Universität Stuttgart

Fachbereich Mathematik

The closure of the symplectic cone of elliptic surfaces M. J. D. Hamilton

Preprint 2012/010

Universität Stuttgart

Fachbereich Mathematik

The closure of the symplectic cone of elliptic surfaces M. J. D. Hamilton

Preprint 2012/010

Fachbereich Mathematik Fakultät Mathematik und Physik Universität Stuttgart Pfaffenwaldring 57 D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints

ISSN 1613-8309

@ Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors. $\mbox{\it Le}T_{E}X\mbox{-}Style:$ Winfried Geis, Thomas Merkle

THE CLOSURE OF THE SYMPLECTIC CONE OF ELLIPTIC SURFACES

ABSTRACT. The symplectic cone of a closed oriented 4-manifold is the set of cohomology classes represented by symplectic forms. A well-known conjecture describes this cone for every minimal Kähler surface. We consider the case of the elliptic surfaces E(n) and focus on a slightly weaker conjecture for the closure of the symplectic cone. We prove this conjecture in the case of the spin surfaces E(2m) using inflation and the action of self-diffeomorphisms of the elliptic surface. An additional obstruction appears in the non-spin case.

1. INTRODUCTION

Let M be a closed oriented 4-manifold. We are interested in the set C_M of real cohomology classes represented by symplectic forms on M, called the *symplectic cone* of M. It is indeed a cone because a non-zero multiple of any symplectic form is again symplectic. We only consider symplectic forms ω compatible with the orientation, so that $\omega \wedge \omega$ is everywhere positive. It follows that the symplectic cone is a subset of the *positive cone* \mathcal{P} , given by the set of elements in $H^2(M; \mathbb{R})$ which have positive square. If the 4-manifold M does not admit a symplectic form then the set \mathcal{C}_M is empty. It is also useful to denote by \mathcal{P}^A for a non-zero cohomology class $A \in H^2(M; \mathbb{R})$ the set of elements in \mathcal{P} which have positive cup product with A. In addition, we set $\mathcal{P}^0 = \mathcal{P}$.

The symplectic cone has been determined in the following cases:

- (a) S^2 -bundles over surfaces [17].
- (b) T^2 -bundles over T^2 [8].
- (c) All 4-manifolds with a fixed point free circle action [3, 5, 6].
- (d) All symplectic 4-manifolds with $b_2^+ = 1$ [14].
- (e) The K3 surface [13].
- (f) Fibre sums along tori of $T^2 \times \Sigma_g$ and minimal elliptic Kähler surfaces with $b_2^+ = 1$, for example Enriques or Dolgachev surfaces [4].

The simply-connected 4-manifolds among these cases either have $b_2^+ = 1$ or are diffeomorphic to the K3 surface, because the 4-manifolds in (c) have zero Euler characteristic.

¿From now on we denote by M a simply-connected elliptic surface E(n) without multiple fibres and with the complex orientation. Since by the results mentioned above the symplectic cone is known for $E(1) = \mathbb{CP}^2 \# 9 \overline{\mathbb{CP}^2}$ and the K3 surface E(2) we assume that $n \ge 3$. Let F denote the class of the fibre in an elliptic fibration on M. We set

$$c_1(M) = -(n-2)PD(F),$$

where PD denotes the Poincaré dual of the homology class. Note that symplectic forms have welldefined Chern classes, defined by considering any compatible almost complex structure. If ω is a symplectic form with first Chern class $c_1(M, \omega)$, then $-\omega$ is a symplectic form with first Chern class $-c_1(M, \omega)$. It is known from Seiberg-Witten theory [10] that every symplectic form on E(n) has up to sign first Chern class equal to $c_1(M)$. It is also known from the theorems of Taubes [18] that for

Date: November 6, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 14J27, 57R17; Secondary 57R50.

Key words and phrases. 4-manifold, symplectic cone, elliptic surface, diffeomorphism group.

every symplectic structure ω the class $-c_1(M, \omega)$ is represented by an embedded symplectic surface. This implies that $\omega \cdot c_1(M)$ is non-zero, hence the symplectic cone satisfies

$$\mathcal{C}_M \subset \left(\mathcal{P}^{c_1(M)} \cup \mathcal{P}^{-c_1(M)} \right)$$

A well-known conjecture due to Tian-Jun Li [13] says that the following holds:

Conjecture 1 (Strong conjecture). We have

$$\left(\mathcal{P}^{c_1(M)}\cup\mathcal{P}^{-c_1(M)}\right)\subset\mathcal{C}_M.$$

Hence every class of positive square whose cup product with the first Chern class of M is non-zero is represented by a symplectic form.

The conjecture should even hold for any closed 4-manifold underlying a minimal Kähler surface, but we only consider the case of elliptic surfaces. There is also a slightly weaker form of the conjecture. We denote by $\overline{\mathcal{C}}_M$ the closure of the symplectic cone in the vector space $H^2(M; \mathbb{R})$.

Conjecture 2 (Weak conjecture). We have

$$\left(\mathcal{P}^{c_1(M)}\cup\mathcal{P}^{-c_1(M)}\right)\subset\overline{\mathcal{C}}_M$$

Hence every class of positive square whose cup product with the first Chern class of M is non-zero is the limit of a sequence of symplectic classes.

In the following we only consider the weak conjecture. To state the theorem we want to prove, consider the following definition:

Definition 1. We define

$$\mathcal{P}^{c_1(M)>} \subset \mathcal{P}^{c_1(M)}$$

and

$$\mathcal{P}^{-c_1(M)} \subset \mathcal{P}^{-c_1(M)}$$

to be the subsets of elements ω with $\omega^2 > (\omega \cdot PD(F))^2$.

Then we have:

Theorem 2. Let $m \ge 2$ be an integer. If M is the spin surface E(2m) then

$$\left(\mathcal{P}^{c_1(M)}\cup\mathcal{P}^{-c_1(M)}\right)\subset\overline{\mathcal{C}}_M.$$

If M is the non-spin surface E(2m-1) then

$$\left(\mathcal{P}^{c_1(M)>}\cup\mathcal{P}^{-c_1(M)>}\right)\subset\overline{\mathcal{C}}_M$$

This proves Conjecture 2 in the case of the spin elliptic surfaces E(2m). At the moment we do not know how to prove the full Conjecture 2 in the non-spin case. One can view these results as evidence that the strong Conjecture 1 is indeed true. The sequences of symplectic forms in the theorem are all obtained from a single symplectic form by inflation along certain symplectic surfaces and the action of the orientation preserving self-diffeomorphisms of the elliptic surface M.

Acknowledgements. I would like to thank Tian-Jun Li for very helpful conversations.

2. Some notation

We follow the notation from [11]. In particular, all self-diffeomorphisms of M are orientation preserving. We often denote a symplectic form and its class by the same symbol. Note that considering minus a given symplectic form we see that to prove the weak conjecture it suffices to prove that

$$\mathcal{P}^{PD(F)} \subset \overline{\mathcal{C}}_M.$$

Definition 3. We define

$$\mathcal{P}^{PD(F)>} \subset \mathcal{P}^{PD(F)}$$

to be the subset of elements ω with $\omega^2 > (\omega \cdot PD(F))^2$.

We want to prove the following theorem, which is equivalent to Theorem 2:

Theorem 4. Let $m \ge 2$ be an integer. If M is the spin surface E(2m) then $\mathcal{P}^{PD(F)} \subset \overline{\mathcal{C}}_M$.

If M is the non-spin surface E(2m-1) then

$$\mathcal{P}^{PD(F)>} \subset \overline{\mathcal{C}}_M.$$

We will first prove a special case of Theorem 4 since this is easier and uses the same method as in the general case. We need some notation. Consider the manifold M = E(n) and define an integer m by n = 2m if n is even and n = 2m - 1 if n is odd.

Definition 5. Let W be the embedded surface obtained by smoothing the intersections of a section V of the elliptic surface M of square -n and m parallel copies of the fibre F. Let R denote a rim torus of square zero and S a dual vanishing sphere of square -2 in M. Both F, W and R, S intersect in a single transverse positive point. Otherwise the surfaces are disjoint.

The vanishing sphere S is obtained by sewing together in the fibre sum

$$E(n) = E(1) \#_{F=F} E(n-1)$$

two vanishing disks coming from singular fibres with the same vanishing cycles. The surface W has self-intersection zero if n is even and one if n is odd. The surfaces F and W span a copy of the standard hyperbolic form H in the intersection form if n is even and a copy of H' if n is odd, where

$$H' = \left(\begin{array}{cc} 0 & 1\\ 1 & 1 \end{array}\right).$$

We will denote both intersection forms by H(n). Since this form is unimodular the total intersection form over the integers looks like

$$Q_M = H(n) \oplus H(n)^{\perp}$$

We can decompose any class $\omega \in H^2(M;\mathbb{R})$ according to this splitting as

$$\omega = PD(\alpha F + \beta W) + \omega'$$

with $\omega' \in H(n)^{\perp}$ (here we mean the real subspace spanned by this lattice). Note that

$$\beta = \omega \cdot PD(F).$$

Definition 6. We define

$$\mathcal{P}^{PD(F)+} \subset \mathcal{P}^{PD(F)}$$

to be the subset of elements of the form $\omega = PD(\alpha F + \beta W) + \omega'$ where α, β and ω'^2 are positive. We call the classes in this subset *positive*. **Theorem 7.** We have

$$\mathcal{P}^{PD(F)+} \subset \overline{\mathcal{C}}_M.$$

This theorem describes the first subset of $\mathcal{P}^{PD(F)}$ that we can represent by the limits of symplectic forms. We will extend it later and prove Theorem 4.

3. Symplectic forms and diffeomorphisms

The inflation procedure, introduced by Lalonde and McDuff [12, 17], shows that if Σ is a closed connected symplectic surface of non-negative square in a closed symplectic 4-manifold (Y, ω) , then the class $[\omega] + tPD(\Sigma)$ is represented by a symplectic form for all $t \ge 0$. We need the following generalized inflation lemma:

Lemma 8. Let (Y, ω) be a closed symplectic 4-manifold and $\Sigma_1, \Sigma_2 \subset Y$ closed connected symplectic surfaces of non-negative square which intersect transversely in a single positive point. Then for all real numbers $r_1, r_2 \ge 0$ the class

$$[\omega] + r_1 PD(\Sigma_1) + r_2 PD(\Sigma_2)$$

is represented by a symplectic form.

Proof. By the symplectic neighbourhood theorem Σ_1 has a tubular neighbourhood $\nu \Sigma_1$ with symplectic fibres. According to Lemma 2.3 in [9] we can assume that Σ_2 intersects $\nu \Sigma_1$ in one of the disk fibres. If we first do inflation along Σ_1 as in [17, Lemma 3.7] then the symplectic form changes only in the tubular neighbourhood $\nu \Sigma_1$ and the fibres stay symplectic. Hence Σ_2 remains symplectic and we can then do inflation along Σ_2 . Compare with [2, Lemma 2.1.A] and [15, Theorem 2.3].

Proposition 9. There exists a symplectic form on M such that F, W, R and S are symplectic surfaces.

From the Gompf sum construction [9] applied to the fibre sum

$$E(n) = E(1) \#_{F=F} E(n-1)$$

it is clear that there exists a symplectic form on M such that F and V are symplectic. Hence the surface W is also symplectic.

Lemma 10. We can choose the surfaces R and S such that they are Lagrangian for a symplectic form from the Gompf construction.

Proof. The claim is clear for the rim torus R: In the fibre sum construction it is given by $R = \gamma \times \partial D^2$ where γ is one of the circle factors of the torus $F = S^1 \times S^1$ in a tubular neighbourhood $F \times D^2$ on which the symplectic form is a standard product form. The claim for the vanishing sphere S follows from section 8 in [1].

Hence Proposition 9 is a consequence of the following theorem that we formulate in a more general way. The proof is very similar to Lemma 1.6 in [9] due to Gompf which states the same for disjoint Lagrangians.

Theorem 11. Let (X, ω) be a closed symplectic 4-manifold and L_1, \ldots, L_n closed connected embedded oriented Lagrangian surfaces in X which intersect each other transversely so that at most two surfaces intersect in any given point of X. Suppose that the classes of these surfaces are linearly independent in $H_2(X; \mathbb{R})$. Then there exists a symplectic structure ω' on X, deformation equivalent to ω , such that all of these Lagrangian surfaces become symplectic. We can choose the symplectic structure ω' such that the induced volume forms on the Lagrangians have any given sign. We can also assume that any symplectic surface disjoint from the Lagrangians stays symplectic.

Proof. Let a_1, \ldots, a_n be any real numbers. Since $H^2(X; \mathbb{R})$ is the dual space of second real homology there exists a closed 2-form η on X such that

$$\int_{L_i} \eta = a_i, \quad i = 1, \dots, n.$$

Choose volume forms ω_i on L_i for each *i* such that

$$\int_{L_i} \omega_i = \int_{L_i} \eta_i$$

Let j_i denote the embedding of L_i into X. There exist 1-forms α_i on L_i such that

$$\omega_i - j_i^* \eta = d\alpha_i.$$

Let $\pi_i : \nu L_i \to L_i$ denote tubular neighbourhoods and choose cut-off functions $\rho_i(r)$ with support on the tubular neighbourhoods which depend only on the radius r and are 1 on the zero section. Define 1-forms

$$\overline{\alpha}_i = \rho_i \pi_i^* \alpha_i$$

on the tubular neighbourhoods. Extend them by zero outside of the neighbourhood and set

$$\eta' = \eta + \sum_{i} d\overline{\alpha}_{i}.$$

We claim that $j_i^* \eta' = \omega_i$. This follows if we can show that

$$j_i^* d\overline{\alpha}_k = 0 \quad \text{for } k \neq i.$$

This is clear if L_k does not intersect L_i by making the tubular neighbourhood of L_k small enough so that it does not intersect L_i . Suppose that L_k and L_i intersect in a point p. We can assume that L_i intersects νL_k in a disk fibre of the tubular neighbourhood. We have

$$d\overline{\alpha}_k = \rho'_k dr \wedge \pi_k^* \alpha_k + \rho_k \pi_k^* d\alpha_k.$$

By assumption, π_{k*} is the zero map on T_qL_i for each point q on the disk fibre $L_i \cap \nu L_k$. Therefore $d\overline{\alpha}_k$ is zero on any two vectors in T_qL_i . Hence $j_i^*d\overline{\alpha}_k = 0$.

Consider the closed 2-form

$$\omega' = \omega + t\eta'.$$

For small positive t the form ω' is symplectic. Since the L_i are Lagrangian for ω we have $j_i^* \omega' = t \omega_i$. Hence the L_i are now symplectic surfaces with (small) positive or negative volume, depending on the sign of a_i .

Definition 12. Let ω_0 denote a symplectic form on M given by Proposition 9. We can assume that the symplectic form has the same sign on both R and S. Let T denote the symplectic torus of square 0 obtained by smoothing the intersection between R and S. The tori R and T intersect in a single positive transverse point.

The surfaces R and T together span a copy of H in the intersection form, which we denote by H_{RT} . In summary the intersection form of M is equal to

$$Q_M = H(n) \oplus H_{RT} \oplus aH \oplus b(-E_8)$$

with certain integers $a, b \ge 1$.

Definition 13. We say that a self-diffeomorphism of M satisfies (*) if it preserves the splitting $H(n) \oplus H(n)^{\perp}$ and is the identity on the first summand.

We will frequently use the following proposition that was proved in [11].

Proposition 14. Every integral class in $H(n)^{\perp}$ can be mapped to any integral linear combination of R and T of the same square and divisibility by a self-diffeomorphism of the elliptic surface M that satisfies (*). Taking a multiple we see that we can map in this way any rational class in $H(n)^{\perp}$ to a rational linear combination of R and T.

The following is clear:

Lemma 15. Let $f : M \to M$ be an orientation preserving diffeomorphism. If C and D are homology classes on M with $f_*C = D$, then $(f^{-1})^*PD(C) = PD(D)$.

We will now cover a large part of the positive cone by symplectic forms in the following way: We have a symplectic form ω_0 so that the surfaces F, W, R and T are symplectic. The class of ω_0 can be written as

$$\omega_0 = PD(\alpha_0 F + \beta_0 W + \gamma_0 R + \delta_0 T) + Z_0,$$

where Z_0 is a class in the real span of $aH \oplus b(-E_8)$. Using inflation with very large parameters and then dividing by a large number it follows that the class

$$\omega = PD(\alpha F + \beta W + \gamma R + \delta T)$$

plus some arbitrarily small rest is represented by a symplectic form for all positive coefficients α , β , γ , δ . The second method we use are the actions of self-diffeomorphisms on cohomology. In particular, we can map according to Proposition 14 any rational class in $H^2(M; \mathbb{R})$ using a self-diffeomorphism to a rational linear combination of the Poincaré duals of F, W, R and T. This will suffice to prove Theorem 7 in Section 4, because in this situation all coefficients are positive. To prove the more general Theorem 4 in Section 5 we will introduce in Lemma 17 another diffeomorphism that allows in some situations to change a negative coefficient in the expansion of ω into a positive one.

4. PROOF OF THEOREM 7 ON POSITIVE CLASSES

We have the following lemma that proves one of the steps outlined above.

Lemma 16. Let ω be a class in $\mathcal{P}^{PD(F)}$. Then there exist a sequence of self-diffeomorphisms ϕ_k of the elliptic surface M and classes σ_k of the form

$$\sigma_k = PD(\alpha F + \beta W + \gamma_k R + \delta_k T)$$

with $\beta > 0$ such that $\phi_k^* \sigma_k$ converges to the class ω . The diffeomorphisms ϕ_k satisfy (*). If ω is a class in the subset $\mathcal{P}^{PD(F)+}$ then we can assume that all coefficients of σ_k are positive.

Proof. We decompose the class ω as

$$\omega = PD(\alpha F + \beta W) + \omega',$$

where $\omega' \in H(n)^{\perp}$ and $\beta > 0$. There exists a sequence ω'_k of rational classes in $H(n)^{\perp}$ converging to the class ω' . Using the second part of Proposition 14 there exist self-diffeomorphisms ϕ_k that satisfy (*) and map

$$\phi_k^* PD(\gamma_k R + \delta_k T) = \omega_k'$$

for certain rational numbers γ_k, δ_k . Setting

$$\sigma_k = PD(\alpha F + \beta W + \gamma_k R + \delta_k T)$$

we get the first claim. If ω is a class in $\mathcal{P}^{PD(F)+}$ we can assume that all $\omega_k^{\prime 2}$ are positive. Hence we can assume that γ_k and δ_k are positive.

Recall that we have a symplectic form ω_0 . As above, the class of this form can be written as

$$\omega_0 = PD(\alpha_0 F + \beta_0 W + \gamma_0 R + \delta_0 T) + Z_0,$$

where Z_0 is a class in the real span of $aH \oplus b(-E_8)$. We now prove Theorem 7.

Proof. Let ω be a class in $\mathcal{P}^{PD(F)+}$. Choose a sequence σ_k as in Lemma 16. Then

$$\sigma_k = PD(\alpha F + \beta W + \gamma_k R + \delta_k T)$$

where all coefficients are positive. Consider the symplectic form ω_0 with the symplectic surfaces F, W, R, T. We apply the inflation Lemma 8 to the form ω_0 which means that we can add to ω_0 any linear combination of the classes F, W, R, T with positive coefficients. This shows that the class

$$N_k\sigma_k + Z_0$$

is represented by a symplectic form for any sufficiently large positive number N_k . Hence also the classes

$$\eta_k = \sigma_k + \frac{1}{N_k} Z_0$$

are represented by symplectic forms. We know that $\phi_k^* \sigma_k$ converges to ω . We can choose the numbers N_k large enough so that $\frac{1}{N_k} \phi_k^* Z_0$ converges to 0. Then $\phi_k^* \eta_k$ converges to ω , hence $\omega \in \overline{\mathcal{C}}_M$.

5. Proof of the main Theorem 4

We will use the following lemma which shows that certain automorphisms of the intersection form are realized by self-diffeomorphisms.

Lemma 17. For an integer *i* let f_i denote the map which is the identity on all summands of the intersection form except on $H(n) \oplus H_{RT}$, where it is given by

$$F \mapsto F$$
$$W \mapsto W + iT$$
$$R \mapsto R - iF$$
$$T \mapsto T.$$

Then f_i is induced by a self-diffeomorphism of M.

Proof. It is easy to check that f_i is an automorphism of the intersection form. The map f_i leaves F and hence $c_1(M)$ invariant. Letting i be a real number and taking $i \to 0$ we see that f_i has spinor norm one. This implies the claim by the work of Friedman-Morgan [7]; see also [16].

We denote a diffeomorphism that induces f_i by the same symbol. The induced automorphism f_i^* on cohomology maps

$$\omega = PD((\alpha - i\gamma)F + \beta W + \gamma R + (\delta + i\beta)T)$$

to

$$f_i^*\omega = PD(\alpha F + \beta W + \gamma R + \delta T).$$

Note that the class ω can be positive even if $f_i^*\omega$ is not positive. The main difficulty in the case of Theorem 4 is that we have to approximate classes which are no longer positive by symplectic forms. However, the automorphism f_i^* allows us in some cases to map a positive class to such a non-positive class. The positive class can then be reached by inflation. Hence we have to show that under our assumptions we can always find an integer *i* such that f_i^* maps a positive class to our given class.

Suppose for example that we want the class ω as above to be positive. We can assume that $\beta, \gamma > 0$. Then ω is positive if and only if $\alpha - i\gamma > 0$ and $\delta + i\beta > 0$. This is possible only if

$$\alpha\beta + \gamma\delta > 0,$$

which is equivalent to $\omega^2 > 0$ if M is spin and $\omega^2 > \beta^2$ if M is non-spin. Note that $\beta = \omega \cdot PD(F)$. This is the reason why we have to restrict to the subset $\mathcal{P}^{PD(F)>}$ in the non-spin case.

We now begin with the proof of Theorem 4. Fix a cohomology class ω in $H^2(M; \mathbb{R})$. If M is the elliptic surface E(2m) assume that ω is in the subset $\mathcal{P}^{PD(F)}$ and if M is the surface E(2m-1) assume that ω is in the subset $\mathcal{P}^{PD(F)>}$. We want to approximate ω by symplectic classes. Write

$$\omega = PD(\alpha F + \beta W) + \omega'$$

where ω' is an element of the real span of $H(n)^{\perp}$. The following inequality for the coefficients of the class ω is a consequence of our assumptions.

Lemma 18. We have

$$\alpha > -\frac{\omega'^2}{2\beta}.$$

Proof. In both cases $\beta > 0$ and

$$0 < \omega^{2} = 2\alpha\beta + \beta^{2}W^{2} + \omega'^{2}$$
$$= 2\alpha\beta + \epsilon(n)\beta^{2} + \omega'^{2}$$

where $\epsilon(n) = 0$ if n is even and $\epsilon(n) = 1$ if n is odd. If n = 2m is even we get

$$2\alpha\beta > -\omega'$$

hence

$$\alpha > -\frac{\omega'^2}{2\beta}.$$

If n = 2m - 1 is odd we get by the assumption that ω is in $\mathcal{P}^{PD(F)>}$

$$\beta^2 < \omega^2 = 2\alpha\beta + \beta^2 + \omega'^2.$$

This again implies the claim.

We now prove a slightly technical lemma. The estimate in (b) will be used in Lemma 20 to show that we can find integers i_k such that the automorphisms $f_{i_k}^*$ map a sequence of positive classes to another sequence which can then by mapped by diffeomorphisms to a sequence converging to our given class ω .

Lemma 19. There exists a sequence ω'_k of rational classes in $H(n)^{\perp}$ converging to ω' with the following properties:

- (a) $\omega_k^{\prime 2} > \omega^{\prime 2}$ for all indices k.
- (a) ω_k > ω for all indices n.
 (b) Write ω'_k = 1/A_k τ_k where A_k is a positive rational number and τ_k is an indivisible integral class in H(n)[⊥]. Then there exist integers i_k with

$$\alpha > \frac{i_k}{A_k} > -\frac{\omega'^2}{2\beta}.$$

Proof. Let ω_k'' be any rational sequence in $H(n)^{\perp}$ converging to ω' . We can assume that

$$\omega_k''^2 > \omega'^2$$

because every neighbourhood of ω' contains rational elements with this property. Write

$$\omega_k'' = \frac{1}{B_k} \mu_k$$

where B_k is a positive rational number and μ_k is integral and indivisible. For each k we can find an integral basis e_1, e_2, \ldots, e_r of the lattice $H(n)^{\perp}$ such that $e_1 = \mu_k$. The basis depends on k but we do not write the index. Let C_k be an arbitrary sequence of positive integers converging to infinity. Consider the rational number $A_k = C_k B_k$ and the integral class $\tau_k = C_k \mu_k + e_2$. Then τ_k is indivisible. Define

$$\omega_k' = \frac{1}{A_k} \tau_k = \frac{1}{B_k} \left(\mu_k + \frac{1}{C_k} e_2 \right).$$

If we choose the integers C_k large enough the sequence ω'_k converges to ω' (note that e_2 depends on k). Moreover, we can assume that $\omega'^2_k > \omega'^2$. If C_k and hence A_k is large enough we can find an integer i_k such that

$$\alpha > \frac{i_k}{A_k} > -\frac{\omega'^2}{2\beta}.$$

Let $\omega'_k = \frac{1}{A_k}\tau_k$ be the sequence from Lemma 19. Since τ_k is an integral indivisible class in $H(n)^{\perp}$ we can find by Proposition 14 a self-diffeomorphism ϕ_k of the elliptic surface M satisfying (*) such that

$$\tau_k = \phi_k^* P D (R + \delta_k T)$$

for certain integers δ_k . We get

(1)
$$\omega_k' = \phi_k^* PD\left(\frac{1}{A_k}R + \frac{\delta_k}{A_k}T\right)$$

This implies that the sequence

$$\phi_k^* PD\left(\alpha F + \beta W + \frac{1}{A_k}R + \frac{\delta_k}{A_k}T\right)$$

converges to our given class ω . Consider the automorphism f_i^* from Lemma 17 and apply $(f_i^{-1})^*$ to the sequence

$$PD\left(\alpha F + \beta W + \frac{1}{A_k}R + \frac{\delta_k}{A_k}T\right)$$

where $i = i_k$ for the integer i_k from Lemma 19. This implies that there exist self-diffeomorphisms $\psi_k = f_{i_k} \circ \phi_k$ such that $\psi_k^* \sigma_k$ converges to ω , where

$$\sigma_k = PD\left(\left(\alpha - \frac{i_k}{A_k}\right)F + \beta W + \frac{1}{A_k}R + \left(\frac{\delta_k}{A_k} + i_k\beta\right)T\right)$$

Lemma 20. The numbers $\alpha - \frac{i_k}{A_k}$ and $\frac{\delta_k}{A_k} + i_k\beta$ are positive.

Proof. The first claim is clear by construction in Lemma 19. Note that by formula (1) above

$$\omega_k^{\prime 2} = \frac{2}{A_k^2} \delta_k$$

and by construction

$$\frac{i_k}{A_k} > -\frac{\omega'^2}{2\beta} > -\frac{\omega_k'^2}{2\beta}.$$

Hence

$$\frac{\delta_k}{A_k} = \frac{1}{2}\omega_k^{\prime 2}A_k.$$

and

$$i_k\beta > -\frac{1}{2}\omega_k^{\prime 2}A_k$$

This implies the second claim.

Note that all coefficients of σ_k are positive. We now argue as in the proof of Theorem 7: There exist classes

$$\eta_k = \sigma_k + \frac{1}{N_k} Z_0$$

represented by symplectic forms such that $\psi_k^* \eta_k$ converges to ω . Hence $\omega \in \overline{\mathcal{C}}_M$. This proves Theorem 4.

REFERENCES

- 1. D. Auroux, V. Muñoz, F. Presas, *Lagrangian submanifolds and Lefschetz pencils*, J. Symplectic Geom. **3**, 171–219 (2005).
- 2. P. Biran, A stability property of symplectic packing, Invent. math. 136, 123–155 (1999).
- 3. J. Bowden, Symplectic 4-manifolds with fixed point free circle actions, preprint arXiv:1206.0458.
- 4. J. G. Dorfmeister, T.-J. Li, *The relative symplectic cone and* T²-*fibrations*, J. Symplectic Geom. 8, 1–35 (2010).
- 5. S. Friedl, S. Vidussi, Twisted Alexander polynomials detect fibered 3-manifolds, Ann. of Math. 173, 1587–1643 (2011).
- 6. S. Friedl, S. Vidussi, A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4manifolds, preprint arXiv:1205.2434.
- 7. R. Friedman, J. W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 27, Springer-Verlag, Berlin, 1994.
- 8. H. Geiges, Symplectic structures on T^2 -bundles over T^2 , Duke Math. J. 67, 539–555 (1992).
- 9. R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. 142, 527-595 (1995).
- R. E. Gompf, A. I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20. Providence, Rhode Island. American Mathematical Society 1999.
- 11. M. J. D. Hamilton, The minimal genus problem for elliptic surfaces, preprint arXiv:1206.1260v1.
- 12. F. Lalonde, D. McDuff, The classification of ruled symplectic 4-manifolds, Math. Res. Lett. 3, no. 6, 769–778 (1996).
- T.-J. Li, *The space of symplectic structures on closed 4-manifolds*, AMS/IP Studies in Advanced Mathematics 42, 259–273 (2008).
- 14. T.-J. Li, A.-K. Liu, Uniqueness of symplectic canonical class, surface cone and symplectic cone of 4-manifolds with $b^+ = 1$, J. Differential Geom. **58**, 331–370 (2001).
- 15. T.-J. Li, M. Usher, Symplectic forms and surfaces of negative square, J. Symplectic Geom. 4, 71-91 (2006).
- 16. M. Lönne, On the diffeomorphism groups of elliptic surfaces, Math. Ann. 310, 103–117 (1998).
- 17. D. McDuff, Notes on ruled symplectic 4-manifolds, Trans. Amer. Math. Soc. 345, 623-639 (1994).
- 18. C. H. Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2, no. 2, 221-238 (1995).

M. J. D. Hamilton Universität Stuttgart Fachbereich Mathematik Pfaffenwaldring 57 70569 Stuttgart Germany **E-Mail:** mark.hamilton@math.lmu.de

Erschienene Preprints ab Nummer 2007/2007-001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

- 2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces
- 2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations
- 2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces
- 2012-007 *Ferrario, P:* Partitioning estimation of local variance based on nearest neighbors under censoring
- 2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily
- 2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
- 2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
- 2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
- 2012-002 *Hamilton, M.J.D.:* On certain exotic 4-manifolds of Akhmedov and Park
- 2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian
- 2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group
- 2011-027 *Griesemer, M.; Hantsch, F.; Wellig, D.:* On the Magnetic Pekar Functional and the Existence of Bipolarons
- 2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression
- 2011-025 *Felber, T.; Jones, D.; Kohler, M.; Walk, H.:* Weakly universally consistent static forecasting of stationary and ergodic time series via local averaging and least squares estimates
- 2011-024 Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of stationary and ergodic time series
- 2011-023 *Györfi, L.; Walk, H.:* Strongly consistent nonparametric tests of conditional independence
- 2011-022 *Ferrario, P.G.; Walk, H.:* Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors
- 2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels
- 2011-020 *Frank, R.L.; Geisinger, L.:* Refined Semiclassical Asymptotics for Fractional Powers of the Laplace Operator
- 2011-019 Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain
- 2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks
- 2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
- 2011-016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines
- 2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function
- 2011-014 *Müller, S.; Dippon, J.:* k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis
- 2011-013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
- 2011-012 *Knarr, N.; Stroppel, M.:* Baer involutions and polarities in Moufang planes of characteristic two
- 2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
- 2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy
- 2011-009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
- 2011-008 Stroppel, M.: Orthogonal polar spaces and unitals
- 2011-007 *Nagl, M.:* Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
- 2011-006 *Solanes, G.; Teufel, E.:* Horo-tightness and total (absolute) curvatures in hyperbolic spaces
- 2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I

- 2011-004 *Scherer, C.W.; Köse, I.E.:* Control Synthesis using Dynamic *D*-Scales: Part II Gain-Scheduled Control
- 2011-003 *Scherer, C.W.; Köse, I.E.:* Control Synthesis using Dynamic *D*-Scales: Part I Robust Control
- 2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G₂-structures
- 2011-001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
- 2010-018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
- 2010-017 *Gauduchon, P.; Moroianu, A.; Semmelmann, U.:* Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
- 2010-016 Moroianu, A.; Semmelmann, U.: Clifford structures on Riemannian manifolds
- 2010-015 *Grafarend, E.W.; Kühnel, W.:* A minimal atlas for the rotation group SO(3)
- 2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
- 2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
- 2010-012 *Effenberger, F.:* Stacked polytopes and tight triangulations of manifolds
- 2010-011 *Györfi, L.; Walk, H.:* Empirical portfolio selection strategies with proportional transaction costs
- 2010-010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function
- 2010-009 *Geisinger, L.; Laptev, A.; Weidl, T.:* Geometrical Versions of improved Berezin-Li-Yau Inequalities
- 2010-008 *Poppitz, S.; Stroppel, M.:* Polarities of Schellhammer Planes
- 2010-007 *Grundhöfer, T.; Krinn, B.; Stroppel, M.:* Non-existence of isomorphisms between certain unitals
- 2010-006 *Höllig, K.; Hörner, J.; Hoffacker, A.:* Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods
- 2010-005 *Kaltenbacher, B.; Walk, H.:* On convergence of local averaging regression function estimates for the regularization of inverse problems
- 2010-004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
- 2010-003 *Kohler, M; Walk, H.:* On optimal exercising of American options in discrete time for stationary and ergodic data
- 2010-002 *Gulde, M.; Stroppel, M.:* Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
- 2010-001 *Leitner, F.:* Examples of almost Einstein structures on products and in cohomogeneity one
- 2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
- 2009-007 *Griesemer, M.; Moeller, J.S.:* Bounds on the minimal energy of translation invariant n-polaron systems
- 2009-006 *Demirel, S.; Harrell II, E.M.:* On semiclassical and universal inequalities for eigenvalues of quantum graphs
- 2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
- 2009-004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator
- 2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation
- 2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
- 2009-001 *Brehm, U.; Kühnel, W.:* Lattice triangulations of E^3 and of the 3-torus
- 2008-006 *Kohler, M.; Krzyżak, A.; Walk, H.:* Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
- 2008-005 *Kaltenbacher, B.; Schöpfer, F.; Schuster, T.:* Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems

- 2008-004 *Leitner, F.:* Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
- 2008-003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
- 2008-002 *Hertweck, M.; Höfert, C.R.; Kimmerle, W.:* Finite groups of units and their composition factors in the integral group rings of the groups PSL(2,q)
- 2008-001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a correction term
- 2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
- 2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field
- 2007-004 *Ekholm, T.; Frank, R.L.; Kovarik, H.:* Eigenvalue estimates for Schrödinger operators on metric trees
- 2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
- 2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
- 2007-001 *Meister, A.:* Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions