- 2008/004 *Leitner, F.:* Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
- 2008/003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
- 2008/002 *Hertweck, M.; Höfert, C.R.; Kimmerle, W.:* Finite groups of units and their composition factors in the integral group rings of the groups PSL(2,q)
- 2008/001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a correction term
- 2007/006 Weidl, T .: Improved Berezin-Li-Yau inequalities with a remainder term
- 2007/005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field

- 2007/004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger operators on metric trees
- 2007/003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
- 2007/002 *Teufel, E.:* Spherical transforms and Radon transforms in Moebius geometry 2007/001 *Meister, A.:* Deconvolution from Fourier-oscillating error densities under Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions