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Abstract

In this paper we consider partitioning estimators of the local variance function, based
on the first and second nearest neighbors, given an independent and identically distributed
Moreover, we assume that only censored data are available.
partitioning estimator is given by known survival functions and in the more general case of
unknown survival functions, estimated via the well-known Kaplan-Meier estimators. In this
more general case, also the rate of convergence of the local variance estimator is given.
Keywords: local variance, censoring, partitioning estimation, nearest neighbors, weak con-

sistency, rate of convergence.

AMS Subject classification: 62G05, 62G20, 62G08, 62N01.

1 Introduction

Consistency of the

In survival analysis, one is interested in techniques for analyzing non-negative random variables in

the presence of censoring. For it, let (X,Y,C), (X1,Y1,C1), (Xs,Y2,C5),...

iid. RYx Ry x Ry

valued random vectors. X is the random vector of covariates with distribution p, which, e.g., in
medical applications contains information about a human taking part in a medical study around an
illness. Y represents the survival time of the patient. C represents the censoring time. Moreover,
we introduce the variable T, defined as minimum of ¥ and C, and the variable J, containing the
information whether there is or not censoring. This yields a set of data

{(X17T1a 61)7 ceey (XnaTn76n)}7

with
6;=1 forY; <C;
0; =0 forY; > C;,

and
E = min{)/l'a Cl}v

for i =1,...,n. We introduce now the so-called survival functions
F(t)= P >t),
G(t)=P(C >t),

and

Introduce also

K({t)=P(T >t)=F#)G(t).

F*(t) := P(Y? > t) = F(V1),
K*(t) := P(T* > t) = F*(t)G(t) = F(V1)G(t),

where T* = min{Y 2, C}.
The survival functions map the event of survival onto time and are therefore monotone decreasing.

Define

T :=sup{y: F(y) >0},

T :=sup{y : G(y) > 0},
Tk :=sup{y : K(y) > 0} = min{TF,Tc},

and notice that

and

Tp« :=sup{y: F*(y) >0} =TFr

Tk« :=sup{y: K*(y) >0} = min{Tp+,T¢} = min{Tr, T} = Tk.



In medical studies the observation of the survival time of the patient is sometimes incomplete due
to right censoring formulated just before. It could, for example, happen that the patient is alive
at the termination of a medical study, or that he dies by other causes than those under study, or,
trivially, that the patient moves and the hospital loses information about him. For more details
see for example [§], Chapter 26.

The regression function, m(z) := E{Y|X = x}, is known as the function that minimizes the Lo
risk. The problem of the estimation of the regression function under randomly right censored data
is already known, see for instance [5], [8], [15] and [12].

A related interesting problem is the estimation of the local variance (or conditional variance) under
censoring, defined as

o?(z) = B{(Y —m(X))*|X =2} = E{Y?|X =2} — m*(z). (2)

In the literature many papers deal with nonparametric local variance estimation in the (uncen-
sored) case of fixed design. See for instance [I], [9], [16} 7], [19], [26], [I8] and [2].

[22], besides the treatment of the local variance under fixed design, introduces also the case of
random design with density of X. Moreover the case of random design was treated by [6], [10],
[20], [21] and [23]. [12] investigated as application heteroscedastic conditional variance estimation
via plug-in by least squares methods and in the same article, he gave as another application,
regression estimation in the case of censored data. Combining this two applications, we want to
give an estimator of the local variance function under censored data. For that, instead of least
squares methods, we modify the partitioning local variance estimator based on the first and second
nearest neighbors, introduced by [7] and we generalize it, for the more complicated case of par-
tially known observations, due to a censorship. The partitioning estimator based on the nearest
neighbors represents itself a generalization of an estimator of the residual variance given by [3],
4], [r4].

After some preliminary definitions and assumptions in section [2| we introduce a censored parti-
tioning estimation of the local variance via nearest neighbors under known survival function, in
Section[3] Later, in Section[d] we give the same estimator under unknown survival functions, that
we estimate via Kaplan-Meier estimators.

Finally, in section [5] we give a rate of convergence for the more general estimator given in Section

2 Some Definitions and Assumptions

We recall now the definitions of nearest neighbors.
For given i € {1,...,n}, the first nearest neighbor of X; among X1,...,X;_1,
Xit1,---, Xy is denoted by Xy ;) with
Nli,1] == Ny[i, 1] := arg min p(X;, X;), (3)
1<j<n, j#i

here p is a metric (typically the Euclidean one) in R?. The k-th nearest neighbor of X; among
X1, Xio1, Xiga, .-+, X,y is defined as X ;) via generalization of definition :

Nli, k] .= Npli, k] := arg min p(Xi, X;), (4)

1<j<n, j#i, j¢{N[i,1],...,N[i,k—1]}

by removing the preceding neighbors. If ties occur, a possibility to break them is given by taking
the minimal index or by adding independent components Z;, uniformly distributed on [0, 1], to
the observation vectors X; see pp. 86, 87 [§]. The latter possibility of tie-breaking allow us to
assume throughout the paper that ties occur with probability zero.
Hence, we get a reorder of the data according to increasing values of the distance of the variable
X, (j€{1,...,n}\{i}) from the variable X; (i = 1,...,n). Correspondingly to that, we get also
a new order for the variables Y :

(XNpaps YNpay) s - (Xngiks Ynuw) s - (XNpn-1) YN[in—1]) -



In Sections [3] and [4] we will give a local variance estimator based on N[i, 1] and NTi, 2].

Moreover, for our intents we require the following conditions:
(A1) C and (X,Y) are independent,

(A2) 3L > 0, such that P{max{Y,Y?} < L} =1 and P{C > L} > 0.
G is continuous.

(A3) VO< Ty <Tk: P{O<Y <Tp} <1, P{0O<Y?<Ti}<1
F' is continuous in a neighborhood of Tk and in a neighborhood of /1.

As we already said, under censoring the information about the survival time of a patient are
incomplete in the sense that sometimes we cannot observe Y; but only C; with the indication that
it is not the real life time (by 0;). Therefore the random triple (X, T, ) does not identify anymore
the conditional distribution of Y given X. To achieve it, we need an additional assumption, that
is (A1): the censoring time C' is independent of the common distribution of the survival time
Y and the patient data X. In the medical applications (A1) is fulfilled in the case the censoring
takes place regardless the characteristics of the patients and depends only on external factors
not related to the information represented by the covariate X. Examples of this situation are the
(random) termination of a study, which does not depend on the person who participated to it or
the interruption of the cooperation of the patient to the medical study, maybe because of luck of
enthusiasm.

The first part of (A2) is obviously fulfilled because of the intrinsic boundedness of Y (survival
time of a human being!). The second part of (A2), the positivity of P{C > L} means that not
the whole censoring process takes place in [0, L]. In practice, it means that there is the possibility
to extend the medical study, so that, with positive probability, C' is larger than the bound L of Y.
The continuity of G will be necessary for the convergence of the estimator G, of G, that we
introduce in following. Moreover, for this estimator the assumption (A3) allows giving a rate of
convergence on the whole interval [0, Tk].

For unknown F' and G, [I1] proposed two estimates, F;, and G,,, respectively, the product-limit
estimates (see for example [§], pp. 541, 542). In medical research, the Kaplan-Meier estimate is
used to measure the fraction of patients living for a certain amount of time after treatment. Also
in economics it is common, for measuring the length of time people remain unemployed after a
job loss. In engineering, it can be used to measure the time until failure of machine parts.

Let F,, and G, be the Kaplan-Meier estimates of F' and G, respectively, which are defined as

n—i 6(i)
Fo(t) = { | (m) t<T(n)
0

otherwise

and

n—i 175(”
Gn(t) = { Hi:l ..... n T(i)<t (n7i+1) t<T(n)

0 otherwise,

where ((T(1),0(1)),...,(T(n),d(n))) are the n pairs of observed (T3, J;) set in increasing order.
[5] introduced a transformation Y of the variable T with

= oT
Y i = —— 5
and correspondingly:
> _ 6T,
Y= ) 6
a(T) 2
under known survival function G, and finally
> 6;T;
Yn i = y 7
G (1) (7)



where G is estimated by Kaplan-Meier estimator G,, in the case it is unknown.
Define then

> §T?
Y2 .=
G (8)
and their observations (G is known)
— 5. T?
V2= i 9
and, for unknown G,
— 5. T2
y2 = 1 1

= S 2
Notice that Y2 # Y? = (%) .

The first part of assumption (A2) is equivalent to 0 <Y < L, Y2 < L a.s., and it imply T < L
a.s.
Because of 0 < T; < T < Lfori=1,...,n with G(L) = P{C > L} > 0 we get

1>2G(Twy) =2 2G(Twm) 2G(Tk) >G(L) >0 a.s. (11)

For fixed n also G, is monotone decreasing
1> Gu(Tay) > > Gu(T(n)) > Gu(Tk) > Gu(L) >0 a.s. (12)
Therefore, because of the boundedness of Y from and the convergence theorem of [25] follows

)Zli<U<ooand)?n2;<U<oo a.s. (13)

(13) follows from and G, (L) = G(L) as. (the latter because of [8], Theorem 26.1)
For the tranbformatlon Y and Y2 the following nice properties can be shown:

B {7]x}

{toe O )

{7 {oagmlor} )
= Bl g Blloco X)X

[
&

= F

=G(Y) by (A1)

= E{v|x} (14)

v?x}
7

At
_ {1{y oy min{Y2,C}
{2 {toeeram o)

and

G(min{Y, C})

= F

= FE E{ly.y|X,Y}|X

Y2
G(Y)

=G(Y) by (A1)

= E{yY?X}. (15)



(cf. [24]). and mean that the conditional expectation of the transformed censored variable
with respect to X equals the conditional expectation of the uncensored variable with respect to
X (under (A1)). This implies that under known G, in the case that only the pair (7}, d;) instead
of (Y;) is available,

n

EZ G(Ty)

is an unbiased estimate of FZ{Y}.
Observe now, that

d

Varti ) - Var [ 2} < p{ (22}

X} - E*{Y|X}

E{ljycj|X.Y}|X ) —m*(X)

=G(Y) by (A1)

- { g wn

Under the assumptions (A1)-(A3) and the definition of ¥;?; we introduce in the following sections
a property local variance estimator under censoring.

3 Censored Partitioning Estimation via Nearest Neighbors
under Known Survival Functions

In this section, the aim is to discuss estimators of the local variance function with partitioning
approach, based on the first and second nearest neighbors under censoring. We need some helpful
lemmas, that we will present in short. Before them, recall the definitions of nearest neighbors,
and (4)), and define, for i =1,...,n

6N[i»k] = 1{YN[i,k] <C;}

and
T = min(Yyp e, Ci).

Finally, assume that ties occur with probability zero.
Now, tree helpful lemmas.

Lemma 3.1 With the above definitions and Definition (@, it holds

X} (16)

E 8T Onpi TN
G(Ti) G(Tnpin)

Xi} = E {Y:Yni



Proof Consider that

the latter by .

Moreover

E 6Ty Onpi TN
G(T;) G(Tnpia)

Xh...,Xn}

6, 6T
E{ > G v
G(T)) G(T, {N[i,1]=l}

le{1,....,n}\{i} ( ) (l)

> E{ LNt tie
G Ti G(T; {N[i,1]=1}
le{1,....,n}\{i} ( ) ( l)
0T
X, E{
} G(T)

5:T;
E 1+
2 { G(Ty)
(by the independence assumption)

le{1,....n}\ {3}

5.T, Ot

B { T XZ} 3 E{
G(T3) ety (G

E{vix;} Y. EMX ey

le{1, o n\ {3}

E {YYniylX1,..., X0}

= FE Z YiYilynp =1y | X1,

le{t,...,n}\{i}

= Z E{Y;Yilini=iy X1, ..

le{1,...,n}\{2}

Xi1,..., X,

Xl,...,Xn}

Xz} Lynvpi=0

Xz} Lenpi=0

=}

s Xn

X}

= Z E{v;Y||X1,..., Xo} Lnpa=i

le{1,...,n}\{2}

= Z E{Yi‘Xi}E{Yl‘Xl} Linp=0y

le{l,...n}\{i}
(by independence)

= E(v|X} Y EMIX) -

le{1,....n}\{i}

These results imply .

Analogously to the above lemma one has

Lemma 3.2 It holds

E 8T N2/ TN(i2)
G(Ti) G(Tnpiz)

Xi} =FE{Y;YnulXi}.

The proof is analogous to the proof of Lemma |3.1] and therefore omitted.
A similar argument yields the following

Lemma 3.3 It holds

=)

N[ TN 1) N, 21 TN 2]

G(Tnpiyy)  G(Tnpiz)

Xi} =F {YN[i71]YN[i,2]|Xi} :

(18)



Again, the proof is omitted.
Recall then the following known relation (see (|15))

g0 _ E{v?|x;} (19)
G L
Set now
Hi = Hn,i
_§T? 0T N TN,y 8T N2 TN 2)
G(T;) G(T) G(Tnuy)  G(IG) G(Tnugz)
Oni, TN ON(i,21 TN i, 2] (20)
G(Tniay)  G(Tngiz)
for i € {1,...,n} and note
E{H|X; =z} (21)
= E{Y? - YiYyi1 — Yi¥np2 + Y Yo | X = o}
(the latter by lemmas and (22)
= E{(V— Yap) (Y~ Yapa)|Xi = 2} = E (WX, = 2} (23
with
Wi i= (Yi = m(X;))? + (m(X;) — m(Xnpiap) (m(Xs) — m(Xngig)) (24)

according to Liitidinen at al. ([14], [13]).
Our proposal for an estimator of the local variance function under known survival function G is

given by
_ iz Hila, @ (X0)
Z?:l 1An (:E) (XZ)

The following theorem states consistency of this estimator.

52(z) : (25)

Theorem 3.4 Let Assumptions (A1)-(A3) hold. Let P, = {A,1,..., A1} be a sequence of
partitions on R% such that for each sphere S centered at the origin

lim max diam A,, ; =0, (26)
n=00 je{A, ;NS#AD}
and AL NS£0D
lim #{.7 . n,j n 7& } = 0. (27)
n—roo n
Then

/ 62 — o?(2)|u(dx) B o.

Before giving the proof of this theorem, introduce the following modification of the estimation

(25)
R "OHA A (X
ai(x) = Z’L:l An( )( )’
”.U(An(x))

(28)
and the following lemma.

. ~2 . . .
Lemma 3.5 Under the conditions of Theorem 0, (x) is consistent, i.e.,

/ 32 (@) — 0 (@) u(dz) B 0.



Proof Choose a sphere S centered at 0 which contains the support of . Set J,, := {j : A, ;NS #
0} and 1, := #J,. The variance of the estimator can be bounded by

L* 1
G(L)* np(An(z))”

Var {gi(x)} <72
It holds
Var{s. ()

IA

}
4 "6, T4, () (X0)
A [V‘”" S
d; T Onti Tl a, @) (Xe)

*V‘”'{ G }

61Ty 5N[1 TN, () (X3)
G Tl G(TN[zQ])

+Var

+Var i5N[i71]TN[i,1]1An(z)(X¢) . 5N[i,2]TN[i,2]1An(gc)(Xi)
i=1 G(Tnpig) G(Twnpi2)

Each of the four variances in the right-hand side is bounded by

4

L
ISWnM(An(x)).

We show this only for the fourth variance because the other three variances can be treated in the
same way. We apply the Efron-Stein inequality, following the argument in the proof of Equation
(12) in [1].

Let n > 2 be fixed. Replacement of (XJ,YJ,C ) by (X},Y/,C%) for fixed j € {1,...,n} (where
(X1, Y1,Ch)y . (X0, Y, Cn), (X1, Y/, C), - (X Y’ ,C!) are independent and identically dis-
tributed) leads, for fixed x, from

U i5N[i,1]TN[i71]1A,L<m) (Xi) O T2 la, @) (X0)
o i=1 G(TN[Z'J]) G<TN[i,2])

N[j,1] and N[j,2] to U, j, N'[j,1] and N'[4,2], respectively.
With 77 := min {Y},C}}, 6} = liy/<cry we obtain

|Un —Unjl < Anj+ Bnj+Cnj+Dnjt+Enj+Fnj
where, with Z; = 5"’?), Z’ % and

G
Any = Z ZqulAnm(Xi)l{zvm:u1{N[j,21:q}

(L)?
Cnj = > ZiZ ) (X npa=y LN G2i=a)



L2
< 3 E La, (o) (X)L (N(i1)=41
G(L)? .
ie{l,...n}\{s}

Drn; = > ZiZq1 A, () (X)L )=y LN/ [i.21=a}
i, ge{1,....n}\{j}
i#q
LZ
< 1 XZ 1 ar =41,
=Gy Y. la@E) =

ie{l,...,n}\{j}

E,; = Z Z1Z1 4, () (Xi) LN =i 1T, 21=5»
i, 1e{1,....n}\{j}

L2
5 Z LA, @) (X)) L{Npi2)=5} 5
G(L)* ,
716{1,~~771}\{]}
Fnj = Z Z1Z1 4, (2) (X)L oo, =03 LN [i,21=5)
S )

L2
= 2 Yo law (X lva=-

G(L
(L) ie{l,...,n}\{s}
Now,
2 1%
An,j < WlAn(x)(XiL
L4
2
B,; < WlAn(z)(Xf),
2 L4
C., < Gy Z La, () (X)L {N(i11=41
ie{l,...,n}\{s}
(by the Cauchy-Schwarz inequality)
L4
D, < GL) Yo LX)l
ie{l,..,n}\{j}
2 L4
E,; < GID)" Z La, () (X)L N(i21=41
ie{l,...,n\{s}
2 L4
Fuj = Gy Y. la@ Xl

ie{1,...,n\ {5}

Considering now the terms »°7 E {42} and Yo E {B2,}, we have for them an upper

bound i
W”N(An (z)),

respectively. Analogously, considering the terms 37 | {C2,}, Yo E {D%;}, Y B {E2;}
and Z?Zl E {FfL j} , by changing the order of summation, for each of these terms we have an upper
bound



Thus

E {zn: |Un - Un,j|2}

j=1

< 6F (ZE{Ai,j} +> E{Bi;}+> E{C;}
j=1 j=1 j=1

+Y E{D; ;}+> E{E.;}+> E {Fij})
j=1 j=1 j=1

4

L
< 6 Gmw(z‘ln(w)),

which, by the Efron-Stein inequality, yields the above bound of the variance.
Then, we have

2 2.1 1
Var{5,@)} < G(L)* np(An ()’

By the well known relation for the mean squared error we get

22 2 22 L L
E{[6, () - B3, @)} < VVar@,) <6V (A, ()

By the triangle inequality

~2 ~2 ~2 ~2
E[5,(z) - o*(z)| < Elo,(x) - E,(z)| + |E7,(z) — o*(z)|,
and, with [,, = #{j : A, ; NS # 0} we note, with some constant ¢

| B @) - B, @lntaa) <cf/ﬁ

< c\/lﬁ\//s mu(daz) =0 <\/Z> :0((%%—1)%).

E (HllAn(x)(Xl))
11(An(z))

Further

E5(x) =

(by symmetry)

E (E (Hi1a,@)(
a (A (z)

E (E (Hi|X,

1Ay
E (E (WX,

1(An
(by 1)
_ /E{W1|X1 =2}4,()(2)
(A (z))

Xl)) |X1)
)
La, @) (X1))
x))
La, (@) (X1))
z))

_\/,\\_/

p(dz)
— Eo*()
(see the proof of the McDiarmid inequality [8], Appendix A, with ¢2*(z) defined by

_ Yo (Vi = Y (Yi — Yo 1a, () (Xs)
np(An ()

10



(34)). Then, according to the proof of the McDiarmid inequality, we have

/S ‘02(33) - Eéi(x)’ (dz) = K, = /S ‘02(@ ~E5. (@) uldz) > 0

([30), together with and yield the assertion. [ ]
Proof of Theorem We begin by the following extension

[ 182@) - o*@)lutae)

/ 62 (2) — 5o (2)|(de) + / 52(@) - 0 (@) julde)
< L,+D,.

It holds D,, £ 0 because of Lemma
Now, concerning L,,, arguing as in Gyorfi et al. [§], p. 465, compare also the end of the proof of
Theorem 3.1 in [7]

IN

/ 62 () — 32 () [u(d)

/‘ZLle‘lAn(x)(Xi)
2im1la, @) (Xi)
i Hila, @) (X5)

n(An(zy) | M)
< const/ilAn(w)(Xi) 1 S 1 ()
P np(An(z) 22114, (@) (X0)
(for some finite constant, because of (A2) and (1))
1, @) (Xi
< const/ ;n,u(;li((x); — 1| p(dz) = 0
because of and , which proves the theorem. [ ]

4 Censored Partitioning Estimation via Nearest Neighbors
under Unknown Survival Functions

As already treated in the previous section the survival function G is typically unknown and has to
be estimated, by the Kaplan-Meier estimator. We introduce now the final result, in order to show
consistency of the partitioning estimator of the local variance based on the first and the second
neighbor under censoring and unknown survival function.

Let N
52 (z) == Zi:lf@GnlAn(r)(Xi) (36)
" doicila, @) (Xe)
where
Hi,Gn = Hn,i,Gn
§;T? 6T OnyTnpy 0T Oni T

Gn(Ty)  Gu(Ti) Gu(Tnpiy) Gu(Ti) Gu(Tnpiz)
Onpi, TN Onpi2 TN a2
Gn(Tniig) Gu(Tnpiz)

Then for this estimator a consistency result holds; we prove this as follows.

11



Theorem 4.1 Under the assumptions of Theorem[3.])

[ @) = @) So.

Proof Introduce the following modification of the estimator

22 o i Hie, la, @) (X0)
np(An ()

(37)
We note

/ 52 (2) — 0 (2) u(de)

[182@) - 5r@lntdo) + [ o) - 5o uldo)
+ [ nta) = o*(@)utda)

2
with 7,, defined by . But C, 5 0 a.s. by Lemma

Now, concerning A,

IN

~92 22
o5 (z) — 7, (2)|p(dr)
Y Hica,@(Xi) Y Hig,1a,@)(Xi)
Z:l:l]-An(r)(Xz) nM(An(x))
- / ‘ZZ’HAH@)(XI-)
An(x))

for some random variable U* < oo (see [§], p. 465, by and the boundedness of C).
Finally, concerning B,,

/ 52 ()™ - 52 (1) u(da)

Zz 1HzG Lay@)(Xi) Y Hila, @) (X0)
Ap()) np(An(z))
_ 121‘: [ i,G, — Hil 1a,(2)(Xi)
- / W) wldz)

IS M, — 1 [ ), 59
i=1 n

<1 because of pu(A,(z))=pu(An(X;)) for X;€A, ()

IN

IN

u(dx) = 0, a.s.

p(dz)

IN

But

%Z: |H17Gn
” 5 T 6;T?
72 {‘ - G(T)

‘ 5iTi 5N1‘,1]TN[1‘,1] 8T Onpa TN,

IN

Gn(Ti) Gu(Tniyy)  G(T) G(Tnp)
‘ 6T Onp2 TNz 6T Onpi2 TNz

Gn(Ti) Gu(Tnp2)  G(Ti) G(Tnpiz)
‘5N[i,1]TN[i,1] ONGi2) InNGi2)  Oni, ) Tngi,1) Onpe2) TN 2)
Gn(Tniig) Gn(Tnpi2) G(Tniyy)  G(Twnpiz)

}

12



n

1
=: ﬁZ(Pn,i + On,i + In,i + Un,i)- (39)

i=1

Now, concerning P, ;,

1

@ —0 a.s.

1 — L& 1
E;Pnz < E;&Tl m -

due to Lemma 26.1 in [8].
Finally, concerning U, ;, (and similarly, for O, ; and I,, ;) we recall and notice that, for the
ordered sequence of the variables of the first (and second) neighbors we get, with obvious meaning
of the notation,

Tniy, STy < < TInn)yy < Tk < L as,

TNy S T2 < <INy <Tk <L as.
and, with same positive random variable U*

1> Gn(Tn),1) = Ga(Ti2),1)) = - = Ga(Tnim),1)
>G,(Tg)>Gp(L)>U" >0 a.s.,

1> Gn(Tniy,2) = Gu(TNj2),21) = = Gu(TNin),2)
>Gn(Tk)>Gu(L)>U* >0 a.s., (40)

respectively, because of Gy, (L) — G(L) > 0 a.s. by [§], Theorem 26.1. By this

Hiyg, <U"<o00 (i=1,...,n,n€N) a.s. (41)

with some positive random variable U**.
Now,
n

1

li |:6N[i,1]TN[i,1] Onfi2) T2 Oni, T 5N[i,2]TN[i,2]:|
Gn(Tnpia) Gn(Tnii2) G(Tniig)  G(Tnpiz)

‘ n 4
=1 i=1
R 1 1
< L?= - ‘
- n; Gn(TN[i 1)Gn(Tngi2)  G(Tnpa)G(Tngi2))
1 1
< _
- ZG TN[z 1)) ‘Gn(TN[i,Q]) G(Tnpi2) ‘
1 1
S
TIZG TN[i 2)) |Gn(Tnpiay)  G(Tniy)
1
< L*- G2 (L Z |G (Tniiz) — G(Tnp2)|
+L21 ! zn:|G (Tniiag) — G|
nG2(L)G(L) . nALN[i,1] [é,1]
1
< 2rL? sup |G (t) — G(t)]

(42)

—0 a.s. by and because of the result supy<; <7, |Gn(t)—G(t)| — 0 a.s., due to [26] (compare
[15], Theorem 10).
This completes the proof. [ ]
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5 Rate of Convergence

Finally, the following theorem states a rate of convergence for the estimator .

Theorem 5.1 Let the assumptions (A1)-(A8) hold. Let the estimate 62 be given by @ with
cubic partition of R% with side length h, of the cubes (n € N). Moreover, assume the Lipschitz
conditions

|m(z) —m(t)| < T||x —t|*, z,t € RY,

and
|o%(z) = o*(t)| < Allx —t]|°, @t € RY,
O<a<l1l,0<pB<1, T, Ae Ry, | | denoting the Euclidean norm,).
Then, with
hy ~ n~ %28
one gets

[ 182 = s @lu(da) = O ((105”) "t mae {2 - })
Proof We note, with (37) and (28),
/' 2) NN — o ()| p(de)
< /|~2( )(NN) A2( )(NN)lu dz) + /|U (NN) ( J\u(d)

/ 32 (@) — 02 (@) u(d)
< A,+B,+0C,.

Now, concerning A,

/ 32(@) VY~ 52 () VN | d)

_ ZZ 1HZG La,@)(Xi) Y Hic, la, @ (Xi) .

B ’ (z)( ) n:u(An(z)) M(d )
1 1

< / Zlf‘ () e [

_d
(a.s., with a random variable U** < oo, because of ([{I))) = Op (n*%hn 2)

by the proof of Theorem 4.3 in [§].
Moreover

B, - / 52 (@)™ — 52 (2) | u(da)

< E;m@cn —H
(see )

1 n
EZ(Pn,z + On,i + In,i + Un,l)

i=1

(see (39))

IN
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Now, concerning P, ;,

1 n L n 1 1
*5 PnigfgéiTii_i
ne "M T e GU(T) G(T)

2. " ogn g
< EY swp [Galt) — G| = Op ((li ) )

— 0<t<T;
i=1

the latter by the Cauchy-Schwarz inequality and the proof of Satz 4 in [15].
Finally, concerning U, ;, (and similarly, for O, ; and I, ;) we note that, instead of , one also
obtains, by [§], Corollary 6.1, with a suitable constant g,
1 n
2> Ui
n<

=1

1 |:5N[i,1}TN[i,1] Ongi ) T2 O, T 6N[i,2]TN[i,2]H

i | Gn(Tngia)) Gn(Tnjiz) G(Tnpia)  G(Tnpiz)
1 1 -
< 2 E

IN
)

2
<
™~

B S, 16~ Gl

the latter as before. It remains to give a rate for

C, = / 32 () — 0 (a) lu(d).

For that introduce again the expansion

a4y

~2

5alw) — o) u(dx)}

< B{[frw - Eo.w)|utan | + [|E5.w) - o) utas)
where
B{ [ o) - B 0| utan)} = 0 < ln> =0 ((nz'n ).
as in .
Now,
E5,(2)
B E{W1|X) = 2}14,(x)(2) »
= [ )
(according to (32))
E{(Y1 —m(X1))?|X1 = 2}1a,(2)(2) 3
/ ENE) pldz)
E{(m(X:) — m(Xnp 1)) (m(X1) = m(Xnp o))l Xi = 214, )(2)
+f WA () pldz)
(as in (24))).
Then

1B @) - 0*(a)| utae)
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< [ — Pl i) - o2 e
+ [ B{m(x0) ~ m(Xg1))0m(X0) = (X ) X = 2}
(because of / Lanldn)p(dz) < 1)

< Ahn+ E{(m(X)) - (XN[1 1)) (m(X1) —m(XN[1,21]))}

< Ahp + (E||X1 — XnNp Hm) (E|X1 — Xnpgl?*)?

0 (hn n n*%“)

Therefore
B{ [ [out) - 0% utao)}
< 0 (h;%n7é> +0 (n*%" +hn) .
and finally,

Now, summarizing

Il
Q
b
~/~
N
o
oo
3
N——
o=
_|_
=
o
"
=
:l
oy
§|
N
£=
al
—
N——

and hence assertion. [
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