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THE CLOSURE OF THE SYMPLECTIC CONE OF ELLIPTIC SURFACES

ABSTRACT. The symplectic cone of a closed oriented 4-manifold is the set of cohomology classes rep-
resented by symplectic forms. A well-known conjecture describes this cone for every minimal Kähler
surface. We consider the case of the elliptic surfaces E(n) and focus on a slightly weaker conjecture
for the closure of the symplectic cone. We prove this conjecture in the case of the spin surfaces E(2m)
using inflation and the action of self-diffeomorphisms of the elliptic surface. An additional obstruction
appears in the non-spin case.

1. INTRODUCTION

Let M be a closed oriented 4-manifold. We are interested in the set CM of real cohomology classes
represented by symplectic forms on M , called the symplectic cone of M . It is indeed a cone because
a non-zero multiple of any symplectic form is again symplectic. We only consider symplectic forms
ω compatible with the orientation, so that ω ∧ ω is everywhere positive. It follows that the symplectic
cone is a subset of the positive cone P , given by the set of elements in H2(M ;R) which have positive
square. If the 4-manifold M does not admit a symplectic form then the set CM is empty. It is also
useful to denote by PA for a non-zero cohomology class A ∈ H2(M ;R) the set of elements in P
which have positive cup product with A. In addition, we set P0 = P .

The symplectic cone has been determined in the following cases:
(a) S2-bundles over surfaces [17].
(b) T 2-bundles over T 2 [8].
(c) All 4-manifolds with a fixed point free circle action [3, 5, 6].
(d) All symplectic 4-manifolds with b+2 = 1 [14].
(e) The K3 surface [13].
(f) Fibre sums along tori of T 2 × Σg and minimal elliptic Kähler surfaces with b+2 = 1, for

example Enriques or Dolgachev surfaces [4].
The simply-connected 4-manifolds among these cases either have b+2 = 1 or are diffeomorphic to

the K3 surface, because the 4-manifolds in (c) have zero Euler characteristic.
¿From now on we denote by M a simply-connected elliptic surface E(n) without multiple fibres

and with the complex orientation. Since by the results mentioned above the symplectic cone is known
for E(1) = CP2#9CP2 and the K3 surface E(2) we assume that n ≥ 3. Let F denote the class of
the fibre in an elliptic fibration on M . We set

c1(M) = −(n− 2)PD(F ),

where PD denotes the Poincaré dual of the homology class. Note that symplectic forms have well-
defined Chern classes, defined by considering any compatible almost complex structure. If ω is a
symplectic form with first Chern class c1(M,ω), then −ω is a symplectic form with first Chern class
−c1(M,ω). It is known from Seiberg-Witten theory [10] that every symplectic form on E(n) has up
to sign first Chern class equal to c1(M). It is also known from the theorems of Taubes [18] that for
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2 THE CLOSURE OF THE SYMPLECTIC CONE OF ELLIPTIC SURFACES

every symplectic structure ω the class −c1(M,ω) is represented by an embedded symplectic surface.
This implies that ω · c1(M) is non-zero, hence the symplectic cone satisfies

CM ⊂
(
Pc1(M) ∪ P−c1(M)

)
.

A well-known conjecture due to Tian-Jun Li [13] says that the following holds:

Conjecture 1 (Strong conjecture). We have(
Pc1(M) ∪ P−c1(M)

)
⊂ CM .

Hence every class of positive square whose cup product with the first Chern class of M is non-zero is
represented by a symplectic form.

The conjecture should even hold for any closed 4-manifold underlying a minimal Kähler surface,
but we only consider the case of elliptic surfaces. There is also a slightly weaker form of the conjec-
ture. We denote by CM the closure of the symplectic cone in the vector space H2(M ;R).

Conjecture 2 (Weak conjecture). We have(
Pc1(M) ∪ P−c1(M)

)
⊂ CM .

Hence every class of positive square whose cup product with the first Chern class of M is non-zero is
the limit of a sequence of symplectic classes.

In the following we only consider the weak conjecture. To state the theorem we want to prove,
consider the following definition:

Definition 1. We define
Pc1(M)> ⊂ Pc1(M)

and
P−c1(M)> ⊂ P−c1(M)

to be the subsets of elements ω with ω2 > (ω · PD(F ))2.

Then we have:

Theorem 2. Let m ≥ 2 be an integer. If M is the spin surface E(2m) then(
Pc1(M) ∪ P−c1(M)

)
⊂ CM .

If M is the non-spin surface E(2m− 1) then(
Pc1(M)> ∪ P−c1(M)>

)
⊂ CM .

This proves Conjecture 2 in the case of the spin elliptic surfaces E(2m). At the moment we do not
know how to prove the full Conjecture 2 in the non-spin case. One can view these results as evidence
that the strong Conjecture 1 is indeed true. The sequences of symplectic forms in the theorem are all
obtained from a single symplectic form by inflation along certain symplectic surfaces and the action
of the orientation preserving self-diffeomorphisms of the elliptic surface M .

Acknowledgements. I would like to thank Tian-Jun Li for very helpful conversations.
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2. SOME NOTATION

We follow the notation from [11]. In particular, all self-diffeomorphisms of M are orientation
preserving. We often denote a symplectic form and its class by the same symbol. Note that considering
minus a given symplectic form we see that to prove the weak conjecture it suffices to prove that

PPD(F ) ⊂ CM .

Definition 3. We define
PPD(F )> ⊂ PPD(F )

to be the subset of elements ω with ω2 > (ω · PD(F ))2.

We want to prove the following theorem, which is equivalent to Theorem 2:

Theorem 4. Let m ≥ 2 be an integer. If M is the spin surface E(2m) then

PPD(F ) ⊂ CM .
If M is the non-spin surface E(2m− 1) then

PPD(F )> ⊂ CM .

We will first prove a special case of Theorem 4 since this is easier and uses the same method as in
the general case. We need some notation. Consider the manifold M = E(n) and define an integer m
by n = 2m if n is even and n = 2m− 1 if n is odd.

Definition 5. Let W be the embedded surface obtained by smoothing the intersections of a section V
of the elliptic surface M of square −n and m parallel copies of the fibre F . Let R denote a rim torus
of square zero and S a dual vanishing sphere of square −2 in M . Both F,W and R,S intersect in a
single transverse positive point. Otherwise the surfaces are disjoint.

The vanishing sphere S is obtained by sewing together in the fibre sum

E(n) = E(1)#F=FE(n− 1)

two vanishing disks coming from singular fibres with the same vanishing cycles. The surface W has
self-intersection zero if n is even and one if n is odd. The surfaces F and W span a copy of the
standard hyperbolic form H in the intersection form if n is even and a copy of H ′ if n is odd, where

H ′ =

(
0 1
1 1

)
.

We will denote both intersection forms by H(n). Since this form is unimodular the total intersection
form over the integers looks like

QM = H(n)⊕H(n)⊥.

We can decompose any class ω ∈ H2(M ;R) according to this splitting as

ω = PD(αF + βW ) + ω′

with ω′ ∈ H(n)⊥ (here we mean the real subspace spanned by this lattice). Note that

β = ω · PD(F ).

Definition 6. We define
PPD(F )+ ⊂ PPD(F )

to be the subset of elements of the form ω = PD(αF + βW ) + ω′ where α, β and ω′2 are positive.
We call the classes in this subset positive.
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Theorem 7. We have
PPD(F )+ ⊂ CM .

This theorem describes the first subset of PPD(F ) that we can represent by the limits of symplectic
forms. We will extend it later and prove Theorem 4.

3. SYMPLECTIC FORMS AND DIFFEOMORPHISMS

The inflation procedure, introduced by Lalonde and McDuff [12, 17], shows that if Σ is a closed
connected symplectic surface of non-negative square in a closed symplectic 4-manifold (Y, ω), then
the class [ω] + tPD(Σ) is represented by a symplectic form for all t ≥ 0. We need the following
generalized inflation lemma:

Lemma 8. Let (Y, ω) be a closed symplectic 4-manifold and Σ1,Σ2 ⊂ Y closed connected symplectic
surfaces of non-negative square which intersect transversely in a single positive point. Then for all
real numbers r1, r2 ≥ 0 the class

[ω] + r1PD(Σ1) + r2PD(Σ2)

is represented by a symplectic form.

Proof. By the symplectic neighbourhood theorem Σ1 has a tubular neighbourhood νΣ1 with sym-
plectic fibres. According to Lemma 2.3 in [9] we can assume that Σ2 intersects νΣ1 in one of the disk
fibres. If we first do inflation along Σ1 as in [17, Lemma 3.7] then the symplectic form changes only
in the tubular neighbourhood νΣ1 and the fibres stay symplectic. Hence Σ2 remains symplectic and
we can then do inflation along Σ2. Compare with [2, Lemma 2.1.A] and [15, Theorem 2.3]. �

Proposition 9. There exists a symplectic form onM such that F,W,R and S are symplectic surfaces.

From the Gompf sum construction [9] applied to the fibre sum

E(n) = E(1)#F=FE(n− 1)

it is clear that there exists a symplectic form on M such that F and V are symplectic. Hence the
surface W is also symplectic.

Lemma 10. We can choose the surfacesR and S such that they are Lagrangian for a symplectic form
from the Gompf construction.

Proof. The claim is clear for the rim torusR: In the fibre sum construction it is given byR = γ×∂D2

where γ is one of the circle factors of the torus F = S1 × S1 in a tubular neighbourhood F ×D2 on
which the symplectic form is a standard product form. The claim for the vanishing sphere S follows
from section 8 in [1]. �

Hence Proposition 9 is a consequence of the following theorem that we formulate in a more general
way. The proof is very similar to Lemma 1.6 in [9] due to Gompf which states the same for disjoint
Lagrangians.

Theorem 11. Let (X,ω) be a closed symplectic 4-manifold and L1, . . . , Ln closed connected em-
bedded oriented Lagrangian surfaces in X which intersect each other transversely so that at most
two surfaces intersect in any given point of X . Suppose that the classes of these surfaces are linearly
independent in H2(X;R). Then there exists a symplectic structure ω′ on X , deformation equivalent
to ω, such that all of these Lagrangian surfaces become symplectic. We can choose the symplectic
structure ω′ such that the induced volume forms on the Lagrangians have any given sign. We can also
assume that any symplectic surface disjoint from the Lagrangians stays symplectic.
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Proof. Let a1, . . . , an be any real numbers. SinceH2(X;R) is the dual space of second real homology
there exists a closed 2-form η on X such that∫

Li

η = ai, i = 1, . . . , n.

Choose volume forms ωi on Li for each i such that∫
Li

ωi =

∫
Li

η.

Let ji denote the embedding of Li into X . There exist 1-forms αi on Li such that

ωi − j∗i η = dαi.

Let πi : νLi → Li denote tubular neighbourhoods and choose cut-off functions ρi(r) with support on
the tubular neighbourhoods which depend only on the radius r and are 1 on the zero section. Define
1-forms

αi = ρiπ
∗
i αi

on the tubular neighbourhoods. Extend them by zero outside of the neighbourhood and set

η′ = η +
∑
i

dαi.

We claim that j∗i η
′ = ωi. This follows if we can show that

j∗i dαk = 0 for k 6= i.

This is clear if Lk does not intersect Li by making the tubular neighbourhood of Lk small enough so
that it does not intersect Li. Suppose that Lk and Li intersect in a point p. We can assume that Li
intersects νLk in a disk fibre of the tubular neighbourhood. We have

dαk = ρ′kdr ∧ π∗kαk + ρkπ
∗
kdαk.

By assumption, πk∗ is the zero map on TqLi for each point q on the disk fibre Li ∩ νLk. Therefore
dαk is zero on any two vectors in TqLi. Hence j∗i dαk = 0.

Consider the closed 2-form
ω′ = ω + tη′.

For small positive t the form ω′ is symplectic. Since the Li are Lagrangian for ω we have j∗i ω
′ = tωi.

Hence the Li are now symplectic surfaces with (small) positive or negative volume, depending on the
sign of ai. �

Definition 12. Let ω0 denote a symplectic form on M given by Proposition 9. We can assume that
the symplectic form has the same sign on both R and S. Let T denote the symplectic torus of square
0 obtained by smoothing the intersection between R and S. The tori R and T intersect in a single
positive transverse point.

The surfaces R and T together span a copy of H in the intersection form, which we denote by
HRT . In summary the intersection form of M is equal to

QM = H(n)⊕HRT ⊕ aH ⊕ b(−E8)

with certain integers a, b ≥ 1.

Definition 13. We say that a self-diffeomorphism ofM satisfies (∗) if it preserves the splittingH(n)⊕
H(n)⊥ and is the identity on the first summand.

We will frequently use the following proposition that was proved in [11].
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Proposition 14. Every integral class in H(n)⊥ can be mapped to any integral linear combination of
R and T of the same square and divisibility by a self-diffeomorphism of the elliptic surface M that
satisfies (∗). Taking a multiple we see that we can map in this way any rational class in H(n)⊥ to a
rational linear combination of R and T .

The following is clear:

Lemma 15. Let f : M →M be an orientation preserving diffeomorphism. If C andD are homology
classes on M with f∗C = D, then (f−1)∗PD(C) = PD(D).

We will now cover a large part of the positive cone by symplectic forms in the following way: We
have a symplectic form ω0 so that the surfaces F,W,R and T are symplectic. The class of ω0 can be
written as

ω0 = PD(α0F + β0W + γ0R+ δ0T ) + Z0,

where Z0 is a class in the real span of aH ⊕ b(−E8). Using inflation with very large parameters and
then dividing by a large number it follows that the class

ω = PD(αF + βW + γR+ δT )

plus some arbitrarily small rest is represented by a symplectic form for all positive coefficientsα, β, γ, δ.
The second method we use are the actions of self-diffeomorphisms on cohomology. In particular, we
can map according to Proposition 14 any rational class in H2(M ;R) using a self-diffeomorphism to
a rational linear combination of the Poincaré duals of F,W,R and T . This will suffice to prove The-
orem 7 in Section 4, because in this situation all coefficients are positive. To prove the more general
Theorem 4 in Section 5 we will introduce in Lemma 17 another diffeomorphism that allows in some
situations to change a negative coefficient in the expansion of ω into a positive one.

4. PROOF OF THEOREM 7 ON POSITIVE CLASSES

We have the following lemma that proves one of the steps outlined above.

Lemma 16. Let ω be a class in PPD(F ). Then there exist a sequence of self-diffeomorphisms φk of
the elliptic surface M and classes σk of the form

σk = PD(αF + βW + γkR+ δkT )

with β > 0 such that φ∗kσk converges to the class ω. The diffeomorphisms φk satisfy (∗). If ω is a
class in the subset PPD(F )+ then we can assume that all coefficients of σk are positive.

Proof. We decompose the class ω as

ω = PD(αF + βW ) + ω′,

where ω′ ∈ H(n)⊥ and β > 0. There exists a sequence ω′k of rational classes inH(n)⊥ converging to
the class ω′. Using the second part of Proposition 14 there exist self-diffeomorphisms φk that satisfy
(∗) and map

φ∗kPD(γkR+ δkT ) = ω′k

for certain rational numbers γk, δk. Setting

σk = PD(αF + βW + γkR+ δkT )

we get the first claim. If ω is a class in PPD(F )+ we can assume that all ω′2k are positive. Hence we
can assume that γk and δk are positive. �
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Recall that we have a symplectic form ω0. As above, the class of this form can be written as

ω0 = PD(α0F + β0W + γ0R+ δ0T ) + Z0,

where Z0 is a class in the real span of aH ⊕ b(−E8). We now prove Theorem 7.

Proof. Let ω be a class in PPD(F )+. Choose a sequence σk as in Lemma 16. Then

σk = PD(αF + βW + γkR+ δkT )

where all coefficients are positive. Consider the symplectic form ω0 with the symplectic surfaces
F,W,R, T . We apply the inflation Lemma 8 to the form ω0 which means that we can add to ω0 any
linear combination of the classes F,W,R, T with positive coefficients. This shows that the class

Nkσk + Z0

is represented by a symplectic form for any sufficiently large positive number Nk. Hence also the
classes

ηk = σk +
1

Nk
Z0

are represented by symplectic forms. We know that φ∗kσk converges to ω. We can choose the numbers
Nk large enough so that 1

Nk
φ∗kZ0 converges to 0. Then φ∗kηk converges to ω, hence ω ∈ CM . �

5. PROOF OF THE MAIN THEOREM 4

We will use the following lemma which shows that certain automorphisms of the intersection form
are realized by self-diffeomorphisms.

Lemma 17. For an integer i let fi denote the map which is the identity on all summands of the
intersection form except on H(n)⊕HRT , where it is given by

F 7→ F

W 7→W + iT

R 7→ R− iF
T 7→ T.

Then fi is induced by a self-diffeomorphism of M .

Proof. It is easy to check that fi is an automorphism of the intersection form. The map fi leaves F
and hence c1(M) invariant. Letting i be a real number and taking i → 0 we see that fi has spinor
norm one. This implies the claim by the work of Friedman-Morgan [7]; see also [16]. �

We denote a diffeomorphism that induces fi by the same symbol. The induced automorphism f∗i
on cohomology maps

ω = PD((α− iγ)F + βW + γR+ (δ + iβ)T )

to
f∗i ω = PD(αF + βW + γR+ δT ).

Note that the class ω can be positive even if f∗i ω is not positive. The main difficulty in the case of
Theorem 4 is that we have to approximate classes which are no longer positive by symplectic forms.
However, the automorphism f∗i allows us in some cases to map a positive class to such a non-positive
class. The positive class can then be reached by inflation. Hence we have to show that under our
assumptions we can always find an integer i such that f∗i maps a positive class to our given class.
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Suppose for example that we want the class ω as above to be positive. We can assume that β, γ > 0.
Then ω is positive if and only if α− iγ > 0 and δ + iβ > 0. This is possible only if

αβ + γδ > 0,

which is equivalent to ω2 > 0 if M is spin and ω2 > β2 if M is non-spin. Note that β = ω · PD(F ).
This is the reason why we have to restrict to the subset PPD(F )> in the non-spin case.

We now begin with the proof of Theorem 4. Fix a cohomology class ω in H2(M ;R). If M is the
elliptic surface E(2m) assume that ω is in the subset PPD(F ) and if M is the surface E(2m − 1)

assume that ω is in the subset PPD(F )>. We want to approximate ω by symplectic classes. Write

ω = PD(αF + βW ) + ω′

where ω′ is an element of the real span of H(n)⊥. The following inequality for the coefficients of the
class ω is a consequence of our assumptions.

Lemma 18. We have

α > −ω
′2

2β
.

Proof. In both cases β > 0 and

0 < ω2 = 2αβ + β2W 2 + ω′2

= 2αβ + ε(n)β2 + ω′2

where ε(n) = 0 if n is even and ε(n) = 1 if n is odd. If n = 2m is even we get

2αβ > −ω′2

hence

α > −ω
′2

2β
.

If n = 2m− 1 is odd we get by the assumption that ω is in PPD(F )>

β2 < ω2 = 2αβ + β2 + ω′2.

This again implies the claim. �

We now prove a slightly technical lemma. The estimate in (b) will be used in Lemma 20 to show
that we can find integers ik such that the automorphisms f∗ik map a sequence of positive classes to
another sequence which can then by mapped by diffeomorphisms to a sequence converging to our
given class ω.

Lemma 19. There exists a sequence ω′k of rational classes in H(n)⊥ converging to ω′ with the
following properties:

(a) ω′2k > ω′2 for all indices k.
(b) Write ω′k = 1

Ak
τk where Ak is a positive rational number and τk is an indivisible integral

class in H(n)⊥. Then there exist integers ik with

α >
ik
Ak

> −ω
′2

2β
.



THE CLOSURE OF THE SYMPLECTIC CONE OF ELLIPTIC SURFACES 9

Proof. Let ω′′k be any rational sequence in H(n)⊥ converging to ω′. We can assume that

ω′′2k > ω′2

because every neighbourhood of ω′ contains rational elements with this property. Write

ω′′k =
1

Bk
µk

where Bk is a positive rational number and µk is integral and indivisible. For each k we can find
an integral basis e1, e2, . . . , er of the lattice H(n)⊥ such that e1 = µk. The basis depends on k
but we do not write the index. Let Ck be an arbitrary sequence of positive integers converging to
infinity. Consider the rational number Ak = CkBk and the integral class τk = Ckµk + e2. Then τk is
indivisible. Define

ω′k =
1

Ak
τk =

1

Bk

(
µk +

1

Ck
e2

)
.

If we choose the integers Ck large enough the sequence ω′k converges to ω′ (note that e2 depends on
k). Moreover, we can assume that ω′2k > ω′2. If Ck and hence Ak is large enough we can find an
integer ik such that

α >
ik
Ak

> −ω
′2

2β
.

�

Let ω′k = 1
Ak
τk be the sequence from Lemma 19. Since τk is an integral indivisible class in H(n)⊥

we can find by Proposition 14 a self-diffeomorphism φk of the elliptic surface M satisfying (∗) such
that

τk = φ∗kPD(R+ δkT )

for certain integers δk. We get

(1) ω′k = φ∗kPD

(
1

Ak
R+

δk
Ak

T

)
.

This implies that the sequence

φ∗kPD

(
αF + βW +

1

Ak
R+

δk
Ak

T

)
converges to our given class ω. Consider the automorphism f∗i from Lemma 17 and apply (f−1i )∗ to
the sequence

PD

(
αF + βW +

1

Ak
R+

δk
Ak

T

)
where i = ik for the integer ik from Lemma 19. This implies that there exist self-diffeomorphisms
ψk = fik ◦ φk such that ψ∗kσk converges to ω, where

σk = PD

((
α− ik

Ak

)
F + βW +

1

Ak
R+

(
δk
Ak

+ ikβ

)
T

)
Lemma 20. The numbers α− ik

Ak
and δk

Ak
+ ikβ are positive.
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Proof. The first claim is clear by construction in Lemma 19. Note that by formula (1) above

ω′2k =
2

A2
k

δk

and by construction
ik
Ak

> −ω
′2

2β
> −

ω′2k
2β

.

Hence
δk
Ak

=
1

2
ω′2k Ak.

and
ikβ > −

1

2
ω′2k Ak

This implies the second claim. �

Note that all coefficients of σk are positive. We now argue as in the proof of Theorem 7: There
exist classes

ηk = σk +
1

Nk
Z0

represented by symplectic forms such thatψ∗kηk converges to ω. Hence ω ∈ CM . This proves Theorem
4.
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2008-005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed

problems in Banach spaces: convergence and applications to parameter identification
problems



2008-004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale
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