Universität Stuttgart

Fachbereich Mathematik

Partitioning estimation of local variance based on

 nearest neighbors under censoringPaola Gloria Ferrario

Universität Stuttgart

Partitioning estimation of local variance based on

 nearest neighbors under censoringPaola Gloria Ferrario

Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints
ISSN 1613-8309
(C) Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

LATEX-Style: Winfried Geis, Thomas Merkle

Abstract

In this paper we consider partitioning estimators of the local variance function, based on the first and second nearest neighbors, given an independent and identically distributed sample. Moreover, we assume that only censored data are available. Consistency of the partitioning estimator is given by known survival functions and in the more general case of unknown survival functions, estimated via the well-known Kaplan-Meier estimators. In this more general case, also the rate of convergence of the local variance estimator is given.

Keywords: local variance, censoring, partitioning estimation, nearest neighbors, weak consistency, rate of convergence.

AMS Subject classification: $62 \mathrm{G} 05,62 \mathrm{G} 20,62 \mathrm{G} 08,62 \mathrm{~N} 01$.

1 Introduction

In survival analysis, one is interested in techniques for analyzing non-negative random variables in the presence of censoring. For it, let $(X, Y, C),\left(X_{1}, Y_{1}, C_{1}\right),\left(X_{2}, Y_{2}, C_{2}\right), \ldots$ i.i.d. $R^{d} \times R_{+} \times R_{+}-$ valued random vectors. X is the random vector of covariates with distribution μ, which, e.g., in medical applications contains information about a human taking part in a medical study around an illness. Y represents the survival time of the patient. C represents the censoring time. Moreover, we introduce the variable T, defined as minimum of Y and C, and the variable δ, containing the information whether there is or not censoring. This yields a set of data

$$
\left\{\left(X_{1}, T_{1}, \delta_{1}\right), \ldots,\left(X_{n}, T_{n}, \delta_{n}\right)\right\}
$$

with

$$
\left\{\begin{array}{c}
\delta_{i}=1 \quad \text { for } Y_{i} \leq C_{i} \\
\delta_{i}=0 \quad \text { for } Y_{i}>C_{i}
\end{array}\right.
$$

and

$$
T_{i}=\min \left\{Y_{i}, C_{i}\right\}
$$

for $i=1, \ldots, n$. We introduce now the so-called survival functions

$$
\begin{aligned}
& F(t)=\boldsymbol{P}(Y>t) \\
& G(t)=\boldsymbol{P}(C>t)
\end{aligned}
$$

and

$$
K(t)=\boldsymbol{P}(T>t)=F(t) G(t)
$$

Introduce also

$$
\begin{gathered}
F^{*}(t):=\boldsymbol{P}\left(Y^{2}>t\right)=F(\sqrt{t}) \\
K^{*}(t):=\boldsymbol{P}\left(T^{*}>t\right)=F^{*}(t) G(t)=F(\sqrt{t}) G(t)
\end{gathered}
$$

where $T^{*}=\min \left\{Y^{2}, C\right\}$.
The survival functions map the event of survival onto time and are therefore monotone decreasing. Define

$$
\begin{gather*}
T_{F}:=\sup \{y: F(y)>0\} \\
T_{G}:=\sup \{y: G(y)>0\} \tag{1}\\
T_{K}:=\sup \{y: K(y)>0\}=\min \left\{T_{F}, T_{G}\right\},
\end{gather*}
$$

and notice that

$$
T_{F^{*}}:=\sup \left\{y: F^{*}(y)>0\right\}=T_{F}
$$

and

$$
T_{K^{*}}:=\sup \left\{y: K^{*}(y)>0\right\}=\min \left\{T_{F^{*}}, T_{G}\right\}=\min \left\{T_{F}, T_{G}\right\}=T_{K}
$$

In medical studies the observation of the survival time of the patient is sometimes incomplete due to right censoring formulated just before. It could, for example, happen that the patient is alive at the termination of a medical study, or that he dies by other causes than those under study, or, trivially, that the patient moves and the hospital loses information about him. For more details see for example 8, Chapter 26.
The regression function, $m(x):=\boldsymbol{E}\{Y \mid X=x\}$, is known as the function that minimizes the L_{2} risk. The problem of the estimation of the regression function under randomly right censored data is already known, see for instance [5], [8, [15] and 12].
A related interesting problem is the estimation of the local variance (or conditional variance) under censoring, defined as

$$
\begin{equation*}
\sigma^{2}(x):=\boldsymbol{E}\left\{(Y-m(X))^{2} \mid X=x\right\}=\boldsymbol{E}\left\{Y^{2} \mid X=x\right\}-m^{2}(x) \tag{2}
\end{equation*}
$$

In the literature many papers deal with nonparametric local variance estimation in the (uncensored) case of fixed design. See for instance [1], 9], [16, 17], 19], [26], 18] and [2].
[22], besides the treatment of the local variance under fixed design, introduces also the case of random design with density of X. Moreover the case of random design was treated by [6], 10], [20], 21] and [23]. [12] investigated as application heteroscedastic conditional variance estimation via plug-in by least squares methods and in the same article, he gave as another application, regression estimation in the case of censored data. Combining this two applications, we want to give an estimator of the local variance function under censored data. For that, instead of least squares methods, we modify the partitioning local variance estimator based on the first and second nearest neighbors, introduced by [7] and we generalize it, for the more complicated case of partially known observations, due to a censorship. The partitioning estimator based on the nearest neighbors represents itself a generalization of an estimator of the residual variance given by [3], (4), 14 .

After some preliminary definitions and assumptions in section 2 , we introduce a censored partitioning estimation of the local variance via nearest neighbors under known survival function, in Section 3. Later, in Section 4, we give the same estimator under unknown survival functions, that we estimate via Kaplan-Meier estimators.
Finally, in section 5, we give a rate of convergence for the more general estimator given in Section 4.

2 Some Definitions and Assumptions

We recall now the definitions of nearest neighbors.
For given $i \in\{1, \ldots, n\}$, the first nearest neighbor of X_{i} among X_{1}, \ldots, X_{i-1},
X_{i+1}, \ldots, X_{n} is denoted by $X_{[N, 1]}$ with

$$
\begin{equation*}
N[i, 1]:=N_{n}[i, 1]:=\underset{1 \leq j \leq n, j \neq i}{\arg \min } \rho\left(X_{i}, X_{j}\right), \tag{3}
\end{equation*}
$$

here ρ is a metric (typically the Euclidean one) in R^{d}. The k-th nearest neighbor of X_{i} among $X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}$ is defined as $X_{N[i, k]}$ via generalization of definition (3):

$$
\begin{equation*}
N[i, k]:=N_{n}[i, k]:=\underset{1 \leq j \leq n, j \neq i, j \notin\{N[i, 1], \ldots, N[i, k-1]\}}{\arg \min } \rho\left(X_{i}, X_{j}\right), \tag{4}
\end{equation*}
$$

by removing the preceding neighbors. If ties occur, a possibility to break them is given by taking the minimal index or by adding independent components Z_{i}, uniformly distributed on $[0,1]$, to the observation vectors X_{i} see pp. 86, 87 [8]. The latter possibility of tie-breaking allow us to assume throughout the paper that ties occur with probability zero.
Hence, we get a reorder of the data according to increasing values of the distance of the variable $X_{j}(j \in\{1, \ldots, n\} \backslash\{i\})$ from the variable $X_{i}(i=1, \ldots, n)$. Correspondingly to that, we get also a new order for the variables Y_{j} :

$$
\left(X_{N[i, 1]}, Y_{N[i, 1]}\right), \ldots,\left(X_{N[i, k]}, Y_{N[i, k]}\right), \ldots,\left(X_{N[i, n-1]}, Y_{N[i, n-1]}\right)
$$

In Sections 3 and 4 we will give a local variance estimator based on $N[i, 1]$ and $N[i, 2]$.
Moreover, for our intents we require the following conditions:
(A1) C and (X, Y) are independent,
(A2) $\exists L>0$, such that $\boldsymbol{P}\left\{\max \left\{Y, Y^{2}\right\} \leq L\right\}=1$ and $\boldsymbol{P}\{C>L\}>0$.
G is continuous.
(A3) $\forall 0<T_{K}^{\prime}<T_{K}: \boldsymbol{P}\left\{0 \leq Y \leq T_{K}^{\prime}\right\}<1, \boldsymbol{P}\left\{0 \leq Y^{2} \leq T_{K}^{\prime}\right\}<1$
F is continuous in a neighborhood of T_{K} and in a neighborhood of $\sqrt{T_{K}}$.
As we already said, under censoring the information about the survival time of a patient are incomplete in the sense that sometimes we cannot observe Y_{i} but only C_{i} with the indication that it is not the real life time (by δ_{i}). Therefore the random triple (X, T, δ) does not identify anymore the conditional distribution of Y given X. To achieve it, we need an additional assumption, that is (A1): the censoring time C is independent of the common distribution of the survival time Y and the patient data X. In the medical applications (A1) is fulfilled in the case the censoring takes place regardless the characteristics of the patients and depends only on external factors not related to the information represented by the covariate X. Examples of this situation are the (random) termination of a study, which does not depend on the person who participated to it or the interruption of the cooperation of the patient to the medical study, maybe because of luck of enthusiasm.
The first part of (A2) is obviously fulfilled because of the intrinsic boundedness of Y (survival time of a human being!). The second part of (A2), the positivity of $\boldsymbol{P}\{C>L\}$ means that not the whole censoring process takes place in $[0, L]$. In practice, it means that there is the possibility to extend the medical study, so that, with positive probability, C is larger than the bound L of Y. The continuity of G will be necessary for the convergence of the estimator G_{n} of G, that we introduce in following. Moreover, for this estimator the assumption (A3) allows giving a rate of convergence on the whole interval $\left[0, T_{K}\right]$.
For unknown F and G, 11 proposed two estimates, F_{n} and G_{n}, respectively, the product-limit estimates (see for example [8, pp. 541, 542). In medical research, the Kaplan-Meier estimate is used to measure the fraction of patients living for a certain amount of time after treatment. Also in economics it is common, for measuring the length of time people remain unemployed after a job loss. In engineering, it can be used to measure the time until failure of machine parts.
Let F_{n} and G_{n} be the Kaplan-Meier estimates of F and G, respectively, which are defined as

$$
F_{n}(t)= \begin{cases}\prod_{i=1, \ldots, n} T(i) \leq t & \left(\frac{n-i}{n-i+1}\right)^{\delta_{(i)}} \\ 0 & t \leq T(n) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
G_{n}(t)= \begin{cases}\prod_{i=1, \ldots, n T(i) \leq t} & \left(\frac{n-i}{n-i+1}\right)^{1-\delta_{(i)}} \\ 0 & t \leq T(n) \\ 0 & \text { otherwise }\end{cases}
$$

where $((T(1), \delta(1)), \ldots,(T(n), \delta(n)))$ are the n pairs of observed $\left(T_{i}, \delta_{i}\right)$ set in increasing order. [5] introduced a transformation \widetilde{Y} of the variable T with

$$
\begin{equation*}
\tilde{Y}:=\frac{\delta T}{G(T)}, \tag{5}
\end{equation*}
$$

and correspondingly:

$$
\begin{equation*}
\widetilde{Y}_{i}=\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \tag{6}
\end{equation*}
$$

under known survival function G, and finally

$$
\begin{equation*}
\tilde{Y}_{n, i}=\frac{\delta_{i} T_{i}}{G_{n}\left(T_{i}\right)} \tag{7}
\end{equation*}
$$

where G is estimated by Kaplan-Meier estimator G_{n} in the case it is unknown.
Define then

$$
\begin{equation*}
\widetilde{Y^{2}}:=\frac{\delta T^{2}}{G(T)} \tag{8}
\end{equation*}
$$

and their observations (G is known)

$$
\begin{equation*}
\widetilde{Y_{i}^{2}}=\frac{\delta_{i} T_{i}^{2}}{G\left(T_{i}\right)} \tag{9}
\end{equation*}
$$

and, for unknown G,

$$
\begin{equation*}
\widetilde{Y_{n, i}^{2}}=\frac{\delta_{i} T_{i}^{2}}{G_{n}\left(T_{i}\right)} \tag{10}
\end{equation*}
$$

Notice that $\widetilde{Y^{2}} \neq \widetilde{Y}^{2}=\left(\frac{\delta T}{G(T)}\right)^{2}$.
The first part of assumption (A2) is equivalent to $0 \leq Y \leq L, Y^{2} \leq L$ a.s., and it imply $T_{K} \leq L$ a.s.

Because of $0 \leq T_{i} \leq T_{K} \leq L$ for $i=1, \ldots, n$ with $G(L)=\boldsymbol{P}\{C>L\}>0$ we get

$$
\begin{equation*}
1 \geq G\left(T_{(1)}\right) \geq \cdots \geq G\left(T_{(n)}\right) \geq G\left(T_{K}\right) \geq G(L)>0 \quad \text { a.s. } \tag{11}
\end{equation*}
$$

For fixed n also G_{n} is monotone decreasing

$$
\begin{equation*}
1 \geq G_{n}\left(T_{(1)}\right) \geq \cdots \geq G_{n}\left(T_{(n)}\right) \geq G_{n}\left(T_{K}\right) \geq G_{n}(L)>0 \quad \text { a.s. } \tag{12}
\end{equation*}
$$

Therefore, because of the boundedness of Y from 0 , and the convergence theorem of [25] follows

$$
\begin{equation*}
\widetilde{Y}_{n, i}<U<\infty \text { and } \widetilde{Y_{n, i}^{2}}<U<\infty \quad \text { a.s. } \tag{13}
\end{equation*}
$$

(13) follows from $\sqrt{12}$ and $G_{n}(\underline{\sim}) \rightarrow G(L)$ a.s. (the latter because of [8], Theorem 26.1)

For the transformation \widetilde{Y} and $\widetilde{Y^{2}}$ the following nice properties can be shown:

$$
\begin{align*}
& \boldsymbol{E}\{\widetilde{Y} \mid X\} \\
= & \boldsymbol{E}\left\{\left.\frac{1_{\{Y<C\}} \min \{Y, C\}}{G(\min \{Y, C\})} \right\rvert\, X\right\} \\
= & \boldsymbol{E}\left\{\left.\boldsymbol{E}\left\{\left.1_{\{Y<C\}} \frac{Y}{G(Y)} \right\rvert\, X, Y\right\} \right\rvert\, X\right\} \\
= & \boldsymbol{E}\{\left.\frac{Y}{G(Y)} \underbrace{\boldsymbol{E}\left\{1_{\{Y<C\}} \mid X, Y\right\}}_{=G(Y) \text { by }(\mathbf{A} 1)} \right\rvert\, X\} \\
= & \boldsymbol{E}\{Y \mid X\} \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
& \boldsymbol{E}\left\{\widetilde{Y^{2}} \mid X\right\} \\
= & \boldsymbol{E}\left\{\left.\frac{1_{\{Y<C\}} \min \left\{Y^{2}, C\right\}}{G(\min \{Y, C\})} \right\rvert\, X\right\} \\
= & \boldsymbol{E}\left\{\left.\boldsymbol{E}\left\{\left.1_{\{Y<C\}} \frac{Y^{2}}{G(Y)} \right\rvert\, X, Y\right\} \right\rvert\, X\right\} \\
= & \boldsymbol{E}\{\left.\frac{Y^{2}}{G(Y)} \underbrace{\boldsymbol{E}\left\{1_{\{Y<C\}} \mid X, Y\right\}}_{=G(Y) \text { by }(\mathbf{A 1})} \right\rvert\, X\} \\
= & \boldsymbol{E}\left\{Y^{2} \mid X\right\} . \tag{15}
\end{align*}
$$

(cf. [24]). (14) and (15) mean that the conditional expectation of the transformed censored variable with respect to X equals the conditional expectation of the uncensored variable with respect to X (under (A1)). This implies that under known G, in the case that only the pair (T_{i}, δ_{i}) instead of $\left(Y_{i}\right)$ is available,

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{\delta_{i} T_{i}}{G\left(T_{i}\right)}
$$

is an unbiased estimate of $\boldsymbol{E}\{Y\}$.
Observe now, that

$$
\begin{aligned}
& \boldsymbol{V a r}\{\tilde{Y} \mid X\}=\boldsymbol{V a r}\left\{\left.\frac{\delta T}{G(T)} \right\rvert\, X\right\}=\boldsymbol{E}\left\{\left.\left(\frac{\delta T}{G(T)}\right)^{2} \right\rvert\, X\right\} \\
- & \boldsymbol{E}^{2}\left\{\left.\frac{\delta T}{G(T)} \right\rvert\, X\right\}=\boldsymbol{E}\left\{\left.\frac{(\delta T)^{2}}{G^{2}(T)} \right\rvert\, X\right\}-\boldsymbol{E}^{2}\{Y \mid X\} \\
= & \boldsymbol{E}\left\{\left.\boldsymbol{E}\left\{\left.1_{\{Y \leq C\}} \frac{Y^{2}}{G^{2}(Y)} \right\rvert\, X, Y\right\} \right\rvert\, X\right\}-m^{2}(X) \\
= & \boldsymbol{E}\left\{\left.\frac{1_{\{Y \leq C\}}(\min \{Y, C\})^{2}}{G^{2}(\min \{Y, C\})} \right\rvert\, X\right\}-m^{2}(X) \\
= & \boldsymbol{E}\{\left.\frac{Y}{G^{2}(Y)} \underbrace{\boldsymbol{E}\left\{1_{\{Y<C\}} \mid X, Y\right\}}_{=G(Y) \text { by }(\mathbf{A} 1)} \right\rvert\, X\}-m^{2}(X) \\
= & \left.\left.\frac{Y^{2}}{G(Y)} \right\rvert\, X\right\}-m^{2}(X) .
\end{aligned}
$$

Under the assumptions (A1)-(A3) and the definition of $\widetilde{Y_{n, i}^{2}}$ we introduce in the following sections a property local variance estimator under censoring.

3 Censored Partitioning Estimation via Nearest Neighbors under Known Survival Functions

In this section, the aim is to discuss estimators of the local variance function with partitioning approach, based on the first and second nearest neighbors under censoring. We need some helpful lemmas, that we will present in short. Before them, recall the definitions of nearest neighbors, (3) and (4), and define, for $i=1, \ldots, n$

$$
\delta_{N[i, k]}=1_{\left\{Y_{N[i, k]} \leq C_{i}\right\}}
$$

and

$$
T_{N[i, k]}=\min \left(Y_{N[i, k]}, C_{i}\right)
$$

Finally, assume that ties occur with probability zero.
Now, tree helpful lemmas.
Lemma 3.1 With the above definitions and Definition (6), it holds

$$
\begin{equation*}
\boldsymbol{E}\left\{\left.\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G\left(T_{N[i, 1]}\right)} \right\rvert\, X_{i}\right\}=\boldsymbol{E}\left\{Y_{i} Y_{N[i, 1]} \mid X_{i}\right\} \tag{16}
\end{equation*}
$$

Proof Consider that

$$
\begin{aligned}
& \boldsymbol{E}\left\{\left.\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G\left(T_{N[i, 1]}\right)} \right\rvert\, X_{1}, \ldots, X_{n}\right\} \\
&= \boldsymbol{E}\left\{\left.\sum_{l \in\{1, \ldots, n\} \backslash\{i\}} \frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \frac{\delta_{l} T_{l}}{G\left(T_{l}\right)} 1_{\{N[i, 1]=l\}} \right\rvert\, X_{1}, \ldots, X_{n}\right\} \\
&= \sum_{l \in\{1, \ldots, n\} \backslash\{i\}} \boldsymbol{E}\left\{\left.\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \frac{\delta_{l} T_{l}}{G\left(T_{l}\right)} 1_{\{N[i, 1]=l\}} \right\rvert\, X_{1}, \ldots, X_{n}\right\} \\
&= \sum_{l \in\{1, \ldots, n\} \backslash\{i\}} \boldsymbol{E}\left\{\left.\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \right\rvert\, X_{i}\right\} \boldsymbol{E}\left\{\left.\frac{\delta_{l} T_{l}}{G\left(T_{l}\right)} \right\rvert\, X_{l}\right\} 1_{\{N[i, 1]=l\}} \\
&(\text { by the independence assumption)} \\
&= \boldsymbol{E}\left\{\left.\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \right\rvert\, X_{i}\right\} \sum_{l \in\{1, \ldots, n\} \backslash\{i\}} \boldsymbol{E}\left\{\left.\frac{\delta_{l} T_{l}}{G\left(T_{l}\right)} \right\rvert\, X_{l}\right\} 1_{\{N[i, 1]=l\}} \\
&= \boldsymbol{E}\left\{Y_{i} \mid X_{i}\right\} \\
& \sum_{l \in\{1, \ldots, n\} \backslash\{i\}} \boldsymbol{E}\left\{Y_{l} \mid X_{l}\right\} 1_{\{N[i, 1]=l\}},
\end{aligned}
$$

the latter by 14 .
Moreover

$$
\begin{aligned}
& \boldsymbol{E}\left\{Y_{i} Y_{N[i, 1]} \mid X_{1}, \ldots, X_{n}\right\} \\
= & \boldsymbol{E}\left\{\sum_{l \in\{1, \ldots, n\} \backslash\{i\}} Y_{i} Y_{l} 1_{\{N[i, 1]=l\}} \mid X_{1}, \ldots, X_{n}\right\} \\
= & \sum_{l \in\{1, \ldots, n\} \backslash\{i\}} \boldsymbol{E}\left\{Y_{i} Y_{l} 1_{\{N[i, 1]=l\}} \mid X_{1}, \ldots, X_{n}\right\} \\
= & \sum_{l \in\{1, \ldots, n\} \backslash\{i\}} \boldsymbol{E}\left\{Y_{i} Y_{l} \mid X_{1}, \ldots, X_{n}\right\} 1_{\{N[i, 1]=l\}} \\
= & \sum_{l \in\{1, \ldots, n\} \backslash\{i\}} \boldsymbol{E}\left\{Y_{i} \mid X_{i}\right\} \boldsymbol{E}\left\{Y_{l} \mid X_{l}\right\} 1_{\{N[i, 1]=l\}} \\
& (\text { by independence }) \\
= & \boldsymbol{E}\left\{Y_{i} \mid X_{i}\right\} \sum_{l \in\{1, \ldots, n\} \backslash\{i\}} \boldsymbol{E}\left\{Y_{l} \mid X_{l}\right\} 1_{\{N[i, 1]=l\}} .
\end{aligned}
$$

These results imply 16 .
Analogously to the above lemma one has
Lemma 3.2 It holds

$$
\begin{equation*}
\boldsymbol{E}\left\{\left.\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G\left(T_{N[i, 2]}\right)} \right\rvert\, X_{i}\right\}=\boldsymbol{E}\left\{Y_{i} Y_{N[i, 2]} \mid X_{i}\right\} . \tag{17}
\end{equation*}
$$

The proof is analogous to the proof of Lemma 3.1 and therefore omitted. A similar argument yields the following

Lemma 3.3 It holds

$$
\begin{equation*}
\boldsymbol{E}\left\{\left.\frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G\left(T_{N[i, 1]}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G\left(T_{N[i, 2]}\right)} \right\rvert\, X_{i}\right\}=\boldsymbol{E}\left\{Y_{N[i, 1]} Y_{N[i, 2]} \mid X_{i}\right\} \tag{18}
\end{equation*}
$$

Again, the proof is omitted.
Recall then the following known relation (see 15)

$$
\begin{equation*}
\boldsymbol{E}\left\{\frac{\delta_{i} T_{i}^{2}}{G\left(T_{i}\right)}\right\}=\boldsymbol{E}\left\{Y_{i}^{2} \mid X_{i}\right\} \tag{19}
\end{equation*}
$$

Set now

$$
\begin{align*}
H_{i}:= & H_{n, i} \\
:= & \frac{\delta_{i} T_{i}^{2}}{G\left(T_{i}\right)}-\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G\left(T_{N[i, 1]}\right)}-\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G\left(T_{N[i, 2]}\right)} \\
& +\frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G\left(T_{N[i, 1]}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G\left(T_{N[i, 2]}\right)} \tag{20}
\end{align*}
$$

for $i \in\{1, \ldots, n\}$ and note

$$
\begin{align*}
& \boldsymbol{E}\left\{H_{i} \mid X_{i}=x\right\} \tag{21}\\
= & \boldsymbol{E}\left\{Y_{i}^{2}-Y_{i} Y_{N[i, 1]}-Y_{i} Y_{N[i, 2]}+Y_{N[i, 1]} Y_{N[i, 2]} \mid X_{i}=x\right\} \\
& (\text { the latter by lemmas 3.1, 3.2 and 3.3) } \tag{22}\\
= & \boldsymbol{E}\left\{\left(Y_{i}-Y_{N[i, 1]}\right)\left(Y_{i}-Y_{N[i, 2]}\right) \mid X_{i}=x\right\}=\boldsymbol{E}\left\{W_{i} \mid X_{i}=x\right\} \tag{23}
\end{align*}
$$

with

$$
\begin{equation*}
W_{i}:=\left(Y_{i}-m\left(X_{i}\right)\right)^{2}+\left(m\left(X_{i}\right)-m\left(X_{N[i, 1]}\right)\right)\left(m\left(X_{i}\right)-m\left(X_{N[i, 2]}\right)\right) \tag{24}
\end{equation*}
$$

according to Liitiäinen at al. (14, [13]).
Our proposal for an estimator of the local variance function under known survival function G is given by

$$
\begin{equation*}
\widehat{\sigma}_{n}^{2}(x):=\frac{\sum_{i=1}^{n} H_{i} 1_{A_{n}(x)}\left(X_{i}\right)}{\sum_{i=1}^{n} 1_{A_{n}(x)}\left(X_{i}\right)} . \tag{25}
\end{equation*}
$$

The following theorem states consistency of this estimator.
Theorem 3.4 Let Assumptions (A1)-(A3) hold. Let $\mathcal{P}_{n}=\left\{\boldsymbol{A}_{n, 1}, \ldots, \boldsymbol{A}_{n, l_{n}}\right\}$ be a sequence of partitions on R^{d} such that for each sphere S centered at the origin

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max _{j \in\left\{A_{n, j} \cap S \neq \emptyset\right\}} \operatorname{diam} \boldsymbol{A}_{n, j}=0 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\#\left\{j: A_{n, j} \cap S \neq \emptyset\right\}}{n}=0 \tag{27}
\end{equation*}
$$

Then

$$
\int\left|\widehat{\sigma}_{n}^{2}-\sigma^{2}(x)\right| \mu(d x) \xrightarrow{P} 0
$$

Before giving the proof of this theorem, introduce the following modification of the estimation (25)

$$
\begin{equation*}
\widehat{\widehat{\sigma}}_{n}^{2}(x):=\frac{\sum_{i=1}^{n} H_{i} 1_{A_{n}(x)}\left(X_{i}\right)}{n \mu\left(A_{n}(x)\right)} \tag{28}
\end{equation*}
$$

and the following lemma.
Lemma 3.5 Under the conditions of Theorem 3.4. $\hat{\widehat{\sigma}}_{n}^{2}(x)$ is consistent, i.e.,

$$
\int\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x) \xrightarrow{P} 0
$$

Proof Choose a sphere S centered at 0 which contains the support of μ. Set $J_{n}:=\left\{j: A_{n, j} \cap S \neq\right.$ $\emptyset\}$ and $l_{n}:=\# J_{n}$. The variance of the estimator can be bounded by

$$
\boldsymbol{V} \boldsymbol{\operatorname { a r }}\left\{\widehat{\hat{\sigma}}_{n}^{2}(x)\right\} \leq 72 \frac{L^{4}}{G(L)^{4}} \frac{1}{n \mu\left(A_{n}(x)\right)}
$$

It holds

$$
\begin{aligned}
& \boldsymbol{V a r}\left\{\widehat{\hat{\sigma}}_{n}^{2}(x)\right\} \\
\leq & \frac{4}{n^{2} \mu\left(A_{n}(x)\right)^{2}}\left[\boldsymbol{V a r}\left\{\sum_{i=1}^{n} \frac{\delta_{i} T_{i}^{2} 1_{A_{n}(x)}\left(X_{i}\right)}{G\left(T_{i}\right)}\right\}\right. \\
& +\boldsymbol{V a r}\left\{\sum_{i=1}^{n} \frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \frac{\delta_{N[i, 1]} T_{N[i, 1]} 1_{A_{n}(x)}\left(X_{i}\right)}{G\left(T_{N[i, 1]}\right)}\right\} \\
& +\boldsymbol{V a r}\left\{\sum_{i=1}^{n} \frac{\delta_{1} T_{1}}{G\left(T_{1}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]} 1_{A_{n}(x)}\left(X_{i}\right)}{G\left(T_{N[i, 2]}\right)}\right\} \\
& \left.+\boldsymbol{V a r}\left\{\sum_{i=1}^{n} \frac{\delta_{N[i, 1]} T_{N[i, 1]} 1_{A_{n}(x)}\left(X_{i}\right)}{G\left(T_{N[i, 1]}\right)} \cdot \frac{\delta_{N[i, 2]} T_{N[i, 2]} 1_{A_{n}(x)}\left(X_{i}\right)}{G\left(T_{N[i, 2]}\right)}\right\}\right]
\end{aligned}
$$

Each of the four variances in the right-hand side is bounded by

$$
18 \frac{L^{4}}{G(L)^{4}} n \mu\left(A_{n}(x)\right)
$$

We show this only for the fourth variance because the other three variances can be treated in the same way. We apply the Efron-Stein inequality, following the argument in the proof of Equation (12) in 7.

Let $n \geq 2$ be fixed. Replacement of $\left(X_{j}, Y_{j}, C_{j}\right)$ by $\left(X_{j}^{\prime}, Y_{j}^{\prime}, C_{j}^{\prime}\right)$ for fixed $j \in\{1, \ldots, n\}$ (where $\left(X_{1}, Y_{1}, C_{1}\right), \ldots,\left(X_{n}, Y_{n}, C_{n}\right),\left(X_{1}^{\prime}, Y_{1}^{\prime}, C_{1}^{\prime}\right), \ldots,\left(X_{n}^{\prime}, Y_{n}^{\prime}, C_{n}^{\prime}\right)$ are independent and identically distributed) leads, for fixed x, from

$$
U_{n}:=\sum_{i=1}^{n} \frac{\delta_{N[i, 1]} T_{N[i, 1]} 1_{A_{n}(x)}\left(X_{i}\right)}{G\left(T_{N[i, 1]}\right)} \cdot \frac{\delta_{N[i, 2]} T_{N[i, 2]} 1_{A_{n}(x)}\left(X_{i}\right)}{G\left(T_{N[i, 2]}\right)},
$$

$N[j, 1]$ and $N[j, 2]$ to $U_{n, j}, N^{\prime}[j, 1]$ and $N^{\prime}[j, 2]$, respectively.
With $T_{j}^{\prime}:=\min \left\{Y_{j}^{\prime}, C_{j}^{\prime}\right\}, \delta_{j}^{\prime}=1_{\left\{Y_{j}^{\prime} \leq C_{j}^{\prime}\right\}}$ we obtain

$$
\left|U_{n}-U_{n, j}\right| \leq A_{n, j}+B_{n, j}+C_{n, j}+D_{n, j}+E_{n, j}+F_{n, j}
$$

where, with $Z_{i}=\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)}, Z_{j}^{\prime}=\frac{\delta_{j}^{\prime} T_{j}^{\prime}}{G\left(T_{j}^{\prime}\right)}$ and 11

$$
\begin{aligned}
A_{n, j}= & \sum_{\substack{l, q \in\{1, \ldots, n\} \backslash\{j\} \\
l \neq q}} Z_{l} Z_{q} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\{N[j, 1]=l\}} 1_{\{N[j, 2]=q\}} \\
& \leq \frac{L^{2}}{G(L)^{2}} 1_{A_{n}(x)}\left(X_{i}\right), \\
B_{n, j}= & \sum_{\substack{l, q \in\{1, \ldots, n\} \backslash\{j\} \\
l \neq q}} Z_{l} Z_{q} 1_{A_{n}(x)}\left(X_{i}^{\prime}\right) 1_{\left\{N^{\prime}[j, 1]=l\right\}} 1_{\left\{N^{\prime}[j, 2]=q\right\}} \\
& \leq \frac{L^{2}}{G(L)^{2}} 1_{A_{n}(x)}\left(X_{i}^{\prime}\right), \\
C_{n, j}= & \sum_{\substack{i, q \in\{1, \ldots, n\} \backslash\{j\} \\
i \neq q}} Z_{j} Z_{q} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\{N[i, 1]=j\}} 1_{\{N[i, 2]=q\}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{L^{2}}{G(L)^{2}} \sum_{i \in\{1, \ldots, n\} \backslash\{j\}} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\{N[i, 1]=j\}}, \\
& D_{n, j}= \sum_{\substack{i, q \in\{1, \ldots, n\} \backslash\{j\} \\
i \neq q}} Z_{j}^{\prime} Z_{q} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\left\{N^{\prime}[i, 1]=j\right\}} 1_{\left\{N^{\prime}[i, 2]=q\right\}}, \\
& \leq \frac{L^{2}}{G(L)^{2}} \sum_{i \in\{1, \ldots, n\} \backslash\{j\}} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\left\{N^{\prime}[i, 1]=j\right\}}, \\
& E_{n, j}= \sum_{i, l \in\{1, \ldots, n\} \backslash\{j\}}^{i \neq l} Z_{l} Z_{j} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\{N[i, 1]=l\}} 1_{\{N[i, 2]=j\}} \\
& \leq \frac{L^{2}}{G(L)^{2}} \sum_{i \in\{1, \ldots, n\} \backslash\{j\}} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\{N[i, 2]=j\}} \\
& F_{n, j}= \sum_{i, l \in\{1, \ldots, n\} \backslash\{j\}}^{i \neq l}, \\
& Z_{l} Z_{j}^{\prime} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\left\{N^{\prime}[i, 1]=l\right\}} 1_{\left\{N^{\prime}[i, 2]=j\right\}} \\
& \leq \frac{L^{2}}{G(L)^{2}} \sum_{i \in\{1, \ldots, n\} \backslash\{j\}} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\left\{N^{\prime}[i, 2]=j\right\}} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
A_{n, j}^{2} \leq & \frac{L^{4}}{G(L)^{4}} 1_{A_{n}(x)}\left(X_{i}\right), \\
B_{n, j}^{2} \leq & \frac{L^{4}}{G(L)^{4}} 1_{A_{n}(x)}\left(X_{i}^{\prime}\right) \\
C_{n, j}^{2} \leq & \frac{L^{4}}{G(L)^{4}} \sum_{i \in\{1, \ldots, n\} \backslash\{j\}} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\{N[i, 1]=j\}}, \\
& (\text { by the Cauchy-Schwarz inequality)} \\
D_{n, j}^{2} \leq & \frac{L^{4}}{G(L)^{4}} \sum_{i \in\{1, \ldots, n\} \backslash\{j\}} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\left\{N^{\prime}[i, 1]=j\right\}}, \\
E_{n, j}^{2} \leq & \frac{L^{4}}{G(L)^{4}} \sum_{i \in\{1, \ldots, n\} \backslash\{j\}} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\{N[i, 2]=j\}}, \\
F_{n, j}^{2} \leq & \frac{L^{4}}{G(L)^{4}} \sum_{i \in\{1, \ldots, n\} \backslash\{j\}} 1_{A_{n}(x)}\left(X_{i}\right) 1_{\left\{N^{\prime}[i, 2]=j\right\}}
\end{aligned}
$$

Considering now the terms $\sum_{j=1}^{n} \boldsymbol{E}\left\{A_{n, j}^{2}\right\}$ and $\sum_{j=1}^{n} \boldsymbol{E}\left\{B_{n, j}^{2}\right\}$, we have for them an upper bound

$$
\frac{L^{4}}{G(L)^{4}} n \mu\left(A_{n}(x)\right)
$$

respectively. Analogously, considering the terms $\sum_{j=1}^{n} \boldsymbol{E}\left\{C_{n, j}^{2}\right\}, \sum_{j=1}^{n} \boldsymbol{E}\left\{D_{n, j}^{2}\right\}, \sum_{j=1}^{n} \boldsymbol{E}\left\{E_{n, j}^{2}\right\}$ and $\sum_{j=1}^{n} \boldsymbol{E}\left\{F_{n, j}^{2}\right\}$, by changing the order of summation, for each of these terms we have an upper bound

$$
\frac{L^{4}}{G(L)^{4}} \boldsymbol{E}\left\{\sum_{i \in\{1, \ldots, n\}} 1_{A_{n}(x)}\left(X_{i}\right)\right\} \leq \frac{L^{4}}{G(L)^{4}} n \mu\left(A_{n}(x)\right)
$$

Thus

$$
\begin{aligned}
& \boldsymbol{E}\left\{\sum_{j=1}^{n}\left|U_{n}-U_{n, j}\right|^{2}\right\} \\
\leq & 6 \boldsymbol{E}\left(\sum_{j=1}^{n} \boldsymbol{E}\left\{A_{n, j}^{2}\right\}+\sum_{j=1}^{n} \boldsymbol{E}\left\{B_{n, j}^{2}\right\}+\sum_{j=1}^{n} \boldsymbol{E}\left\{C_{n, j}^{2}\right\}\right. \\
& \left.+\sum_{j=1}^{n} \boldsymbol{E}\left\{D_{n, j}^{2}\right\}+\sum_{j=1}^{n} \boldsymbol{E}\left\{E_{n, j}^{2}\right\}+\sum_{j=1}^{n} \boldsymbol{E}\left\{F_{n, j}^{2}\right\}\right) \\
\leq & 6 \cdot 6 \frac{L^{4}}{G(L)^{4}} n \mu\left(A_{n}(x)\right),
\end{aligned}
$$

which, by the Efron-Stein inequality, yields the above bound of the variance. Then, we have

$$
\boldsymbol{V a r}\left\{\hat{\widehat{\sigma}}_{n}^{2}(x)\right\} \leq \frac{72 \cdot L^{4}}{G(L)^{4}} \frac{1}{n \mu\left(A_{n}(x)\right)} .
$$

By the well known relation for the mean squared error we get

$$
\begin{equation*}
\boldsymbol{E}\left\{\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\boldsymbol{E} \widehat{\widehat{\sigma}}_{n}^{2}(x)\right|\right\} \leq \sqrt{\boldsymbol{V} \boldsymbol{\operatorname { a r }}\left(\widehat{\widehat{\sigma}}_{n}^{2}(x)\right)} \leq 6 \sqrt{2} \frac{L^{2}}{G(L)^{2}} \frac{1}{\sqrt{n \mu\left(A_{n}(x)\right)}} . \tag{29}
\end{equation*}
$$

By the triangle inequality

$$
\begin{equation*}
\boldsymbol{E}\left|\hat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right| \leq \boldsymbol{E}\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\boldsymbol{E} \widehat{\widehat{\sigma}}_{n}^{2}(x)\right|+\left|\boldsymbol{E} \widehat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right|, \tag{30}
\end{equation*}
$$

and, with $l_{n}=\#\left\{j: A_{n, j} \cap S \neq \emptyset\right\}$ we note, with some constant c

$$
\begin{align*}
& \int_{S} \boldsymbol{E}\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\boldsymbol{E} \widehat{\widehat{\sigma}}_{n}^{2}(x)\right| \mu(d x) \leq c \frac{1}{\sqrt{n}} \int_{S} \frac{1}{\sqrt{\mu\left(A_{n}(x)\right)}} \mu(d x) \\
\leq & c \frac{1}{\sqrt{n}} \sqrt{\int_{S} \frac{1}{\mu\left(A_{n}(x)\right)} \mu(d x)}=O\left(\sqrt{\frac{l_{n}}{n}}\right)=o\left(\left(n_{n}^{-d} n^{-1}\right)^{\frac{1}{2}}\right) . \tag{31}
\end{align*}
$$

Further

$$
\begin{align*}
& \boldsymbol{E} \widehat{\widehat{\sigma}}_{n}^{2}(x)=\frac{\boldsymbol{E}\left(H_{1} 1_{A_{n}(x)}\left(X_{1}\right)\right)}{\mu\left(A_{n}(x)\right)} \\
& \text { (by symmetry) } \\
& =\frac{\boldsymbol{E}\left(\boldsymbol{E}\left(H_{1} 1_{A_{n}(x)}\left(X_{1}\right)\right) \mid X_{1}\right)}{\mu\left(A_{n}(x)\right)} \\
& =\frac{\boldsymbol{E}\left(\boldsymbol{E}\left(H_{1} \mid X_{1}\right) 1_{A_{n}(x)}\left(X_{1}\right)\right)}{\mu\left(A_{n}(x)\right)} \\
& =\frac{\boldsymbol{E}\left(\boldsymbol{E}\left(W_{1} \mid X_{1}\right) 1_{A_{n}(x)}\left(X_{1}\right)\right)}{\mu\left(A_{n}(x)\right)} \\
& \text { (by 21) } \\
& =\int \frac{\boldsymbol{E}\left\{W_{1} \mid X_{1}=z\right\} 1_{A_{n}(x)}(z)}{\mu\left(A_{n}(x)\right)} \mu(d z) \tag{32}\\
& =\boldsymbol{E} \sigma_{n}^{2 *}(x) \tag{33}
\end{align*}
$$

(see the proof of the McDiarmid inequality [8], Appendix A, with $\sigma_{n}^{2 *}(x)$ defined by

$$
\begin{equation*}
\sigma_{n}^{2 *}(x):=\frac{\sum_{i=1}^{n}\left(Y_{i}-Y_{N[i, 1]}\right)\left(Y_{i}-Y_{N[i, 2]}\right) 1_{A_{n}(x)}\left(X_{i}\right)}{n \mu\left(A_{n}(x)\right)} . \tag{34}
\end{equation*}
$$

(34). Then, according to the proof of the McDiarmid inequality, we have

$$
\begin{equation*}
\int_{S}\left|\sigma^{2}(x)-\boldsymbol{E} \widehat{\widehat{\sigma}}_{n}^{2}(x)\right| \mu(d x)=K_{n}:=\int_{S}\left|\sigma^{2}(x)-\boldsymbol{E}_{\widehat{\widehat{\sigma}}}^{n} 2^{2 *}(x)\right| \mu(d x) \rightarrow 0 \tag{35}
\end{equation*}
$$

(30), together with (31) and (35) yield the assertion.

Proof of Theorem 3.4 We begin by the following extension

$$
\begin{aligned}
& \int\left|\widehat{\sigma}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x) \\
\leq & \int\left|\widehat{\sigma}_{n}^{2}(x)-\widehat{\widehat{\sigma}}_{n}^{2}(x)\right| \mu(d x)+\int\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x) \\
\leq & L_{n}+D_{n}
\end{aligned}
$$

It holds $D_{n} \xrightarrow{P} 0$ because of Lemma 3.5
Now, concerning L_{n}, arguing as in Györfi et al. [8, p. 465, compare also the end of the proof of Theorem 3.1 in [7]

$$
\begin{aligned}
& \int\left|\widehat{\sigma}_{n}^{2}(x)-\widehat{\widehat{\sigma}}_{n}^{2}(x)\right| \mu(d x) \\
\leq & \int \left\lvert\, \frac{\sum_{i=1}^{n} H_{i} 1_{A_{n}(x)}\left(X_{i}\right)}{\sum_{i=1}^{n} 1_{A_{n}(x)}\left(X_{i}\right)}\right. \\
& \left.-\frac{\sum_{i=1}^{n} H_{i} 1_{A_{n}(x)}\left(X_{i}\right)}{n \mu\left(A_{n}(x)\right)} \right\rvert\, \mu(d x) \\
\leq & \operatorname{const} \int \sum_{i=1}^{n} 1_{A_{n}(x)}\left(X_{i}\right)\left|\frac{1}{n \mu\left(A_{n}(x)\right)}-\frac{1}{\sum_{i=1}^{n} 1_{A_{n}(x)}\left(X_{i}\right)}\right| \mu(d x)
\end{aligned}
$$

(for some finite constant, because of (A2) and 11)

$$
\leq \text { const } \int\left|\sum_{i=1}^{n} \frac{1_{A_{n}(x)}\left(X_{i}\right)}{n \mu\left(A_{n}(x)\right)}-1\right| \mu(d x) \rightarrow 0
$$

because of 26 and 27 , which proves the theorem.

4 Censored Partitioning Estimation via Nearest Neighbors under Unknown Survival Functions

As already treated in the previous section the survival function G is typically unknown and has to be estimated, by the Kaplan-Meier estimator. We introduce now the final result, in order to show consistency of the partitioning estimator of the local variance based on the first and the second neighbor under censoring and unknown survival function.
Let

$$
\begin{equation*}
\tilde{\sigma}_{n}^{2}(x):=\frac{\sum_{i=1}^{n} H_{i, G_{n}} 1_{A_{n}(x)}\left(X_{i}\right)}{\sum_{i=1}^{n} 1_{A_{n}(x)}\left(X_{i}\right)} \tag{36}
\end{equation*}
$$

where

$$
\begin{aligned}
H_{i, G_{n}}:= & H_{n, i, G_{n}} \\
= & \frac{\delta_{i} T_{i}^{2}}{G_{n}\left(T_{i}\right)}-\frac{\delta_{i} T_{i}}{G_{n}\left(T_{i}\right)} \frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G_{n}\left(T_{N[i, 1]}\right)}-\frac{\delta_{i} T_{i}}{G_{n}\left(T_{i}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G_{n}\left(T_{N[i, 2]}\right)} \\
& +\frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G_{n}\left(T_{N[i, 1]}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G_{n}\left(T_{N[i, 2]}\right)}
\end{aligned}
$$

Then for this estimator a consistency result holds; we prove this as follows.

Theorem 4.1 Under the assumptions of Theorem 3.4.

$$
\int\left|\widetilde{\sigma}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x) \xrightarrow{P} 0
$$

Proof Introduce the following modification of the estimator (36)

$$
\begin{equation*}
\widehat{\widetilde{\sigma}}_{n}^{2}(x):=\frac{\sum_{i=1}^{n} H_{i, G_{n}} 1_{A_{n}(x)}\left(X_{i}\right)}{n \mu\left(A_{n}(x)\right)} \tag{37}
\end{equation*}
$$

We note

$$
\begin{aligned}
& \int\left|\widetilde{\sigma}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x) \\
\leq & \int\left|\widetilde{\sigma}_{n}^{2}(x)-\widehat{\widetilde{\sigma}}_{n}^{2}(x)\right| \mu(d x)+\int\left|\widehat{\sigma}_{n}^{2}(x)-\widehat{\hat{\sigma}}_{n}^{2}(x)\right| \mu(d x) \\
& +\int\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x) \\
= & A_{n}+B_{n}+C_{n},
\end{aligned}
$$

with $\widehat{\hat{\sigma}}_{n}^{2}$ defined by 28 . But $C_{n} \xrightarrow{P} 0$ a.s. by Lemma 3.5.
Now, concerning A_{n}

$$
\begin{aligned}
& \int\left|\widetilde{\sigma}_{n}^{2}(x)-\widehat{\widetilde{\sigma}}_{n}^{2}(x)\right| \mu(d x) \\
\leq & \frac{\sum_{i=1}^{n} H_{i, G_{n}} 1_{A_{n}(x)}\left(X_{i}\right)}{\sum_{i=1}^{n} 1_{A_{n}(x)}\left(X_{i}\right)}-\frac{\sum_{i=1}^{n} H_{i, G_{n}} 1_{A_{n}(x)}\left(X_{i}\right)}{n \mu\left(A_{n}(x)\right)} \\
\leq & U^{*} \int\left|\frac{\sum_{i=1}^{n} 1_{A_{n}(x)\left(X_{i}\right)}}{n \mu\left(A_{n}(x)\right)}\right| \mu(d x) \rightarrow 0, \quad \text { a.s. }
\end{aligned}
$$

for some random variable $U^{*}<\infty$ (see [8], p. 465, by 13) and the boundedness of C). Finally, concerning B_{n}

$$
\begin{align*}
& \int\left|\widehat{\widetilde{\sigma}}_{n}^{2}(x)^{(N N)}-\widehat{\widehat{\sigma}}_{n}^{2}(x)\right| \mu(d x) \\
= & \int\left|\frac{\sum_{i=1}^{n} H_{i, G_{n}} 1_{A_{n}(x)}\left(X_{i}\right)}{n \mu\left(A_{n}(x)\right)}-\frac{\sum_{i=1}^{n} H_{i} 1_{A_{n}(x)}\left(X_{i}\right)}{n \mu\left(A_{n}(x)\right)}\right| \mu(d x) \\
= & \int\left|\frac{1}{n} \frac{\sum_{i=1}^{n}\left[H_{i, G_{n}}-H_{i}\right] 1_{A_{n}(x)}\left(X_{i}\right)}{\mu\left(A_{n}(x)\right)}\right| \mu(d x) \\
\leq & \frac{1}{n} \sum_{i=1}^{n}\left|H_{i, G_{n}}-H_{i}\right| \quad \underbrace{\int \frac{1_{A_{n}(x)}\left(X_{i}\right)}{\mu\left(A_{n}(x)\right)} \mu(d x)}_{\leq 1 \text { because of } \mu\left(A_{n}(x)\right)=\mu\left(A_{n}\left(X_{i}\right)\right) \text { for } X_{i} \in A_{n}(x)} \tag{38}
\end{align*}
$$

But

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left|H_{i, G_{n}}-H_{i}\right| \\
\leq & \frac{1}{n} \sum_{i=1}^{n}\left\{\left|\frac{\delta_{i} T_{i}^{2}}{G_{n}\left(T_{i}\right)}-\frac{\delta_{i} T_{i}^{2}}{G\left(T_{i}\right)}\right|\right. \\
& +\left|\frac{\delta_{i} T_{i}}{G_{n}\left(T_{i}\right)} \frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G_{n}\left(T_{N[i, 1]}\right)}-\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G\left(T_{N[i, 1]}\right)}\right| \\
& +\left|\frac{\delta_{i} T_{i}}{G_{n}\left(T_{i}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G_{n}\left(T_{N[i, 2]}\right)}-\frac{\delta_{i} T_{i}}{G\left(T_{i}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G\left(T_{N[i, 2]}\right)}\right| \\
& \left.+\left|\frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G_{n}\left(T_{N[i, 1]}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G_{n}\left(T_{N[i, 2]}\right)}-\frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G\left(T_{N[i, 1]}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G\left(T_{N[i, 2]}\right)}\right|\right\}
\end{aligned}
$$

$$
\begin{equation*}
=: \quad \frac{1}{n} \sum_{i=1}^{n}\left(P_{n, i}+O_{n, i}+I_{n, i}+U_{n, i}\right) . \tag{39}
\end{equation*}
$$

Now, concerning $P_{n, i}$,

$$
\frac{1}{n} \sum_{i=1}^{n} P_{n, i} \leq \frac{L}{n} \sum_{i=1}^{n} \delta_{i} T_{i}\left|\frac{1}{G_{n}\left(T_{i}\right)}-\frac{1}{G\left(T_{i}\right)}\right| \rightarrow 0 \quad \text { a.s. }
$$

due to Lemma 26.1 in 8 .
Finally, concerning $U_{n, i}$, (and similarly, for $O_{n, i}$ and $I_{n, i}$) we recall 12) and notice that, for the ordered sequence of the variables of the first (and second) neighbors we get, with obvious meaning of the notation,

$$
\begin{aligned}
& T_{N[(1), 1]} \leq T_{N[(2), 1]} \leq \cdots \leq T_{N[(n), 1]} \leq T_{K} \leq L \quad \text { a.s. } \\
& T_{N[(1), 2]} \leq T_{N[(2), 2]} \leq \cdots \leq T_{N[(n), 2]} \leq T_{K} \leq L \quad \text { a.s. }
\end{aligned}
$$

and, with same positive random variable U^{*}

$$
\begin{align*}
& 1 \geq G_{n}\left(T_{N[(1), 1]}\right) \geq G_{n}\left(T_{N[(2), 1]}\right) \geq \cdots \geq G_{n}\left(T_{N[(n), 1]}\right) \\
& \geq G_{n}\left(T_{K}\right) \geq G_{n}(L) \geq U^{*}>0 \quad \text { a.s. } \\
& 1 \geq G_{n}\left(T_{N[(1), 2]}\right) \geq G_{n}\left(T_{N[(2), 2]}\right) \geq \cdots \geq G_{n}\left(T_{N[(n), 2]}\right) \\
& \geq G_{n}\left(T_{K}\right) \geq G_{n}(L) \geq U^{*}>0 \quad \text { a.s. } \tag{40}
\end{align*}
$$

respectively, because of $G_{n}(L) \rightarrow G(L)>0$ a.s. by [8], Theorem 26.1. By this

$$
\begin{equation*}
H_{i, G_{n}}<U^{* *}<\infty \quad(i=1, \ldots, n, n \in N) \quad \text { a.s. } \tag{41}
\end{equation*}
$$

with some positive random variable $U^{* *}$.
Now,

$$
\begin{align*}
\left|\frac{1}{n} \sum_{i=1}^{n} U_{n, i}\right|= & \left|\frac{1}{n} \sum_{i=1}^{n}\left[\frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G_{n}\left(T_{N[i, 1]}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G_{n}\left(T_{N[i, 2]}\right)}-\frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G\left(T_{N[i, 1]}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G\left(T_{N[i, 2]}\right)}\right]\right| \\
\leq & L^{2} \frac{1}{n} \sum_{i=1}^{n}\left|\frac{1}{G_{n}\left(T_{N[i, 1]}\right) G_{n}\left(T_{N[i, 2]}\right)}-\frac{1}{G\left(T_{N[i, 1]}\right) G\left(T_{N[i, 2]}\right)}\right| \\
\leq & L^{2} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{G_{n}\left(T_{N[i, 1]}\right)}\left|\frac{1}{G_{n}\left(T_{N[i, 2]}\right)}-\frac{1}{G\left(T_{N[i, 2]}\right)}\right| \\
& +L^{2} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{G\left(T_{N[i, 2]}\right)}\left|\frac{1}{G_{n}\left(T_{N[i, 1]}\right)}-\frac{1}{G\left(T_{N[i, 1]}\right)}\right| \\
\leq & L^{2} \frac{1}{n} \frac{1}{G_{n}^{2}(L) G(L)} \sum_{i=1}^{n}\left|G_{n}\left(T_{N[i, 2]}\right)-G\left(T_{N[i, 2]}\right)\right| \\
& +L^{2} \frac{1}{n} \frac{1}{G_{n}^{2}(L) G(L)} \sum_{i=1}^{n}\left|G_{n}\left(T_{N[i, 1]}\right)-G\left(T_{N[i, 1]}\right)\right| \\
\leq & 2 L^{2} \frac{1}{G(L) G_{n}(L)} \sup _{0 \leq t<\infty}\left|G_{n}(t)-G(t)\right| \tag{42}
\end{align*}
$$

$\rightarrow 0 \quad$ a.s. by 13 , and because of the result $\sup _{0 \leq t \leq T_{K}}\left|G_{n}(t)-G(t)\right| \rightarrow 0$ a.s., due to [26] (compare [15, Theorem 10).
This completes the proof.

5 Rate of Convergence

Finally, the following theorem states a rate of convergence for the estimator (36).
Theorem 5.1 Let the assumptions (A1)-(A3) hold. Let the estimate $\widetilde{\sigma}^{2}$ be given by (36) with cubic partition of R^{d} with side length h_{n} of the cubes $(n \in N)$. Moreover, assume the Lipschitz conditions

$$
|m(x)-m(t)| \leq \Gamma\|x-t\|^{\alpha}, x, t \in R^{d}
$$

and

$$
\left|\sigma^{2}(x)-\sigma^{2}(t)\right| \leq \Lambda\|x-t\|^{\beta}, x, t \in R^{d}
$$

($0<\alpha \leq 1,0<\beta \leq 1, \Gamma, \Lambda \in R_{+},\| \|$denoting the Euclidean norm).
Then, with

$$
h_{n} \sim n^{-\frac{1}{d+2 \beta}}
$$

one gets

$$
\int\left|\widetilde{\sigma}_{n}^{2}-\sigma^{2}(x)\right| \mu(d x)=O_{P}\left(\left(\frac{\log n}{n}\right)^{\frac{1}{6}}+\max \left\{n^{-\frac{2 \alpha}{d}}, n^{-\frac{\beta}{2 \beta+d}}\right\}\right)
$$

Proof We note, with (37) and 28,

$$
\begin{aligned}
& \int\left|\widetilde{\sigma}_{n}^{2}(x)^{(N N)}-\sigma^{2}(x)\right| \mu(d x) \\
\leq & \int\left|\widetilde{\sigma}_{n}^{2}(x)^{(N N)}-\widehat{\widetilde{\sigma}}_{n}^{2}(x)^{(N N)}\right| \mu(d x)+\int\left|\widehat{\widetilde{\sigma}}_{n}^{2}(x)^{(N N)}-\widehat{\widehat{\sigma}}_{n}^{2}(x)\right| \mu(d x) \\
& +\int\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x) \\
\leq & A_{n}+B_{n}+C_{n} .
\end{aligned}
$$

Now, concerning A_{n}

$$
\begin{aligned}
& \int\left|\widetilde{\sigma}_{n}^{2}(x)^{(N N)}-\widehat{\widetilde{\sigma}}_{n}^{2}(x)^{(N N)}\right| \mu(d x) \\
= & \int\left|\frac{\sum_{i=1}^{n} H_{i, G_{n}} 1_{A_{n}(x)}\left(X_{i}\right)}{\sum_{i=1}^{n} 1_{A_{n}(x)}\left(X_{i}\right)}-\frac{\sum_{i=1}^{n} H_{i, G_{n}} 1_{A_{n}(x)}\left(X_{i}\right)}{n \mu\left(A_{n}(x)\right)}\right| \mu(d x) \\
\leq & U^{* *} \int \sum_{i=1}^{n} 1_{A_{n}(x)}\left(X_{i}\right)\left|\frac{1}{\sum_{i=1}^{n} 1_{A_{n}(x)}\left(X_{i}\right)}-\frac{1}{n \mu\left(A_{n}(x)\right)}\right| \mu(d x)
\end{aligned}
$$

$$
\text { (a.s., with a random variable } \left.U^{* *}<\infty \text {, because of } 41\right)=O_{P}\left(n^{-\frac{1}{2}} h_{n}^{-\frac{d}{2}}\right)
$$

by the proof of Theorem 4.3 in [8].
Moreover

$$
\begin{aligned}
B_{n}= & \int\left|\widehat{\widetilde{\sigma}}_{n}^{2}(x)^{(N N)}-\widehat{\widehat{\sigma}}_{n}^{2}(x)\right| \mu(d x) \\
\leq & \frac{1}{n} \sum_{i=1}^{n}\left|H_{i, G_{n}}-H_{i}\right| \\
& (\operatorname{see} \sqrt{38})) \\
\leq & \frac{1}{n} \sum_{i=1}^{n}\left(P_{n, i}+O_{n, i}+I_{n, i}+U_{n, i}\right)
\end{aligned}
$$

(see (39))

Now, concerning $P_{n, i}$,

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} P_{n, i} \leq \frac{L}{n} \sum_{i=1}^{n} \delta_{i} T_{i}\left|\frac{1}{G_{n}\left(T_{i}\right)}-\frac{1}{G\left(T_{i}\right)}\right| \\
\leq & \frac{L^{2}}{n} \sum_{i=1}^{n} \sup _{0 \leq t \leq T_{i}}\left|G_{n}(t)-G(t)\right|=O_{P}\left(\left(\frac{\log n}{n}\right)^{\frac{1}{6}}\right),
\end{aligned}
$$

the latter by the Cauchy-Schwarz inequality and the proof of Satz 4 in 15.
Finally, concerning $U_{n, i}$, (and similarly, for $O_{n, i}$ and $I_{n, i}$) we note that, instead of 42), one also obtains, by [8] Corollary 6.1 , with a suitable constant γ_{d},

$$
\begin{aligned}
\left|\frac{1}{n} \sum_{i=1}^{n} U_{i}\right|= & \left|\frac{1}{n} \sum_{i=1}^{n}\left[\frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G_{n}\left(T_{N[i, 1]}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G_{n}\left(T_{N[i, 2]}\right)}-\frac{\delta_{N[i, 1]} T_{N[i, 1]}}{G\left(T_{N[i, 1]}\right)} \frac{\delta_{N[i, 2]} T_{N[i, 2]}}{G\left(T_{N[i, 2]}\right)}\right]\right| \\
\leq & 2 \gamma_{d} L^{2} \frac{1}{n} \frac{1}{G_{n}^{2}(L) G(L)} \sum_{i=1}^{n}\left|G_{n}\left(T_{i}\right)-G\left(T_{i}\right)\right| \\
\leq & 2 \gamma_{d} L^{2} \frac{1}{G_{n}^{2}(L) G(L)} \sup _{0 \leq t \leq T_{K}}\left|G_{n}(t)-G(t)\right| \\
& =O_{P}\left(\left(\frac{\log n}{n}\right)^{\frac{1}{6}}\right)
\end{aligned}
$$

the latter as before. It remains to give a rate for

$$
C_{n}=\int\left|\hat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x) .
$$

For that introduce again the expansion

$$
\begin{aligned}
& \boldsymbol{E}\left\{\int\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x)\right\} \\
\leq & \boldsymbol{E}\left\{\int\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\boldsymbol{E} \widehat{\widehat{\sigma}}_{n}^{2}(x)\right| \mu(d x)\right\}+\int\left|\boldsymbol{E} \widehat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x),
\end{aligned}
$$

where

$$
\boldsymbol{E}\left\{\int\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\boldsymbol{E} \widehat{\widehat{\sigma}}_{n}^{2}(x)\right| \mu(d x)\right\}=O\left(\sqrt{\frac{l_{n}}{n}}\right)=O\left(\left(n_{n}^{-d} n^{-1}\right)^{\frac{1}{2}}\right),
$$

as in (31).
Now,

$$
\begin{aligned}
& \boldsymbol{E} \hat{\widehat{\sigma}}_{n}^{2}(x) \\
= & \int \frac{\boldsymbol{E}\left\{W_{1} \mid X_{1}=z\right\} 1_{A_{n}(x)}(z)}{\mu\left(A_{n}(x)\right)} \mu(d z)
\end{aligned}
$$

(according to 32p)

$$
\begin{aligned}
& \int \frac{\boldsymbol{E}\left\{\left(Y_{1}-m\left(X_{1}\right)\right)^{2} \mid X_{1}=z\right\} 1_{A_{n}(x)}(z)}{\mu\left(A_{n}(x)\right)} \mu(d z) \\
& +\int \frac{\boldsymbol{E}\left\{\left(m\left(X_{1}\right)-m\left(X_{N[1,1]}\right)\right)\left(m\left(X_{1}\right)-m\left(X_{N[1,2]}\right)\right) \mid X_{1}=z\right\} 1_{A_{n}(x)}(z)}{\mu\left(A_{n}(x)\right)} \mu(d z)
\end{aligned}
$$

(as in (24).

Then

$$
\int\left|\boldsymbol{E}_{\widehat{\sigma}_{n}^{2}}^{2}(x)-\sigma^{2}(x)\right| \mu(d x)
$$

$$
\begin{aligned}
\leq & \int\left|\frac{\left.\left(Y_{1}-m\left(X_{1}\right)\right)^{2} \mid X_{1}=z\right\} 1_{A_{n}(x)}(z)}{\mu\left(A_{n}(x)\right)} \mu(d z)-\sigma^{2}(x)\right| \mu(d x) \\
& +\int \boldsymbol{E}\left\{\left(m\left(X_{1}\right)-m\left(X_{N[1,1]}\right)\right)\left(m\left(X_{1}\right)-m\left(X_{N[1,2]}\right)\right) \mid X_{1}=z\right\} \\
& \left(\text { because of } \int \frac{1}{\mu\left(A_{n}(z)\right)} 1_{A_{n}(z)} \mu(d x) \mu(d z) \leq 1\right) \\
\leq & \Lambda h_{n}+\boldsymbol{E}\left\{\left(m\left(X_{1}\right)-m\left(X_{N[1,1]}\right)\right)\left(m\left(X_{1}\right)-m\left(X_{N[1,2]}\right)\right)\right\} \\
\leq & \Lambda h_{n}+\left(\boldsymbol{E}\left\|X_{1}-X_{N[1,1]}\right\|^{2 \alpha}\right)^{\frac{1}{2}}\left(\boldsymbol{E}\left\|X_{1}-X_{N[1,2]}\right\|^{2 \alpha}\right)^{\frac{1}{2}} \\
= & O\left(h_{n}+n^{-\frac{2 \alpha}{d}}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \boldsymbol{E}\left\{\int\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x)\right\} \\
\leq & O\left(h_{n}^{-\frac{d}{2}} n^{-\frac{1}{2}}\right)+O\left(n^{-\frac{2 \alpha}{d}}+h_{n}\right) .
\end{aligned}
$$

and finally,

$$
\begin{aligned}
& \int\left|\widehat{\widehat{\sigma}}_{n}^{2}(x)-\sigma^{2}(x)\right| \mu(d x) \\
& O_{P}\left(h_{n}^{-\frac{d}{2}} n^{-\frac{1}{2}}\right)+O\left(n^{-\frac{2 \alpha}{d}}+h_{n}\right)
\end{aligned}
$$

Now, summarizing

$$
\begin{aligned}
& \int\left|\widetilde{\sigma}_{n}^{2}(N N)-\sigma^{2}(x)\right| \mu(d x) \\
= & O_{P}\left(n^{-\frac{1}{2}} h_{n}^{-\frac{d}{2}}\right)+O_{P}\left(\left(\frac{\log n}{n}\right)^{\frac{1}{6}}\right) \\
& +O_{P}\left(h_{n}^{-\frac{d}{2}} n^{-\frac{1}{2}}+n^{-\frac{2 \alpha}{d}}+\left(\frac{\log n}{n}\right)^{\frac{1}{6}}\right) \\
= & O_{P}\left(\left(\frac{\log n}{n}\right)^{\frac{1}{6}}+\max \left\{n^{-\frac{2 \alpha}{d}}, n^{-\frac{\beta}{2 \beta+d}}\right\}\right)
\end{aligned}
$$

and hence assertion.

Acknowledgments

The author wishes to express her gratitude to Prof. em. Dr. Harro Walk for suggesting the problem and for many stimulating conversations.

References

[1] Brown, L.D. and Levine, M. (2007) Variance estimation in nonparametric regression via the difference sequence method. Ann. Statist., 35, 2219-2232. MR 2363969
[2] Cai, T., Levine, M. and Wang, L. (2009) Variance function estimation in multivariate nonparametric regression with fixed design. J. Multivariate Anal., 100, 126-136. MR 2460482
[3] Evans, D. (2005) Estimating the variance of multiplicative noise, in 18 th International Conference on Noise and Fluctuations. ICNF, in AIP Conference Proceedings, 780, 99-102.
[4] Evans, D., and Jones, A. (2008) Non-parametric estimation of residual moments and covariance. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464, 2831-2846. MR 2439301
[5] Fan, J. and Gijbels, I. (1994) Censored regression: local linear approximations and their applications. J. Amer. Statist. Assoc. 89, no. 426, 560-570. MR 1294083
[6] Fan, J. and Yao, Q. (1998) Efficient estimation of conditional variance functions in stochastic regression. Biometrika, 85, 645-660. MR 1665822
[7] Ferrario, P.G.. and Walk, H. (2012) Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors. J. Nonparametr. Stat.
[8] Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. (2002) A distribution-free theory of nonparametric regression. Springer Series in Statistics. Springer-Verlag, New York, 2002. xvi+647 pp. ISBN: 0-387-95441-4 MR 1920390
[9] Hall, P., and Carroll, P.J. (1989) Variance function estimation in regression: The effect of estimating the mean. J. Roy. Statist. Soc. Ser. B, 51, 3-14. MR 0984989
[10] Härdle, W., and Tsybakov, A. (1997) Local polynomial estimators of the volatility function in nonparametric autoregression. J. Econometrics, 81, 223-242. MR 1484586
[11] Kaplan, E. L., and Meier, P. (1958) Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53, 457-481. MR 0093867
[12] Kohler, M. (2006), Nonparametric regression with additional measurement errors in the dependent variable. J. Statist. Plann. Inference, 136, 3339-3361. MR 2283548
[13] Liitiäinen, E., Corona, F., and Lendasse, A. (2007) Non-parametric residual variance estimation in supervised learning. IWANN'07 Proceedings of the 9th International Work-Conference on Artificial Neural Networks. Lecture Notes in Computer Science: Computational and Ambient Intelligence, 4507, 63-71.
[14] Liitiäinen, E., Corona, F., and Lendasse, A. (2008) On nonparametric residual variance estimation. Neural Processing Letters, 28, 155-167.
[15] Mathe, K. (2006) Regressionanalyse mit zensierten Daten. PhD Thesis. Institute of Stochastics and Applications, Universität Stuttgart.
[16] Müller, H.G., and Stadtmüller, U. (1987) Estimation of heteroscedasticity in regression analysis. Ann. Statist., 15, 610-625. MR 0888429
[17] Müller, H.G., and Stadtmüller, U. (1993) On variance function estimation with quadratic forms. Journal of Statistical Planning and Inference, 35, 213-231.
[18] Munk, A., Bissantz, N., Wagner, T., and Freitag, G. (2005) On difference based variance estimation in nonparametric regression when the covariate is high dimensional. J. R. Stat. Soc. Ser. B Stat. Methodol., 67, 19-41. MR 2136637
[19] Neumann, M. (1994) Fully data-driven nonparametric variance estimators. Statistics, 25, 189-212. MR 1366825
[20] Pan, Z., and Wang, X. (2000) A wavelet-based nonparametric estimator of the variance function. Computational Economics, 15, 79-87.
[21] Ruppert, D., Wand, M., Holst, U., and Hössjer, O. (1997) Local polynomial variance-function estimation. Technometrics, 39, 262-273. MR 1462587
[22] Spokoiny, V. (2002) Variance estimation for high-dimensional regression models. J. Multivariate Anal., 82, 111-133. MR 1918617
[23] Stadtmüller, U., and Tsybakov, A. (1995) Nonparametric recursive variance estimation. Statistics, 27, 55-63. MR 1377496
[24] Strobel, M. (2008) Estimation of minimum mean squared error with variable metric from censored observations. PhD Thesis. Institute of Stochastics and Applications, Universität Stuttgart.
[25] Stute, W. and Wang, J.-L. (1993) The strong law under censorship. Ann. Statist., 21, 15911607.
[26] Wang, L., Brown, L.D., Cai, T., and Levine, M. (2008) Effect of mean on variance function estimation in nonparametric regression. Ann. Statist., 36, 646-664. MR 2396810

Paola Gloria Ferrario
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: paola.ferrario@mathematik.uni-stuttgart.de

Erschienene Preprints ab Nummer 2007/2007-001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints
2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors under censoring
2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily
2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian
2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group
2011-027 Griesemer, M.; Hantsch, F.; Wellig, D.: On the Magnetic Pekar Functional and the Existence of Bipolarons
2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression
2011-025 Felber, T.; Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent static forecasting of stationary and ergodic time series via local averaging and least squares estimates
2011-024 Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of stationary and ergodic time series
2011-023 Györfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional independence
2011-022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors
2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels
2011-020 Frank, R.L.; Geisinger, L.: Refined Semiclassical Asymptotics for Fractional Powers of the Laplace Operator
2011-019 Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain
2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks
2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
2011-016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines
2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function
2011-014 Müller, S.; Dippon, J.: k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis
2011-013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
2011-012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of characteristic two
2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy
2011-009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations

2011-008 Stroppel, M.: Orthogonal polar spaces and unitals
2011-007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces
2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
2011-004 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part II-Gain-Scheduled Control
2011-003 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part I Robust Control
2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G_{2}-structures 2011-001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume 2010-018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
2010-017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
2010-016 Moroianu, A.; Semmelmann,U.: Clifford structures on Riemannian manifolds
2010-015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group $S O(3)$
2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
2010-012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
2010-011 Györfi, L.; Walk, H.: Empirical portfolio selection strategies with proportional transaction costs
2010-010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function
2010-009 Geisinger, L.; Laptev, A.; Weidl, T.: Geometrical Versions of improved Berezin-Li-Yau Inequalities
2010-008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
2010-007 Grundhöfer, T.; Krinn, B.; Stroppel, M.: Non-existence of isomorphisms between certain unitals
2010-006 Höllig, K.; Hörner, J.; Hoffacker, A.: Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods
2010-005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems
2010-004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
2010-003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
2010-002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
2010-001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
2009-007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems
2009-006 Demirel, S.; Harrell II, E.M.: On semiclassical and universal inequalities for eigenvalues of quantum graphs

2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
2009-004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator
2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation
2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
2009-001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^{3} and of the 3-torus
2008-006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps

2008-005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems
2008-004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
2008-003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008-002 Hertweck, M.; Höfert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $\operatorname{PSL}(2, q)$
2008-001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a correction term

2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field
2007-004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger operators on metric trees
2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
2007-001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions

