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THE MINIMAL GENUS PROBLEM FOR ELLIPTIC SURFACES

ABSTRACT. We partly solve the minimal genus problem for embedded surfaces in the case of elliptic
4-manifolds. This involves a certain restricted transitivity property of the action of the orientation
preserving diffeomorphism group on the second homology. In all cases we consider we get the minimal
possible genus allowed by the adjunction inequality.

1. INTRODUCTION

Starting with the classical work of Kervaire and Milnor [10], who showed that certain second
homology classes in simply-connected 4-manifolds are not represented by embedded spheres, the
question arose to find for a given homology class in a 4-manifold the minimal genus of an embedded
closed connected oriented surface realizing that class. This question has been solved at least partly for
rational and ruled surfaces and for 4-manifolds with a free circle action [4, 5, 14, 15, 16, 17, 18, 19, 25].
On symplectic 4-manifolds the question is related to the Thom conjecture [12, 22, 23]. In particular,
the adjunction inequality from Seiberg-Witten theory gives a lower bound on the genus of a surface
representing a homology class in a closed oriented 4-manifold with a basic class and we can then ask if
this lower bound is indeed realized. Usually the question is more tractable for classes of positive self-
intersection and is still open in most situations in the case of negative self-intersections. In particular,
it is still unknown whether there exist embedded spheres in the K3 surface of arbitrarily negative
self-intersection.

Another interesting class of 4-manifolds are elliptic surfaces. We will restrict to (relatively) mini-
mal simply-connected elliptic surfaces with b+2 > 1, but generalizations should be possible. Note that
every orientation preserving diffeomorphism of a closed, oriented 4-manifold induces an isometry of
the intersection form on the second homology (modulo torsion). A very useful fact is that for elliptic
surfaces the image of the orientation preserving diffeomorphism group in the orthogonal group of the
intersection form is known. This is due to Borcea, Donaldson and Matumoto [1, 2, 21] for the K3
surface and to Friedman-Morgan and Lönne in the general case [6, 20]. We will combine this knowl-
edge with the work of Wall on the transitivity of the orthogonal groups of unimodular quadratic forms
[26]. Similar to the case of rational surfaces, this will allow us to reduce the problem of representing
a homology class by a minimal genus surface to certain special classes. We cannot treat the minimal
genus problem in full generality. Instead we will concentrate on the first interesting special cases that
come to mind. To state one of the results, we will prove the following in the special case that the
elliptic surface has no multiple fibres, i.e. is given by a surface E(n) with n ≥ 2:

Theorem 1.1. LetX be an elliptic surface diffeomorphic toE(n) with n ≥ 2. SupposeA is a class in
H2(X;Z) orthogonal to the canonical class K and of self-intersection A2 = 2c− 2 with c ≥ 0. Then
A is represented by a surface of genus c in X . This is the minimal possible genus if A is non-zero.

There is similar, slightly more restrictive theorem in the case of elliptic surfaces with multiple
fibres. We are also interested if we can realize homology classes by surfaces that are contained in
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2 THE MINIMAL GENUS PROBLEM FOR ELLIPTIC SURFACES

certain nice neighbourhoods inside the elliptic surface. The neighbourhood we consider is the Gompf
nucleus N(2).

Notations. In the following X will denote a relatively minimal simply-connected elliptic surface
with the complex orientation. By an elliptic surface we always mean a surface of this kind. Using
the classification of elliptic surfaces [9] X is diffeomorphic to E(n)p,q, where the coprime indices
denote logarithmic transformations. We restrict to the case n ≥ 2 or equivalently b+2 > 1; see [14]
for a discussion of Dolgachev surfaces E(1)p,q with b+2 = 1. All self-diffeomorphisms of X are
orientation preserving. We often denote a closed oriented surface in X and the homology class it
represents by the same symbol.

2. ACTION OF THE DIFFEOMORPHISM GROUP

Let H2(X) denote the integral second homology of X and Diff+(X) the group of orientation
preserving self-diffeomorphisms of X . The intersection form on second homology induces a uni-
modular quadratic form on H2(X). We denote by O the orthogonal group of all automorphisms of
H2(X) that preserve the intersection form. The elements of this group are called automorphisms of
the intersection form. The action of diffeomorphisms on homology defines a group homomorphism
Diff+(X)→ O.

There is a way to choose an orientation on all maximal positive definite linear subspaces ofH2(X;R),
cf. [24]: Fix any such subspace U0 and let π : H2(X;R)→ U0 denote the orthogonal projection. The
restriction of π to any maximal positive definite subspace U is an isomorphism with U0. Choosing
an orientation for U0 we get an orientation for all maximal positive definite subspaces U via π. This
orientation varies continuously with U . The spinor norm of an element φ ∈ O is defined to be ±1 de-
pending on whether φ preserves or reverses the orientation on a maximal positive definite subspace of
H2(X;R). A deformation argument shows that this does not depend on the choice of such a subspace.
The subgroup of O of elements of spinor norm 1 is denoted by O′.

Definition 2.1. We let K denote the canonical class of X , which is minus the first Chern class. If
X is not the K3 surface let k denote the Poincaré dual of K divided by its divisibility. If X is
the K3 surface let k denote the class of a general fibre. In any case, k is a primitive class of self-
intersection zero. We also choose a second homology class V such that k · V = 1. For example if
X has no multiple fibres we can choose for V a section of an elliptic fibration. We denote by Ok the
automorphisms fixing k and by O′

k those of spinor norm 1.

The following was proved in [20].

Theorem 2.2. The image of the diffeomorphism group Diff+(X) in O is equal to O′ for the K3
surface and contains O′

k for all other elliptic surfaces X .

We now consider integral unimodular quadratic forms in general. We let H denote the even hyper-
bolic form of rank 2 and E8 the standard positive definite even form of rank 8. A standard basis for
H is a basis e, f such that

e2 = 0, f2 = 0, e · f = 1.

Let Q denote the quadratic form Q = lH ⊕m(−E8) with l ≥ 2 and m ∈ Z. In [26] Wall proved the
following.

Theorem 2.3. The orthogonal group of Q acts transitively on primitive elements of given square.

We want to deduce the following.
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Proposition 2.4. The subgroup of elements of spinor norm 1 in the orthogonal group of Q acts tran-
sitively on primitive elements of given square.

We first prove the following lemma.

Lemma 2.5. For any even number 2a there exist primitive elements p and q of square 2a and auto-
morphisms of Q of spinor norm +1 and −1 which map p to q.

Proof. We consider Q = lH ⊕m(−E8) and let e, f denote a standard basis for the first H summand.
Let p = e + af and q = −e − af . Then p2 = q2 = 2a. Consider the automorphism of Q
which is minus the identity on the first H summand and the identity on all other summands and the
automorphism which is minus the identity on the first two H summands and the identity on all other
summands. These automorphisms have spinor norm −1 and +1 and map p to q. �

We now prove Proposition 2.4.

Proof. Let x and y be arbitrary primitive elements of square 2a and let p and q be the elements from
the lemma of the same square. By Wall’s theorem there exist automorphisms in O mapping x to p and
q to y. Choosing an automorphism that maps p to q of the correct spinor norm we get by composing
an automorphism of spinor norm +1 mapping x to y. �

We now consider the elliptic surface X .

Lemma 2.6. The self-intersection number V 2 is even if and only if X is spin.

Proof. The intersection form on the span of k and V is unimodular, hence it is unimodular on the
orthogonal complement. The intersection form on this complement is even, since the canonical class
K is characteristic. The claim now follows because X is spin if and only if the intersection form on
both summands is even. �

Let V 2 = 2a in the spin case and V 2 = 2a+ 1 in the non-spin case.

Definition 2.7. Define an element W = V − ak. Then the intersection form on the span of k and W
is the form H in the spin case and the form H ′ given by

H ′ =

(
0 1
1 1

)
in the non-spin case. Note that H ′ is isomorphic to 〈+1〉 ⊕ 〈−1〉.

The complete intersection form of X is then given by

(2.1) H ⊕ lH ⊕m(−E8) or H ′ ⊕ lH ⊕m(−E8),

where l ≥ 2 since b+2 ≥ 3. We also want to choose a standard basis for the second H summand: The
K3 surface is known to contain a rim torus R of self-intersection zero and a vanishing sphere S of
self-intersection−2 such thatR and S intersect transversely in one positive point. Both arise from the
fibre sum construction K3 = E(1)#F=FE(1) along a general fibre F . See Section 4 for an explicit
model of the rim torus; the vanishing sphere is obtained by sewing together two vanishing disks of
relative self-intersection −1 coming from elliptic Lefschetz fibrations on E(1). Recall the following
definition from [7]:

Definition 2.8. The nucleusN(2) is defined as the 4-manifold with boundary given by the neighbour-
hood of a cusp fibre and a section in K3.
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Note that the nucleus contains also a smooth torus homologous to the cusp. In addition to the
nucleus given by the definition, the K3 surface contains two other embedded copies of N(2), disjoint
from the first one. The rim torus R and the vanishing sphere S are embedded in one such copy
[8]. Since this nucleus is disjoint from a general fibre it is still contained in an arbitrary elliptic
surface X of the type above because the fibre sums and the logarithmic transformations resulting in
the manifold X = E(n)p,q are performed in the complement of the nucleus. We also choose the
surface representing the class V to be disjoint from this nucleus.

Definition 2.9. Let T denote the torus of self-intersection zero obtained by smoothing the intersection
between R and S. Then T represents the class R+S and the classes R and T are a standard basis for
the second H summand in the intersection form of the elliptic surface X .

Using Theorem 2.2 and Proposition 2.4 we have the following:

Proposition 2.10. Let A ∈ H2(X) be an arbitrary element. Then there exists a self-diffeomorphism
of X which maps A to

A′ = αk + βW + γR+ δT,

where α, β, γ, δ are certain integers. The diffeomorphism is the identity on the span of k and W .
SupposeX is theK3 surface and the classA primitive. Then we can mapA via a self-diffeomorphism
to

A′ = αR+ S,

where 2α − 2 = A2. Hence the self-diffeomorphisms of the K3 surface act transitively on primitive
elements of given square.

The result for the K3 surface is well-known [11, 14]. As a final preparation, recall the following
theorem [9], containing the so-called adjunction inequality:

Theorem 2.11. Let Y be a closed oriented 4-manifold with b+2 > 1. Assume that Σ is an embedded
oriented connected surface in Y of genus g(Σ) with self-intersection Σ2 ≥ 0, such that the class
represented by Σ is non-zero. Then for every Seiberg-Witten basic class L we have

2g(Σ)− 2 ≥ Σ · Σ + |L · Σ|.

If Y is of simple type and g(Σ) > 0, then the same inequality holds for Σ ⊂ Y with arbitrary square
Σ · Σ.

Note that if L is a basic class, i.e. a characteristic class in H2(Y ;Z) with non-vanishing Seiberg-
Witten invariant, then −L is also a basic class. The basic classes of the elliptic surfaces X = E(n)p,q
are completely known [3]. They are given by the set

{rk | r ≡ npq − p− q mod 2, |r| ≤ npq − p− q}.

The basic classes are multiples of the class k where the maximal values at the end are given (up to
sign) by the canonical class K of the elliptic surface X . Hence the adjunction inequality for the
elliptic surfaces X reduces to the statement that

2g(Σ)− 2 ≥ Σ · Σ + |K · Σ|.
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3. MINIMAL GENUS PROBLEM FOR THE K3 SURFACE

The minimal genus problem for classes of non-negative square in the K3 surface has already been
solved [14] using the K3 case of Proposition 2.10. We want to recall this solution and also show that
we can realize these surfaces in a nucleus N(2) in a certain standard way. Note that the adjunction
inequality for the K3 surface implies because of K = 0 for the genus of a smooth surface Σ that
2g(Σ)− 2 ≥ Σ · Σ if the homology class represented by this surface is non-zero.

Definition 3.1. By the standard surface of genus g embedded in the nucleusN(2) we mean the section
of self-intersection −2 (g = 0), the general fibre of self-intersection 0 (g = 1) or the surface of genus
g ≥ 2 and self-intersection 2g − 2 obtained by smoothing the intersection points of the section and g
parallel copies of the general fibre.

According to Proposition 2.10 we can map any primitive class in the K3 surface via a self-
diffeomorphism to a class in the nucleus. Hence we get:

Corollary 3.2. Consider the K3 surface. Every primitive class of self-intersection 2c− 2 with c ≥ 0
is represented by a surface of genus c. We can assume that it is embedded as the standard surface in
a nucleus N(2) inside K3. This is the minimal possible genus.

To solve the case of divisible classes with non-negative square we use Lemma 7.7 in [13] due to
Kronheimer-Mrowka (see also Lemma 14 in [14]):

Lemma 3.3. Let Y be a closed connected oriented 4-manifold. Let a(Σ) = 2g(Σ) − 2 − Σ · Σ. If
h ∈ H2(Y ) is a homology class with h · h ≥ 0 and Σh is a surface of genus g representing h and
g ≥ 1 when h · h = 0, then for all r > 0, the class rh can be represented by an embedded surface
Σrh with

a(Σrh) = ra(Σh).

In particular, we can apply the construction of this lemma to divisible classes of non-negative square
inside the nucleus N(2) to get surfaces that represent these classes in the nucleus (the construction in
the proof of this lemma works in a tubular neighbourhood of Σh and does not need the assumption
that Y is closed). In this case a(Σh) is zero, hence also a(Σrh) is zero. We have:

Corollary 3.4. Every class inH2(N(2)), not necessarily primitive, which has self-intersection 2c−2
with c ≥ 0 is represented by an embedded surface of genus c in N(2).

We call these surfaces in the nucleus standard. The transitivity of the action of the diffeomorphism
group then implies that every divisible class of non-negative square in K3 can also be represented by
such a standard surface inside a nucleusN(2). Hence Corollary 3.2 holds without the assumption that
the class is primitive.

4. MINIMAL GENUS PROBLEM FOR OTHER ELLIPTIC SURFACES

We now consider the general case of relatively minimal simply-connected elliptic surfaces X with
b+2 > 1. Note that the adjunction inequality implies for surfaces Σ orthogonal toK again that 2g(Σ)−
2 ≥ Σ · Σ. The self-intersection of such a surface is even. Using Proposition 2.10 and Corollary 3.4
we get:

Corollary 4.1. Let X be an elliptic surface. Then every class A of self-intersection 2c− 2 with c ≥ 0
that is orthogonal to the classes K and V is represented by a surface of genus c. We can assume that
it is embedded as the standard surface in a nucleus N(2) in the 4-manifold X . This is the minimal
possible genus if the class is non-zero.
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Proof. The assumptions imply that A can be mapped via a diffeomorphism to A′ = γR + δS. Since
R and S are constructed in a nucleus N(2) the claim follows. �

Remark 4.2. If we relax the assumption and only assume that A is orthogonal to K it seems that the
surface is in general not contained in a nucleus N(2). For example the general fibre is contained in a
nucleus N(n)p,q.

We can deal with the case A2 = −2 in a slightly more general situation:

Proposition 4.3. Let X be an elliptic surface. Then any class A orthogonal to K and of self-
intersection −2 is represented by the standard sphere in a nucleus N(2) in the 4-manifold X .

Proof. The assumptions imply that there exists a self-diffeomorphism of X mapping A to

A′ = αk + S,

where S is the vanishing sphere. Consider the following map φ on H2(X) which on the first two
summands of the intersection form is given by

k 7→ k

W 7→W + αR

R 7→ R

S 7→ S − αk
and is the identity on all other summands. It is easy to check that φ is an isometry. Letting α be a
real number and taking α → 0 we see that φ has spinor norm +1. Hence it is an element in O′

k and
therefore induced by a self-diffeomorphism. It maps A′ to S. This implies the claim. �

Remark 4.4. This result should be compared to the fact that every class of square −2 in the comple-
ment of a general fibre in X is represented by an embedded sphere [6, 20].

We now restrict to the case of elliptic surfaces without multiple fibres, i.e. X = E(n), because the
following arguments seem to work only in this case. The class k is represented by a general fibre F .
We also have the rim torus R. Proposition 2.10 implies:

Lemma 4.5. If A is a class orthogonal to K and of self-intersection zero then there exists a self-
diffeomorphism of X that maps A to

A′ = αF + γR.

We want to show that A′ can be represented by an embedded torus. The construction involves
the circle sum from [19]. The idea is the following: Let Σ0 and Σ1 denote two disjoint connected
embedded oriented surfaces in a 4-manifold Y . We can tube them together in the standard way to
get a surface of genus g(Σ0) + g(Σ1). Sometimes, however, we can perform a different surgery that
results in a surface of smaller genus. Let S1

i ⊂ Σi denote embedded circles that represent non-trivial
homology classes in the surfaces. In each surface we delete an annulus S1

i × I . We get two disjoint
surfaces whose boundaries consist of two circles for each surface. We want to connect these circles
by annuli embedded in Y . There are several ways to do this: One possibility is to connect the circles
from the same surface. In this way we simply get back the surfaces Σ0 and Σ1. Another possibility
is to connect the boundary circles from different surfaces. If this is possible we get an embedded
connected surface of genus g(Σ0) + g(Σ1)− 1 representing the class [Σ0] + [Σ1].

The construction works if we can find an embedded annulus ∆ in Y that intersects the surfaces
Σ0 and Σ1 precisely in the circles S1

0 and S1
1 . We also need a nowhere vanishing normal vector field

along ∆ that at the ends of ∆ is tangential to the surfaces Σ0 and Σ1. The annuli connecting the four
boundary circles are then constructed as normal push-offs of the annulus ∆.
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Lemma 4.6. There exists an embedded annulus ∆ connecting the tori F and R that satisfies the
necessary assumptions for the circle sum in [19].

Proof. The elliptic surfaceX = E(n) is obtained as a fibre sum ofE(n−1) andE(1) along a general
fibre. Let S1 × S1 × D2 denote a tubular neighbourhood of the fibre in one of the summands. We
think of D2 as the unit disk in the complex plane and let I denote the interval [12 , 1] along the real
axis. In forming the fibre sum we delete the open tubular neighbourhood of radius 1

4 of the general
fibre in the centre of the tubular neighbourhood. The fibre F in X is realized as S1×S1×{12} while
the rim torus R is S1 × {∗} × ∂D2. Consider the annulus ∆ = S1 × {∗} × I . It intersects the tori
F and R precisely in the circles S1

F = S1 × {∗} × {12} and S1
R = S1 × {∗} × {1}. Let vF be a unit

tangent vector to S1 in the point ∗ and vR a unit tangent vector to ∂D2 in 1. Then

eF = S1 × vF ×
{
1
2

}
and

eR = S1 × {∗} × vR
are framings of the circles S1

F and S1
R inside the tori. Consider the normal vector field along the

annulus ∆ given on S1 × {∗} × t by

e = S1 × (2− 2t)vF × t× (2t− 1)vR.

This is equal to the framings eF and eR on the boundary and is the required framing of the annulus.
�

This construction allows us to circle sum F and R. A similar, but easier construction allows us
to circle sum |α| parallel copies of F and |γ| parallel copies of R with a suitable orientation to get
embedded tori Σ0 and Σ1 representing the classes αF and γR. The torus Σ0 contains as an open
subset a copy of the torus F with an annulus deleted, and similarly for Σ1. Circle summing Σ0 and
Σ1 along these subsets we get an embedded torus representing the class αF + γR. This construction
proves:

Theorem 4.7. Let X be an elliptic surface without multiple fibres. Then any class A orthogonal to
K and of self-intersection zero is represented by an embedded torus.

This is clearly the minimal possible genus allowed by the adjunction inequality if the class A is
non-zero. The same method can be used to prove the following generalization:

Theorem 4.8. Let X be an elliptic surface without multiple fibres. Suppose A is a class orthogonal
to K such that A2 = 2c − 2 with c ≥ 0. Then A is represented by a surface of genus c in X . This is
the minimal possible genus if A is non-zero.

Proof. The cases c = 0 and c = 1 have been proved above. We can assume that c ≥ 2. The
assumptions imply that there exists a self-diffeomorphism of X mapping A to

A′ = αF + γR+ δT,

where γ and δ are positive with γδ = c − 1. We circle sum |α| parallel copies of F with a suitable
orientation to get a torus Σ0 representing αF . Taking circle sums of parallel copies of the tori R
and T we get tori representing γR and δT that intersect transversely in γδ points. Smoothing these
intersections we get a surface Σ1 of genus γδ+ 1 = c. This surface contains as an open subset a copy
of the torus R with an annulus and δ points deleted. We circle sum the surface Σ1 to the torus Σ0 to
get an embedded surface of genus c representing A′. �
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