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WEAKLY COMPLEX HOMOGENEOUS SPACES

Abstract. We complete our recent classification [GMS11] of compact inner symmetric
spaces with weakly complex tangent bundle by filling up a case which was left open,
and extend this classification to the larger category of compact homogeneous spaces with
positive Euler characteristic. We show that a simply connected compact equal rank homo-
geneous space has weakly complex tangent bundle if and only if it is a product of compact
equal rank homogeneous spaces which either carry an invariant almost complex structure
(and are classified by Hermann [H56]), or have stably trivial tangent bundle (and are
classified by Singhof and Wemmer [SW86]), or belong to an explicit list of weakly com-
plex spaces which have neither stably trivial tangent bundle, nor carry invariant almost
complex structures.

2000 Mathematics Subject Classification: Primary 32Q60, 57R20, 53C26, 53C35, 53C15.

Keywords: invariant almost complex structure, weakly complex bundle, homogeneous
spaces.

1. Introduction

It is well-known [A69] that a compact homogeneous space G/H has non-vanishing Euler
characteristic if and only if G and H have equal rank. If this happens, then the Euler
characteristic of G/H is positive, equal to the quotient of the cardinals of the Weyl groups:
χ(G/H) = ]W(G)/]W(H). For this reason, we will refer throughout this paper to compact
homogeneous spaces with positive Euler characteristic as equal rank homogeneous spaces,
a terminology which seems to be used by some authors.

In this paper we study the following question: Which equal rank homogeneous spaces
have complex, or more generally, weakly complex tangent bundle? Recall that a real vector
bundle τ is called weakly complex if there exists some trivial bundle ε such that τ ⊕ ε has
a complex structure, that is, an endomorphism field squaring to minus the identity. Note
that no invariance property is required for the (weakly) complex structure in the above
question.

Equal rank compact homogeneous spaces carrying invariant (also called homogeneous)
almost complex structures were classified by Hermann [H56, Thm. 5.3]. The classification
is first reduced to the case where the group G is simple and simply connected. Once this
is done, the group H can either be semi-simple, which leads to nine cases, each of them
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2 WEAKLY COMPLEX STRUCTURES

corresponding to an exceptional group G, or non semi-simple. In the latter situation, H
has to be the centralizer of a torus in G up to four exceptional cases (one of which seems
to have been overlooked in [H56]). Note that if H is the centralizer of a torus, then the
homogeneous space G/H has an invariant integrable complex structure [W54, Sect. 7].
This case includes the Hermitian symmetric spaces and generalized flag manifolds [B87,
Ch. 8].

In order to attack the general question, one needs completely different methods. The
most powerful is a combination of the Atyiah-Singer index theorem applied to some twisted
Dirac operators, the Borel–Weil–Bott theorem and Weyl’s dimension formula, which we
recently used [GMS11] in order to prove that the only compact irreducible inner symmetric
spaces with weakly complex tangent bundle are the even-dimensional spheres, the Hermit-
ian symmetric spaces and (conceivably) the exceptional space E7/(SU(8)/Z2). As a mater
of fact, the first important achievement of the present paper is to rule out this exceptional
case (Theorem 4.3 below), thus completing the classification in [GMS11].

One important ingredient which allows the passage from symmetric spaces to more
general homogeneous spaces is the Borel–de Siebenthal [BS49] classification of maximal
subgroups of maximal rank in compact simple Lie groups. It turns out that if H is maximal
in G and rk(H) = rk(G), then either (G,H) is a symmetric pair, or it belongs to a list
of seven exceptional cases, in each of them G/H carrying an invariant almost complex
structure.

The crucial assumption rk(H) = rk(G) allows one to reduce the problem of the existence
of weakly complex structures on G/H to the case where G is simple. Then, using the Borel–
de Siebenthal classification, and the results in [GMS11], we prove the following classification
result:

Theorem 1.1. An equal rank simply connected compact homogeneous space has weakly
complex tangent bundle if and only if it is a product of manifolds belonging to the following
list:

(1) equal rank homogeneous spaces with an invariant almost complex structure;
(2) equal rank homogeneous spaces with stably trivial tangent bundle;
(3) one of the homogeneous spaces

• F4/(Spin(4)× T2)
• F4/(Spin(4)× U(2))
• SO(2p+ 2q + 1)/(SO(2p)× U)
• Sp(p+ q)/(Sp(1)p × U),

where in the last two cases, U is a rank q subgroup of U(q) for some q ≥ 1 and
p ≥ 2.

Moreover, the manifolds in (3) have neither stably trivial tangent bundles, nor invariant
almost complex structures.
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The spaces in (1) have been classified by Hermann [H56, Thm. 5.3] up to one forgotten
exceptional case E8/(A5 × A2 × T1). The spaces in (2) were classified by Singhof and
Wemmer [SW86, p. 159].

The precise statements are given in Theorems 5.2 and 6.4 below.

Acknowledgments. We would like to thank Paul Gauduchon for many enlightening
discussions and for his interest in this work.

2. Preliminaries on compact Lie groups

We will use throughout the text the standard notation for the compact simple Lie groups.
By Cartan’s classification there are four series for n ≥ 1:

An := SU(n+ 1), Bn := Spin(2n+ 1), Cn := Sp(n), Dn := Spin(2n)

and five exceptional groups

G2, F4, E6, E7, E8,

where the subscript always indicates the rank. The attentive reader has already noticed
that in the above list the D series should start at n = 3 since D1 = U(1) = T1 and
D2 = A1 × A1 are not simple. By convention we take A0 ≡ B0 ≡ {1} and we note the
exceptional isomorphisms C1 ≡ B1 ≡ A1, C2 ≡ B2 and A3 ≡ D3.

Recall first the following classical result which describes the subgroups of maximal rank
of a product of compact Lie groups:

Lemma 2.1 ([BS49]). Let a compact connected Lie group G be the direct product of sub-
groups G1 and G2. If L is a closed, connected subgroup of G containing a maximal torus
of G, then L is the direct product of G1 ∩ L and G2 ∩ L.

Corollary 2.2. If T is a torus and G a compact Lie group, then every connected subgroup
L of T ×G with rk(L) = rk(T ×G) is of the form T ×H where H is a closed subgroup of
G.

Proof. From Lemma 2.1 we must have L = (L∩T )×(L∩G). Moreover rk(L) = rk(T×G) =
rk(T ) + rk(G) ≥ rk(L ∩ T ) + rk(L ∩ G) = rk(L), so in particular rk(T ) = rk(L ∩ T ). On
the other hand, the torus T has no proper subgroup of the same rank, showing that
L ∩ T = T . �

In this paper we will consider simply connected compact homogeneous spaces M of non-
vanishing Euler characteristic: χ(M) 6= 0. This is equivalent to the existence of compact
Lie groups H ⊂ G with M = G/H and rk(H) = rk(G). Note that there are in general
several pairs (G,H) representing M , but using Lemma 2.1 one can show that there exists
a pair (G,H) representing M , with G simply connected (and thus semi-simple) and H
connected. Indeed, since G is compact, it has a finite cover G̃ which is the direct product
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G̃ = T ×G′ where T is a torus and G′ is simply connected. If H̃ denotes the inverse image
of H in G̃, one has M = G̃/H̃. The exact homotopy sequence

0 = π1(M)→ π0(H̃)→ π0(G̃) = 0

shows that H̃ is connected. By Corollary 2.2, the subgroup H̃ ⊂ T × G′ can be written
H̃ = T × H ′, where H ′ := (H̃ ∩ G′). We thus can write M = G′/H ′ with G′ simply
connected and H ′ connected, as claimed.

Remark 2.3. The notation M = G/H makes sense when the embedding of H in G is
specified. More generally, if ρ : H → G is a given morphism inducing a Lie algebra
embedding ρ∗ : h ↪→ g, we denote by a slight abuse of notation G/ρ(H) by G/H. The
justification of this notation is that the space G/ρ(H) is uniquely defined by Lie algebra
embedding h ↪→ g, which in most cases is fixed by the context, so there is no risk of
confusion. The main advantage is that we do not have to compute the (discrete) kernel of
ρ explicitly, which is a tough task in general.

Example 2.4. The embedding spin(16) ↪→ e8 induces a group morphism Spin(16) → E8

whose kernel is Z2, generated by the volume element of Spin(16) (cf. [A96, Thm. 6.1]).
With the convention from the previous remark, we will thus denote the corresponding
homogeneous space E8/(Spin(16)/Z2) simply by E8/D8.

As already mentioned in the introduction, our study leans heavily on the Borel–de
Siebenthal classification of maximal proper subgroups of simple Lie groups which we now
recall:

Proposition 2.5 ([BS49]). Let G be compact connected simple Lie group and let L be a
maximal proper connected subgroup with rk(L) = rk(G). Then G/L is either an irreducible
inner symmetric space or belongs to the following list:

(1) G2/A2, F4/(A2)
2, E6/(A2)

3, E7/(A5 × A2), E8/A8, E8/(E6 × A2), E8/(A4 × A4).

Each of these seven exceptional spaces admits an invariant almost complex structure.

Using the classification of irreducible inner symmetric spaces ([B87, pp. 312–314]) and
Proposition 2.5 we immediately get (keeping in mind Remark 2.3):

Corollary 2.6. Let H be a rank n maximal proper subgroup of G.

a) If G = An, H is conjugate to some subgroup Ap × Aq × T1 with p + q = n − 1 and
p, q ≥ 0 (recall that A0 = {1} by convention).

b) If G = Bn, H is conjugate to some subgroup Bp×Dq with p+ q = n, p ≥ 0 and q ≥ 1,
diagonally embedded in Bn.

c) If G = Cn, H is either conjugate to U(n) = An−1 × T1 or to some subgroup Cp × Cq

with p+ q = n, and p, q ≥ 1, diagonally embedded in Cn.

d) If G = Dn, H is conjugate to either conjugate to U(n) = An−1 × T1 or to some
subgroup Dp ×Dq with p+ q = n, and p, q ≥ 1, diagonally embedded in Dn.
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For later use, let us note the following consequence of Lemma 2.1 and Corollary 2.6:

Lemma 2.7. The groups An1 × . . .×Ank
contain no semi-simple proper subgroups of rank

n1 + . . .+ nk.

Proof. ¿From Lemma 2.1, it suffices to prove the statement for k = 1. Assume for a
contradiction that H ⊂ An is a proper semi-simple subgroup of rank n, and let G ⊂ An be
a maximal proper subgroup of An containing H. By Lemma 2.1 again, G is semi-simple,
thus contradicting Corollary 2.6 a). �

An easy induction using Corollary 2.6 shows that we can actually describe all closed
subgroups of maximal rank of the classical groups. It turns out that for the A series it is
more convenient to state the result for the subgroups of U(n) rather than for those of An:

Lemma 2.8. Let H be a compact Lie group of rank n.

a) If H is a subgroup of U(n), there exist k ≥ 1 integers ni ≥ 1 with n1 + . . . + nk = n
such that H is conjugate to U(n1)× . . .× U(nk), diagonally embedded in U(n).

b) If H is a subgroup of Bn, there exist integers m, k, l ≥ 0, pi ≥ 1 for 1 ≤ i ≤ k, qi ≥ 1
for 1 ≤ i ≤ l, with m + p1 + . . . + pk + q1 + . . . + ql = n such that H is conjugate to
Bm ×Dp1 × . . .×Dpk × U(q1)× . . .× U(ql) embedded in Bn as

Bm×Dp1 × . . .×Dpk ×U(q1)× . . .×U(ql) ⊂ Bm×Dp1 × . . .×Dpk ×Dq1 × . . .×Dql ⊂ Bn

(each unitary group is embedded in the corresponding special orthogonal group via the stan-
dard embedding U(qi) ⊂ SO(2qi) and the product is diagonally embedded in Bn).

c) If H is a subgroup of Cn, there exist integers k, l ≥ 0, pi ≥ 1 for 1 ≤ i ≤ k,
qi ≥ 1 for 1 ≤ i ≤ l, with p1 + . . . + pk + q1 + . . . + ql = n such that H is conjugate to
Cp1 × . . .× Cpk × U(q1)× . . .× U(ql) embedded in Cn as

Cp1 × . . .× Cpk × U(q1)× . . .× U(ql) ⊂ Cp1 × . . .× Cpk × Cq1 × . . .× Cql ⊂ Cn

(each unitary group is embedded in the corresponding symplectic group via the standard
embedding U(qi) ⊂ Sp(qi) and the product is diagonally embedded in Cn).

d) If H is a subgroup of Dn, there exist integers k, l ≥ 0, pi ≥ 1 for 1 ≤ i ≤ k,
qi ≥ 1 for 1 ≤ i ≤ l, with p1 + . . . + pk + q1 + . . . + ql = n such that H is conjugate to
Dp1 × . . .×Dpk × U(q1)× . . .× U(ql) embedded in Dn as

Dp1 × . . .×Dpk × U(q1)× . . .× U(ql) ⊂ Dp1 × . . .×Dpk ×Dq1 × . . .×Dql ⊂ Dn

(each unitary group is embedded in the corresponding special orthogonal group via the stan-
dard embedding U(qi) ⊂ SO(2qi) and the product is diagonally embedded in Dn).
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3. Weakly complex structures on homogeneous spaces

We are now ready to attack our main problem: the classification of simply connected
compact equal rank homogeneous spaces whose tangent bundle is weakly complex.

Since we are interested in almost complex structures, it is perhaps an appropriate place
to recall that if H is the centralizer of a torus in G, then rk(H) = rk(G) and G/H
automatically carries an invariant complex structure (see e.g. [W54, Sect. 7]). We will
thus focus on homogeneous spaces G/H where H is not centralizer of any torus in G.
Hermann has shown that in this case, with a few exceptions, G/H does not carry any
invariant almost complex structure ([H56, Thm. 5.3]). Of course, his arguments being
purely algebraic, he does not say anything about the possible existence of non-invariant
almost complex or, more generally, weakly complex structures.

Let us start with some simple but important remarks on the behavior of weakly complex
vector bundles on differentiable manifolds.

Lemma 3.1. A real vector bundle τ on a compact manifold is weakly complex if and only
if there exist a complex bundle γ and a trivial bundle δ such that

(2) τ ⊕ γ = δ.

Proof. Assume that τ is weakly complex, so there exist a complex bundle λ and a trivial
bundle ε such that τ ⊕ ε = λ. Recall that for every complex vector bundle λ on a compact
manifold, there exists a complex vector bundle λ̃ such that λ ⊕ λ̃ is trivial. We thus get
that τ ⊕ (λ̃ ⊕ ε) = λ ⊕ λ̃ is trivial. The relation (2) is thus satisfied for γ := λ̃ ⊕ ε and

δ := λ ⊕ λ̃ if the rank of ε is even, and for γ := λ̃ ⊕ (ε ⊕ R) and δ := (λ ⊕ λ̃) ⊕ R if the
rank of ε is odd. The proof of the converse statement is similar. �

Lemma 3.2. A product M := M1 ×M2 is weakly complex if and only if each factor is
weakly complex.

Proof. Let pi denote the standard projection M → Mi. If Mi is weakly complex, there
exists a trivial bundle εi over Mi such that TMi ⊕ εi has a complex structure. Then
ε̃i := p∗i (εi) are trivial bundles over M and TM ⊕ ε̃1 ⊕ ε̃2 = p∗1(TM1 ⊕ ε1)⊕ p∗2(TM2 ⊕ ε2)
is a complex bundle.

Conversely, if there exists a trivial bundle ε such that TM ⊕ ε is complex, then the
restriction of TM ⊕ ε to M1 × {m2} is a complex bundle for each m2 ∈M2. On the other
hand, this restriction is stably isomorphic to TM1 since TM |M1×{m2} is the direct sum of
TM1 and a trivial bundle of rank dim(M2). Thus M1 is weakly complex, and similarly, M2

is weakly complex too. �

We now state two results, which basically say that if the total space of a homogeneous
fibration carries an invariant almost complex structure or has weakly complex tangent
bundle, then the same holds for the fibers.
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Lemma 3.3. [H56, Prop. 5.3] Let G be a compact connected Lie group, L be a connected
subgroup containing a maximal torus of G, contained in a chain of subgroups L ⊂ L′ ⊂
. . . ⊂ Lm ⊂ G, with L a maximal subgroup of L′, . . . , Lm a maximal subgroup of G. If G/L
admits an invariant almost complex structure, so does L′/L.

Lemma 3.4. Let G be a compact Lie group with closed subgroups H and H ′, such that
H ⊂ H ′ ⊂ G. If the total space of the fibration G/H → G/H ′ is weakly complex, then the
same holds for the fiber H ′/H.

Proof. One can decompose the Lie algebras g and h′ as g = h′ ⊕m and h′ = h⊕m′, where
m and m′ are the orthogonal complements of h′ in g and h in h′ with respect to some
adH′-invariant scalar product on g. The tangent bundle of the fiber H ′/H is associated to
H ′ via the isotropy representation of H on m′ and the tangent bundle of the total space
G/H is associated to G via the isotropy representation of H on m⊕m′. The restriction of
T(G/H) to the fiber H ′/H is thus the direct sum of T(H ′/H) and the bundle associated
to H ′ via the representation adH on m. This representation tautologically extends to a H ′

representation, thus showing that the normal bundle of the fiber is trivial. This implies
that the restriction of T(G/H) to H ′/H and T(H ′/H) are stably isomorphic, so T(H ′/H)
is weakly complex. �

Note that this result is valid for all locally trivial fibrations, since the normal bundle of
each fiber of a locally trivial fibration is trivial. The elementary proof above just avoids
using the classical fact (see e.g. [D72, 16.14.9]) that G/H → G/H ′ is a locally trivial
fibration.

As a partial converse to the above results, we describe two instances where the total
space of a homogeneous fibration carries (weakly) complex structures.

Lemma 3.5. Let G be a compact Lie group and let H and H ′ be two closed subgroups of G,
such that H ⊂ H ′ ⊂ G. If the base G/H ′ and the fiber H ′/H of the fibration G/H → G/H ′

carry invariant almost complex structures, then the total space G/H carries an invariant
almost complex structure too.

Proof. As above we can write g = h′⊕m = h⊕m′⊕m. The hypothesis ensures the existence
of an adH-invariant complex structure on m′ and of an adH′-invariant complex structure
on m. Their direct sum thus defines an adH-invariant complex structure on m⊕m′. �

Lemma 3.6. Let Hk ⊂ Hk−1 ⊂ . . . ⊂ H1 ⊂ G be a sequence of embeddings of closed
subgroups of a compact Lie group G. If G/H1 has a weakly complex tangent bundle and
Hi/Hi+1 has an invariant almost complex structure for every 1 ≤ i ≤ k − 1, then G/Hk

has a weakly complex tangent bundle.

Proof. By induction, it is clearly enough to prove the case k = 2. As before, we decompose
the Lie algebra g = h1 ⊕ m = h2 ⊕ m′ ⊕ m. By assumption, m′ has an adH2-invariant
complex structure J ′. The tangent bundle of G/H2 decomposes as

T(G/H2) = (G×adH2
m)⊕ (G×adH2

m′).
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The first bundle is just the pull-back to G/H2 of T(G/H1), and is thus weakly complex,
whereas the second bundle clearly has an invariant complex structure induced by J ′. This
proves the lemma. �

4. Weakly complex inner symmetric spaces

For the convenience of the reader we recall our previous classification results of weakly
complex quaternion-Kähler manifolds and inner symmetric spaces.

Theorem 4.1. [GMS11, Th. 1.1] Let M4n, n ≥ 2, be a compact quaternion-Kähler mani-
fold of positive type, which is not isometric to the complex Grassmannian Gr2(Cn+2). Then
the tangent bundle TM is not weakly complex.

Theorem 4.2. [GMS11, Th. 1.3] An irreducible component of a simply connected inner
symmetric space of compact type admitting a weak almost complex structure is isomorphic
to an even-dimensional sphere, or to a Hermitian symmetric space or (conceivably) to the
exceptional symmetric space E7/(SU(8)/Z2).

Using the methods developed in this paper we are now in position to rule out the
exceptional case E7/A7 in the above theorem.

Theorem 4.3. The tangent bundle of the exceptional symmetric space E7/A7 is not weakly
complex.

Proof. Assume for a contradiction that E7/A7 is weakly complex and consider the sequence
of embeddings

A3 × A3 × T1 = S(U(4)× U(4)) ⊂ SU(8) = A7 ⊂ E7.

Since the fiber A7/(A3×A3×T1) is Hermitian symmetric, the total space E7/(A3×A3×T1)
would be weakly complex by Lemma 3.6. If G denotes the centralizer of the center T1 of
A3×A3×T1 in E7, the fiber G/(A3×A3×T1) of the fibration E7/(A3×A3×T1)→ E7/G
would be weakly complex by Lemma 3.4.

On the other hand, we claim that G is isomorphic to D6 × T1 and that the embedding
A3 × A3 × T1 in G is just the standard embedding of D3 × D3 × T1 in D6 × T1. This
would then imply that the weakly complex manifold G/(A3×A3×T1) is actually the real
Grassmannian D6/D3 ×D3 of 6-planes in R12, thus contradicting Theorem 4.2.

In order to prove our claim we need to study more carefully the embedding A7 ⊂ E7

via the root systems. Recall first [A96] that the root system of E8 is the disjoint union of
the root system of Spin(16) and the weights of the half-spin representation Σ+

16. It thus
consists of the vectors ±ei ± ej, 1 ≤ i < j ≤ 8 and

1

2

8∑
i=1

εiei, εi = ±1, ε1 · · · ε8 = 1.
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The vectors {ei} form an orthonormal basis of the maximal torus R8 of E8 with respect to
some bi-invariant scalar product on the Lie algebra e8 induced by the Killing form. The
root system of E7 is given by the set of roots of E8 orthogonal to a fixed one, e.g. to
α0 := 1

2
(e1 + . . .+ e8):

R(E7) = {α ∈ R(E8) | 〈α, α0〉 = 0}.
The subset {ei − ej | 1 ≤ i < j ≤ 8} ⊂ R(E7) determines the embedding A7 ⊂ E7.

The roots of the subgroup G ⊂ E7 are those orthogonal to e1+e2+e3+e4−e5−e6−e7−e8,
i.e.

±(ei − ej) for 1 ≤ i < j ≤ 4 or 5 ≤ i < j ≤ 8

and
1

2

8∑
i=1

εiei, εi = ±1,
4∑

i=1

εi =
8∑

i=5

εi = 0.

The above system is isometric to the root system {±fi± fj, 1 ≤ i < j ≤ 6} of D6×T1 by
defining

f1 =
1

2
(e1 + e2 − e3 − e4), f4 =

1

2
(e5 + e6 − e7 − e8),

f2 =
1

2
(e1 − e2 + e3 − e4), f5 =

1

2
(e5 − e6 + e7 − e8),

f3 =
1

2
(e1 − e2 − e3 + e4), f6 =

1

2
(e5 − e6 − e7 + e8),

f7 = e1 + e2 + e3 + e4 − e5 − e6 − e7 − e8.
Moreover, this identification maps the roots

±(ei − ej) for 1 ≤ i < j ≤ 4 or 5 ≤ i < j ≤ 8

of A3 × A3 × T1 onto the roots

±fi ± fj for 1 ≤ i < j ≤ 3 or 4 ≤ i < j ≤ 6

of D3 × D3 × T1 ⊂ D6 × T1. This proves our claim and concludes the proof of the
theorem. �

5. The classification in the semi-simple case

We now come back to the classification of weakly complex homogeneous spaces. As a
direct corollary of Lemma 2.1 and Lemma 3.2 we have:

Proposition 5.1. Let M = G/H be a compact simply connected homogeneous space with
rk(G) = rk(H). Then M is weakly complex if and only if it is the product of homogeneous
spaces Mi with Mi = Gi/Hi, such that Mi is weakly complex and each Gi is a compact
simple Lie group.

This proposition shows that the study of weakly complex equal rank homogeneous spaces
G/H reduces to the case where G is simple. The first main step consists in the case where
H is semi-simple. The answer is provided by
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Theorem 5.2. Let M = G/H be a simply connected equal rank compact homogeneous
space such that G is simple and H is semi-simple. Then M is weakly complex if and only
if one of the following (exclusive) possibilities occurs:

1. a) M is one of the seven spaces in the list (1) of Proposition 2.5.
b) M = E8/(A5 × A2 × A1).
c) M = E8/(A2)

4.
2. a) M = S2n = Bn/Dn for n ≥ 2.

b) M = Cn/(C1)
n for n ≥ 3.

c) M = F4/D4.

Conversely, the spaces in 1. carry invariant almost complex structures and those in 2.
have stably trivial (and thus weakly complex) tangent bundle but do not carry any invariant
almost complex structure.

Proof. If H is maximal in G, Proposition 2.5 shows that either we are in case 1.a), or M is
an irreducible inner symmetric space. In the latter situation, Theorem 4.2 together with
Theorem 4.3 imply that either M is an even dimensional sphere, so we are in case 2.a), or
it is Hermitian symmetric (which is impossible since H is semi-simple).

We thus may assume from now on that H is not maximal in G. Let H1 ⊂ G be a maximal
connected closed subgroup of G containing H. By an obvious inductive procedure one can
construct a sequence H := Hk ⊂ Hk−1 ⊂ . . . ⊂ H1 ⊂ H0 := G (k ≥ 2) of connected closed
subgroups of G, such that Hi+1 is maximal in Hi for 0 ≤ i ≤ k− 1. Since G/H fibers over
G/Hi with fiber Hi/H, Lemma 3.4 shows that Hi/H is weakly complex for all i. Moreover,
since H is semi-simple, Corollary 2.2 shows that the groups Hi are semi-simple for all i.

On the other hand, Proposition 2.5 shows that G/H1 either belongs to the list (1) of
Proposition 2.5, or is an irreducible inner symmetric space.

Case 1: G/H1 belongs to list (1). By Lemma 2.7, among the seven spaces in that list,
the only one which might occur is G/H1 = E8/(E6 × A2), and H2 = K × A2 for some
maximal subgroup K ⊂ E6 of rank 6. By Proposition 2.5 again, H1/H2 = E6/K is either
inner symmetric or belongs to the list (1).

If E6/K is inner symmetric, using the classification of symmetric spaces ([B87, pp. 312–
314]) we get K = A5 ×A1, so H2 = A2 ×A5 ×A1 and by Lemma 2.7 we must have k = 2
i.e. H2 = H. On the other hand H1/H = E6/(A5×A1) is a quaternion-Kähler symmetric
space which is not weakly complex by Theorem 4.1, thus contradicting Lemma 3.4.

If E6/K belongs to the list (1), the only possibility is K = (A2)
3, so H2 = (A2)

4 and
applying Lemma 2.7 again we see that k = 2, i.e. H2 = H. This shows that M is the
space in case 1.c).

Case 2: G/H1 is an irreducible inner symmetric space. Going through the list of these
spaces ([B87, pp. 312–314]), and keeping in mind that H1 is semi-simple, we distinguish
several possibilities:
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I. G = An. This case is impossible by Lemma 2.7.

II. G = Bn. By Lemma 2.8 b), there exist integers m ≥ 0, pi ≥ 2 for 1 ≤ i ≤ k, with
m + p1 + . . . + pk = n such that H = Bm × Dp1 × . . . × Dpk , diagonally embedded in
Bn. Since H is not maximal in G, we either have m ≥ 1, k ≥ 1 or m = 0, k ≥ 2. If
m ≥ 1, the inclusion H ⊂ H ′ := Bm+p1 ×Dp2 × . . .×Dpk ⊂ G induces a fibration of G/H
over G/H ′ with fiber H ′/H = Bm+p1/(Bm ×Dp1). By Lemma 3.4, the real Grassmannian
H ′/H = Bm+p1/(Bm × Dp1) has to be weakly complex, contradicting Theorem 4.2. If
m = 0, let H ′ be the subgroup Dp1+p2 × Dp3 × . . . × Dpk of G containing H. By Lemma
3.4 again, the real Grassmannian H ′/H = Dp1+p2/(Dp1 × Dp2) has to be weakly complex,
contradicting Theorem 4.2.

III. G = Cn. By Lemma 2.8 c), there exist k ≥ 2 integers pi ≥ 1 with p1 + . . .+ pk = n
such that H is conjugate to Cp1 × . . . × Cpk , diagonally embedded in Cn. Since H is
not maximal in Cn, we must have k ≥ 3. Assume that one of the pi’s is larger than
1 (say p1 ≥ 2 for simplicity). The inclusion H ⊂ H ′ := Cp1+p2 × Cp3 × . . . × Cpk ⊂
G induces a fibration of G/H over G/H ′ with fiber H ′/H = Cp1+p2/(Cp1 × Cp2). By
Lemma 3.4, the quaternionic Grassmannian H ′/H = Cp1+p2/(Cp1 × Cp2) has to be weakly
complex, contradicting Theorem 4.2 which says, in particular, that the only weakly complex
quaternionic Grassmannian is the sphere S4 = C2/(C1×C1). Thus pi = 1 for all i, and we
are in case 2.b).

IV. G = Dn. By Lemma 2.8 d), there exist k ≥ 2 integers pi ≥ 2 with p1 + . . .+ pk = n
such that (up to conjugation) H = Dp1×. . .×Dpk , diagonally embedded in Dn. Like before,
let H ′ be the subgroup Dp1+p2 × Dp3 × . . . × Dpk of G containing H. By Lemma 3.4, the
real Grassmannian H ′/H = Dp1+p2/(Dp1 × Dp2) has to be weakly complex, contradicting
Theorem 4.2 again.

V. G = G2 and H1 = A1 ×A1. This case is impossible since by Lemma 2.7, H, which is
a proper subgroup of H1, cannot be semi-simple.

VI. G = F4 and H1 = C3×A1. By Lemma 2.1, every proper semi-simple rank 4 subgroup
of H1 is of the form K×A1 with K ⊂ C3. By Lemma 3.4, H1/H = C3/K has to be weakly
complex. Like in III. above, the only possibility is K = (C1)

3 = (A1)
3, so M = F4/(A1)

4.
In order to understand the embedding (A1)

4 ⊂ C3 × A1 ⊂ F4, recall [A96] that the root
system of F4 is the disjoint union of the root system of B4 and the weights of the spin
representation Σ9. It thus consists of the vectors ±ei ± ej, 1 ≤ i < j ≤ 4, ±ei, 1 ≤ i ≤ 4
and

1

2

4∑
i=1

εiei, εi = ±1.

The embedding C3 × A1 ⊂ F4 is determined by the subset of roots

{±e1,±e2,±e1 ± e2,±(e3 + e4),
1

2
(±e1 ± e2 ± (e3 + e4))} ∪ {±(e3 − e4)} ⊂ R(F4).
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Indeed, the first subset on the left is isometric to the root system of C3

R(C3) = {±fi ± fj,±2fi}1≤i≤3

by taking f1 = 1
2
(e1 + e2), f2 = 1

2
(e1 − e2), f3 = 1

2
(e3 + e4). On the other hand, the

embedding (A1)
3 ⊂ C3 corresponds to the subset of roots {±2fi}1≤i≤3 of R(C3), so finally

the embedding of (A1)
4 into F4 corresponds to the subset of roots {±e1 ± e2,±e3 ± e4}.

Consequently, (A1)
4 = (D2)

2 can also be embedded in F4 through the sequence of inclusions

(A1)
4 = D2

2 ⊂ D4 ⊂ B4 ⊂ F4.

If M = F4/(A1)
4 were weakly complex, the same would hold by Lemma 3.4 for the real

Grassmannian G̃r4(R8) = D4/(D2 ×D2), which would contradict Theorem 4.2.

VII. G = F4 and H1 = B4. Since H1/H = B4/H is weakly complex, the argument in II.
shows that the only possibility is H = D4, so M = F4/D4 is the space in case 2.c).

VIII. G = E6 and H1 = A5 × A1. By Lemma 2.7 once again, H cannot be semi-simple.

IX. G = E7 and H1 = A7 or H1 = D6 × A1. The first case is excluded by Lemma 2.7
and in the second case, we obtain like in case IV. above that H1/H is not weakly complex.

X. G = E8 and H1 = D8 or H1 = E7 × A1. In the first case, the argument in case IV.
above shows that H1/H cannot be weakly complex. In the second case, by Proposition
2.5, H2 is one of the three groups A7 × A1, A5 × A2 × A1, or D6 × A1 × A1. For the
first two of these groups, Lemma 2.7 implies that H = H2. If H = A7 × A1, Lemma 3.4
implies that the quotient H1/H = E7/A7 is weakly complex, contradicting Theorem 4.3.
If H = A5 × A2 × A1, we are in case 1.b). Finally, if H2 = D6 × A1 × A1 we cannot have
H = H2, since then the fiber H1/H2 = E7/(D6×A1) would be a compact quaternion-Kähler
manifold which is not weakly complex by Theorem 4.1. Thus H is a proper subgroup of H2

and the argument in case IV. combined with Lemma 2.1 show that this case is impossible
either.

For the converse statement, we recall that the spaces in 1.a) carry an invariant almost
complex structure by [BH58, p. 500]. By Lemma 3.5, the same holds for the two spaces
in 1.b) and 1.c) because of the fibrations

E7/(A5 × A2) ↪→ E8/(A5 × A2 × A1)→ E8/(E7 × A1)

and

E6/(A2)
3 ↪→ E8/(E6 × A2)→ E8/(A2)

4

whose bases and fibers all carry invariant almost complex structures (see also [H56, Thm.
5.3]).

The spaces in 2.a)–2.c) are all weakly complex since their tangent bundle is stably trivial
(see [SW86, p. 159]). The fact that they do not carry invariant almost complex structures
follows from Hermann’s classification [H56, Thm. 5.3], however one can give a direct
argument. Indeed, the spheres Bn/Dn are symmetric spaces and Dn is semi-simple for
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n ≥ 2, so [H56, Prop. 4.2] applies. For the remaining two cases one can use [H56, Prop.
5.3] applied to the chains of subgroups L ⊂ L′ ⊂ G

(C1)
n ⊂ C2 × (C1)

n−2 ⊂ Cn and D4 ⊂ B4 ⊂ F4,

for which L′/L is either C2/(C1)
2 = S4 or B4/D4 = S8. �

6. The classification in the non semi-simple case

We now consider the case where H is not semi-simple. Before stating the main result we
need to study in more detail some family of homogeneous spaces which will appear later
on in the classification and which require a different type of arguments.

Let Hn denote the standard representation of Cn = Sp(n). This representation has
a quaternionic structure given by right multiplication with quaternions. We view Hn

as complex representation with respect to the right multiplication with i. The complex
exterior power Λ2Hn has a real structure defined by r(x ⊗ y) := xj ⊗ yj. Let JΛ2HnK
denote the real part of Λ2Hn with respect to r. It is generated by elements of the form
Jx⊗ yK := x⊗ y + r(x⊗ y).

Lemma 6.1. The restriction to (C1)
n of JΛ2HnK is isomorphic, as real representation, to

the direct sum Rn ⊕ mn between the trivial n-dimensional representation and the isotropy
representation of the manifold Cn/(C1)

n.

Proof. The restriction to (C1)
n of the standard Cn representation on Hn decomposes as

Hn = ⊕n
i=1Hi, where Hi

∼= H1 denotes the (C1)
n representation obtained by composing the

projection onto the i-th factor of (C1)
n with the standard representation of C1 on H1. It is

well known that the complexified Lie algebra of Cn can be identified with Sym2Hn, which
as (C1)

n representation decomposes as

Sym2Hn =
n⊕

i=1

Sym2Hi ⊕
⊕
i<j

(Hi ⊗Hj).

It follows that the complexified isotropy representation mn ⊗C of the homogeneous space
Cn/(C1)

n is just ⊕i<jHi ⊗Hj.

Similarly we can decompose Λ2Hn and find Λ2Hn =
⊕n

i=1 Λ2Hi ⊕
⊕

i<j(Hi ⊗Hj). The

summands Λ2Hi are all one-dimensional and thus trivial (C1)
n representations. We thus

obtain
Λ2Hn = Cn ⊕ (mn ⊗ C),

whence JΛ2HnK = Rn ⊕mn as claimed. �

Remark 6.2. A corollary of this result is the fact, already mentioned before, that the
homogeneous space Cn/(C1)

n is stably parallelizable. Indeed, since any vector bundle on a
homogeneous space G/H associated to the restriction to H of a G representation is trivial,
we have that

Rn ⊕ T(Cn/(C1)
n) = Cn ×(C1)n (Rn ⊕mn) = Cn ×(C1)n JΛ2HnK
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is a trivial vector bundle.

Consider now the family of homogeneous spaces G/H where G = Cn for some n ≥ 2
and H = (C1)

p×U for some rank q subgroup U ⊂ U(q) (q = n− p). The embedding of H
in Cn given by

(C1)
p × U ⊂ (C1)

p × U(q) ⊂ (C1)
p × Cq ⊂ Cn,

where U(q) ⊂ Cq is the standard embedding obtained by viewing the complex entries of a
matrix as quaternions, and the last embedding is diagonal.

Proposition 6.3. The homogeneous spaces Cn/((C1)
p × U) have weakly complex tangent

bundle.

Proof. Let T denote the center of U . It is clear that the centralizer of T in Cn is Cp × U ,
so Cn/(Cp × U) has an invariant complex structure. In fact this space is a coadjoint orbit
of Cn (see e.g. [B87, p. 234]). Its isotropy representation, called n, is thus complex.
Consider now the isotropy representation mp of the homogeneous space Cp/(C1)

p. Using
the fibration Cn/((C1)

p × U) → Cn/(Cp × U) we see that the isotropy representation of
the total space is the direct sum n⊕ mp. Here (C1)

p × U acts by restriction from Cp × U
on n and the U factor acts trivially on mp. In order to finish the proof of the proposition
we thus need to show that the associated bundle τ := Cn ×(C1)p×U mp is weakly complex.

Now, the restriction to (C1)
p × U of the representation Hn of Cn decomposes as Hn =

Hq ⊕Hp. Correspondingly, the restriction to (C1)
p × U of JΛ2HnK decomposes as

(3) JΛ2HnK = JΛ2HqK⊕ JHq ⊗HpK⊕ JΛ2HpK.

The crucial observation is that the first two summands are complex representations of the
group (C1)

p × U . Indeed, the left multiplication with i on Hq induces complex structures

JJx ∧ x′K := Jix ∧ x′K, JJx⊗ yK := Jix⊗ yK
on JΛ2HqK and JHq ⊗HpK which are compatible with the (C1)

p × U action. On the other
hand, the U factor in (C1)

p × U acts trivially on JΛ2HpK, so by Lemma 6.1, JΛ2HpK and
Rp⊕mp are isomorphic as (C1)

p×U representations. Since JΛ2HnK is a Cn representation,
the associated vector bundle ε := Cn ×(C1)p×U JΛ2HnK is trivial. From (3) we see that this
trivial vector bundle can be written as the direct sum

ε = (Cn ×(C1)p×U JΛ2HqK)⊕ (Cn ×(C1)p×U JHq ⊗HpK)⊕ Rp ⊕ τ
of two complex vector bundles, a trivial rank p vector bundle, and τ . By taking the direct
sum with a trivial real line bundle for p odd, we see that there exists a complex bundle λ
and a trivial bundle ε such that τ ⊕ λ = ε. Thus τ is weakly complex by Lemma 3.1. �

The remaining part of this section is devoted to the proof of the classification result in
the non semi-simple case:

Theorem 6.4. Let M = G/H be a simply connected equal rank compact homogeneous
space such that G is simple and H is not semi-simple. Then M is weakly complex if and
only if one of the following (exclusive) possibilities occurs:
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1. a) H is the centralizer of a torus in G.
b) M is one of the four exceptional spaces E8/(A5×A2×T1), E8/((A2)

3×A1×T1),
E8/((A2)

3 × T2) or E7/((A2)
3 × T1).

2. a) M = Bn/(Dp × U(q1) × . . . × U(ql)), for some integers p ≥ 2 and qi ≥ 1 for
1 ≤ i ≤ l such that n = p+ q1 + . . .+ ql.

b) M = Cn/((C1)
p ×U(q1)× . . .×U(ql)), for some integers p ≥ 2 and qi ≥ 1 for

1 ≤ i ≤ l such that n = p+ q1 + . . .+ ql.
c) M is one of the exceptional spaces F4/(D2 × T2) or F4/((C1)

3 × T1).

The spaces in 1. have invariant almost complex structures and those in 2. have weakly
complex tangent bundle, but do not carry any invariant complex structure.

Proof. Since H is not semi-simple, its center T is a toral subgroup of rank r ≥ 1. We
denote by H ′ ⊃ H the centralizer of T in G. Using the convention from Remark 2.3 we
can assume that H = K × T and H ′ = K ′ × T with K ⊂ K ′. The manifold M = G/H
fibers over M ′ := G/H ′ with fiber K ′/K. Note now that K and K ′ are both semi-simple
and have rank n− r. If K ′ = K, then H is the centralizer of a torus in G, so G/H has an
invariant complex structure and we are in case 1.a).

Assume from now on that K is a proper subgroup of K ′. Since K ′ is semi-simple one
can write K ′ = K ′1 × . . . × K ′m with K ′i simple for every i. By Lemma 2.1 we have
K = K1 × . . .×Km with Ki := K ∩K ′i semi-simple and rk(Ki) = rk(K ′i) for every i.

Since M is weakly complex, the same holds for K ′/K (by Lemma 3.4). Now, K ′/K
is the direct product of the spaces K ′i/Ki, and each factor K ′i/Ki is weakly complex by
Lemma 3.2. Consequently each factor K ′i/Ki is either a point, or one of the spaces given
by Theorem 5.2. By permuting the subscripts if necessary, one can assume that K1 is a
proper subgroup of K ′1.

A useful observation is that by Corollary 2.6, if G is a classical compact simple Lie group
(i.e. in one of the series A–D), then a closed subgroup K ′ ⊂ G with rk(K ′) = rk(G) has
no direct factor of exceptional type.

In our present situation, this means that if G is a classical group, then K ′1 is a simple
classical group, thus K ′1/K1 is one of the spaces in cases 2.a) or 2.b) in Theorem 5.2. In
particular, we must have K ′1 = Bn′ or K ′1 = Cn′ for some n′ ≥ 2. By Lemma 2.8, G = Bn

for some n ≥ 3 in the first case or G = Cn for some n ≥ 3 in the second case.

If G = Bn, Lemma 2.8 also says that there exist integers m, k ≥ 0, l ≥ 1, pi ≥ 1 for
1 ≤ i ≤ k, qi ≥ 1 for 1 ≤ i ≤ l, with m + p1 + . . . + pk + q1 + . . . + ql = n such that H is
conjugate to Bm ×Dp1 × . . .×Dpk ×U(q1)× . . .×U(ql). By renaming the groups D1 into
U(1), we can assume pi ≥ 2 for all i. It is then easy to check that the centralizer of the
center of H in Bn is H ′ = Bp × U(q1) × . . . × U(ql), where p = m + p1 + . . . + pk. ¿From
Theorem 5.2, H ′/H is weakly complex if only if m = 0 and k = 1, so we are in case 2.a).
Conversely, if this holds, i.e. H is of the type Dp ×U(q1)× . . .×U(ql) ⊂ Bn, then we can
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also embed H in Bn as follows:

H = Dp × U(q1)× . . .× U(ql) ⊂ Dn ⊂ Bn.

Lemma 3.6 then shows that Bn/H is weakly complex. Indeed, Bn/Dn has stably trivial
tangent bundle and Dn/H is a coadjoint orbit [B87, p. 231] so it has an invariant complex
structure.

If G = Cn, Lemma 2.8 implies that there exist integers k ≥ 0, l ≥ 1, pi ≥ 1 for 1 ≤ i ≤ k,
qi ≥ 1 for 1 ≤ i ≤ l, with p1 + . . . + pk + q1 + . . . + ql = n such that H is conjugate to
Cp1× . . .×Cpk×U(q1)× . . .×U(ql). Like above, we check that the centralizer of the center
of H in Cn is H ′ = Cp×U(q1)× . . .×U(ql), where p = p1 + . . .+ pk. ¿From Theorem 5.2,
H ′/H is weakly complex if only if pi = 1 for all i, i.e. H = (C1)

p×U(q1)× . . .×U(ql) ⊂ Cn

where n = p + q1 + . . . + ql, so we are in case 2.b). Conversely, each space in case 2.b) is
weakly complex by Proposition 6.3.

Consider now the case where G is exceptional and K ′1 is classical. By Theorem 5.2,
K ′1 is either Bm or Cm for some m ≥ 2. Now, Proposition 2.5 together with the list of
symmetric spaces of exceptional type show that if G is one of G2, E6, E7 or E8 and H ′

is a closed subgroup of G with rk(H ′) = rk(G), then H ′ has no factor isomorphic to Bm

or Cm for m ≥ 2. We thus necessarily have G = F4. By Proposition 2.5 and [B87, pp.
312–314], the maximal rank 4 proper subgroups of F4 are A2×A2, B4, and C3×A1. Since
K ′1 occurs as factor in one of their subgroups, the first case can not occur. In the last two
cases, using Lemma 2.8 b) and c) several times we see that (H ′, H) necessarily belongs
to the following list: (B3 × T1,D3 × T1), (B2 × U(2),D2 × U(2)), (B2 × T2,D2 × T2), or
(C3×T1, (C1)

3×T1). The first two candidates actually do not occur. Indeed, from the root
system of F4 described in Theorem 5.2, we easily see that D3×T1 is equal to the centralizer
of its center in F4, and the centralizer in F4 of the center of D2 × U(2) is C3 × T1, which
contains B2 × U(2) as proper subgroup. In the last two cases H ′ is indeed the centralizer
in F4 of the center of H and moreover both groups D2 × T2 and (C1)

3 × T1 embed in D4

as coadjoint orbits [B87, p. 230]. Since F4/D4 is stably trivial [SW86], Lemma 3.6 shows
that the corresponding homogeneous spaces F4/((C1)

3×T1) and F4/(D2×T2) are weakly
complex.

It remains to treat the case where K ′1 and G are simple exceptional groups. Using
Lemma 2.1, Proposition 2.5 and the classification of symmetric spaces, we observe that a
Lie algebra containing a summand isomorphic to g2, f4 or e8 can not be properly embedded
in a Lie algebra of the same rank. Looking at the different cases in Theorem 5.2, we see
that the only possibilities for (K ′1, K1) are (E7,A2 × A5) and (E6, (A2)

3).

In the first case we getG = E8 andH = A2×A5×T1 ⊂ H ′ := E7×T1 ⊂ E8. The resulting
space M = E8/(A2 × A5 × T1) has an invariant almost complex structure, as shown by
Lemma 3.5 applied to the fibration of M → E8/(E7×T1) with fiber E7/(A2×A5). Indeed,
the base is complex homogeneous, being the twistor space of the compact quaternion-
Kähler manifold E8/(E7 × A1) and the fiber has an invariant almost complex structure
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by Proposition 2.5. This space was curiously overlooked in Hermann’s classification [H56,
Thm. 5.3].

In the second case, we either have G = E7 and H = (A2)
3 × T1 ⊂ H ′ := E6 × T1 ⊂ E7,

or G = E8, H
′ is one of E6 × T2 or E6 × A1 × T1 and correspondingly H is (A2)

3 × T2 or
(A2)

3×A1×T1. In each case the resulting spaces have invariant almost complex structures
by Lemma 3.5.

The fact that the spaces in 2. do not carry invariant almost complex structures follows
from [H56, Prop. 5.3] applied to the chains of subgroups L ⊂ L′ ⊂ G

Dp × U(q1)× . . .× U(ql) ⊂ Bp × U(q1)× . . .× U(ql) ⊂ Bn

(C1)
p × U(q1)× . . .× U(ql) ⊂ C2 × (C1)

p−2 × U(q1)× . . .× U(ql) ⊂ Cn

D2 × T2 ⊂ B2 × T2 ⊂ F4

(C1)
3 × T1 ⊂ C2 × C1 × T1 ⊂ F4

for which L′/L is either Bn/Dn = S2n or C2/(C1)
2 = S4.

This completes the proof of the theorem. �
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