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Existence of Minimizers

in Restricted Hartree–Fock Theory

Fabian Hantsch

Universität Stuttgart, Fachbereich Mathematik

70550 Stuttgart, Germany

Abstract
In this note we establish the existence of ground states for atoms within several

restricted Hartree–Fock theories. It is shown, for example, that there exists a
ground state for closed shell atoms with N electrons and nuclear charge Z ≥ N−1.
This has to be compared with the general Hartree–Fock theory where the existence
of a minimizer is known for Z > N − 1 only.

1 Introduction

Computations of the electronic structure of atoms and molecules in quantum chemistry
in general rely on numerical solutions of simplified versions of the quantum many-body
problem at hand. Among those, the Hartree–Fock approximation often serves as a
starting point for more accurate approximations such as multi-configuration methods,
see for example [8, 16]. In the simplest version of Hartree–Fock theory the energy is
minimized with respect to antisymmetric tensor products of orthonormal one-electron
orbitals, the so-called single Slater determinants, and further restrictions are imposed
in numerical procedures implementing this variational problem [4]. In any case the
question arises whether a minimizer exists. This paper is concerned with several re-
stricted Hartree–Fock theories for atoms where the one-electron orbitals are products
of space and spin wave functions. For each of the considered restrictions we investigate
the existence of a minimizer both for neutral atoms and positive ions, as well as for
simply charged negative ions.

The existence of a minimizer in the general Hartree–Fock (GHF) theory for neu-
tral atoms or positive ions was first established in 1977 by Lieb and Simon [11]. No
constraints were imposed in their work besides the orthonormality of the one-electron
orbitals. In the meantime there has been remarkable further progress in the study
of the variational problem for the Hartree–Fock energy functional. It is known, for
example, that there exists a sequence of critical points for this functional [12], and con-
vergence properties of various algorithms used for the approximation of critical points
were investigated in [5, 3, 9].

The main concern of this article is the minimization of the Hartree–Fock energy
functional under additional constraints. Our general assumption is that the one-
electron states are products of space and spin functions. First, we treat the restricted
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Hartree–Fock (RHF) functional for closed shell atoms with prescribed angular momen-
tum quantum numbers. Second, we drop the latter requirement, i.e. we consider atoms
with an even number of electrons, where only pairs of spin up and spin down electrons
with the same spatial function occur. The corresponding energy functional will be
called spin-restricted Hartree–Fock (SRHF) functional. It turns out that there exists a
ground state in both cases, if Z ≥ N−1, where Z denotes the nuclear charge and N the
number of electrons. The existence of a ground state in the case Z = N − 1 reminds of
the well-known stability of closed shell configurations in chemistry. Third, we look at
another restricted Hartree–Fock functional, which is called unrestricted Hartree–Fock
(UHF) functional in the chemical literature, and must not be confused with the GHF
functional. In the UHF setting, the spatial functions corresponding to spin up resp. spin
down functions are chosen independently from each other, but still are assumed to have
prescribed angular momenta. In this case a ground state exists if Z > N − 1, and we
provide sufficient conditions under which this is also true if Z = N − 1. For example,
there exists a ground state for Z = N − 1 in the spinless case (i.e. if all spins point in
the same direction) with two angular momentum shells `1 = 0, `2 > 0.

For certain closed shell atoms (e.g. He, Ne) it is known that the minimization
problems for the general and restricted Hartree–Fock functionals coincide, if Z � N [7].
On the other hand there are also cases where they differ [14], see [7] for an explanation
of this fact. Nevertheless, the restricted ground states are always critical points of the
GHF functional. This is due to the fact that the considered constraints do not require
additional Lagrange multipliers in the Euler–Lagrange equations. Thus, this paper also
establishes the existence of critical points for the GHF functional in the case Z = N−1.
To our knowledge, the only previous result providing the existence of critical points for
the GHF functional in the case Z = N − 1 is given in the paper [5] of Cancès and Le
Bris, which in fact even holds for arbitrary Z > 0. But in general, the critical points
constructed in their paper only correspond either to local (not global) minima or saddle
points.

In the literature the existence of minimizers for restricted Hartree–Fock functionals
has previously been studied for special cases. Based on Reeken’s paper [13] on the
solutions of the Hartree equation, Bazley and Seydel [2] proved the existence of a
minimizer for the spin-restricted Hartree–Fock functional of Helium (N = 2), which is
given by the restricted Hartree functional. For this functional it is known that there
exists a minimizer even if Z = 1 = N−1, see [12, Theorem II.2]. In our paper we extend
this result to arbitrary numbers of filled shells. Lieb and Simon generalize their GHF
existence result [11] to certain restricted situations in [10], but their theorem does not
cover the restrictions discussed in this paper. Though, this article has been strongly
inspired by their work [11]. In [12], Lions treats restricted Hartree–Fock equations,
which arise as the Euler–Lagrange equations of the RHF functional. He proves the
existence of a sequence of solutions to these equations provided Z ≥ N . Lions’ proof
relies, however, on the unproven assertion that all eigenvalues of a radial Fock operator
are simple. His approach is motivated by the paper of Wolkowisky [17] who shows the
existence of solutions for a system of restricted Hartree-type equations. A numerical
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approach to restricted Hartree–Fock theory may be found in the book of Froese Fischer
[6]. Finally, we mention the article of Solovej [15], where he proves the existence of a
universal constant Q > 0 so that there is no GHF minimizer for Z ≤ N − Q. This
establishes the ionization conjecture within the Hartree–Fock theory. The question
whether or not there is a GHF minimizer for Z = N − 1 is open.

The paper is organized as follows: In Section 2 we introduce the restricted Hartree–
Fock functional for closed shell atoms with prescribed angular momentum quantum
numbers and prove an existence theorem for minimizers of this functional. The Sec-
tion 3 is devoted to generalizations of the RHF existence theorem to the SRHF and
UHF functionals. A derivation of the RHF functional in the closed shell case can be
found in Section 4. Finally, there is an appendix containing technical lemmas.

Acknowledgment. The author thanks M. Griesemer for drawing his attention to the
problem and for helpful discussions. The author is supported by the Studienstiftung
des Deutschen Volkes.

2 Minimizers for Closed Shell Atoms

The simplest Hartree–Fock approximation for atoms consists in restricting the admis-
sible N -electron states to the set of single Slater determinants, which are of the form

(ϕ1 ∧ · · · ∧ ϕN )(x1, . . . , xN ) =
1√
N !

∑
σ∈SN

sgn(σ)ϕσ(1)(x1) . . . ϕσ(N)(xN ), (1)

where SN denotes the symmetric group of degree N , sgn(σ) is the sign of a permutation
σ, and ϕ1, . . . , ϕN denote orthonormal L2(R3; C2)-functions. It is well-known, that the
energy of an atom with nuclear charge Z and N electrons in the state (1) is given by
the general Hartree–Fock (GHF) functional

EHF (ϕ1, . . . , ϕN ) =
N∑
j=1

∫
|∇ϕj |2 −

Z

|x|
|ϕj |2 dx+

1
2

∫∫
ρ(x)ρ(y)− |τ(x, y)|2

|x− y|
dx dy (2)

where

τ(x, y) :=
N∑
j=1

ϕj(x)ϕj(y), ρ(x) :=
N∑
j=1

|ϕj(x)|2

denote the density matrix and the electronic density, respectively. We write x =
(x, µ) ∈ R3×{±1},

∫
dx refers to integration with respect to the product of Lebesgue

and counting measure, and |x− y| = |x− y|.
Given a closed shell atom with s0 ∈ N shells of prescribed angular momentum

quantum numbers `1, . . . , `s0 ∈ N0, we impose the following form on the one-electron
orbitals

ϕjmσ(x, µ) =
fj(|x|)
|x|

Y`jm(x)δσµ, j = 1, . . . , s0, m = −`j , . . . ,+`j , σ = ±1, (3)

where the radial functions fj are in L2(R+) and

〈fi, fj〉 :=
∫

R+

fifj dr = δij , if `i = `j , (4)
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in order to ensure the orthonormality of the functions (3). Here Y`m denote the usual
spherical harmonics. The Hartree–Fock energy of the Slater determinant built by
the orbitals (3) is given by the restricted Hartree–Fock (RHF) functional (compare
Section 4):

ERHF (f1, . . . , fs0) = 2
s0∑
j=1

(2`j + 1)
(∫

R+

|f ′j |2 +
`j(`j + 1)

r2
|fj |2 −

Z

r
|fj |2 dr

)

+
1
2

s0∑
j,k=1

(2`j + 1)(2`k + 1)

(∫∫
(R+)2

4
|fj(r)|2|fk(s)|2

max{r, s}

−2fj(r)fk(s)U`j`k(r, s)fk(r)fj(s) dr ds

)
. (5)

The integral kernels U`j`k appearing in the last term on the right-hand side are given
in (25). We shall only need their properties collected in Lemma 5.1.

Let H1
0 (R+) denote the completion of C∞0 (R+) with respect to the H1(R+)-norm.

The RHF functional (5) is bounded below, if the functions f1, . . . , fs0 are in H1
0 (R+)

and obey the constraints (4), see Lemma 5.2. We define the RHF ground state energy
by

E(N,Z) = inf{ERHF (f1, . . . , fs0)|f1, . . . , fs0 ∈ H1
0 (R+), 〈fi, fj〉 = δij if `i = `j}, (6)

where the dependence of E(N,Z) on `1, . . . , `s0 is suppressed. The main question of
this paper is whether the infimum in (6) is actually a minimum.

If there exist minimizing functions f1, . . . , fs0 obeying the constraints of (6), then
they are solutions of the corresponding Euler–Lagrange equations, which we may as-
sume to have the form (see Remark (b) below)

H`ifi = εifi, i = 1, . . . , s0, (7)

with radial Fock operators given by

H`i = −∂2
r +

`i(`i + 1)
r2

− Z

r
+ 2U −K`i , i = 1, . . . , s0, where

(Uf)(r) =
s0∑
j=1

(2`j + 1)
∫

R+

|fj(s)|2

max{r, s}
dsf(r),

(K`f)(r) =
s0∑
j=1

(2`j + 1)fj(r)
∫

R+

fj(s)f(s)U``j (r, s) ds.

We suppress the dependence of the operators U , K` and thus H`i on the functions
f1, . . . , fs0 . The Euler–Lagrange equations (7), called Hartree–Fock equations, form a
set of s0 coupled non-linear eigenvalue equations for the functions f1, . . . , fs0 .
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Remarks.

(a) By Lemma 5.2, the operators H`i are symmetric semi-bounded operators on
C∞0 (R+). Therefore, minimizing functions f1, . . . , fs0 obeying the constraints
of (6) are in the domain D(H`i) of the Friedrichs extension of H`i , which is
contained in H1

0 (R+).

(b) The Euler–Lagrange equations for minimizing functions f1, . . . , fs0 obeying the
constraints of (6) are given by H`ifi =

∑
j εijfj , where the sum runs over all

indices j with `j = `i. Since the functional ERHF is invariant under unitary
transformations of the subspaces of L2(R+) spanned by all radial functions fj with
equal angular momentum quantum numbers, the minimizing functions f1, . . . , fs0
can always be chosen as eigenfunctions of the radial Fock operators.

(c) The constraints of (6) may be relaxed without lowering the ground state energy,
more precisely E(N,Z) = Ẽ(N,Z) for

Ẽ(N,Z) = inf{ERHF (f1, . . . , fs0)|f1, . . . , fs0 ∈ H1
0 (R+), 〈fi, fj〉 = 0 if `i = `j

and i 6= j, ‖fi‖ ≤ 1 for all i}. (8)

This can be seen using similar arguments as for the general Hartree–Fock func-
tional in [12, section II.2]. The following theorem shows that the relaxed mini-
mization problem always possesses a minimizer.

Theorem 2.1. Let s0 ∈ N, `1, . . . , `s0 ∈ N0, and Z > 0. Then, there exist functions
f1, . . . , fs0 ∈ H1

0 (R+), which minimize the RHF functional (5) under the constraints

〈fi, fj〉 = 0 if `i = `j and i 6= j,

‖fi‖ ≤ 1 for all i.

Moreover, fi ∈ D(H`i), H`ifi = εifi, and:

(i) Either εi ≤ 0 or fi = 0. εi < 0 implies ‖fi‖ = 1.

(ii) If Z > N − 2(2`i + 1), then fi 6= 0.
If Z ≥ N − 1, then ‖fi‖ = 1 for all i = 1, . . . , s0.

(iii) If Z > N − 1, then εi < 0 and ‖fi‖ = 1 for all i = 1, . . . , s0.

Remarks.

(a) Theorem 2.1 (ii) shows that for Z = N −1 there always exists a normalized mini-
mizer for ERHF . In this case we do not know whether or not εi < 0. Nevertheless,
it is clear that Z > N−2(2`i+1) always implies E(N,Z) < E(i)(N−2(2`i+1), Z)
for all i = 1, . . . , s0, where E(i)(N − 2(2`i + 1), Z) denotes the minimal energy in
the case where all electrons of the i-th shell are dropped.
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(b) In general Hartree–Fock theory it is known that the minimizing functions can
be chosen as eigenfunctions to the N lowest eigenvalues of the corresponding
Fock operator. Moreover, there is a gap between the occupied and unoccupied
eigenvalues [1]. It would be interesting to know whether similar results hold also
in the restricted Hartree–Fock theory, where, unfortunately, the method of [1] is
not applicable.

Before turning to the proof of Theorem 2.1 we introduce the following notations
that will be used throughout the paper:

r> := max{r, s}, r< := min{r, s}, for r, s ≥ 0.

We write ERHF (f1, . . . , f̂i, . . . , fs0) to denote the restricted Hartree–Fock functional
where the electrons of the i-th shell are dropped. The following lemma exhibits the
dependence of ERHF (f1, . . . , fi, . . . , fs0) on fi, and will be crucial for the existence of a
minimizer in the critical case Z = N − 1. It follows easily from the definition of ERHF

if we set Pi(r, s) := (2`i + 1)(2r−1
> − U`i`i(r, s)).

Lemma 2.2. Let s0 ∈ N, `1, . . . , `s0 ∈ N0, Z > 0 and f1, . . . , fs0 ∈ H1
0 (R+). Further-

more, let i ∈ {1, . . . , s0} and let H(i)
`i

denote the Fock operator where all electrons of
the i-th shell are dropped. Then:

ERHF (f1, . . . , fi, . . . , fs0) = ERHF (f1, . . . , f̂i, . . . , fs0) + 2(2`i + 1)
〈
fi

∣∣∣H(i)
`i

∣∣∣ fi〉
+(2`i + 1)〈fi ⊗ fi |Pi| fi ⊗ fi〉, (9)

where Pi(r, s) = Pi(s, r) and

2`i + 1
max{r, s}

≤ Pi(r, s) ≤
4`i + 1

max{r, s}
, r, s ≥ 0.

Furthermore, for all λ ≥ 0:

ERHF (f1, . . . ,
fi + δh√
1 + λδ2

, . . . , fs0)

= ERHF (f1, . . . , fi, . . . , fs0) + 4(2`i + 1)δRe 〈h |H`i | fi〉

+2(2`i + 1)δ2
(〈
h
∣∣∣H(i)

`i

∣∣∣h〉− λ〈fi |H`i | fi〉+ Re 〈h⊗ h |Pi| fi ⊗ fi〉

+〈fi ⊗ h+ h⊗ fi |Pi| fi ⊗ h〉
)

+O(δ3) (10)

for δ → 0.

Proof of Theorem 2.1. First, we give a proof of the existence of a minimizer for the
relaxed minimization problem, which proceeds the same way as in the paper of Lieb and
Simon [11]. ERHF (g1, . . . , gs0) is bounded below independently of g1, . . . , gs0 ∈ H1

0 (R+)
with ‖gi‖ ≤ 1, see Lemma 5.2. Thus, let g(n)

1 , . . . , g
(n)
s0 be a minimizing sequence for

the relaxed minimization problem (8). Again by Lemma 5.2, (g(n)
j )n∈N is bounded

in H1
0 (R+). Hence, there exist weakly-H1

0 (R+) convergent subsequences g(n)
j ⇀ gj

(n→∞), j = 1, . . . , s0. Fix i ∈ {1, . . . , s0}. Without loss of generality we may assume
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that g1, . . . , gki are all functions gj with `j = `i. The matrix M := (〈gj , gk〉)j,k=1,...,ki is
hermitian and obeys 0 ≤M ≤ 1 (c.f. [11, Lemma 2.2]), so there exists a unitary ki×ki
matrix U with the property U∗MU = D, where D is a diagonal matrix with eigenvalues
in [0, 1]. If we define fj =

∑ki
k=1 ukjgk, j = 1, . . . , ki, then 〈fj , fk〉 = λjδjk, 0 ≤ λj ≤ 1.

It is easy to see that ERHF is invariant under such transformations. Thus, transforming
each subspace of functions with equal angular momentum quantum numbers in this
way, we obtain functions f1, . . . , fs0 with 〈fi, fj〉 = 0, if `i = `j , i 6= j, ‖fi‖ ≤ 1 for all
i. Furthermore, f1, . . . , fs0 minimize ERHF , because

Ẽ(N,Z) ≤ ERHF (f1, . . . , fs0) = ERHF (g1, . . . , gs0)

≤ lim inf
n→∞

ERHF (g(n)
1 , . . . , g(n)

s0 ) = Ẽ(N,Z),

where we used Lemma 5.2. By further transformations we can achieve that f1, . . . , fs0
are eigenfunctions of the operators H`i .

(i) Let fi 6= 0 and assume that εi > 0. Then, by (10) with λ = 0 and h = fi, the
energy decreases if we decrease the norm of fi. Let εi < 0 and assume that ‖fi‖ < 1.
Then, the energy is decreased by increasing the norm of fi.

(ii) We prove the following more general statement: Let 0 ≤ µ ≤ 1 and let
Z ≥ N − 1− (1− µ)(4`i + 1), then µ ≤ ‖fi‖2 ≤ 1.

There is nothing to prove in the case µ = 0. Therefore, let µ > 0 and assume that
‖fi‖2 < µ. We show that there exists h ∈ H1

0 (R+) with h ⊥ fj , if `j = `i, such that

ERHF (f1, . . . , fi + δh, . . . , fs0) < ERHF (f1, . . . , fi, . . . , fs0)

for small δ 6= 0, which contradicts the minimization property of f1, . . . , fs0 . The depen-
dence of the left-hand side on h ∈ H1

0 (R+) is given by (10) with λ = 0. The factor of δ
in (10) vanishes since f1, . . . , fs0 is a minimizer. Therefore, we only have to show that
there exist infinitely many normalized functions h ∈ H1

0 (R+) with disjoint supports,
such that the factor of δ2 in (10)〈

h
∣∣∣H(i)

`i

∣∣∣h〉+ 〈fi ⊗ h |Pi| fi ⊗ h〉+ 〈fi ⊗ h |Pi|h⊗ fi〉+ Re 〈h⊗ h |Pi| fi ⊗ fi〉 (11)

is negative. We may drop the Re-term because it becomes non-positive upon a suitable
choice of the phase of h. Let J ∈ C∞0 (R+), supp(J) ⊂ [1, 2], ‖J‖ = 1. Furthermore,
we define JR(r) := R−1/2J(r/R) for R > 0, then supp(JR) ⊂ [R, 2R], ‖JR‖ = 1,
JR ∈ C∞0 (R+). Using U(r) ≤ r−1

∑s0
j=1(2`j + 1) and K` ≥ 0 (Lemma 5.2), we see that〈

JR

∣∣∣H(i)
`i

∣∣∣ JR〉 ≤
〈
JR

∣∣∣∣−∂2
r +

`i(`i + 1)
r2

− Z

r
+
N − 2(2`i + 1)

r

∣∣∣∣ JR〉. (12)

This inequality combined with the estimate for Pi in Lemma 2.2 allows us to estimate
(11) with the choice h = JR〈

JR

∣∣∣H(i)
`i

∣∣∣ JR〉 ≤ 1
R2

〈
J
∣∣∣−∂2

r + `i(`i+1)
r2

∣∣∣ J〉− (4`i + 1)µ
R

〈
J
∣∣1
r

∣∣ J〉,
〈fi ⊗ JR |Pi| fi ⊗ JR〉 ≤

(4`i + 1)‖fi‖2

R

〈
J
∣∣1
r

∣∣ J〉,
〈fi ⊗ JR |Pi| JR ⊗ fi〉 = o

(
1
R

)
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for R → ∞. The sum of the three terms on the right-hand side becomes negative for
R large enough, because ‖fi‖2 < µ, by assumption. This proves (ii).

(iii) It suffices to show that εj < 0, j = 1, . . . , s0, see (i) and (ii). Assume that
εi = 0. We show that there exists h ∈ H1

0 (R+), ‖h‖ = 1, h ⊥ fj , if `i = `j , so that

ERHF (f1, . . . ,
fi + δh√

1 + δ2
, . . . , fs0) < ERHF (f1, . . . , fi, . . . , fs0)

for small δ 6= 0. Again, the dependence on h of the left-hand side is given by (10) with
λ = 1. Since εi = 0, it suffices to show that the factor of δ2, which is the same as in
(11), can be made negative by suitable choices of h. This can be done choosing the
same scaled functions as in (ii), but now using Z > N − 1 instead of ‖fi‖2 < µ.

3 Other Restricted Hartree–Fock Functionals

Theorem 2.1 can be readily generalized to other restricted Hartree–Fock functionals.
In this section we present analogous results for a so-called UHF functional as well as
for a spin-restricted Hartree–Fock functional. In the former case we continue assuming
that the electrons are in product states of space and spin but we drop the condition
that the spatial wave functions for spin up resp. spin down electrons are equal in each
shell with fixed angular momentum quantum numbers. More precisely, we consider
electrons that are in states of the form

ϕjm↑(x, µ) =
fαj (|x|)
|x|

Y`αj m(x)δµ,+1, j = 1, . . . , sα0 , m = −`αj , . . . ,+`αj , (13)

ϕjm↓(x, µ) =
fβj (|x|)
|x|

Y
`βjm

(x)δµ,−1, j = 1, . . . , sβ0 , m = −`βj , . . . ,+`
β
j , (14)

where sα0 , s
β
0 ∈ N0, `α1 , . . . , `

α
sα0
, `β1 , . . . , `

β

sβ0
∈ N0, and for all ν ∈ {α, β}, i, j ∈ {1, . . . , sν0}

fνi ∈ H1
0 (R+), 〈fνi , fνj 〉 = δij , if `νi = `νj .

The corresponding Hartree–Fock functional, which is called unrestricted Hartree–Fock
(UHF) functional, takes the form

EUHF (fα1 , . . . , f
α
sα0

; fβ1 , . . . , f
β

sβ0
)

=
∑

ν∈{α,β}

sν0∑
j=1

(2`νj + 1)
〈
fνj

∣∣∣∣−∂2
r +

`νj (`νj + 1)
r2

− Z

r

∣∣∣∣ fνj 〉

+
1
2

∑
ν∈{α,β}

sν0∑
j,k=1

(
D[fνj , f

ν
k ]− E[fνj , f

ν
k ]
)

+
sα0∑
j=1

sβ0∑
k=1

D[fαj , f
β
k ]. (15)

Here we use the shorthand notations

D[fνj , f
µ
k ] := (2`νj + 1)(2`µk + 1)

〈
fνj ⊗ f

µ
k

∣∣∣ 1
r>

∣∣∣ fνj ⊗ fµk 〉,
E[fνj , f

µ
k ] := (2`νj + 1)(2`µk + 1)

〈
fνj ⊗ f

µ
k

∣∣∣U`νj `µk ∣∣∣ fµk ⊗ fνj 〉.
8



Given ν ∈ {α, β} and ` ∈ N0 we introduce Fock operators

Hν
` := −∂2

r + `(`+ 1)r−2 − Zr−1 + U −Kν
` , where

(Uf)(r) =
∑

κ∈{α,β}

sκ0∑
j=1

(2`κj + 1)
∫

R+

|fκj (s)|2

max{r, s}
dsf(r),

(Kν
` f)(r) =

sν0∑
j=1

(2`νj + 1)fνj (r)
∫

R+

fνj (s)U``νj (r, s)f(s) ds

for f ∈ L2(R+). Again these operators depend on the functions fα1 , . . . , f
β

sβ0
. Using the

same methods as in the proof of Theorem 2.1, the following existence theorem can be
proved:

Theorem 3.1. Let sα0 , s
β
0 ∈ N0, `α1 , . . . , `

α
sα0
, `β1 , . . . , `

β

sβ0
∈ N0, and Z > 0. Then, there

exist functions fα1 , . . . , f
α
sα0
, fβ1 , . . . , f

β

sβ0
∈ H1

0 (R+), which minimize the UHF functional

(15) under the constraints: for all ν ∈ {α, β} and i, j ∈ {1, . . . , sν0}

〈fνi , fνj 〉 = 0 if `νi = `νj , i 6= j,

‖fνi ‖ ≤ 1 for all i.

Moreover, fνi ∈ D(Hν
`νi

), Hν
`νi
fνi = ενi f

ν
i .

(i) Either ενi ≤ 0 or fνi = 0. ενi < 0 implies ‖fνi ‖ = 1.

(ii) If Z > N − (2`νi + 1), then fνi 6= 0.
If Z ≥ N − 1 and `νi 6= 0, then ‖fνi ‖ = 1.

(iii) If Z > N − 1, then ενi < 0 and ‖fνi ‖ = 1 for all ν ∈ {α, β}, i = 1, . . . , sν0.

Remarks.

(a) We do not know, except for the case where ` = 0, whether the occupied eigen-
values of the corresponding Fock operator are the lowest eigenvalues or whether
there is a gap between occupied and unoccupied eigenvalues.

(b) In general, Theorem 3.1 does not imply the existence of UHF minimizers in the
case of Z = N − 1. Nevertheless, in the special case where all spins point in the
same direction (i.e. the spinless case) the following existence result holds true.

Corollary 3.2. Let sα0 ∈ N, sβ0 = 0, and let `α1 = 0, `α2 , . . . , `
α
sα0
> 0 with

sα0 < 2 +
sα0∑
i=2

(
`αi

`αi + 1

)2

.

If Z =
∑sα0

i=2(2`αi + 1) and N = Z + 1, then the UHF functional (15) has a minimizer
under the constraints 〈fαi , fαj 〉 = δij for all i, j = 1, . . . , sα0 with `i = `j.

9



Remark. The condition of Corollary 3.2 always holds in the case of two shells sα0 = 2,
`α1 = 0, `α2 > 0.

Proof of Corollary 3.2. Theorem 3.1 yields the existence of fα1 , . . . , f
α
sα0
∈ H1

0 (R+),
which minimize (15) under the constraints 〈fαi , fαj 〉 = 0 if `αi = `αj and i 6= j, ‖fαi ‖ ≤ 1
for all i. Clearly, ‖fα2 ‖ = · · · = ‖fαsα0 ‖ = 1 by (ii). Observe that

EUHF (fα1 , . . . , f
α
sα0

) ≤ inf
g∈H1

0 (R+),

‖g‖≤1

EUHF (g, 0, . . . , 0) = −Z
2

4
, (16)

and on the other hand

EUHF (0, fα2 , . . . , f
α
sα0

) ≥ −Z
2

4

sα0∑
i=2

2`αi + 1
(`αi + 1)2

= −Z
2

4

sα0 − 1−
sα0∑
i=2

(
`αi

`αi + 1

)2


> −Z
2

4
, (17)

where we dropped the electron–electron energy and estimated the remaining terms by
the hydrogen ground state energies in the first inequality, and used the condition on
sα0 in the second inequality. Assume, that 〈fα1 |Hα

0 |fα1 〉 = 0, then

EUHF (fα1 , . . . , f
α
sα0

) = EUHF (0, fα2 , . . . , f
α
sα0

),

because EUHF (fα1 , . . . , f
α
sα0

) = EUHF (0, fα2 , . . . , f
α
sα0

) + 〈fα1 |Hα
0 |fα1 〉, which contradicts

(16) and (17). Therefore, 〈fα1 |Hα
0 |fα1 〉 = εα1 ‖fα1 ‖2 < 0, which implies εα1 < 0 and thus

‖fα1 ‖ = 1.

Another frequently used model for atoms with an even number of electrons is the
spin-restricted Hartree–Fock (SRHF) model [4]. It emerges from the RHF model in
Section 2 by dropping the prescribed angular momentum quantum numbers. More
precisely, for an atom with atomic number Z and N = 2n we impose the following
form on the one-electron orbitals

ϕiσ(x, µ) = ϕi(x)δσµ, i = 1, . . . , n, σ = ±1,

where ϕi ∈ H1(R3) and 〈ϕi, ϕj〉 :=
∫

R3 ϕiϕj dx = δij . Then the restricted Hartree–Fock
functional reads

ESRHF (ϕ1, . . . , ϕn) = 2
n∑
i=1

∫
|∇ϕi(x)|2 − Z

|x|
|ϕi(x)|2 dx

+
1
2

∫∫
4
ρ(x)ρ(y)
|x− y|

− 2
|τ(x,y)|2

|x− y|
dx dy. (18)

Here the electronic density matrix and the electronic density are given by

τ(x,y) =
n∑
i=1

ϕi(x)ϕi(y), ρ(x) =
n∑
i=1

|ϕi(x)|2.
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The corresponding Fock operator is given by

H = −∆− Z

|x|
+ 2

∫
ρ(y)
|x− y|

dy −K,

where (Kϕ)(x) :=
∫ τ(x,y)ϕ(y)

|x−y| dy. Using similar ideas as in the proof of Theorem 2.1 the
following existence theorem holds true for the spin-restricted Hartree–Fock functional:

Theorem 3.3. Let Z > 0 and N = 2n. Then, there exist functions ϕ1, . . . , ϕn ∈
H1(R3), which minimize the SRHF functional (18) under the constraints

〈ϕi, ϕj〉 = 0 if i 6= j,

‖ϕi‖ ≤ 1 for all i.

Moreover, ϕi ∈ D(H) = H2(R3), Hϕi = εiϕi, and:

(i) Either εi ≤ 0 or ϕi = 0. εi < 0 implies ‖ϕi‖ = 1.

(ii) If Z > N − 2, then ϕi 6= 0 for all i = 1, . . . , n.
If Z ≥ N − 1, then ‖ϕi‖ = 1 for all i = 1 . . . , n.

(iii) If Z > N − 1, then εi < 0 and ‖ϕi‖ = 1 for all i = 1, . . . , n.

Remark. For this spin-restricted Hartree–Fock functional the minimizer exists for all
Z ≥ N − 1. Again we do not know whether or not εj are the n lowest eigenvalues of
H, although there seem to be no numerical counterexamples [4].

4 Derivation of the Closed Shell Energy Functional

For the reader’s convenience we give here a self-contained derivation of the restricted
Hartree–Fock functional (5). For this purpose, we begin with a lemma that will be
useful for the calculation of the electron–electron interaction energy.

Let P` denote the `-th Legendre polynomial. We remark that for x̂, ŷ ∈ S2 and
` ∈ N0 the addition theorem

∑̀
m=−`

Y`m(x̂)Y`m(ŷ) =
2`+ 1

4π
P`(x̂ · ŷ) (19)

holds, where x̂ · ŷ is the usual scalar product of two vectors in R3.

Proposition 4.1. Let `, L ∈ N0 and M ∈ Z, |M | ≤ L. Then for all r, s > 0 and
x̂ ∈ S2:

1
4π

∫
S2

P`(x̂ · ŷ)YLM (ŷ)
|rx̂− sŷ|

dσ(ŷ) = YLM (x̂)
L+∑̀

n=|L−`|

(
L ` n

0 0 0

)2
min{r, s}n

max{r, s}n+1
. (20)
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Remark. An easy consequence of this proposition is that for all `, `′ ∈ N0

1
(4π)2

∫
(S2)2

P`(x̂ · ŷ)P`′(x̂ · ŷ)
|rx̂− sŷ|

dσ(x̂, ŷ) =
`+`′∑

k=|`−`′|

(
` `′ k

0 0 0

)2
min{r, s}k

max{r, s}k+1
. (21)

This is seen by multiplying (20) with YLM (x̂), integrating over S2 with respect to x̂
and summing over M = −L, . . . , L.

Proof. Assume first that r 6= s. For fixed x̂ ∈ S2 the series expansion

1
|rx̂− sŷ|

=
1
r>

∞∑
n=0

(
r<
r>

)n
Pn(x̂ · ŷ)

converges pointwise for all ŷ ∈ S2 and thus in L2(S2) because
∑N

n=0

(
r<
r>

)n
Pn(x̂ · ŷ) is

bounded uniformly in N and ŷ. We get

P`(x̂ · ŷ)
|rx̂− sŷ|

=
1
r>

∞∑
n=0

(
r<
r>

)n
Pn(x̂ · ŷ)P`(x̂ · ŷ)

=
1
r>

∞∑
n=0

(
r<
r>

)n `+n∑
k=|`−n|

(2k + 1)

(
k ` n

0 0 0

)2

Pk(x̂ · ŷ)

where we used the addition theorem

Pn(z)P`(z) =
`+n∑

k=|`−n|

(2k + 1)

(
k ` n

0 0 0

)2

Pk(z).

The addition theorem (19) allows us to compute

1
4π

∫
S2

P`(x̂ · ŷ)YLM (ŷ)
|rx̂− sŷ|

dσ(ŷ)

=
1
r>

∞∑
n=0

(
r<
r>

)n `+n∑
k=|`−n|

(
k ` n

0 0 0

)2 k∑
m=−k

Ykm(x̂)
∫

S2

Ykm(ŷ)YLM (ŷ) dσ(ŷ)

= YLM (x̂)
∞∑
n=0

(
L ` n

0 0 0

)2
min{r, s}n

max{r, s}n+1
.

The desired equation for r 6= s now follows from the fact that the Wigner 3j-symbols
vanish unless |L − `| ≤ n ≤ L + `. The case r = s can be derived from the above
result by choosing a sequence rn ↓ s. Clearly, 1

|rnx̂−sŷ| ↑
1

|sx̂−sŷ| for all ŷ ∈ S2 \ {x̂} and
1

|x̂−ŷ| is integrable with respect to ŷ ∈ S2. Hence Lebesgue’s Dominated Convergence
Theorem may be used to see that the formula is also true for r = s.

Let us turn to the derivation of ERHF . If f1, . . . , fs0 are in H1
0 (R+), then the

functions ϕjmσ defined by (3) are orthonormal in L2(R3; C2), and ϕjmσ ∈ H1(R3; C2)
by Hardy’s inequality ∫

R+

|f(r)|2

r2
dr ≤ 4

∫
R+

|f ′(r)|2 dr (22)
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for f ∈ H1
0 (R+). Using the addition theorem (19), the corresponding density matrix τ

and electronic density ρ take the form

τ(x, y) = δµxµy

s0∑
j=1

2`j + 1
4π

fj(|x|)
|x|

fj(|y|)
|y|

P`j (x̂ · ŷ), (23)

ρ(x) =
s0∑
j=1

2`j + 1
4π

|fj(|x|)|2

|x|2
. (24)

Here we abbreviate x̂ := x/|x| for all 0 6= x ∈ R3. If the general Hartree–Fock
functional (2) is evaluated at the functions ϕjmσ, the only term, which is not trivially
computed, is the exchange term:

∫∫
|τ(x, y)|2

|x− y|
dx dy = 2

s0∑
j,k=1

(2`j + 1)(2`k + 1)
(4π)2

∫
(R+)2

dr dsfj(r)fk(s)fk(r)fj(s)×

×
∫

(S2)2
dσ(x̂, ŷ)

P`j (x̂ · ŷ)P`k(x̂ · ŷ)
|rx̂− sŷ|

.

Using (21), the form of (5) follows from the choice

U``′(r, s) =
`+`′∑

k=|`−`′|

(
` `′ k

0 0 0

)2
min{r, s}k

max{r, s}k+1
. (25)

5 Appendix

Lemma 5.1. Let `, `′ ∈ N0, and r, s > 0. Then the functions U``′ defined by (25) obey:

(U1) U``′(r, s) = U`′`(r, s) = U``′(s, r),

(U2) 0 ≤ U``′(r, s) ≤ max{r, s}−1,

(U3) U``(r, s) ≥
1

2`+ 1
1

max{r, s}
,

(U4) For all g ∈ H1
0 (R+) the integral kernels g(r)U``′(r, s)g(s) define non-negative

Hilbert–Schmidt operators on L2(R+).

Proof. (U1) and (U3) are obvious from the explicit representation of U``′(r, s) and

(
` ` 0
0 0 0

)2

=
1

2`+ 1
.

(U2) The positivity of U``′ is clear, the upper bound can be proved using (21), (19)
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and Cauchy–Schwarz:

U``′(r, s) =
1

(4π)2

∫
(S2)2

P`(x̂ · ŷ)P`′(x̂ · ŷ)
|rx̂− sŷ|

dσ(x̂, ŷ)

≤ 1
(2`+ 1)(2`′ + 1)

∑̀
m=−`

`′∑
m′=−`′

(∫
(S2)2

|Y`m(x̂)|2|Y`′m′(ŷ)|2

|rx̂− sŷ|
dσ(x̂, ŷ)

)1/2

×

×

(∫
(S2)2

|Y`′m′(x̂)|2|Y`m(ŷ)|2

|rx̂− sŷ|
dσ(x̂, ŷ)

)1/2

≤ 1
(4π)2

∫
(S2)2

1
|rx̂− sŷ|

dσ(x̂, ŷ) =
1

max{r, s}
,

where we used 2ab ≤ a2 + b2 and (19) in the last inequality.
(U4) The integral kernels K(r, s) := g(r)U``′(r, s)g(s) are in L2(R2

+) by (U2) and
by Hardy’s inequality (22), which shows that the corresponding integral operators are
Hilbert–Schmidt. Moreover, let

ϕm(x, µ) :=
g(|x|)
|x|

Y`m(x)δµ,+1, m = −`, . . . , `,

and

τ(x, y) :=
∑̀
m=−`

ϕm(x)ϕm(y) = δµx,+1δµy ,+1
2`+ 1

4π
g(|x|)
|x|

g(|y|)
|y|

P`(x̂ · ŷ).

Given f ∈ L2(R+), we define

ϕ(x, µ) :=
f(|x|)
|x|

Y`′0(x)δµ,+1,

then ∫∫
ϕ(x)τ(x, y)ϕ(y)
|x− y|

dx dy = (2`+ 1)
∫∫

f(r)K(r, s)f(s) dr ds.

The last equality can be computed using (20) and (25). Hence, the non-negativity of
the integral operator corresponding to K follows from the non-negativity of the term
on the left-hand side.

Lemma 5.2. (i) For all f ∈ H1
0 (R+) and ε > 0:

〈
f, 1

rf
〉
≤ ε‖f ′‖2 +

1
ε
‖f‖2.

(ii) Let s0 ∈ N, `1, . . . , `s0 ∈ N0, Z > 0, f1, . . . , fs0 ∈ H1
0 (R+), and ε > 0. Then:

ERHF (f1, . . . , fs0) ≥ 2
s0∑
j=1

(2`j + 1)
[
(1− Zε)‖f ′j‖2 −

Z

ε
‖fj‖2

]
.

(iii) Let s0 ∈ N, `1, . . . , `s0 ∈ N0, and f1, . . . , fs0 ∈ H1
0 (R+). Then for all ` ∈ N0:

0 ≤ K` ≤ U ≤
s0∑
k=1

(2`k + 1)(‖f ′k‖2 + ‖fk‖2).
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(iv) Let `, `′ ∈ N0. Then the following maps are weakly sequentially continuous on
H1

0 (R+) resp. H1
0 (R+)×H1

0 (R+):

f 7→
〈
f, 1

rf
〉
,

(f, g) 7→
〈
f ⊗ g

∣∣max{r, s}−1
∣∣ f ⊗ g〉,

(f, g) 7→ 〈f ⊗ g |U``′ | g ⊗ f〉.

(v) The functional ERHF is weakly sequentially lower semicontinuous on ×Ni=1H
1
0 (R+).

Proof. (i) and (iii) follow easily from the Cauchy–Schwarz and the Hardy inequalities
(22), (U1), (U2), and (U4). To prove (ii) fix j, k ∈ {1, . . . , s0}. Using Cauchy–Schwarz,
(U1) and (U2) we obtain∣∣∣∣∫∫ fj(r)fk(s)U`j`k(r, s)fk(r)fj(s) dr ds

∣∣∣∣
≤

(∫∫
|fj(r)|2|fk(s)|2U`j`k(r, s) dr ds

) 1
2
(∫∫

|fk(r)|2|fj(s)|2U`j`k(r, s) dr ds
) 1

2

=
∫∫
|fj(r)|2|fk(s)|2U`j`k(r, s) dr ds ≤

∫∫ |fj(r)|2|fk(s)|2
max{r, s}

dr ds.

Therefore,

ERHF (f1, . . . , fs0) ≥ 2
s0∑
j=1

(2`j + 1)
(
‖f ′j‖2 − Z

〈
fj ,

1
rfj
〉)
.

The claim now follows immediately from (i).
(iv) Let fn ⇀ f weakly in H1

0 (R+). Due to the Rellich–Kondrashov theorem, fn
converges to f uniformly in R+. To prove the weak continuity of the Coulomb potential
we first use∣∣〈fn, 1

rfn
〉
−
〈
f, 1

rf
〉∣∣ ≤ ∣∣〈fn − f, 1

rfn
〉∣∣+

∣∣〈1
rf, fn − f

〉∣∣ = (∗) + (∗∗).

For R > 0 we obtain using Cauchy–Schwarz and Hardy’s inequality (22)

(∗) ≤
∫ R

0

|fn(r)− f(r)||fn(r)|
r

dr +
1
R

∫ ∞
R
|fn(r)− f(r)||fn(r)| dr

≤
(∫ R

0
|fn(r)− f(r)|2 dr

)1/2(∫ ∞
0

|fn(r)|2

r2
dr

)1/2

+
1
R
‖fn − f‖‖fn‖

≤ 2
√
R sup
r∈(0,R)

{|fn(r)− f(r)|}‖f ′n‖+
1
R

(‖fn‖+ ‖f‖) ‖fn‖.

Since ‖f ′n‖, ‖f‖, and ‖fn‖ are uniformly bounded in n, we can first choose R large to
make the second term small, then choose n large to make the first term small. (∗∗) can
be estimated analogously. The weak continuity of the other maps can be seen with a
similar decomposition argument as shown above for the Coulomb potential.

(v) Let f (n)
j ⇀ fj weakly in H1

0 (R+) for j = 1, . . . , N . Clearly,〈
fj

∣∣∣−∂2
r + `j(`j+1)

r2

∣∣∣ fj〉 ≤ lim inf
n→∞

〈
f

(n)
j

∣∣∣−∂2
r + `j(`j+1)

r2

∣∣∣ f (n)
j

〉
,
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since f (n)
j ⇀ fj in H1

0 (R+) implies ∂rf
(n)
j ⇀ ∂rfj in L2(R+) for the first term, and

using the lemma of Fatou for the second term. The remaining terms of ERHF are
weakly sequentially continuous as shown in (iv).

References

[1] Volker Bach, Elliott H. Lieb, Michael Loss, and Jan Philip Solovej. There Are No
Unfilled Shells in Unrestricted Hartree-Fock Theory. Phys. Rev. Lett., 72(19):2981–
2983, May 1994.

[2] N. Bazley and R. Seydel. Existence and bounds for critical energies of the Hartree
operator. Chem. Phys. Lett., 24(1):128–132, 1974.

[3] E. Cancès. SCF algorithms for Hartree-Fock electronic calculations. In M. De-
franceschi and C. Le Bris, editors, Lecture Notes in Chemistry, volume 74, pages
17–43. Springer-Verlag, 2000.

[4] Eric Cancès, Mireille Defranceschi, Werner Kutzelnigg, Claude Le Bris, and Yvon
Maday. Computational quantum chemistry: a primer. In Handbook of numerical
analysis, Vol. X, Handb. Numer. Anal., X, pages 3–270. North-Holland, Amster-
dam, 2003.

[5] Eric Cancès and Claude Le Bris. On the convergence of SCF algorithms for the
Hartree-Fock equations. M2AN Math. Model. Numer. Anal., 34(4):749–774, 2000.

[6] Charlotte Froese Fischer. The Hartree-Fock method for atoms: a numerical ap-
proach. Wiley, 1977.

[7] Marcel Griesemer and Fabian Hantsch. Unique Solutions to Hartree-Fock Equa-
tions for Closed Shell Atoms. Arch. Ration. Mech. Anal., 203(3):883–900, 2012.

[8] T. Helgaker, P. Jorgensen, and J. Olsen. Molecular Electronic-Structure Theory.
Wiley, first edition, 2000.

[9] Antoine Levitt. Convergence of gradient-based algorithms for the Hartree-Fock
equations. ESAIM: Mathematical Modelling and Numerical Analysis, 46(06):1321–
1336, 2012.

[10] Elliott H. Lieb and Barry Simon. On solutions to the Hartree-Fock problem for
atoms and molecules. J. Chem. Phys., 61:735–736, 1974.

[11] Elliott H. Lieb and Barry Simon. The Hartree-Fock theory for Coulomb systems.
Comm. Math. Phys., 53(3):185–194, 1977.

[12] P.-L. Lions. Solutions of Hartree-Fock equations for Coulomb systems. Comm.
Math. Phys., 109(1):33–97, 1987.

[13] M. Reeken. General theorem on bifurcation and its application to the Hartree
equation of the helium atom. J. Mathematical Phys., 11:2505–2512, 1970.

16



[14] Mary Beth Ruskai and Frank H. Stillinger. Binding limit in the Hartree approxi-
mation. J. Math. Phys., 25(6):2099–2103, 1984.

[15] Jan Philip Solovej. The ionization conjecture in Hartree-Fock theory. Ann. of
Math. (2), 158(2):509–576, 2003.

[16] Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry: Introduction to
Advanced Electronic Structure Theory. McGraw-Hill, first revised edition, 1989.

[17] Jay H. Wolkowisky. Existence of solutions of the Hartree equations for N elec-
trons. An application of the Schauder-Tychonoff theorem. Indiana Univ. Math.
J., 22:551–568, 1972/73.

17



Fabian Hantsch
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: Fabian.Hantsch@mathematik.uni-stuttgart.de

18

mailto:Fabian.Hantsch@mathematik.uni-stuttgart.de




Erschienene Preprints ab Nummer 2007/2007-001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
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