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INVARIANT FOUR-FORMS AND SYMMETRIC PAIRS

Abstract. We give criteria for real, complex and quaternionic representations to define
s-representations, focusing on exceptional Lie algebras defined by spin representations. As
applications, we obtain the classification of complex representations whose second exterior
power is irreducible or has an irreducible summand of co-dimension one, and we give a
conceptual computation-free argument for the construction of the exceptional Lie algebras
of compact type.

2000 Mathematics Subject Classification: Primary 22E46, 20C35, 15A66, 17B25, 53C35,
57T15.

Keywords: s-representations, exceptional Lie algebras, irreducible representations, repre-
sentation of Lie type.

1. Introduction

The initial impetus for this text was given by an observation by John Baez [2, p. 200]
in his celebrated paper The Octonions, concerning the construction of the exceptional
Lie algebra e8 as the direct sum of spin(16) and the real half-spin representation Σ+

16 of
Spin(16). After showing that the verification of the Jacobi identity reduces to the case
where all three vectors lie in Σ+

16, he writes

“...unfortunately, at this point a brute-force calculation seems to be required. For two
approaches that minimize the pain, see the books by Adams [1] and by Green, Schwartz and
Witten [6]. It would be nice to find a more conceptual approach.”

This problem can be rephrased in terms of so-called s-representations, introduced by
Kostant [9] and studied by Heintze and Ziller [8] or Eschenburg and Heintze [7] among
others. Roughly speaking, an s-representation is a real representation of some Lie algebra
of compact type h which can be realized as the isotropy representation of a symmetric space.
It turns out that the obstruction for a given representation m to be an s-representation is
encoded in some invariant element in the fourth exterior power of m, defined by the image
of the Casimir element from the universal enveloping algebra of h.

In particular this obstruction automatically vanishes when (Λ4m)h = 0. Now, this condi-
tion could seem a priori quite restrictive. For instance, it can never hold if the representa-
tion carries a complex (or all the more quaternionic) structure. This is due to the existence
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2 INVARIANT FOUR-FORMS AND SYMMETRIC PAIRS

of universal elements in (Λ4m)h which are inherent to the structure of m. Nevertheless, if
these are the only invariant elements, one can adapt our construction by adding a u(1) or
sp(1) summand to h, depending on whether m is complex or quaternionic, in order to “kill”
the obstruction given by the Casimir element of h, and turn m into an s-representation of
h ⊕ u(1) or h ⊕ sp(1) respectively. These results are summarized in Propositions 2.8 and
2.9 below.

The idea of adding a summand to h in order to obtain s-representations already appears
in [8], in a setting which presents many similarities with ours. However, the criteria for
s-representations obtained by Heintze and Ziller are somewhat complementary to ours. In
the complex setting, for example, Theorem 2 in [8] can be stated as follows: If m is a
faithful complex representation of h such that the orthogonal complement of h ⊂ JΛ1,1mK
is irreducible, then m is an s-representation with respect to h ⊕ u(1). In contrast, in
Theorem 3.3 we prove a similar statement, but under the different assumption that Λ2m
is irreducible.

As applications of our results we then obtain in Theorem 3.3 a geometrical proof of the
classification by Dynkin of complex representations with irreducible second exterior power
as well as a classification result in Theorem 3.4 for representations with quaternionic struc-
ture whose second exterior power decomposes in only two irreducible summands (cf. also
[12, Prop. 6.8]). This classification is based on a correspondence between such repre-
sentations and s-representations already pointed out by Wang and Ziller in [16, p. 257]
where a framework relating symmetric spaces and strongly isotropy irreducible homoge-
neous spaces is introduced. These results can also be compared to the classification by
Calabi and Vesentini of complex representations whose symmetric power has exactly two
irreducible components based on the classification of symmetric spaces, reproved by Wang
and Ziller [17] using representation theoretical methods.

In the last section we apply the above ideas in order to give a purely conceptual proof for
the existence of e8 in Proposition 4.1. The same method, using spin representations, also
works for the other exceptional simple Lie algebras except g2. Conversely, we show that
most spin representations which are isotropy representations of equal rank homogeneous
spaces are actually s-representations and define the exceptional Lie algebras. Note that an
alternative geometrical approach to the construction of f4 and e8 using the so-called Killing
superalgebra was recently proposed by J. Figueroa-O’Farrill [5].

Acknowledgments. We are grateful to Jost-Hinrich Eschenburg and Wolfgang Ziller
for having brought to our attention the rich literature on s-representations and to Steffen
Koenig for his helpful remarks about some classification results in representation theory.
Special thanks are due to John Baez whose questions motivated our work and who pointed
out other related references.
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2. A characterization of s-representations

Let (h, Bh) be a real Lie algebra of compact type endowed with an adh-invariant Euclidean
product and let ρ : h → End(m) be a faithful irreducible representation of h over R,
endowed with an invariant Euclidean product Bm (defined up to some positive constant).
In order to simplify the notation we will denote ρ(a)(v) by av for all a ∈ h and v ∈ m. Our
first goal is to find necessary and sufficient conditions for the existence of a Lie algebra
structure on g := h⊕m compatible with the above data.

Lemma 2.1. There exists a unique (R-linear) bracket [., .] : Λ2g∗ → g on g := h⊕m such
that

(1) [., .] restricted to h is the usual Lie algebra bracket.
(2) [a, v] = −[v, a] = av for all a ∈ h and v ∈ m.
(3) [m,m] ⊂ h.
(4) Bh(a, [v, w]) = Bm(av, w) for all a ∈ h and v, w ∈ m.

Proof. The uniqueness is clear. For the existence we just need to check that the restriction
of [., .] to m ⊗ m given by (4) is skew-symmetric. This follows from the adh-invariance of
Bm. �

Definition 2.2. (cf. [9]) An irreducible representation m of a normed Lie algebra (h, Bh)
such that the bracket given by Lemma 2.1 defines a Lie algebra structure on g := h ⊕ m
is called an s-representation. The Lie algebra g is called the augmented Lie algebra of the
s-representation m.

Note that the above construction was studied in greater generality by Kostant [10], who
introduced the notion of orthogonal representation of Lie type, satisfying conditions (1),
(2) and (4) in Lemma 2.1. One can compare his characterization of representations of Lie
type ([10], Thm. 1.50 and 1.59) with Proposition 2.5 below.

Remark 2.3. If g is the augmented Lie algebra of an s-representation of (h, Bh) on m,
then the involution σ := idh − idm is an automorphism of g, and (g, h, σ) is a symmetric
pair of compact type. Conversely, every irreducible symmetric pair of compact type can
be obtained in this way.

In the sequel {ei} will denote a Bm-orthonormal basis of m and {ak} a Bh-orthonormal
basis of h.

Lemma 2.4. If an irreducible s-representation (m, Bm) of h has a h-invariant orthogonal
complex structure, then h is not semi-simple.

Proof. If J denotes the complex structure of m commuting with the h-action, then for all
α ∈ h and v, w ∈ m we have

Bh(a, [Jv, w]) = Bm(aJv, w) = Bm(Jav, w) = −Bm(av, Jw) = −Bh(a, [v, Jw]),
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whence

(1) [Jv, w] = −[v, Jw].

We now consider the element

(2) aJ :=
∑
i

[ei, Jei] ∈ h

which clearly belongs to the center of h. In order to show that it does not vanish, we
compute using the Jacobi identity

aJv = [aJ , v] =
∑
i

[[ei, Jei], v] = −
∑
i

([[Jei, v], ei] + [[v, ei], Jei]) = −2
∑
i

[[Jei, v], ei].

We take v = ej, make the scalar product with Jej and sum over j. Using (1) we get

(3)
∑
j

Bm(aJej, Jej) = −2
∑
i,j

Bh([Jei, ej], [ei, Jej]) = 2
∑
i,j

Bh([Jei, ej], [Jei, ej]).

If aJ = 0 this equation would imply that the bracket vanishes on m, whence

0 = Bh(a, [v, w]) = Bm(av, w), ∀a ∈ h, ∀v, w ∈ m,

which is clearly impossible. �

The element aJ defined in the proof above plays an important rôle in the theory of
Hermitian symmetric spaces. For now, let us remark that because of the irreducibility of
m and of the fact that aJ belongs to the center of h, there exists a non-zero constant µ,
depending on the choice of Bm, such that

(4) aJv = µJv, ∀v ∈ m,

in other words aJ acts like µJ on m.

Using the h-invariant scalar product Bm, the representation ρ induces a Lie algebra
morphism ρ̃ : h→ Λ2m ⊂ Λevenm, a 7→ ρ̃(a) := ã where

(5) ã(u, v) = Bm(au, v) = Bh(a, [u, v]).

For later use, we recall that the induced Lie algebra action of h on exterior 2-forms is
a∗(τ)(u, v) := −τ(au, v) − τ(u, av), for all τ ∈ Λ2m, whence, in particular, the following
formula holds:

(6) a∗b̃ = ˜[a, b], ∀a, b ∈ h.

The Lie algebra morphism ρ̃ extends to an algebra morphism ρ̃ : U(h) → Λevenm,
where U(h) denotes the enveloping algebra of h. This morphism maps the Casimir element
Cash =

∑
k(ak)2 of h to an invariant element ρ̃(Cash) ∈ (Λ4m)h. It was remarked by

Kostant [9] and Heintze and Ziller [8] that this element is exactly the obstruction for m to
be an s-representation. We provide the proof of this fact below for the reader’s convenience.

Proposition 2.5 ([8], [9]). An irreducible representation (m, Bm) of h is an s-representation
if and only if ρ̃(Cash) = 0.
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Proof. We need to check that the Jacobi identity for the bracket defined in Lemma 2.1
on h ⊕ m is equivalent to the vanishing of ρ̃(Cash). Note that the Jacobi identity is
automatically satisfied by [., .] whenever one of the three entries belongs to h.

We now take four arbitrary vectors u, v, w, z ∈ m and compute the obstruction

J (u, v, w) := [[u, v], w] + [[v, w], u] + [[w, u], v]

using (5) as follows:

Bm(J (u, v, w), z) = Bm([[u, v], w] + [[v, w], u] + [[w, u], v], z)

= Bh([u, v], [w, z]) +Bh([v, w], [u, z]) +Bh([w, u], [v, z])

=
∑
k

(
Bh(ak, [u, v])Bh(ak, [w, z]) +Bh(ak, [v, w])Bh(ak, [u, z])

+Bh(ak, [w, u])Bh(ak, [v, z])
)

=
∑
k

(ãk(u, v)ãk(w, z) + ãk(v, w)ãk(u, z) + ãk(w, u)ãk(v, z))

=
1

2

∑
k

(ãk ∧ ãk)(u, v, w, z) =
1

2
ρ̃(Cash)(u, v, w, z).

�

The above result yields a simple criterion for s-representations:

Corollary 2.6. If (Λ4m)h = 0, then m is an s-representation.

Conversely, one could ask whether every s-representation arises in this way. One readily
sees that this is not the case, since the condition (Λ4m)h = 0 can only hold if h is simple
and m is a purely real representation (cf. Lemma 2.7 below). Nevertheless, under these
restrictions, the converse to Corollary 2.6 also holds, cf. Proposition 2.10 below.

Lemma 2.7. Let m be an irreducible real representation of (h, Bh) with dimR(m) ≥ 4.
Then (Λ4m)h is non-zero if either m has a complex structure or h is not simple.

Proof. If J is a h-invariant complex structure on m, then Bm(J., J.) is a positive definite
h-invariant scalar product on m so by the irreducibility of m there is some positive constant
ν such that Bm(Ju, Jv) = νBm(u, v) for every u, v ∈ m. Applying this relation to Ju, Jv
yields ν2 = 1, so ν = 1, i.e. J is orthogonal. The corresponding 2-form ω ∈ Λ2m defined
by

(7) ω(u, v) := Bm(Ju, v)

is h-invariant. Moreover, since dimR(m) ≥ 4, the four-form ω ∧ ω is a non-zero element in
(Λ4m)h.

Assume now that h = h1⊕ h2 is not simple. Then m = m1⊗m2 is the tensor product of
irreducible representations mi of hi. We endow each mi with an hi-invariant scalar product
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and identify m with the representation L(m1,m2) of linear maps between m1 and m2. If
u ∈ L(m1,m2) we denote by u∗ ∈ L(m2,m1) its adjoint. We now consider the element
R ∈ Sym2(Λ2m) given by

R(u, v, w, z) := tr((uv∗ − vu∗)(wz∗ − zw∗)),

and the four-form Ω := β(R), where β is the Bianchi map β : Sym2(Λ2(m)) → Λ4(m)
defined by

β(T )(u, v, w, z) := T (u, v, w, z) + T (v, w, u, z) + T (w, u, v, z).

It is clear that Ω belongs to (Λ4m)h (it is actually so(m1) ⊕ so(m2)-invariant). To see
that it is non-zero, take orthonormal bases {xi}, {yj} of m1 and m2 and check that
Ω(z11, z12, z21, z22) = 2 for zij := xi ⊗ yj. �

In view of Lemma 2.7, it would be interesting to relax the condition (Λ4m)h = 0 in
Corollary 2.6 in order to obtain a criterion which could cover also the cases of complex or
quaternionic representations. Let us first clarify the terminology. It is well-known that if
ρ : h→ End(m) is an irreducible R-representation of h, the centralizer of ρ(h) in End(m) is
an algebra isomorphic to R, C or H. Correspondingly, we will say that m has real, complex
or quaternionic type respectively.

Remark that if a real representation m of a semi-simple Lie algebra (h, Bh) of compact
type has a complex structure I, then it can not be an s-representation by Lemma 2.4.
Nevertheless, it turns out that the natural extension of ρ to h⊕u(1) defined on the generator
i ∈ u(1) by ρ(i) = I ∈ End(m) can be an s-representation provided the space of invariant
four-forms on m is one-dimensional. More precisely, we have the following:

Proposition 2.8. Let m be a real representation of complex type of a semi-simple Lie
algebra (h, Bh) of compact type and consider the representation of h ⊕ u(1) on m induced
by the complex structure. If dimR(Λ4m)h⊕u(1) = 1, then there exists a unique positive real
number r such that m is an s-representation of h⊕ u(1) with respect to the scalar product
Bh + rBu(1). We denote here by Bu(1) the scalar product on u(1) satisfying Bu(1)(i, i) = 1.

Proof. For every a, b ∈ h we have tr(abI) = 0 since a is skew-symmetric and bI is symmetric
as endomorphisms of m. Consequently tr([a, b]I) = tr(abI)− tr(baI) = 0. Since h is semi-
simple we have [h, h] = h, so tr(aI) = 0 for all a ∈ h.

Let ω ∈ Λ2m be the two-form corresponding to I by (7). An orthonormal basis of
(h ⊕ u(1), Bh + rBu(1)) is {ak, 1√

r
i}. The element in Λ2m induced by i being ρ̃(i) = ω, the

image of the Casimir element corresponding to Bh + rBu(1) in Λ4m is ρ̃(Cash) + 1
r
ω ∧ ω.

Both summands are clearly h-invariant. To see that they are u(1)-invariant, note that by
(6), both ω and the 2-forms ã ∈ Λ2m for a ∈ h are invariant under the induced action of
u(1) on Λ2m. The hypothesis thus shows that there exists some real constant c with

(8) ρ̃(Cash) = c ω ∧ ω.
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It remains to show that c is negative (since then one can apply Proposition 2.5 for r =
−1/c).

Let λ : Λkm→ Λk−2m denote the metric adjoint of the wedge product with ω. It satisfies

λ(τ) = 1
2

∑
i

Ieiyeiyτ

for every τ ∈ Λkm, where y denotes the inner product. Let 2n ≥ 4 be the real dimension
of m. Then λ(ω) = n and λ(ω ∧ ω) = (2n − 2)ω. In terms of λ, the relation tr(aI) = 0
obtained above just reads λ(ã) = 0 for all a ∈ h. We then get

λ(ρ̃(Cash)) = λ(
∑
k

(ãk ∧ ãk)) =
∑
i,k

(akei ∧ akIei),

whence

λ2(ρ̃(Cash)) = −1

2

∑
i,k

Bm(Iakei, Iakei).

¿From (8) we thus find c(2n2 − 2n) = −1
2

∑
i,k Bm(Iakei, Iakei), so c is negative. �

We consider now the quaternionic case. It turns out that a real representation m of
quaternionic type is never an s-representation. Indeed, if m is an s-representation, it
follows from the proof of Lemma 2.4 that the three elements aI , aJ and aK defined from
the quaternionic structure by (2) belong to the center of h, so in particular aI and aJ
commute. On the other hand, (4) shows that aI and aJ anti-commute when acting on m.

However, like in the complex case, there are situations when one may turn m into an
s-representation by adding an extra summand sp(1) to h, and making it act on m via the
quaternionic structure.

Proposition 2.9. Let m be a real representation of quaternionic type of a Lie algebra
(h, Bh) of compact type and consider the representation of h ⊕ sp(1) on m induced by
the quaternionic structure. If dimR(Λ4m)h⊕sp(1) = 1, then there exists a unique positive
real number r such that the induced representation of (h ⊕ sp(1), Bh + rBsp(1)) on m is
an s-representation, where Bsp(1) denotes the scalar product of sp(1) such that i, j, k is an
orthonormal basis.

Proof. Let ωI , ωJ and ωK denote the elements in Λ2m induced by the quaternionic structure
{i, j, k} via (7). Like before, the image of the Casimir element corresponding to Bh +rBsp(1)

in Λ4m is

ρ̃(Cash) + 1
r
(ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK).

Both terms are clearly h-invariant by (6). To see that they are sp(1)-invariant, we use (6)
again to see that the induced action of sp(1) on Λ2m satisfies

i∗(ã) = 0 ∀a ∈ h and i∗(ωI) = 0, i∗(ωJ) = 2ωK , i∗(ωK) = −2ωJ ,
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whence i∗(ρ̃(Cash)) = 0 and i∗(ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK) = 4ωJ ∧ ωK − 4ωK ∧ ωJ = 0.
The invariance with respect to j∗ and k∗ can be proved in the same way. The hypothesis
thus shows that there exists some real constant c with

(9) ρ̃(Cash) = c(ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK),

and again it remains to show that c is negative.

Let λi : Λkm → Λk−2m denote the metric adjoint of the wedge product with ωI . From
the computations in the complex case we have

λ2
i (ρ̃(Cash)) = −1

2

∑
i,k

Bm(Iakei, Iakei) and λ2
i (ωI ∧ ωI) = 2n(n− 1),

where 2n denotes the real dimension of m. An easy computation gives

λ2
i (ωJ ∧ ωJ) = λ2

i (ωK ∧ ωK) = 2n,

so from (9) we get c(2n2 + 2n) = −1
2

∑
i,k Bm(Iakei, Iakei), showing that c is negative. �

We can summarize Corollary 2.6 and Propositions 2.8, 2.9 by saying that a certain
condition on the invariant part of Λ4m is sufficient for the existence of an s-representation
on m. Conversely one might ask whether this condition is also necessary for a given s-
representation. It turns out that this is always the case if h is simple. More precisely, we
have:

Proposition 2.10. Let (h, Bh) be a simple Lie algebra of compact type and m an irreducible
representation of h over R.

(1) If m is an s-representation representation of h, then (Λ4m)h = 0.
(2) If m has complex type and is an s-representation of (h⊕u(1), Bh + rBu(1)) for some

positive real number r, then dimR(Λ4m)h⊕u(1) = 1.
(3) If m has quaternionic type and is an s-representation of (h ⊕ sp(1), Bh + rBsp(1))

for some positive real number r, then dimR(Λ4m)h⊕sp(1) = 1.

Proof. The statement of (1) is already contained in [9]. For the proof one has to use
the well-known fact that the dimension of (Λ4m)h is just the fourth Betti number of the
corresponding symmetric space G/H. Now, since in the case of compact symmetric spaces
the Poincaré polynomials are known explicitly, it is easy to check that b4(G/H) vanishes.
The proof in the cases (2) and (3) is similar, and is based on the computation of the fourth
Betti numbers of Hermitian symmetric spaces and Wolf spaces. �

3. Applications to complex representations

In this section we will give some applications of our characterization of s-representations
in order to classify complex representations whose exterior powers have certain irreducibil-
ity properties. From now on m will denote a complex irreducible representation of some
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Lie algebra h of compact type. We will study three instances, corresponding to the cases
where m has a real structure, m is purely complex, or m has a quaternionic structure.

3.1. Representations with a real structure. Our main result in this case is the clas-
sification of all complex representations m with real structure whose fourth exterior power
has no trivial summand. Let JmK denote the real part of m, i.e. the fix point set of the
real structure. Then JmK is a real representation of h and m = JmK⊗R C.

Theorem 3.1. Let m be a complex irreducible faithful representation with real structure of
a Lie algebra h of compact type such that (Λ4m)h = 0. Then h is simple, g := h⊕ JmK has
a Lie algebra structure and (g, h) is a symmetric pair which belongs to the following list:

Helgason’s type h JmK g

h h h⊕ h
BD I so(n), n 6= 4 Rn so(n+ 1)
A I so(n), n 6= 4 Sym2

0 Rn su(n)
A II sp(n) Λ2

0 Hn su(2n)
F II spin(9) Σ9 F4

E I sp(4) Λ4
0 H4 E6

E IV F4 V26 E6

E V su(8) JΛ4C8K E7

E VIII spin(16) Σ+
16 E8

where V26 denotes the real 26-dimensional irreducible representation of F4 and JmK = h in
the first row denotes the adjoint representation of h.

Proof. Since (Λ4m)h = (Λ4
RJmK)h ⊗ C, the hypothesis implies that (Λ4

RJmK)h = 0. ¿From
Lemma 2.7 it follows that h has to be simple, and Corollary 2.6 implies that JmK is an
s-representation and thus JmK is the isotropy representation of an irreducible symmetric
space G/H of compact type with H simple.

The list of possible pairs (h, JmK) then follows from the list of irreducible symmetric
spaces of compact type [3, p. 312-314]. Here the adjoint representation on JmK = h
corresponds to the isotropy representation on symmetric spaces of the type II, i.e. of the
form (H ×H)/H.

Conversely, the fourth exterior power of the representations in the table above have no
invariant elements by Proposition 2.10. In some cases a direct proof can also be given, see
Proposition 4.1 below. �

Remark 3.2. We will see later on in Proposition 4.2 that the real half-spin representation
Σ+

8 is also an s-representation, and has no invariant elements in its fourth exterior power
(cf. also Proposition 2.10). One may thus wonder why it does not appear in the above
table. The explanation is that it actually appears in a disguised form, as the standard
representation of so(8) on R8. To make this more precise, note that n-dimensional rep-
resentations are usually classified up to isomorphism, i.e. up to composition with some
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element in the inner automorphism group of so(n). On the other hand, if one wants to
classify all pairs (h,m) with (Λ4m)h = 0, then there is another group acting on the space of
solutions: the outer automorphism group of so(n). Our classification above is up to the ac-
tion of this group. In particular, the triality phenomenon in dimension 8 can be interpreted
by saying that the outer automorphism group of so(8) is isomorphic to the permutation
group of the set {R8,Σ+

8 ,Σ
−
8 } of 8-dimensional representations of so(8) ∼= spin(8). The

same remark also applies below to complex representations, where taking the conjugate of
a representation can be viewed as composing it with the non-trivial outer automorphism
of su(n).

3.2. Representations with irreducible second exterior power. As another applica-
tion of the above ideas, we will now obtain in a simple geometrical way Dynkin’s classifi-
cation [4, Thm. 4.7] of complex representations m with Λ2m irreducible.

Theorem 3.3. Let m be a complex irreducible faithful representation of a Lie algebra h of
compact type such that Λ2m is irreducible. Then either h = h0 is simple, or h = h0 ⊕ u(1)
with h0 simple, g := h0 ⊕ u(1) ⊕ mR has a Lie algebra structure and (g, h0 ⊕ u(1)) is a
symmetric pair which belongs to the following list:

Helgason’s type h0 m g

A III su(n) Cn su(n+ 1)
D III su(n) Λ2Cn so(2n)
C I su(n) Sym2Cn sp(n)
BD I so(n), n 6= 4 Rn ⊗ C so(n+ 1)
E III spin(10) Σ10 E6

E VII E6 V27 E7

where V27 denotes the 27-dimensional irreducible representation of E6.

Proof. If h is not simple, it may be written as the sum of two ideals, h = h0 ⊕ h1, and m
is the tensor product representation m = E ⊗ F . It follows that

Λ2m = Λ2(E ⊗ F ) ∼= (Λ2E ⊗ Sym2F ) ⊕ (Sym2E ⊗ Λ2F ).

Hence Λ2m can only be irreducible if one factor, say F , is one-dimensional. Since F is a
faithful representation, one must have h1 = u(1). This argument shows that every ideal of
h has either dimension or co-dimension at most one. In particular, h0 is simple.

Consider now the real representation mR of h0 obtained by forgetting the complex multi-
plication in m. The Lie algebra u(1) acts on the fourth exterior power Λ4

Rm
R by extending

the action of the complex structure J from mR. We claim that the space of invariant
elements (Λ4

Rm
R)h0⊕u(1) is one-dimensional. If we denote as usual by Λp,qm := Λpm⊗ Λqm̄,

then

Λ4
Rm

R = JΛ4,0mK⊕ JΛ3,1mK⊕ JΛ2,2mK.
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Since J2 acts as −(p− q)2id on JΛp,qmK, it follows that the u(1)-invariant part of Λ4
Rm

R is
the third summand JΛ2,2mK = JΛ2m⊗ Λ2m̄K = JEnd(Λ2m)K. Consequently,

(10) (Λ4
Rm

R)h0⊕u(1) = JEnd(Λ2m)Kh0 = J(End(Λ2m))h0K

is one-dimensional since by assumption Λ2m is irreducible as representation of h, so also of
h0. We can therefore apply Proposition 2.8 to realize mR as an s-representation of h0⊕u(1),
so mR is the isotropy representation of some Hermitian symmetric space. Checking again
the list in [3, pp. 312-314] we obtain the possible pairs (h0,m) as stated above.

Conversely, if (h0,m) belongs to the above list, then (Λ4
Rm

R)h0⊕u(1) is one-dimensional by
Proposition 2.10, thus (10) shows that Λ2m is irreducible. �

3.3. Representations with quaternionic structure. As another application we will
now consider complex representations m of h with quaternionic structure. Such represen-
tations can be characterized by the existence of an invariant element in Λ2m, which is
therefore never irreducible. Considering the h-invariant decomposition Λ2m = Λ2

0m ⊕ C,
one can nevertheless ask whether Λ2

0m can be irreducible. The classification of such repre-
sentations is given by the following:

Theorem 3.4. Let m be a complex irreducible faithful representation of a Lie algebra h
of compact type with a quaternionic structure, and let Λ2m = Λ2

0m ⊕ C be the standard
decomposition of the second exterior power of m. If the h-representation Λ2

0m is irreducible
then h is simple, g := h ⊕ sp(1) ⊕ mR has a Lie algebra structure and (g, h ⊕ sp(1)) is a
symmetric pair which belongs to the following list:

Helgason’s type h m g

C II sp(n) Hn sp(n+ 1)
F I sp(3) Λ3

0H3 F4

G I sp(1) Sym3H G2

E II su(6) Λ3C6 E6

E VI spin(12) Σ+
12 E7

E IX E7 V56 E8

where V56 is the 56-dimensional irreducible representation of E7.

Proof. Let i denote the complex structure of m and let j be the quaternionic structure, i.e.
a real endomorphism of mR anti-commuting with i and satisfying j2 = −id. Like before, if
h is not simple, one can write h = h0 ⊕ h1, m = E ⊗ F and

Λ2m ∼= (Λ2E ⊗ Sym2F ) ⊕ (Sym2E ⊗ Λ2F ).

If E and F have both dimension larger than one, then both summands in the above
expression have the same property, which is impossible because of the hypothesis. Assume
that one factor, say F , is one-dimensional. Since F is a faithful representation, one must
have h1 = u(1). Let a 6= 0 be the endomorphism of m determined by the generator of
u(1). By the Schur Lemma there exists z ∈ C∗ such that a = z id. Since a commutes
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with the quaternionic structure we must have z ∈ R, which is impossible since a has to be
a skew-symmetric endomorphism of mR with respect to some h-invariant scalar product.
Thus h is simple.

The Lie algebra sp(1) acts on the fourth exterior power Λ4
Rm

R by extending the action
of the (real) endomorphisms i and j of mR. We claim that the space of invariant elements
(Λ4

Rm
R)h⊕sp(1) is one-dimensional. Using (10) we see that

(Λ4
Rm

R)h⊕u(1) = J(End(Λ2m))hK = J(End(Λ2
0m⊕ C))hK = J(End(Λ2

0m))hK⊕ R
is two-dimensional since by assumption Λ2

0m is irreducible. The first summand is generated
by Ω1 := ωI∧ωI , whereas the second one is generated by Ω2 := ωJ∧ωJ +ωK∧ωK . Using (6)
we readily obtain j∗Ω1 = −4ωK∧ωI and j∗Ω2 = 4ωI∧ωK , thus showing that (Λ4

Rm
R)h⊕sp(1) is

one-dimensional and spanned by Ω1 +Ω2. We can therefore apply Proposition 2.8 to realize
mR as an s-representation of h ⊕ sp(1). Consequently, m is the isotropy representation of
a Wolf space, and thus belongs to the above table by [3, pp. 312-314].

Conversely, it is standard fact that Λ2
0Hn is an irreducible sp(n)-representation, and one

can check (e.g. using the LiE software [13]) that for all other representations m in this
table, Λ2

0m is indeed irreducible. �

A similar result was obtained in [12, Prop. 6.8] by a different approach using algebraic
geometry and minuscule representations.

4. Spin representations and exceptional Lie algebras

In this section we obtain a completely self-contained construction of exceptional simple
Lie algebras based on the results in Section 2. We will only give the details for the con-
struction of E8 arising from the half-spin representation of Spin(16), since all the other
exceptional simple Lie algebras can be constructed by similar methods using spin repre-
sentations. Conversely, we give a short algebraic argument showing that there are no other
spin representations which are s-representations but those giving rise to exceptional Lie
algebras.

4.1. A computation-free argument for the existence of E8. As already mentioned
in the introduction, the only non-trivial part in the construction of E8 is to check that the
natural bracket on spin(16) ⊕ Σ+

16 constructed in Lemma 2.1 satisfies the Jacobi identity.
This follows directly from Corollary 2.6, together with the following:

Proposition 4.1. The fourth exterior power of the real half-spin representation Σ+
16 has

no trivial summand.

Proof. One can use the plethysm function of the LiE software [13] to check that the fourth
exterior power of Σ+

16 has nine irreducible summands, each of them being non-trivial.
However, our purpose is exactly to replace such brute force computations by conceptual
arguments!
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Let 〈., .〉S and 〈., .〉Σ be Spin(16)-invariant scalar products on spin(16) and Σ+
16 respec-

tively. We start by recalling that the second exterior power of the real half-spin represen-
tation in dimension 8k decomposes in irreducible summands as

Λ2(Σ+
8k) '

k⊕
i=1

Λ4i−2(R8k).

This isomorphism can also be proved in an elementary way. Indeed, the right hand term
acts skew-symmetrically and faithfully by Clifford multiplication on Σ+

8k and thus can be
identified with a sub-representation of Λ2(Σ+

8k). On the other hand, its dimension is equal
to

dim
k⊕

i=1

Λ4i−2(R8k) =
1

8

(
28k − (1 + i)8k − (1− i)8k

)
= 24k−2(24k−1 − 1) = dim Λ2(Σ+

8k).

For k = 2 we thus get

(11) Λ2(Σ+
16) ' Λ2(R16)⊕ Λ6(R16).

Recall the standard decomposition

Sym2(Λ2(Σ+
16)) ' R⊕ Λ4(Σ+

16),

where R is the kernel of the Bianchi map β : Sym2(Λ2(Σ+
16))→ Λ4(Σ+

16). The trace element
R1 ∈ Sym2(Λ2(Σ+

16)) defined by

R1(v, w, v′, w′) := 〈v ∧ w, v′ ∧ w′〉Σ
is invariant under the action of Spin(16) and belongs to R since β(R1) = 0.

Assume for a contradiction that Λ4(Σ+
16) contains some invariant element Ω and consider

the invariant element R2 ∈ Sym2(Λ2(Σ+
16)) defined by

R2(v, w, v′, w′) := 〈[v, w], [v′, w′]〉S,

where [., .] is the bracket defined by Lemma 2.1. Since the two irreducible summands in
(11) are not isomorphic, the space of invariant elements in Sym2(Λ2(Σ+

16)) has dimension
two. Hence there exist real constants k, l such that R2 = kR1 + lΩ. In particular we would
have

(12) |[v, w]|2S = k|v ∧ w|2Σ, ∀v, w ∈ Σ+
16.

Since dim(spin(16)) = 120 is strictly smaller than dim(Σ+
16) − 1 = 127, one can find non-

zero vectors v0, w0 ∈ Σ+
16 such that v0 ∧ w0 6= 0 and 〈v0, aw0〉Σ = 0 for all a ∈ spin(16).

By the definition of the bracket in Lemma 2.1 (4), this implies [v0, w0] = 0, so using (12)
for v = v0 and w = w0 yields k = 0. By (12) again, this would imply [v, w] = 0 for all
v, w ∈ Σ+

16, so we would have

0 = 〈a, [v, w]〉S = 〈av, w〉Σ, ∀a ∈ spin(16), ∀v, w ∈ Σ+
16,

which is clearly a contradiction. �
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4.2. The construction of F4, E6 and E7. Consider the following spin representations:
Σ9, which is real, Σ10 which is purely complex, and Σ+

12 which is quaternionic. In order to
show that they give rise to s-representations of spin(9), spin(10) ⊕ u(1) and spin(12) ⊕
sp(1) respectively, we need to check that one can apply the criteria in Corollary 2.6,
Proposition 2.8 and Proposition 2.9. Taking into account the results in Section 3, it
suffices to show that (Λ4Σ9)spin(9) = 0, and that Λ2Σ10 and Λ2

0Σ+
12 are irreducible. The

first assertion can be proved like in Proposition 4.1, whereas the two other follow from the
classical decompositions of the second exterior power of spin representations

Λ2Σ10
∼= Λ3(C10), Λ2Σ+

12
∼= Λ0(C12)⊕ Λ4(C12).

4.3. On spin representations of Lie type. In this final part we will show that very few
spin representations are of Lie type. To make things precise, recall that the real Clifford
algebras Cln are of the form K(r) or K(r)⊕K(r) where:

n : 8k + 1 8k + 2 8k + 3 8k + 4 8k + 5 8k + 6 8k + 7 8k + 8
r : 24k 24k 24k 24k+1 24k+2 24k+3 24k+3 24k+4

Cln : C(r) H(r) H(r)⊕H(r) H(r) C(r) R(r) R(r)⊕ R(r) R(r)

The Clifford representation of the real Clifford algebra is by definition the unique irre-
ducible representation of Cln for n 6= 3 mod 4, and the direct sum of the two inequivalent
representations for n = 3 mod 4. The real spinor representation Σn is the restriction of
the Clifford representation to spin(n) ⊂ Cln−1 (note the shift from n to n− 1). For n 6= 0
mod 4 the spin representation is irreducible, and for n = 0 mod 4 it decomposes as the
direct sum of two irreducible representations Σn = Σ+

n ⊕ Σ−n . We introduce the notation

Σ(+)
n :=

{
Σ+

n if n = 0 mod 4,

Σn if n 6= 0 mod 4.

The table above shows that the spin representation Σ
(+)
n is of real type for n = 0, 1, 7 mod

8, of complex type for n = 2 or 6 mod 8 and of quaternionic type for n = 3, 4, 5 mod 8.
We define the Lie algebras

s̃pin(n) :=


spin(n) if n = 0, 1, 7 mod 8,

spin(n)⊕ u(1) if n = 2 or 6 mod 8,

spin(n)⊕ sp(1) if n = 3, 4, 5 mod 8.

We can view Σ
(+)
n as a s̃pin(n)-representation, where the u(1) or sp(1) actions are induced

by the complex or quaternionic structure of the spin representation in the last two cases.

We study the following question: for which n ≥ 5 is Σ
(+)
n a representation of Lie type

of s̃pin(n)? We will see that there are almost no other examples but the above examples
which lead to the construction of exceptional Lie algebras. This is a consequence of the
very special structure of the weights of the spin representations (see also [14], [15] for a
much more general approach to this question).
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Proposition 4.2. For n ≥ 5, the representation Σ
(+)
n of s̃pin(n) is of Lie type if and only

if n ∈ {5, 6, 8, 9, 10, 12, 16}.

Proof. The representation Σ
(+)
n of s̃pin(n) is of Lie type if and only if there exists a Lie

algebra structure on g := s̃pin(n) ⊕ Σ
(+)
n satisfying conditions (1), (2) and (4) in Lemma

2.1 with respect to some ads̃pin(n) invariant scalar products on s̃pin(n) and Σ
(+)
n . We will

always consider some fixed Cartan subalgebra of s̃pin(n), which is automatically a Cartan
subalgebra of g since the (half-)spin representations have no zero weight.

Consider first the case n = 8k. Since s̃pin(8k) = spin(8k), the scalar products above
are unique up to some constant. We choose the scalar product 〈., .〉 on spin(8k) such that
in some orthonormal basis {e1, . . . , e4k} of the Cartan subalgebra of spin(8k), the roots of
spin(8k) are

R = {±ei ± ej | 1 ≤ i < j ≤ 4k},

and the weights of the (complexified) half-spin representation Σ+
8k ⊗ C are

W = {1
2

4k∑
i=1

εiei | εi = ±1, ε1 . . . ε4k = 1}.

The union R∪W is then the root system of g, which is a Lie algebra of compact type. In
particular, the quotient

(13) q(α, β) :=
2〈α, β〉
〈β, β〉

is an integer satisfying |q(α, β)| ≤ 3 for all α, β ∈ R ∪ W (cf. [1], p. 119). Taking

α = e1 + e2 and β = 1
2

∑4k
i=1 ei we get q(α, β) = 2/k, whence k = 1 or k = 2, so n = 8

or n = 16. Conversely, the real half-spin representations Σ+
8 and Σ+

16 are of Lie type
(actually they are s-representations with augmented Lie algebras spin(9) = spin(8) ⊕ Σ+

8

and e8 = spin(16)⊕ Σ+
16).

If n = 8k − 1, a similar argument using the root α = e1 of spin(8k − 1) and the weight

β = 1
2

∑4k−1
i=1 ei of the spin representation shows that q(α, β) = 2/(4k − 1) cannot be an

integer.

If n = 8k+ 1, one has q(α, β) = 1/k for α = e1 and β = 1
2

∑4k
i=1 ei, so k = 1. Conversely,

Σ9 is an s-representation, as shown by the exceptional Lie algebra f4 = spin(9)⊕ Σ9.

Consider now the case when the spin representation is complex, i.e. n = 4k + 2, with
k ≥ 1. Assume that on g := (spin(4k+2)⊕u(1))⊕Σ4k+2 there exists a Lie algebra structure
satisfying conditions (1), (2) and (4) in Lemma 2.1 with respect to some adspin(4k+2)⊕u(1)

invariant scalar products on spin(4k + 2) ⊕ u(1) and Σ4k+2. The latter scalar product is
defined up to a scalar, whereas for the first one there is a two-parameter family of possible
choices. By rescaling, we may assume that the restriction of the scalar product on the
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spin(4k+2) summand is such that in some orthonormal basis {e1, . . . , e2k+1} of the Cartan
subalgebra, the root system of spin(4k + 2) is

R = {±ei ± ej | 1 ≤ i < j ≤ 2k + 1}.
There exists a unique vector e2k+2 ∈ u(1) such that the set of weights of the representation
Σ4k+2 ⊗ C ∼= Σ4k+2 ⊕ Σ4k+2 of spin(4k + 2)⊕ u(1) is

W = {1
2

2k+2∑
i=1

εiei | εi = ±1, ε1 . . . ε2k+2 = 1}.

We denote by x := |e2k+2|2 its square norm. The root system of g is clearly R(g) = R∪W .

Recall that for every non-orthogonal roots α and β of g, their sum or difference is
again a root [1]. On the other hand, neither the sum, nor the difference of the two roots

α := 1
2
(
∑2k+2

i=1 ei) and β := 1
2
(
∑2k

i=1 ei− e2k+1− e2k+2) of g belongs to R(g) = R∪W . Thus
〈α, β〉 = 0, which implies x = 2k − 1. Consider now the root γ := e1 + e2. The integer
defined in (13) is

q(γ, α) =
2〈γ, α〉
〈α, α〉

=
2

1
4
(2k + 1 + x)

=
2

k
,

showing that necessarily k = 1 or k = 2. Conversely, both cases do occur, since Σ6 and
Σ10 are s-representations of spin(6)⊕ u(1) ∼= u(4) and spin(10)⊕ u(1) with augmented Lie
algebras u(5) and e6 respectively.

Similar arguments (see also [14]) show that in the quaternionic case (when n = 3, 4, 5

mod 8) there are only two representations Σ
(+)
n of spin(n) ⊕ sp(1) which are of Lie type,

for n = 5 and n = 12. They are both s-representations and their augmented Lie algebras
are spin(5)⊕ sp(1)⊕Σ5

∼= sp(2)⊕ sp(1)⊕H2 ∼= sp(3) and spin(12)⊕ sp(1)⊕Σ+
12
∼= e7. �

Note that J. Figueroa-O’Farrill has recently asked in [5, p. 673] about the existence of
Killing superalgebra structures on spheres other that S7, S8 and S15. Part I. in Proposi-
tion 4.2 can be interpreted as a negative answer to this question.
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