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REPRESENTING HOMOLOGY CLASSES BY SYMPLECTIC SURFACES

ABSTRACT. We derive an obstruction to representing a homology class of a symplectic 4-manifold by
an embedded, possibly disconnected, symplectic surface.

A natural question concerning symplectic 4-manifolds is the following: Given a closed, symplectic
4-manifold (M,ω) and a homology class B ∈ H2(M ;Z), determine whether there exists an embed-
ded, possibly disconnected, closed symplectic surface representing the class B. This question has
been studied by H.-V. Lê and T.-J. Li [8, 9]. One necessary condition is, of course, that 〈[ω], B〉 > 0.
Among other things, it is shown in [9] that a class B with 〈[ω], B〉 > 0 in a symplectic 4-manifold is
always represented by a symplectic immersion of a connected surface. It is also noted that an obstruc-
tion to representing a homology class B by an embedded, connected, symplectic surface comes from
the adjunction formula: The integer

B2 +KMB + 2,

where KM denotes the canonical class of the symplectic 4-manifold (M,ω), has to be non-negative.
This obstruction, however, disappears, if the number of components of the symplectic surface is al-
lowed to grow large. Note that there are examples of classes in symplectic 4-manifolds which are
represented by an embedded disconnected symplectic surface, but not by a connected symplectic sur-
face: For example in the two-fold blow-up X#2CP2 of a symplectic 4-manifold X the sum of the
classes of the exceptional spheres is not represented by a connected embedded symplectic surface
according to the adjunction formula. It is the purpose of this article to derive an obstruction to repre-
senting a homology class by an embedded, possibly disconnected, symplectic surface.

In [9] it is also shown that for symplectic manifolds M of dimension at least six, every class in
H2(M ;Z) on which the symplectic class evaluates positively is represented by a connected embedded
symplectic surface. In [8] there is a conjecture which in the case of symplectic 4-manifolds M says
that if α is a class in H2(M ;Z) on which the symplectic class evaluates positively, then there exists
a positive integer N depending on α such that Nα is represented by an embedded, not necessarily
connected, symplectic surface. In the examples at the end of this article we give counterexamples to
this conjecture in the 4-dimensional case.

The non-existence of an embedded symplectic surface in the classB has the following consequence
for the Seiberg-Witten invariants, which we only state in the case b+2 > 1.

Proposition 1. Let M be a symplectic 4-manifold with b+2 (M) > 1 and B 6= 0 an integral sec-
ond homology class which cannot be represented by an embedded, possibly disconnected, symplectic
surface. Then the Seiberg-Witten invariant of the Spinc-structure sK−1

M
⊗ PD(B) is zero, where

sK−1
M

denotes the Spinc-structure with determinant line bundle K−1
M induced by a compatible almost

complex structure.

Note that if H1(M ;Z) has no 2-torsion (and hence Spinc-structures are determined by their de-
terminant line bundles), this means that −KM + 2PD(B) is not a basic class. Proposition 1 is a
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2 REPRESENTING HOMOLOGY CLASSES BY SYMPLECTIC SURFACES

consequence of a theorem of Taubes, relating classes with non-zero Seiberg-Witten invariants to em-
bedded symplectic surfaces [14].

In the following, let (M,ω) denote a closed, symplectic 4-manifold and Σ ⊂ M an embedded,
possibly disconnected, closed symplectic surface representing a class B ∈ H2(M ;Z). We always
assume that the orientation of M is given by the symplectic form (ω ∧ ω > 0). If the class B is
divisible by an integer d > 1, in the sense that there exists a class A ∈ H2(M ;Z) such that B = dA,
then there exists a d-fold cyclic ramified covering φ : M → M , branched along Σ. The branched
covering is again a closed, symplectic 4-manifold. This is a well-known fact (the pull-back of the
symplectic form ω plus t times a Thom form for the preimage Σ of the branch locus is for small
positive t a symplectic form onM ; see [3, 11] for a careful discussion). The invariants ofM are given
by the following formulas [4, p. 243], [5]:

KM = φ∗(KM + (d− 1)PD(A))

K2
M

= d(KM + (d− 1)PD(A))2

w2(M) = φ∗(w2(M) + (d− 1)PD(A)2)

σ(M) = d(σ(M)− d2 − 1

3
A2)

Here PD denotes the Poincaré dual and PD(A)2 ∈ H2(M ;Z2) is the mod 2 reduction of PD(A).
The second equation follows from the first because the branched covering map has degree d.

Suppose that the branched covering M is minimal and not a ruled surface over a curve of genus
greater than 1. Then theorems of C. H. Taubes and A.-K. Liu [10, 13] imply that K2

M
≥ 0. With the

formula above, we get the following obstruction on the class A.

Theorem 2. Let (M,ω) be a symplectic 4-manifold, Σ ⊂ M an embedded, possibly disconnected,
closed symplectic surface and d > 1 an integer such that dA = [Σ] for a class A ∈ H2(M ;Z).
Consider the d-fold cyclic branched cover M , branched along Σ. If M is minimal and not a ruled
surface over a curve of genus greater than 1, then

(KM + (d− 1)PD(A))2 ≥ 0.

It is therefore important to ensure that the branched covering M is minimal and not a ruled surface.
First, we have the following lemma.

Lemma 3. Let φ : M → M be a cyclic d-fold branched covering of closed, oriented 4-manifolds.
Then b+2 (M) ≥ b+2 (M).

Proof. With our choice of orientations, the map φ : M → M has positive degree. By Poincaré
duality, the induced map φ∗ : H∗(M ;R) → H∗(M ;R) is injective. It maps classes in the second
cohomology of positive square to classes of positive square. This implies the claim. �

Proposition 4. In the notation of Theorem 2, each of the following two conditions imply that M is
minimal and has b+2 (M) > 1 and hence is not a ruled surface:

(a) If d is odd assume that M is spin and if d is even assume that PD(A) is characteristic. Also
assume that 3σ(M) 6= (d2 − 1)A2.

(b) Assume that b+2 (M) ≥ 2 and there exists an integer k ≥ 2 such that the class KM + (d −
1)PD(A) is divisible by k.
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Proof. Consider the d-fold branched covering M , branched along Σ. The assumptions in case (a)
imply that M is spin and that the signature σ(M) is non-zero. According to a theorem of M. Furuta
[2] we have b+2 (M) ≥ 3. Also the symplectic manifold M is minimal, because it is spin. In case (b)
the lemma implies that b+2 (M) ≥ 2. In addition, the symplectic manifold M is minimal, because its
canonical class is divisible by k (a non-minimal symplectic 4-manifold contains a symplectic sphere
S with KS = −1). �

Example 5. Consider M = K3. Then we have KM = 0. Let d ≥ 3 be an integer and A ∈
H2(M ;Z) a class with A2 < 0. Theorem 2 together with Proposition 4 part (b) imply that dA is not
represented by an embedded symplectic surface. Note thatK3 contains indivisible classes of negative
self-intersection which, for a suitable choice of symplectic structure, are represented by symplectic
surfaces, for example symplectic (−2)-spheres. Let A be the homology class of such a sphere and
α = 3A. Then α is a counterexample to Conjecture 1.4 in [8].

Example 6. Let X be a symplectic spin 4-manifold with b+2 > 1 and M the blow-up X#CP2. Let
E denote the class of the exceptional sphere in M . We have KM = KX + PD(E). For every even
integer d with d2 > K2

X , the class dE is not represented by a symplectic surface. Taking for example
the blow-up of the K3 surface and α = 2E, we get another counterexample to Lê’s conjecture.

Note that with this method it is impossible to find a counterexample to Lê’s conjecture under the
additional assumption that α2 > 0.

In light of the second example, the following conjecture seems natural.

Conjecture. Let M be the blow-up X#CP2 of a symplectic 4-manifold X and E the class of the
exceptional sphere. Then dE is not represented by an embedded symplectic surface for all integers
d ≥ 2.

This conjecture holds by a similar argument as above for X the K3 surface and the 4-torus T 4.

Remark 7. Branched covering arguments have been used in the past to find lower bounds on the
genus of a connected surface representing a divisible homology class in a closed 4-manifold, see
[1, 6, 7, 12].
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2011/003 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part I — Robust

Control
2011/002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G2-structures
2011/001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
2010/018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
2010/017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-

Kähler manifolds and inner symmetric spaces
2010/016 Moroianu, A.; Semmelmann,U.: Clifford structures on Riemannian manifolds



2010/015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group SO(3)
2010/014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
2010/013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
2010/012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
2010/011 Györfi, L.; Walk, H.: Empirical portfolio selection strategies with proportional transaction

costs
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