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Unitals admitting all translations

Theo Grundhöfer, Markus Stroppel, Hendrik Van Maldeghem

April 11, 2012

Abstract

Among all 2-(q3+1, q+1, 1)-designs, we characterize the hermitian unitals by the existence
of sufficiently many translations. In arbitrary 2-(q3 + 1, q + 1, 1)-designs, each group of
translations with given center acts semi-regularly on the set of points different from the
center.
Mathematics Subject Classification: 51A35 51A10 51E21 51E15 05E20
Keywords: Design, unital, automorphism, translation, hermitian unital, two-transitive
group, Moufang set

The classical examples of unitals (i.e., 2-(q3 + 1, q + 1, 1)-designs) are the hermitian unitals,
which are embedded in projective planes (as absolute points and non-absolute lines of a
polarity). Here we study abstract unitals, without requiring embeddings in projective planes,
and we characterize the classical examples by the existence of sufficiently many translations:

Main Theorem. Let U be a unital of order q with the following property: for every point c of U
there exist q translations of U with center c. ThenU is isomorphic to the hermitian unital of order q.

The translations of the hermitian unital of order q generate the unitary group PSU(3, q).
Translations are defined in Section 1 where we also prove the semi-regularity of translation
groups (Theorem 1.3). This implies that every unital of order q has at most q translations with
given center. In particular, our assumption that there are q translations with given center c
is equivalent to the transitivity of the translation group Γ[c] on Lr {c} for one (and then each)
line L through c.

For the conclusion of our Main Theorem it suffices to assume that there are three non-
collinear centers with translation groups of order q, see 1.6 below. There exist examples of
non-hermitian unitals with at least one center such that the corresponding translation group
is transitive, among them unitals arising from polarities in semifield planes but also in planes
that are not translation planes (see [12, Theorem 5.6]).

The transitivity of translation groups with given center is a “Moufang” condition in the
spirit of Tits; see [27, Addenda, p. 274]. This condition makes sense also for other 2-designs,
like affine planes; note that in affine planes, “translations” as defined in 1.1 below are often
called “dilatations with affine fixed point” or “homologies”. A finite or infinite affine plane
is desarguesian (hence coordinatized by a skew field) if for each center the corresponding
“translation” group is transitive in the sense of 1.5 below, see [19, 3.2.27]. The traditional
Moufang condition for projective planes is slightly different and requires both a center and
a dual center (axis).

1
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1 Translations

LetU = (U,L) be a unital of order q > 1, i. e., a finite linear space with q3 + 1 points and q + 1
points per line; then there are q2 lines per point. In other words, U is a 2-(q3 + 1, q + 1, 1)-
design. We note that q need not be a prime power; e.g., Mathon [17] and Bagchi-Bagchi [3]
have constructed a unital of order 6.

The line joining x, y ∈ U will simply be denoted by xy, andLx is the set of all lines through x.
The group of all automorphisms will be abbreviated by Γ B Aut(U,L).

1.1 Definition. An automorphism of (U,L) is called a translation of (U,L) with center c if it
fixes each line through c. The set of all translations with center c is denoted by Γ[c].

J. Tits [29] has noted that every translation of a classical (hermitian) unital over a commu-
tative field extends to an automorphism of the ambient projective plane, and used that fact in
order to determine the full group of automorphisms of such a unital. In particular, it follows
that every translation centralizes the polarity defining the hermitian unital, and Γ consists
of automorphisms of the group generated by all translations. This result has been extended
to various cases of non-commutative fields in [25, 4.2], [24], and to alternative fields in [4]
and [13, 7.1].

1.2 Lemma. Assume that (P,L) is a linear space. Consider a finite subset S ⊂ P with a point c ∈ S
and a point∞ ∈ P r S with the following properties:

• Not all points of S are collinear.

• If a line joins two points in S but does not pass through c then it meets S in precisely q + 1
points, where q ≥ 1 is a fixed number.

• There are at most q2 lines through∞.

• If a line through∞ meets S in more than one point then that line is∞c.

Then every line joining c with another point of S contains precisely one point of S r {c}.

Proof. Let x ∈ Sr {c} be chosen such that the number t of points of S on the line xc is maximal.
As S is not contained in a line, there exists a line B passing through x and containing q further
points of S.

Aiming at a contradiction, we assume t > 2 and pick y ∈ (xc∩S)r {x, c}. The lines joining y
with the q points in (B ∩ S) r {x} contain q2 points of S apart from y. Thus q2 + t ≤ |S|.

Let S′ denote the set of points in S but not on the line ∞c. Joining each point of S′ to ∞
gives an injective map into a set with at most q2

− 1 lines because the line∞c is avoided, and
|S| ≤ |S′| + t ≤ q2

− 1 + t follows. This is a contradiction. �

1.3 Theorem. Let (U,L) be a unital of order q, and let c be some point in U. Then Γ[c] acts
semi-regularly on U r {c}, and semi-regularly on the line set L rLc.

Proof. First of all, we note that a translation fixing M ∈ L r Lc fixes each point on M. In
particular, semi-regularity on the setLrLc is clear if semi-regularity on Ur {c} is established.

Aiming at a contradiction, we assume that there exists ϑ ∈ Γ[c] r {id} such that ϑ fixes a
point x , c. Without loss, we may then pass to a suitable power of ϑ such that the order of ϑ
is a prime p. If p divides q then ϑ fixes at least one more point on cx, and at least one line in
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La r {ca} for each fixed point a , c. If p does not divide q then each member of Lc contains
a point fixed by ϑ, and ϑ fixes the joining lines of these points. If ϑ would fix precisely one
point apart from c on each member of Lc then joining one of these points to all the others
yields a set of fixed lines. Each of these contains q points apart from the chosen one. Thus q
divides q2

− 1. This is impossible, and we infer that at least one line through c contains more
than two fixed points.

Let S be the set of fixed points of ϑ. As ϑ is not the identity, we find a point∞ ∈ U r S. A
line through ∞ but not through c cannot meet S in more than one point because otherwise
every point on that line would be fixed by ϑ. Thus the set S and the point ∞ satisfy the
conditions imposed in 1.2, contradicting the fact that there exists a line through c with more
than two fixed points on it. �

1.4 Lemma. Let (U,L) be a unital of order q, and assume that S ⊂ U is a proper subset closed under
taking all the points on each line joining two points in S. Then S is contained in a line; thus either S
is empty, or consists of a single point, or of the points on a single line.

Proof. Aiming at a contradiction, we assume that S contains a triangle. Joining the points on
one side of that triangle to the vertex not on that side we see that there are at least (q + 1)q + 1
points in S. Joining with any point z ∈ U r S we obtain an injective map from S into the set
of lines through z but this set of lines has only q2 members. �

1.5 Definition. Abusing notation, we say that the group Γ[c] of translations with center c is
transitive if it is transitive on L r {c} for some line L through c.

Transitivity on L r {c} is equivalent to |Γ[c]| = q because Γ[c] acts semi-regularly on U r {c}
by 1.3. Thus a transitive group Γ[c] of translations is transitive on K r {c} for each line K
through c.

1.6 Proposition. If a, b, c are three non-collinear points in a unital (U,L) such that Γ[x] is transitive
for each x ∈ {a, b, c} then the group T generated by Γ[a]∪Γ[b]∪Γ[c] is transitive on U, and contains Γ[u]
for each u ∈ U. In particular, the translation groups form a conjugacy class in T (and in Γ), each Γ[u]
is transitive, and T is a normal subgroup of Γ.

Proof. Let S be the orbit of a under T. Then T contains Γ[u] for each u ∈ S, in fact Γ[u] is a
conjugate of Γ[a] under some element of T. This implies that Γ[u] is also transitive, and S
contains all points on any line joining two points of u. Now 1.4 yields S = U. �

1.7 Proposition. Let c be a point in a unital (U,L). Assume that Γ[c] is transitive, let L ∈ Lc, and
let x ∈ L r {c}.

1. The stabilizer CΓ(Γ[c])x in the centralizer CΓ(Γ[c]) acts trivially on L.

2. The kernel Γ[L] of the action of the stabilizer ΓL on the line L centralizes Γ[c].

3. Assume that Γ[u] is transitive for each u ∈ U. Then Γ[L] acts semi-regularly on U r L.

Proof. If we fix x , c and centralize Γ[c] we clearly fix each point in the orbit of x under Γ[c],
and this orbit is L r {c}. If γ fixes each point on L then γ normalizes Γ[c]. For τ ∈ Γ[c] we
evaluate ϑ B γτγ−1

∈ Γ[c] at y ∈ L r {c} as yϑ = yϑγ = (yγ)τ = yτ. Semi-regularity (see 1.3)
of Γ[c] yields ϑ = τ, and γ centralizes Γ[c].

In the situation of assertion 3, assume that γ ∈ Γ[L] fixes a point y outside L. As every point
is the center of a transitive translation group, the first two assertions yield that the set S of
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fixed points of γ is closed under taking all the points on lines joining two points in S. Now 1.4
yields γ = id. �

1.8 Lemma. Let RU(q) be a Ree unital, i.e., the unital associated with the Ree group R(q) = 2G2(q)
for q = 3r with odd r. Then each translation of RU(q) is trivial.

Proof. In [8] it has been shown that the full group Aut(RU(q)) of automorphisms of the Ree
unital is the semi-direct product Aut(R(q)) � Aut(Fq)nR(q). For an explicit description of the
Ree group one needs the Tits automorphism θ of Fq with the property that θ2 is the Frobenius
automorphism x 7→ x3.

By 1.3 the group Γ[c] of translations acts semi-regularly on L r {c} for any line L through a
point c. Therefore, there are no elements of prime order different from 3 in Γ[c], and Γ[c] is
contained in a Sylow 3-subgroup of Aut(Fq) n R(q).

We use Lüneburg’s description [15] of RU(q): the points are the Sylow 3-subgroups of R(q),
the lines are the involutions in R(q), and a point is incident with a line if it is normalized
by the latter. Now we use the standard description of a point stabilizer in R(q) (due to
Tits [28], cf. [30, 7.7.7]): the Sylow 3-subgroup is S = F3

q with multiplication (a, b, c) ∗ (x, y, z) =

(a+x, b+y+axθ, c+z+ay−bx−axθ+1), and its normalizer in R(q) is the semi-direct product of S
and the multiplicative group ofFq where h ∈ Fqr {0} acts on S via (x, y, z) 7→ (hx, hθ+1y, hθ+2z).
In particular, the element −1 ∈ Fq induces an involution j in the normalizer of S acting via
(x, y, z) 7→ (−x, y,−z). Thus j is one of the lines through the (unique) point fixed by S (which
is, in Lüneburg’s model, just S itself). The centralizer CS( j) has order q, so the conjugacy
class jS has q2 elements, and this conjugacy class is the set of all lines through S. It is easy to
see that jS generates 〈 j〉S.

The Sylow 3-subgroup of the stabilizer of the point S is the product AS of S with a
group A isomorphic to a Sylow 3-subgroup of Aut(Fq). Now Γ[S] = CAS( jS) ≤ CAS(Z) = S
where Z = {0}2 × Fq is the center of S; in fact, the group A acts faithfully on Z. Finally, it
remains to note that Γ[S] ≤ CZ( j) is trivial. �

2 Unitals with many translations

There is, up to isomorphism, just one unital of order 2, namely the affine plane of order 3, and
the translations of the unital are homologies of the affine plane. These involutions generate a
group of order 18 with trivial center, and the stabilizer of a point in that group fixes all lines
through the point. This shows that the assumption q > 2 is in fact necessary in the results of
this section.

2.1 Proposition. If U = (U,L) is a unital of order q > 2 such that each translation group is
transitive, then the stabilizer Γc of a point c does not fix any line through c.

Proof. Assume, to the contrary, that Γc fixes some line L through c. Pick any point y outside L
and consider the set S of all points on lines joining y with a point on L. Then S has (q+1)q+1 =
q2 + q + 1 points. We claim that the lines joining two points of S carry either q + 1 points of S
(this clearly happens if the line passes through y or is in the orbit of L under Γ[y]) or q points
of S (we are going to show that this happens in all other cases).

Consider u ∈ cy r {c, y} and b ∈ L r {c}. Let τ ∈ Γ[y] be defined by cτ = u. For any
v ∈ byr {bτ} take α ∈ Γ[y] with bα = v; then cα , u and there exists β ∈ Γ[u] with (cα)β = c. Now
αβ fixes c and thus fixes L by our assumption. Thus vβ = bαβ ∈ L, and we have proved that
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uv meets L, for each v ∈ by r {bτ}. This means that q lines through u meet both L and by. For
any a ∈ L r {b, c} we also have q lines through u that meet both L and ay. Among the lines
joining u with points on by we therefore have at most one that does not meet ay. That line
is easily found: apply ϑ ∈ Γ[c] with yϑ = u to ay. Thus there are two lines through u that are
completely contained in S (namely, the lines Lτ and cy) and all other lines joining u to points
of S carry precisely q points of S.

Applying translations with centers on L we see that Γx fixes L whenever x ∈ L. Repeating
our arguments above with x replacing c we see that through each point of S r {y} there are
precisely two lines that are completely contained in S and q lines each containing q points
of S.

Let k be the number of lines with q points in S. Counting the incident point-line pairs in
two ways, we find (q2 + q)2 + (q + 1) + (q2 + q)q = (q + 1)(2q + 1) + qk and thus k = q2 + q.
These k lines cover at most |S| + k = 2q2 + 2q + 1 points of U. Our assumption q > 2 now
yields q3 + 1 > 2q2 + 2q + 1, and there does exist a point z not on any of these k lines. Joining
with z gives an injective map from S into the set of lines through z. This contradicts the fact
that there are only q2 < |S| lines through z. �

2.2 Corollary. If U is a unital of order q > 2 such that each translation group is transitive, then the
group generated by all translations acts primitively on the set of points.

Proof. The translation groups of any two points on a line generate a two-transitive group on
that line. Thus every block of imprimitivity is closed under taking all the points on each line
joining two elements of the block. If there were a nontrivial block B of imprimitivity then 1.4
thus yields that B is a line, and the stabilizer of any point in that line would also fix B. This
is impossible by 2.1. �

2.3 Proposition. Let L be a line in a unitalU = (U,L) of order q > 2 such that Γ[x] is transitive for
each x ∈ L. If the group G induced on L by Ĝ = 〈Γ[x] | x ∈ L〉 is sharply two-transitive then q + 1 is a
power of some prime p which divides the order of the center Z B Z(Ĝ).

Proof. From 1.7.2 we know that the kernel K B Ĝ[L] of the action of Ĝ on L is contained in Z.
The sharply two-transitive group G has a regular normal subgroup N which is elementary
abelian (compare [21, 7.3.1]), hence q + 1 = pm for some prime p. Let N̂ be a Sylow p-
subgroup of Ĝ. Since N̂ is characteristic in the normal subgroup KN̂ of G we infer that N̂
is normal in Ĝ, whence Γ[c]N̂ is a subgroup of Ĝ for c ∈ L. Now N̂ is transitive on L, and
{gΓ[c]g−1

| g ∈ N̂} = {Γ[x] | x ∈ L} yields Ĝ = Γ[c]N̂.
Aiming for a contradiction we assume now that p does not divide |Z|. Then K∩ N̂ is trivial,

hence |N̂| = |N| = q + 1 and |Ĝ| = |Γ[c]N̂| = q(q + 1) = |G|. Thus Ĝ = G and every element of
N̂ = N is the product of two elements of stabilizers of points on L. Since these stabilizers are
just the translation groups, we infer that N acts semi-regularly on U r L. As the complement
G rN is covered by translation groups, we find that G acts semi-regularly on U r L.

If q is even then p ≥ 3 and |L| = q4
− q3 + q2

≡ 3 (mod p) yields that N fixes at least 2 lines in
L r {L}. We choose z on such a line. Semi-regularity implies that N acts transitively on that
line. For y ∈ zGr zN the (unique) element τ ∈ G with zτ = y belongs to GrN =

⋃
x∈L Γ[x]r {1}.

Thus there exists c ∈ L with τ ∈ Γ[c], and the line zy contains the q points of the orbit zΓ[c] ⊂ zG.
We obtain that every line meeting zG in more than one point meets in q or q + 1 points, and
every line meeting zG in q points is completely contained in zG

∪ L. Since q > 2 we have
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|U r L| = q3
− q > q2 + q = |G|. Thus there exists a point w ∈ U r (L ∪ zG). Joining points of zG

with w yields an injective map, whence q2 + q = |zG
| ≤ q2 which is absurd.

Thus q is odd. Then p = 2 and q + 1 is divisible by 4. We have q ≡ −1 (mod 4) and
|L| ≡ 3 (mod 4). If N fixes a line different from L we obtain a contradiction as in the previous
paragraph. Thus N has some orbit {M,M′} of length 2 in Lr {L}. Note that M and M′ do not
meet L. We choose z ∈ M. Then zN is distributed evenly onto M and M′, and each of these
lines contains (q + 1)/2 points from zN.

As before, each line joining z with a point in zG r zN is invariant under a translation and
contains q points of zG. Thus the joining lines in zG either contain q points of zG and meet L,
or contain (q + 1)/2 points of zG and are orbits under a subgroup of index 2 in N, or contain
just two points (this happens if we join points on M ∩ zG with points on M′ ∩ zG).

Pick a point m ∈Mr zG, then |mG
| = q2 + q. The intersection M∩mG is the orbit of m under

the stabilizer of M in N, and has (q + 1)/2 points.
Let x ∈ mG rM and assume (by way of contradiction) that the line zx contains a second

point x′ of mG. The line zx = x′x does not meet L because it is not contained in zG
∪ L.

Repeating the argument above for x instead of z we see that x′ ∈ xN. Thus there exists an
involution in the elementary abelian group N interchanging x and x′. The joining line is fixed
by that involution. As the latter does not fix z, it will interchange M and M′, and x′ is the
intersection point of M′ and zx. For any point y ∈ mGr (M∪M′) we obtain that zy∩mG = {y}.
This gives |mG r (M ∪M′)| = q2 + q − (q + 1) = q2

− 1 lines through z with precisely one point
in mG. Together with the line M, this covers the whole pencil Lz.

Now we count the points in mG by joining them with z: there are (q+1)/2 points on M, and
q2
−1 points on the other lines. This gives q2 + q = q2

−1 + (q + 1)/2 and then the contradiction
q + 1 = (q + 1)/2. �

3 Moufang sets induced on lines

Recall that a Moufang set is a set X together with a collection of groups (Rx)x∈X of permutations
of X such that each Rx fixes x and acts regularly (i. e., sharply transitively) on X r {x}, and
such that {Ry | y ∈ X} is invariant under conjugation by each Rx. The permutation group
G B 〈Rx | x ∈ X〉 is called the little projective group of the Moufang set; the groups Rx are called
root groups.

3.1 Proposition. LetU be a unital with a line L such that Γ[x] is transitive for each x ∈ L. Then the
following is true.

1. (L, (Γ[x]|L)x∈L) is a Moufang set.

2. The kernel Ĝ[L] of the action of Ĝ B 〈Γ[x] | x ∈ L〉 on L is the center of Ĝ.

3. If the little projective group G induced by Ĝ on L is perfect, then the commutator series of Ĝ
terminates at a perfect group G̃ such that G̃/Z(G̃) � G, and Z(G̃) is a subgroup of the Schur
multiplier of G.

Proof. Clearly Ĝ acts two-transitively on L. The set {Γ[x] | x ∈ L} is invariant under conjugation,
and Γ[x] acts regularly on L r {x} by 1.3 and our transitivity assumption. Thus we have a
Moufang set. By 1.7.2 the kernel of the action is contained in

⋂
x∈L CĜ(Γ[x]) which is the center

of Ĝ. As CĜ(Γ[x]) fixes the unique point x fixed by Γ[x], the reverse inclusion follows.
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If G is perfect then every member of the commutator series of Ĝ is mapped surjectively
onto G. As Ĝ is finite, the series terminates at a group G̃ with the required properties. �

All finite Moufang sets are explicitly known:

3.2 Theorem. The little projective group of a finite Moufang set is either sharply two-transitive, or it
is permutation isomorphic to one of the following two-transitive permutation groups of degree q + 1:
PSL(2, q) with a prime power q > 3, PSU(3, f ) with a prime power q = f 3

≥ 33, a Suzuki group
Sz(2s) = 2B2(2s) with q = 22s

≥ 26, or a Ree group R(3r) = 2G2(3r) with q = 33r, where r and s are
positive odd integers.

This was proved (in the context of split BN-pairs of rank one) by Suzuki [26] and Shult [22]
for even q, and by Hering, Kantor and Seitz [9] for odd q; these papers rely on deep results on
finite groups, but not on the classification of all finite simple groups. See also Peterfalvi [18].
Note that PSL(2, 2) � AGL(1, 3), PSL(2, 3) � A4 � AGL(1, 4), PSU(3, 2) � ASL(2, 3) and
Sz(2) � AGL(1, 5) are sharply two-transitive. The smallest Ree group R(3) � PΓL(2, 8) is
almost simple, but not simple.

3.3 Lemma. Consider two finite Moufang sets with isomorphic root groups, and assume that the corre-
sponding little projective groups G1 and G2 are not permutation isomorphic. Then G1 and G2 are both
sharply two-transitive, or G1 and G2 are permutation isomorphic to AGL(1, 2m) and PSL(2, 2m

− 1)
in some order and 2m

− 1 is a Mersenne prime with 2m
− 1 ≥ 7.

The examples where G1 and G2 are sharply two-transitive and not isomorphic originate
from nonisomorphic nearfields with isomorphic multiplicative groups; compare [16, 7.4] and
note that each Dickson pair determines the multiplicative group of a Dickson nearfield up to
abstract isomorphism.

Proof. Assume that G1 is not sharply two-transitive. Then G1 is one of the almost simple
permutation groups of degree q + 1 listed in 3.2, where the prime power q is the order of
the root groups. The root groups of PSL(2, q) are elementary abelian. The root groups of
PSU(3, f ) have order f 3 and prime exponent, and their centers have order f . The root groups
of Sz(2s) are Suzuki 2-groups of order 22s with centers of order 2s. The root groups of R(3r)
have order 33r and exponent 9, and their centers have order 3r. We observe that the root
groups of these almost simple groups are mutually not isomorphic.

Thus G2 is sharply two-transitive by 3.2. Hence q + 1 is a prime power, and the root groups
of G2 are fixed-point-free automorphism groups of order q of the regular normal subgroup
of G2; compare [21, 7.3.1]. Thus the root groups are cyclic or generalized quaternion groups,
see [10, V.8.12], cf. [21, 10.5.5]. Comparison with the root groups of G1 shows that the root
groups are cyclic, in fact G1 � PSL(2, q) for some prime q > 3, and G2 � AGL(1, q + 1).
Moreover, the prime power q + 1 is even, hence a power of 2, and q is a Mersenne prime with
q ≥ 7. �

We collect some explicit information on SL(2,F).

3.4 Transvections and elations. Let F be a field. In SL(2,F) we call an element a transvection
if its characteristic polynomial is (X − 1)2. An element of PSL(2,F) is called an elation if it
is induced by a transvection of SL(2,F). The collection of groups of elations with common
fixed point forms a Moufang set on the projective line over F such that the little projective
group is PSL(2,F).
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3.5 Lemma. Let F be a field. Every element of SL(2,F) r {−id} is a product of at most two
transvections, and every element of PSL(2,F) is the product of at most two elations.

Proof. Since SL(2,F) acts two-transitively on the set of one-dimensional subspaces of F2 every
product of two transvections in SL(2,F) is conjugate to(

1 a
0 1

) (
1 0
b 1

)
=

(
1 + ab a

b 1

)
with a, b ∈ F. Non-central elements of SL(2,F) are conjugates if, and only if, they have the
same trace. As 2 + ab runs over all elements of F, every non-central element of SL(2,F) is
(conjugate to) a product of at most two transvections. The assertion about elations follows
immediately. �

3.6 Lemma. Assume that SL(2, t) acts (perhaps not faithfully) on a unital (U,L) of order q in
such a way that some line L of the unital is fixed, every non-trivial transvection induces a non-trivial
translation of the unital, and non-commuting transvections induce translations with different centers.
Then the stabilizer SL(2, t)x of any point x ∈ UrL is contained in the center of SL(2, t). If t = q then
SL(2, t) induces a semi-regular group on U r L.

Proof. Let H denote the group induced by SL(2, t) on U. By 3.5 every non-central element of H
is the product of at most two translations (induced by transvections) with different centers
on L. Such an element cannot fix any point outside L. If q = t then the translation groups are
transitive, and the center of H acts semi-regularly by 1.7.1 and 1.7.3. �

4 Proof of the Main Theorem

The following elementary observation can be traced back to Gleason; see [5, pp. 190 f].

4.1 Lemma. Let p be a prime, and let H be a group acting on a finite set X. Assume that for every
x ∈ X there exists in H an element of order p which fixes x but no other element of X. Then H is
transitive on X.

Proof. If H is not transitive then X is a disjoint union of two non-empty H-invariant subsets A
and B. Pick a ∈ A and b ∈ B. The orbits of the stabilizer Ha in B have lengths divisible by p,
and the orbits of Hb in B r {b} also have lengths divisible by p. This is impossible. �

The next result will help to exclude a “mixed case” below.

4.2 Proposition. Let H be a primitive rank 3 permutation group of degree q3 + 1 where q is a prime.
Then q ≤ 5.

Proof. By the O’Nan–Scott theorem, H is of grid type, or an affine group, or almost simple,
see [14] or [31, Section 2.6]. In the grid case, q3 + 1 = n2 for some integer n, hence q3 =
(n − 1)(n + 1). As n − 1 > 1 the prime q divides both factors, and their difference, whence
q = 2. If H is an affine group and q > 2, then the even degree q3 + 1 = (q + 1)(q2

− q + 1) is a
prime power, hence a power of 2; thus the odd factor q2

− q + 1 has to be 1, which is absurd.
It remains to deal with almost simple groups H. These permutation groups have been

classified by Bannai, Kantor and Liebler, and Liebeck and Saxl; the completeness of the list
depends on the classification of finite simple groups. Below we require only the knowledge of

8



Unitals admitting all translations T. Grundhöfer, M. Stroppel, H. Van Maldeghem

the (sub)degrees, as listed in [6]. We denote the subdegrees of H by 1, k, `, thus q3 +1 = 1+k+`
and k + ` = q3.

(i) If H ≤ Sn acts on 2-sets with n ≥ 5, then q3 + 1 =
(n

2
)
, hence 2q3 = (n − 2)(n + 1). Since

n − 2 > 2, the prime q divides both factors, and their difference, whence q = 3 (and n = 8).

(ii) Now let H act on (singular) lines, or on singular points, or on singular 4-spaces, or on
the points of an E6-building. Then k and ` are both divisible by some prime power Q > 1,
and k + l > Q3, compare the list in [6]. From k + ` = q3 we infer that Q divides q3. Hence the
prime q divides Q, and k + ` = q3

≤ Q3, which is a contradiction.

(iii) Let H act on an orbit of non-singular points (over the field with 2 or 3 elements).
Then k + ` = q3 is of the form (2n−1

− e)(2n + e) or 1
2 (3n−1

− e)(3n + 2e) or 1
2 (3n
− e)(3n + 2e) or

1
3 (2n−1 + (−1)n)(2n

− 3(−1)n) with n ≥ 3 and e = ±1. Again q divides both factors in brackets,
hence each integer linear combination of these factors. Thus q divides 3e or 5e, whence q ≤ 5.

(iv) If H belongs to one of the two series acting on an orbit of quadratic forms, then k+` = q3

is of the form (4n
− e)(2 · 4n−1 + e) or (8n

− e)(4 · 8n−1 + e) with e = ±1. As in case (iii) we infer
that q ≤ 5.

(v) Now finitely many cases remain, compare the list in [6] or [20]. In each of these cases,
k and ` have a common prime divisor r ≤ 17 such that k + ` , r3 (which implies r = q, a
contradiction), except if {k, `} = {25, 100} and q = 5 (here H is A10 or S10, acting on partitions
of type 5, 5, with degree 1

2
(10

5
)

= 53 + 1). �

Proof of the Main Theorem. If q = 2, then U is a 2-(9, 3, 1)-design, i.e. an affine plane of
order 3, which is uniquely determined and isomorphic to the hermitian unital of order 2.
Now let q > 2.

Fix a point c of U = (U,L). For every line L through c we define below a “Gleason”
prime g(L) coprime to q such that the stabilizer Γc,L contains an element ϕ = ϕc,L of order g(L)
fixing no point in UrL. Recall that L carries the structure of a Moufang set and that the center
of Ĝ = 〈Γ[x] | x ∈ L〉 is the kernel of the action of Ĝ on L, see 3.1.2. We denote by GL the group
induced by Ĝ on L, and by G̃L the final term of the commutator series of Ĝ. If GL is simple
then the perfect group G̃L is a quotient of the universal cover of GL modulo some subgroup
of the Schur multiplier of GL. By 3.2 we have one of the following 6 cases.

(1) GL is sharply two-transitive. By 2.3, q + 1 is a power of some prime p and the center of Ĝ
contains an element ϕ of order p. We put g(L) = p. By 1.7.1 and 1.7.3, the automorphism ϕ
fixes all points on L and no point in U r L.

(2) GL � PSL(2, q) with q > 3. Let g(L) be the largest prime divisor of q − 1.
For q < {4, 9} the group G̃L is isomorphic to SL(2, q) or PSL(2, q) because SL(2, q) has trivial

Schur multiplier, see [10, 25.7] or [23]. For q = 4 there is the further possibility G̃L � SL(2, 5),
see [10, 25.7] or [2, 33.15], which is a double cover of SL(2, 4) � A5 � PSL(2, 5), cf. [31,
3.3.5, p. 51], and contains only one involution. However, this possibility is ruled out by the
elementary abelian subgroup Γ[c] of order 4 in G̃L.

The Schur multiplier of PSL(2, 9) � A6 is cyclic of order 6, see [2, 33.15] or [31, 2.7.3], hence
for q = 9 the group G̃L has a center Z of order |Z| ∈ {1, 2, 3, 6}. The translation group Γ[c] is
(elementary) abelian of order 32 and has trivial intersection with Z by 1.7.1, hence the Sylow
3-subgroups of G̃L are abelian. However, the Sylow 3-subgroups of the universal cover are
not abelian, cf. [31, 2.7.3, p. 30] or [10, V § 25, p. 647]. This excludes the cases where |Z| ∈ {3, 6}.
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Hence G̃L is isomorphic to SL(2, q) or to PSL(2, q) in all cases. Thus 3.6 entails that G̃L acts
semi-regularly on U r L. For d ∈ L r {c} the stabilizer G̃L

c,d has order q − 1 if G̃L � SL(2, q) and
(q− 1)/2 otherwise, and the largest prime divisor of q− 1 also divides (q− 1)/2 for odd q > 3.

(3) GL � PSU(3, f ) with f = 3
√

q ≥ 3. Let g(L) be the largest prime divisor of f − 1.
Here SU(3, f ) is the universal cover of PSU(3, f ), see [7, Thm. 2]. Thus the order of the

center Z of G̃L divides gcd(3, f + 1) = Z(SU(3, f )). Now SU(3, f ) has a subgroup isomorphic
to SU(2, f ) � SL(2, f ), contained in the stabilizer of a line of the hermitian unital of order f ,
and intersecting Z(SU(3, f )) trivially. Let ∆ � SL(2, f ) denote the corresponding subgroup
of ĜL. Each transvection of ∆ belongs to a Sylow subgroup of order f 3 in G̃L (note that f is
coprime to |Z|) and is therefore a translation of U. Now 3.6 yields that ∆ is semi-regular on
U r L. As in case (2), for d ∈ L r {c} the order of ∆c is divisible by g(L) unless f = 3.

For f = 3 we have Z = {1} and |G̃L
c | = |GL

c | = 2 · 33. All involutions in SU(3, 3) = PSU(3, 3)
are conjugate and are products of two elements of root groups: with respect to the form

x1 x3 + x2 x2 + x3 x1, the matrices
(

1 0 0
1 1 0
1 −1 1

)
and

(
1 −1 1
0 1 1
0 0 1

)
belong to root groups, and their product

is an involution. Thus each involution in G̃L
c is a product of two translations of U (with

different centers), hence semiregular on U r L.

(4) GL � Sz(2s) with q = 22s
≥ 26. Let g(L) be the largest prime divisor of 2s

− 1. The
two-point stabilizers in Sz(2s) have order 2s

− 1. We choose d ∈ L r {c} and show below that
every element ϕ of odd order in G̃L

c,d acts semi-regularly on U r L.
Every element of odd order in Sz(2s) is strongly real, i.e., a product of two involutions,

see [16, 24.7, 24.6]. If s > 3 then G̃L � GL because the Schur multiplier is trivial (see [1], cf. [2,
4.2.4]). In that case, the involutions are translations (with different centers) and their product
acts semi-regularly on U r L. For s = 3 the Schur multiplier is elementary abelian of order 4,
see [1], cf. [2, 4.2.4]. If ϕ ∈ G̃L

c,d has odd order then there exist involutory translations ϑ, τ and
an element ζ ∈ Z(G̃L) such that ϕ = ϑτζ. Then ζ2 = 1 and ϕ2 = ϑτϑτζ2 = ϑϑτζ2 = ϑϑτ is the
product of two translations (with different centers). Hence 〈ϕ〉 = 〈ϕ2

〉 acts semi-regularly
on U r L.

(5) GL � R(3r) with q = 33r and r > 1. Let g(L) be the largest prime divisor of (3r
− 1)/2.

Since r > 1 the Ree group R(3r) is simple and has trivial Schur multiplier (see [1]), hence
G̃L � GL. This group has a subgroup ∆ � PSL(2, 3r), namely the unique subgroup of index 2
of the stabilizer of a line in the Ree unital of order 3r, see [15, p. 257]. Each elation in ∆ belongs
to a Sylow 3-subgroup of GL and is therefore a translation of U. Now 3.6 yields that ∆ is
semi-regular on U r L. Moreover, |∆c| = 3r(3r

− 1)/2 is divisible by g(L).

(6) GL � R(3) � PΓL(2, 8) and q = 33. Let g(L) = 2.
The final term ∆ of the commutator series of Ĝ = 〈Γ[x] | x ∈ L〉 is a cover of PSL(2, 8) �

SL(2, 8), which has no proper cover (see case (2)). Hence ∆ � SL(2, 8) and |∆c| = 2 · 32. The
translation group Γ[c] is a semidirect product Γ[c] = 〈τ〉 o 〈α〉 where τ has order 9 and α has
order 3, with ατ = τ4α. If α ∈ ∆, then α and τ−1ατ = τ3α together generate an elementary
abelian subgroup of order 9 in ∆ � SL(2, 8), which has cyclic Sylow 3-subgroups. This
contradiction shows that α < ∆. Thus 〈α〉∆ induces all of GL on L, and 〈α〉∆ � PΓL(2, 8).

The involutions in ∆ � SL(2, 8) are conjugate and can be written as quotients of elements of
order 9: let F8 = F2(w) with w3 = w + 1; then µ =

(
0 1
1 w

)
and ν =

(
w2 w
1 w

)
have order 9 and their

quotient µν−1 =
(

1 w2

0 1

)
has order 2. Now µζ is a translation of U for a suitable element ζ in

the center of Ĝ. All elements of order 9 in ∆ are conjugate in 〈α〉∆ � PΓL(2, 8), hence also νζ
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is a translation ofU, and µν−1 = (µζ)(νζ)−1. Thus each involution ϕ ∈ ∆c is a product of two
translations ofU of order 9 (with different centers), whence ϕ is semiregular on U r L.

This concludes our definition of g(L) and ϕc,L. Note that the prime g(L) depends only on
the isomorphism type of GL. Thus g(L) = g(Lγ) for every γ ∈ Γc, and Γc acts on each line set
g−1(r) = {L ∈ Lc | g(L) = r} where r is a prime. Moreover, ϕc,L fixes no line M ∈ Lc r {L},
otherwise it would fix a point of M r {c} ⊆ U r L since g(L) is coprime to q = |M r {c}|. By
Gleason’s Lemma 4.1, the stabilizer Γc is transitive on each line set g−1(r).

If the mapping g : Lc → N is not constant, then U contains lines L and M such that GL

and GM are not isomorphic. However, the corresponding root groups are conjugate in Γ
(because they are translation groups and Γ is transitive on U). From 3.3 and our definition
of g we infer that q ≥ 7 is a Mersenne prime and GL is sharply two-transitive or isomorphic
to PSL(2, q); this holds for every line L through c. Thus g assumes only two values, and Γc has
two orbits on the pencilLc and two orbits on Ur {c}. With 2.2 we obtain that Γ is a primitive
permutation group of rank 3 on U, and 4.2 gives q ≤ 5, which is a contradiction.

Thus g is constant, and Γc is transitive on the pencil Lc. Hence Γ is transitive on L and
two-transitive on U. According to Kantor [11],U is the unital associated with PSU(3, q), i.e.
the hermitian unital of order q, or the unital associated with R(3r) = 2G2(3r), i.e. a Ree unital
(this result of Kantor relies on the classification of finite simple groups). However, a Ree
unital does not admit any nontrivial translation by 1.8.
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No. 210, 65–82, Soc. Math. France, Paris, 1995. http://www.numdam.org/item?id=SB_
1960-1961__6__65_0. MR 1611778. Zbl 0267.20041.
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