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Buttons, Holes and Loops of String:

Lacing the Doily

Markus Stroppel

Abstrat

Using graphical labels that encode the structure, we exhibit a combinatorial geometry for the

group Sym(6) and use this to exhibit automorphisms of Sym(6) that are not inner. The labels

are also used to facilitate the recognition of various graphs associated to the geometry.

1. The doily

The smallest generalized quadrangle has 15 points and 15 lines; every point or line is incident

with three objects of the other type. An algebraic model is W(2), the symplectic quadrangle over

the field F2 with 2 elements: the points and lines are the totally isotropic subspaces of a four-

dimensional vector space over F2, with respect to the (essentially unique) non-degenerate alter-

nating form on that space. We will not use this algebraic description in the sequel. In fact, we start

from drawings and use labelings by drawings that encode combinatorial information. A reader

interested in uniqueness of the smallest generalized quadrangle may for instance consult [8].

Usually, the smallest generalized quadrangle is pictorially represented by the doily (which seems

to exist in two marginally different variants1, see Fig. 1).

Figure 1: Two representations of the doily.

We will use the doily (i.e., the picture) and two different (but strongly interrelated) labelings of

the points of the doily in the sequel to exhibit an action of the symmetric group Sym(6) on W(2),

1 I do prefer the one shown on the left; ardent admirers of Belgian lace making may prefer the one on the right — as,

apparently does some ancient artist in the desert of Oz [4].
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determine the full group of automorphisms, and show that Sym(6) admits a strange (non-inner)

automorphism.

2. Labeling by laces

From [3, 4.3, p. 54] (cf. also [4]) we take an idea to label the points in an ingenious way such that

the full group of automorphisms becomes visible. The points are marked by the partitions of a six-

element set (of “holes in a button”) into three sets of size two (marked by loops of colored string

through the holes), see the picture on the left in Fig. 2. Such a partition is called a partition of

type (2,2,2). Three such partitions label the points on a line if, and only if, they have one set of size

two in common; we use that set as a label for the line.

The drawing in Fig. 2 allows the symmetries of a regular pentagon (viz., the group generated by

a rotation of order five and a reflection). These symmetries also act on our labels; the label of the

image of a point under one of these symmetries is obtained by application of the same symmetry

to the label itself. In fact these labelings help to see all automorphisms of the doily; we use them

in 2.1 to prove that Sym(6) acts on the doily by automorphisms and we will show later in 5.1 that

there no more automorphisms.

Figure 2: Labelings of the doily by buttons and laces

2.1 Theorem. For every permutation σ ∈ Sym(6) we obtain permutations σL and σP of the set of

subsets of size 2 and of the set of all partitions of type (2,2,2), respectively, defined by {a,b}σL :=

{aσ,bσ} and {{a,b}, {c,d}, {e, f }}σP := {{aσ,bσ}, {cσ,dσ}, {eσ, f σ}}.

The pair (σP ,σL) is an automorphism of the doily, i.e., a point labeled by the partition p and a

line labeled by the set t are incident if, and only if, their images pσP and tσL are incident. Map-

ping σ to (σP ,σL) is a group homomorphism from Sym(6) to the automorphism group of the

doily. �

We will prove in 5.1 below that every automorphism of the incidence structure is induced by

some element of Sym(6) in this action.
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2.2 Labeling by involutions. We choose some set2
Ω of order 6 identify each two-element subset

{a,b} of with the transposition (a,b) ∈ Sym(6), and every partition {{a,b}, {c,d}, {e, f }} of type (2,2,2)

with the permutation (a,b)(c,d)(e, f ) ∈ Sym(6); the permutations of the latter type are just the

involutions without fixed points. Note that the action of Sym(6) on the partitions of type (2,2,2) and

on the subsets of size 2 may be interpreted as the action by conjugation on the set of involutions

without fixed points and on the set of transpositions, respectively. Group theoretically, incidence

between a point (labeled by a partition) and a line (labeled by a subset of size 2) means that the

corresponding involutions commute with each other.

The picture on the right in Fig. 2 uses subsets of size one and two in a five-element set to mark

the points. Each one of these 5+10 = 15 subsets is used as a label. This new labeling uses precisely

one color for each point (apart from black and white), we will talk of red, blue and gray points

accordingly.

We think of the central hole as fixed (and not shown). Then the points are actually labeled by sets

of two holes (the red ones by sets that contain the central hole). The lines correspond to partitions

of type (1,2,2) of the set of five non-central holes; we may equivalently think of them as partitions

of type (2,2,2) of the complete set of six holes. In this sense, the two labelings shown in Fig. 2 are

dual to each other. The duality between (labelings of) points and lines that shows up here can in

fact be expressed in terms of a polarity, see 3.1 below.

3. An example of a polarity

A polarity of an incidence structure is an involution interchanging points with lines in such a way

that incidences are preserved. In general, an incidence structure will not admit any polarities at all.

Even if polarities exist, they may be hard to visualize in pictures that show lines as sets of points;

incidence graphs (see Section 6 below) are sometimes better suited for that purpose.

3.1 Proposition. A polarity π of W(2) is given as follows (see the picture on the right in Fig. 2):

• Interchange each red point with the red line incident with it.

• Interchange each blue point with the blue line on the opposite side of the pentagon.

• Interchange each gray point with the gray line curving around it.

3.2 Remark. The polarity can be given quite explicitly using a numbering of the holes in the but-

tons, see 5.3 below.

3.3 Remark. Some of the polarities of W(2) can also be seen as a symmetry of the incidence graph

(see Fig. 5): for instance, the polarity π just described corresponds to the reflection at the vertical

axis of symmetry there.

4. Ovoids and spreads

The set of red points in the picture on the right in Fig. 2 forms an “ovoid”, i.e., a set of points such

that every line contains precisely one of them (and, in particular, no two of them are collinear).

In the picture on the left in Fig. 2, the set of red lines (corresponding to the red laces which

connect the central hole with any one of the others) forms a “spread”, i.e. a set of lines such that

every point is on precisely one of them.

2 Later on, we use Ω= {0,1,2,3,4,5}.
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Apart from the ovoid that consists of the red points, we find five other ones: each one of these

corresponds to one of the non-central holes (marked green in Fig. 3). In fact, we obtain all the

ovoids in this way:

Figure 3: The ovoids in the doily: rotation of the one on the right yields four more.

4.1 Proposition. There are precisely 6 ovoids in W(2), namely those shown in Fig. 3.

Proof. Using the labeling on the left in Fig. 2 we have constructed in 2.1 a transitive action of Sym(6)

on the set of points. Thus it suffices to consider ovoids that contain a certain point p, we choose

a red one. Further points of the ovoid have to be taken outside the three lines passing through p.

If we also avoid the other red points we end up with an ovoid such as shown on the right in Fig. 3.

So take a red point q as the second one. Then three more points (collinear with q) are excluded,

and there remain four points to choose from: three of them are red, one is gray. The gray one is

collinear with each of the three red ones. Thus we have to avoid it, and end up with the ovoid

shown on the left in Fig. 3. �

4.2 Corollary. There are precisely six spreads in W(2); namely, the images of the ovoids under a

polarity (such as π from 3.1). �

We leave it as an exercise to the reader to draw pictures to show the spreads, see Fig. 4.

Figure 4: Wondering about spreads in the doily.
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5. The full group of automorphisms

5.1 Theorem. The group Sym(6) in its action on the partitions of type (2,2,2) is the full group of

automorphisms of W(2).

Proof. The full group Γ of automorphisms acts on the set of 6 ovoids, see 4.1. If we fix all these

ovoids, we fix each point. Thus the action on the ovoids gives an injective homomorphism from Γ

into Sym(6), and |Γ| ≤ 6! follows. Conversely, we have constructed in 2.1 an injective homomor-

phism from Sym(6) into Γ, mapping σ to (σP ,σL) ∈ Sym(6). Thus 6! ≤ |Γ|, and the homomorphism

in 2.1 is an isomorphism. �

A different approach (using various graphs derived from the doily) is described in [5].

5.2 Theorem. The group Sym(6) has an automorphism that is not inner.

Proof. In fact, conjugation by the polarity π from 3.1 induces an automorphism π̃ ∈ Aut(Γ) of the

full group Γ= Sym(6) of automorphisms of W(2). This automorphism of Sym(6) interchanges invo-

lutions (labeling points of the doily) that have no fixed points with transpositions (labeling lines).

Thus it is not inner. �

5.3 Examples. We exhibit the action of π̃ (i.e., conjugation byπ) on some more elements of Sym(6),

using the identification from 2.2. Thus we refer to the involutions that fix no hole as “points” and

to transpositions as “lines”. For the sake of easy reference, we number the six holes, as shown in

the drawing on the right. Using this numbering, one can also give an explicit description of the

polarity π:

• Each red line is of the form (5, j ) for some j ∈ {0,1,2,3,4}. The

image under π is (5, j )( j +1, j −1)( j +2, j −2) where addition in

{0,1,2,3,4} is performed modulo 5.

• Each blue line is of the form ( j , j + 2) for j ∈ {0,1,2,3,4}; the

image under π is (5, j +1)( j , j −2)( j +2, j −1).

• Each gray line is of the form ( j , j + 1) for j ∈ {0,1,2,3,4}; the

image under π is (5, j −2)( j , j −1)( j +1, j +2).

5
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Note that a point and a line are incident if, and only if, they commute in the group Sym(6). More-

over, two points (or lines) commute if there exists a point (or a line, respectively) that is collinear

(confluent) with both. These relations can more conveniently be formulated in terms of the inci-

dence graph, see 7.1 below.

We are ready for a case study of all conjugacy classes in Sym(6):

(1) We already know that π̃ interchanges lines (transpositions) with points.

(2) Applying π̃ to the product of an incident point-line pair3 we see that π̃ leaves the set of dou-

ble transpositions invariant. A member α of this class is centralized (and thus inverted)

by π precisely if the unique flag fixed by α is an absolute one. This happens precisely if

α ∈ {(01)(24), (12)(30), (23)(41), (34)(02), (40)(13)}.

(3) A three-cycle can be written as the product of two non-commuting transpositions. These two

transpositions are lines that have no point in common; the polarity π maps them to points

that are not collinear with a common point. In other words, the image of the three-cycle is

an element of order three that fixes no point.

3 In fact, the double transpositions may be used as labels for the edges of the incidence graph, see 7.1 below.
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To be more explicit, consider the (red) lines (5,0) and (5,1). Their images underπ are the (red)

points (5,0)(1,4)(2,3) and (5,1)(0,2)(3,4), respectively. Thus π̃ maps4 (5,0,1) = (5,0)(5,1) to

(5,0)(1,4)(2,3)(5,1)(0,2)(3,4) = (5,2,4)(0,1,3).

(4) Every four-cycle belongs to Sym(6)\Alt(6) while the other elements of order 4 in Sym(6) lie in

the characteristic subgroup Alt(6). Thus the image of any four-cycle under π̃ is a four-cycle,

again. Assume that π normalizes the subgroup 〈ψ〉 generated by an element ψ of order 4.

If ψ is a four-cycle then π centralizes 〈ψ〉. If ψ is a conjugate of (0123)(45) then π induces

inversion on 〈ψ〉. Note also that 〈ψ〉 is normalized by π if, and only if, the square α := ψ2

is centralized by π, cf. case (2). Thus the four-cycles centralized by π are the conjugates of

(0214) and (0412) under 〈(01234)〉 while the conjugates of (0214)(35) and (0412)(35) under

〈(01234)〉 are inverted by π.

(5) Every five-cycle ϕ fixes precisely one ovoid Oϕ and precisely one spread Sϕ. The spread is

easy to find: it consists of those subsets of size two that involve the hole fixed by ϕ. Now π

normalizes 〈ϕ〉 if, and only if, it interchanges Oϕ with Sϕ.

The five-cycle (0,1,2,3,4) has the spread S(0,1,2,3,4) = {(5,0), (5,1), (5,2), (5,3), (5,4)}, the ovoid

O(0,1,2,3,4) is the image of S(0,1,2,3,4). Using (0,1,2,3,4) = (0,1)(0,2)(0,3)(0,4) one computes

the image under π̃; it turns out that π centralizes (0,1,2,3,4). One can infer this also directly

from the definition of π in 3.1. Every five-cycle with the same spread but not in 〈(0,1,2,3,4)〉

generates a cyclic group that is not normalized by π.

Now consider a five-cycle fixing a hole j < 5. Since 〈(0,1,2,3,4)〉 centralizes π, it suffices to

consider the case j = 0. We find that π̃ maps (1,2,3,4,5) = (1,2)(1,3)(1,4)(1,5) to its inverse,

namely (1,5,4,3,2) = (0,1)(2,3)(4,5)(5,2)(0,3)(1,4)(5,0)(1,3)(2,4)(5,1)(0,2)(3,4). This means

O
π
(1,2,3,4,5)

= S(1,2,3,4,5). Again, we note that every five-cycle with the same spread but not

in 〈(1,2,3,4,5)〉 generates a cyclic group that is not normalized by π.

(6) It remains to study the two classes of elements of order 6, represented by (0,1,2,3,4,5) =

(0,1)(0,2)(0,3)(0,4)(0,5) and (0,1,2)(4,5), respectively. One obtains that π̃ interchanges the

two classes; in fact, we have π(0,1,2,3,4,5)π = (0,4,5)(1,3). We could also use our observa-

tion (3): the members of the different classes of elements of order 6 have squares in different

classes of elements of order 3, and the latter are interchanged by π̃.

The stabilizer Σ∼= Sym(5) of hole 5 acts transitively on the set of points in the picture on the left

in Fig. 2, and it acts transitively on the set of lines in the picture on the right. This shows:

5.4 Proposition. There are (at least) two different conjugacy classes of groups isomorphic to Sym(5)

in Sym(6); in a given action of Sym(6) on the doily each member of one of these classes preserves

an ovoid (and is transitive on the set of lines) and each member of the other class preserves a spread

(and is transitive on the set of points). �

5.5 Dualities. If δ is a duality of some incidence structure then every other duality is obtained as a

product δα with an automorphism α. If δ is a polarity then the product δα is a polarity if, and only

if, the conjugate δ−1αδ= δαδ is the inverse of α.

The doily is just the start of the infinite family of (finite) symplectic quadrangles W(q) where q is a

prime power. Note that W(q) admits dualities precisely if q is even, and that W(q) admits polarities

precisely if q is even and not a square, cf. [6, 4.9]. One knows that there is just one conjugacy class

of polarities, cf. [6, 5.4] (and use the fact that there is at most one Tits endomorphism in a finite

field).

4 The product of cycles should be read from left to right, like the rest of this text.
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From the case study in 5.3 one could also derive directly that there is only one conjugacy class

of polarities of the doily.

5.6 Remark. Among all symmetric groups, the group Sym(6) is singled out by the existence of au-

tomorphisms that are not inner. For a nice proof, see [1]. An analogous result holds for the alter-

nating groups, see [2], cf. [10, 2.4.1]. See [10, 2.4.2] for a purely group theoretic construction of an

outer automorphism of Sym(6) (using the fact that Sym(5) has 6 Sylow 5-subgroups).

6. The incidence graph

For any incidence structure G (with point set P and line set L) the incidence graph is the bi-partite

graph with vertex set the disjoint union of the point and line sets, and an edge between two vertices

precisely if the two are incident in G .

Figure 5: The incidence graph of W(2), with rotationally symmetric labels.
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The graph shown in Fig. 5 and in Fig. 6 is isomorphic to the incidence graph of W(2); the labels

suggest two isomorphisms explicitly. The labeling in Fig. 5 actually shares the rotational symmetry

with the picture in Fig. 2. Some of the polarities of W(2) can be seen as symmetries of this pictorial

representation of the incidence graph; for instance, the polarity π from 3.1 corresponds to the

reflection at the vertical axis of symmetry in Fig. 6.

Figure 6: The incidence graph of W(2), the polarity π is the reflection at the vertical axis.

Fig. 7 gives another representation of the incidence graph (due to Jacques Tits [9]). The labels of

the vertices are adapted to our present conventions; they should be read as two-element subsets

of {0,1,2,3,4,5} — this is the labeling of lines in 2.1, cf. 5.3. Each label is used twice; the polarity

interchanges opposite vertices in this picture of the graph (i.e., those labeled with the same subset).

Fig. 8 shows the same picture with our labels from Fig. 2.

See [4, Fig. 12] for yet another representation of this incidence graph.

8



Buttons, holes and loops of string: lacing the doily Markus Stroppel

05

15

25 35

45

05

15

2535

45

01

12

23

34

40

01

12

23

34

40

02

13

24

30

41

02

13

24

30

41

Figure 7: The incidence graph of W(2): Jacques Tits’ version [9].

Figure 8: The incidence graph of W(2): Jacques Tits’ version, with our labels.
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6.1 Remarks. Two vertices in the incidence graph of the doily are adjacent if, and only if, the cor-

responding involutions belong to different conjugacy classes and their product is an involution

(necessarily a double transposition). Thus the edges of the incidence graph may be labeled by

the double transpositions; the edge (a,b)(c,d) then joins (a,b)(c,d)(e, f ) and (e, f ) for {e, f } :=

{0,1,2,3,4,5} \ {a,b,c,d}.

Two transpositions in Sym(6) commute if, and only if, the corresponding vertices in the inci-

dence graph are joined by a path of length 2.

7. The line graph

We associate yet another graph with the doily, see Fig. 9: the vertices correspond to the lines in the

doily, and an edge joins two vertices if the corresponding lines are confluent (i.e., meet in a point).

This graph is known as the line graph (or confluence graph).

The location of the vertices in Fig. 9 differs from that in (the dual of) the doily in order to make

all edges of the graph easily visible. The colors are those that have been used for the lines (and, via

the polarity π, also for the points) in Fig. 2. Moreover, each edge has the color of the intersection

point that caused it.

Dually, one may interpret the vertices of this graph as the points; then each edge indicates that

the corresponding points are collinear. Systematically, this graph is known as the point graph or

collinearity graph.

05 25

15

35

12

23

34

40

30

41

02 13

45

24
01

Figure 9: The line graph of the doily, showing collinearity.

7.1 Remark. Two transpositions in Sym(6) commute if, and only if, the corresponding vertices in

the line graph are joined by an edge.

10



Buttons, holes and loops of string: lacing the doily Markus Stroppel

References

[1] H. Mäurer, Zur Automorphismengruppe der symmetrischen Gruppen, Mitt. Math. Ges. Ham-

burg 11 (1983), no. 2, 265–266, ISSN 0340-4358. MR 744532 (85k:20014). Zbl 0556.20006.

[2] H. Mäurer, Die Automorphismengruppe des Durchschnittsgraphen der k-Teilmengen einer

Menge, Mitt. Math. Sem. Giessen 165 (1984), 69–76, ISSN 0373-8221. MR 745871 (85m:05040).

Zbl 0538.05040.

[3] B. Polster, A geometrical picture book, Universitext, Springer-Verlag, New York, 1998,

ISBN 0-387-98437-2. MR 1640615 (99f:51003). Zbl 0914.51001.

[4] B. Polster, A. E. Schroth, and H. Van Maldeghem, Generalized flatland, Math. Intelligencer 23

(2001), no. 4, 33–47, ISSN 0343-6993, doi:10.1007/BF03024601. MR 1858644.

[5] B. Stroppel and M. Stroppel, Desargues, doily, dualities, and exceptional isomorphisms,

Manuscript, Stuttgart, 2012.

[6] M. Stroppel, Polarities of symplectic quadrangles, Bull. Belg. Math. Soc. Simon Stevin 10

(2003), no. 3, 437–449, ISSN 1370-1444. MR 2017454 (2004i:51004). Zbl 1040.51005.

http://projeteulid.org/getReord?id=eulid.bbms/1063372348

[7] M. Stroppel, Corrigenda to: “Polarities of symplectic quadrangles” [Bull. Belg. Math. Soc. Si-

mon Stevin 10 (2003), no. 3, 437–449], Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 4,

635, ISSN 1370-1444. MR 2115731 (2005h:51006). Zbl 1068.51002.

http://projeteulid.org/getReord?id=eulid.bbms/1102689127

[8] M. Stroppel, An affine proof of uniqueness for the smallest generalized quadrangles, in-

cluding the determination of their automorphism groups, Note Mat. 27 (2007), no. 1,

153–169, ISSN 1123-2536, doi:10.1285/i15900932v27n1p153. MR 2367763 (2008j:51006).

Zbl 1195.51006.

[9] J. Tits, Symmetry, Amer. Math. Monthly 107 (2000), no. 5, 454–461, ISSN 0002-9890,

doi:10.2307/2695304. MR 1763401. Zbl 0985.20039.

[10] R. A. Wilson, The finite simple groups, Graduate Texts in Mathematics 251, Springer-Verlag

London Ltd., London, 2009, ISBN 978-1-84800-987-5, doi:10.1007/978-1-84800-988-2.

MR 2562037 (2011e:20018). Zbl 1203.20012.

Markus Stroppel
Fachbereich Mathematik
Fakultät für Mathematik und Physik
Universität Stuttgart
70550 Stuttgart
Germany

11

http://www.worldcat.org/search?q=n2:0340-4358&qt=owc_search
http://www.ams.org/mathscinet-getitem?mr=744532
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0556.20006&format=complete
http://www.worldcat.org/search?q=n2:0373-8221&qt=owc_search
http://www.ams.org/mathscinet-getitem?mr=745871
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0538.05040&format=complete
http://www.worldcat.org/search?q=ISBN+0-387-98437-2&qt=owc_search
http://www.ams.org/mathscinet-getitem?mr=1640615
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0914.51001&format=complete
http://www.worldcat.org/search?q=n2:0343-6993&qt=owc_search
http://dx.doi.org/10.1007/BF03024601
http://www.ams.org/mathscinet-getitem?mr=1858644.
http://www.worldcat.org/search?q=n2:1370-1444&qt=owc_search
http://www.ams.org/mathscinet-getitem?mr=2017454
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:1040.51005&format=complete
http://projecteuclid.org/getRecord?id=euclid.bbms/1063372348
http://www.worldcat.org/search?q=n2:1370-1444&qt=owc_search
http://www.ams.org/mathscinet-getitem?mr=2115731
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:1068.51002&format=complete
http://projecteuclid.org/getRecord?id=euclid.bbms/1102689127
http://www.worldcat.org/search?q=n2:1123-2536&qt=owc_search
http://dx.doi.org/10.1285/i15900932v27n1p153
http://www.ams.org/mathscinet-getitem?mr=2367763
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:1195.51006&format=complete
http://www.worldcat.org/search?q=n2:0002-9890&qt=owc_search
http://dx.doi.org/10.2307/2695304
http://www.ams.org/mathscinet-getitem?mr=1763401.
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:0985.20039&format=complete
http://www.worldcat.org/search?q=ISBN+978-1-84800-987-5&qt=owc_search
http://dx.doi.org/10.1007/978-1-84800-988-2
http://www.ams.org/mathscinet-getitem?mr=2562037
http://www.zentralblatt-math.org/NEW/zmath/en/search/?q=an:1203.20012&format=complete




Erschienene Preprints ab Nummer 2007/2007-001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily

2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
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2010-007 Grundhöfer, T.; Krinn, B.; Stroppel, M.: Non-existence of isomorphisms between certain
unitals
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2008-006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian
data using nonparametric regression and a reduced number of nested Monte Carlo steps
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