Universität Stuttgart

Fachbereich Mathematik

Finite elation Laguerre planes admitting a two-transitive group on their set of generators

Günter F. Steinke, Markus J. Stroppel

Preprint 2012/014

Universität Stuttgart

Fachbereich Mathematik

Finite elation Laguerre planes admitting a two-transitive group on their set of generators

Günter F. Steinke, Markus J. Stroppel

Fachbereich Mathematik Fakultät Mathematik und Physik Universität Stuttgart Pfaffenwaldring 57 D-70 569 Stuttgart

 $\textbf{E-Mail:} \quad \texttt{preprints@mathematik.uni-stuttgart.de}$

WWW: http://www.mathematik.uni-stuttgart.de/preprints

ISSN 1613-8309

Finite elation Laguerre planes admitting a two-transitive group on their set of generators

Günter F. Steinke, Markus J. Stroppel*

Abstract

We investigate finite elation Laguerre planes admitting a group of automorphisms that is two-transitive on the set of generators. We exclude the sporadic cases of socles in two-transitive groups, as well as the cases with abelian socle (except for the smallest ones, where the Laguerre planes are Miquelian of order at most four). The remaining cases are dealt with in a separate paper. As a consequence, a finite elation Laguerre plane admitting a group of automorphisms that is two-transitive on the set of generators is Miquelian.

MSC 2010: 51E25, 51B15, 20B20.

Keywords: Laguerre plane, elation group, two-transitive group, socle.

Introduction

A finite Laguerre plane \mathcal{L} of order n is an orthogonal array of strength 3 on n symbols (levels), n+1 constraints and index 1, cf. [1], or equivalently, a transversal design $\mathrm{TD}_1(3,n+1,n)$. Since we have a more geometric point of view we rather use the term Laguerre plane instead of orthogonal array or transversal design, see Section 1 for an explicit definition.

Models of finite Laguerre planes can be obtained as follows. Let O be an oval in the Desarguesian projective plane $\mathcal{P}_2 = \operatorname{PG}(2,q)$, for a prime power q. Embed \mathcal{P}_2 into 3-dimensional projective space $\mathcal{P}_3 = \operatorname{PG}(3,q)$ and let v be a point of \mathcal{P}_3 not belonging to \mathcal{P}_2 . Then P consists of all points of the cone with base O and vertex v except the point v. Generators are the traces of lines of \mathcal{P}_3 through v that are contained in the cone. Circles are obtained by intersecting P with planes of \mathcal{P}_3 not passing through v. In this way one obtains an *ovoidal Laguerre plane of order q*. If the oval O one starts off with is a conic, one obtains the *Miquelian Laguerre plane of order q*. All known finite Laguerre planes of odd order are Miquelian and all known finite Laguerre planes of even order are ovoidal. In fact, it is a long standing problem whether or not these are the only finite Laguerre planes. (There are many non-ovoidal infinite Laguerre planes though.)

Some partial results in this direction were obtained by combining the classifications for finite projective planes of small orders and their ovals, see Section 1 for a description of the relation of Laguerre planes to projective planes and ovals. In this way it was shown that a

^{*} This research was supported by a Visiting Erskine Fellowship from the University of Canterbury for the second author.

Laguerre plane of order at most nine must be ovoidal, see 1.2 below. In [7] and [27] it was shown by a computer search that translation Laguerre planes and elation Laguerre planes of order 16 must be ovoidal.

Finite elation Laguerre planes were introduced in [32] and [24], see Section 1 for a description of the structure of finite elation Laguerre planes. They are characterized by the existence of a group of automorphisms that acts trivially on the set of generators and regularly on the set of circles. This group of automorphisms, which we call the *elation group* of the Laguerre plane, is unique and potentially plays a role analogous to the translation group of finite translation planes. In fact, elation Laguerre planes are linked to dual translation planes since such Laguerre planes can be described as dual translation planes with collections of certain ovals, see Section 1.

Every ovoidal Laguerre plane is an elation Laguerre plane, but there are infinite non-ovoidal elation Laguerre planes; see, for example, [23]. Hence elation Laguerre planes form a proper generalization of the notion of ovoidal Laguerre planes. In [14], elation Laguerre planes were further characterized as weakly Miquelian Laguerre planes, that is, those Laguerre planes in which a certain variation M2 of Miquel's configuration, which characterizes the Miquelian Laguerre planes, is satisfied. From this perspective, elation Laguerre planes are 'closest' to the Miquelian planes. Finally, finite elation Laguerre planes of odd order *q* are also equivalent to dual pseudo-ovals and translation generalized quadrangles of order *q* with an antiregular point, see [4] and [12]. All of this indicates that elation Laguerre planes form a nice subclass of Laguerre planes and that, if there are finite non-ovoidal Laguerre planes, elation Laguerre planes certainly are a natural class to look for them.

Doubly transitive groups of automorphisms have been investigated for various geometries, see for example [6], [21], [11], [9], [13], [8]. In this note we follow the program for finite translation planes to construct such planes from information about a suitable group in the translation complement of the collineation group and to classify all arising planes. The most homogeneous assumption one can make is that the automorphism group of the elation Laguerre plane is doubly transitive on the set of generators.

It should be noted that, on the one hand, there are infinite Laguerre planes that are not elation Laguerre planes but whose automorphism groups are doubly transitive on the set of generators, see [16]. On the other hand, there are infinite elation Laguerre planes whose automorphism groups are not doubly transitive on the set of generators, see for example [15]. However, a topological, locally compact, 2- or 4-dimensional elation Laguerre plane whose automorphism group is doubly transitive on the set of generators is Miquelian.

1 Elation Laguerre planes

Explicitly, a finite Laguerre plane $\mathcal{L} = (P, C, \mathcal{G})$ of order n consists of a set P of n(n+1) points, a set C of n^3 circles and a set \mathcal{G} of n+1 generators (or parallel classes), where circles and generators are both subsets of P, such that the following three axioms are satisfied:

- (G) \mathcal{G} partitions P and each generator contains n points.
- (C) Each circle intersects each generator in precisely one point.
- (J) Three points no two of which are on the same generator can be uniquely joined by a circle.

The *internal incidence structure* \mathbb{A}_x at any point x of a Laguerre plane has the collection of all points not on the generator through x as point set and, as lines, all circles passing through x (without the point x) and all generators not passing through x. From the definition of a Laguerre plane it readily follows that each internal incidence structure is an affine plane, the *derived affine plane at* x. The projective completion \mathbb{P}_x of \mathbb{A}_x will be called the *derived projective plane at* x.

A circle C, not incident with the distinguished point x, induces an oval in \mathbb{P}_x : we delete the unique point incident with C and the generator [x] through x and add the point ω at infinity that corresponds to the set of generators. Note that each oval arising in this way from circles of \mathcal{L} passes through the common point ω and has the line at infinity of \mathbb{A}_p as a tangent. Thus a Laguerre plane corresponds to a projective plane with sufficiently many of these ovals, pairwise intersecting in at most two affine points. This planar description of a Laguerre plane must then be extended by the points of one generator where one has to adjoin a new point to each line and to each oval as above of the affine plane.

Using Segre's result [22] that every oval in a finite Desarguesian projective plane of odd order is a conic, the following characterization of finite Miquelian Laguerre planes was obtained in [5] or [20, VII.2].

1.1 Theorem. A finite Laguerre plane of odd order with one Desarguesian derivation is Miquelian. \Box

For small orders this and the results of [25] and [26] imply the following.

1.2 Theorem. A Laguerre plane of order at most ten is ovoidal and, in fact, Miquelian except in case of order eight.

An automorphism of a Laguerre plane \mathcal{L} is a permutation of the point set that maps circles onto circles and generators to generators. All automorphisms of \mathcal{L} form a group with respect to composition, the automorphism group $\operatorname{Aut}(\mathcal{L})$ of \mathcal{L} . This group acts on the set \mathcal{G} of generators; the kernel of that action is denoted by Δ . The collection of all automorphisms that fix each generator globally but fix no circle, together with the identity forms a normal subgroup E in $\operatorname{Aut}(\mathcal{L})$, see [24]. If \mathcal{L} is an elation Laguerre plane then E has maximal order and is the elation group of \mathcal{L} , acting regularly on the set of circles. An element of E induces an elation with center ω in the derived projective plane at any of its fixed points. Indeed, one has the following, compare [23].

- **1.3 Theorem.** Let \mathcal{L} be an elation Laguerre plane of finite order q.
 - (a) Each derived projective plane of \mathcal{L} is a dual translation plane; the translation center is the point ω at infinity of vertical lines.
 - **(b)** *The order q is a prime power.*
 - (c) If q is a prime then \mathcal{L} is Miquelian.
 - **(d)** Each oval induced by a circle of \mathcal{L} in a derived projective plane passes through the translation center ω and has the line at infinity as a tangent.

For elation Laguerre planes of order 16 a computer search was conducted in [27] and the following result was obtained.

1.4 Theorem. An elation Laguerre plane of order 16 is ovoidal.

Extending the usual representation of dual translation planes, a description of elation Laguerre planes in terms of a matrix-valued map was developed in [24, Theorem 3], see also [32]. Let $M(3m, m; \mathbb{F})$ denote the set of all $3m \times m$ matrices over \mathbb{F} , and let ∞ be any symbol not in \mathbb{F}^m .

- **1.5 Theorem.** Let $\mathcal{L} = (P, C, \mathcal{G})$ be a elation Laguerre plane of order $q = r^e$. There are a divisor m of e and a matrix-valued map $D : \mathbb{F}^m \cup \{\infty\} \to M(3m, m; \mathbb{F})$ where $\mathbb{F} := \mathbb{F}_{p^{e/m}}$, such that \mathcal{L} can be represented in the following form.
 - (a) The point set is

$$P = (\mathbb{F}^m \cup \{\infty\}) \times \mathbb{F}^m,$$

- **(b)** the generators are the verticals $\{a\} \times \mathbb{F}^m$ of P for $a \in \mathbb{F}^m \cup \{\infty\}$,
- **(c)** the set of circles is

$$C = \{K_c \mid c \in \mathbb{F}^{3m}\}$$

where a circle K_c is described as

$$K_c = \{(x, c \cdot D(x)) \in P \mid x \in \mathbb{F}^m \cup \{\infty\}\}.$$

(d) *The elation group E consists of all maps*

$$(x, y) \mapsto (x, y + c \cdot D(x)),$$

for $c \in \mathbb{F}^{3m}$.

(e) For each $r \in \mathbb{F} \setminus \{0\}$ the map $\delta_r : (x, y) \mapsto (x, r \cdot y)$ belongs to Δ (i.e., is an automorphism that fixes each generator globally) and fixes the circle K_0 .

The special value m=1 yields an ovoidal Laguerre plane. Also note (cf. [24, 3.5 a)]) that every elation Laguerre plane of order q has a representation as in 1.5 over the prime field \mathbb{F}_r , that is, for m=e.

1.6 Remark. For any point x on the circle K, the stabilizer Δ_K induces a group of homologies in the derived projective plane \mathbb{P}_x . By [17, Theorem 1.12] these homologies form the multiplicative group of the kernel of the translation plane obtained as dual of \mathbb{P}_x . This kernel is a field \mathbb{F} (embedded in \mathbb{F}_q), and we can represent the Laguerre plane over \mathbb{F} as in the theorem above. In analogy to the situation in translation planes we call \mathbb{F} the *kernel of* \mathcal{L} in this case.

The kernel of \mathcal{L} is the largest field over which \mathcal{L} can be represented as in 1.5. Furthermore, the group Δ_K is the multiplicative group of \mathbb{F} and thus cyclic; its order divides q-1.

Geometrically, a finite elation Laguerre plane of order q as described above is equivalent to a (q + 1)-set of (m - 1)-dimensional subspaces in the (3m - 1)-dimensional projective space over \mathbb{F} , see [24, Theorem 4], and also [12] and [4] for related translation generalized quadrangles.

2 Doubly transitive groups

We consider a finite elation Laguerre plane \mathcal{L} . We assume that $\operatorname{Aut}(\mathcal{L})$ is doubly transitive on the set \mathcal{G} of generators of \mathcal{L} . Since Δ acts trivially on \mathcal{G} , our assumptions imply that the stabilizer $\operatorname{Aut}(\mathcal{L})_K$ is doubly transitive on \mathcal{G} or, equivalently, on the points of the fixed circle K.

In order to make our results more readily applicable, we will study a two-transitive subgroup Γ of $\operatorname{Aut}(\mathcal{L})_K$. The pointwise stabilizer (i.e., the intersection of Γ with Δ) will be denoted by $\Gamma_{[K]}$. Let $Q := \Gamma/\Gamma_{[K]}$ and $\pi \colon \Gamma \to Q$ be the natural homomorphism.

As the group $\operatorname{Aut}(\mathcal{L})$ is two-transitive on \mathcal{G} , it is also point-transitive and in fact transitive on the incident point-circle pairs. Hence all derived planes of the elation Laguerre plane \mathcal{L} are isomorphic to each other and \mathcal{L} can be reconstructed as a coset geometry from $\operatorname{Aut}(\mathcal{L})$ ([10], see also [30]).

We begin with the ovoidal case.

2.1 Theorem. A finite ovoidal Laguerre plane whose automorphism group is doubly transitive on the set of generators is Miquelian.

Proof. An ovoidal Laguerre plane \mathcal{L} of order q is embedded in 3-dimensional projective space PG(3,q). Thus each derived affine plane is Desarguesian. If \mathcal{L} has odd order then \mathcal{L} is Miquelian by 1.1. If q is even then the transitivity assumption on \mathcal{L} implies that the oval O in $PG(2,2^h)$, which forms the base of the cone that is the point set of \mathcal{L} , has a collineation group which is doubly transitive on O. The two-transitive ovals are known to be conics, see [18, Theorem 1.3 and the remark following it]. But then \mathcal{L} is again Miquelian.

Abelian socles

A first step towards the understanding of the double transitive groups is already due to Burnside [2, p. 202]; compare also [3, Prop. 5.2]:

2.2 Theorem. *If* Ψ *is a finite doubly transitive and effective group on* v *points, then* Ψ *contains a transitive normal subgroup* Σ *(the socle of G) and either* Σ *is elementary abelian or* Σ *is a non-abelian simple group.*

For the case of an elementary abelian socle the following straightforward result (see [19, Lemma 19.3]) will be helpful.

- **2.3 Lemma.** Let r and s be primes and e, f be positive integers such that $r^e + 1 = s^f$. Then one of the following holds:
 - (a) s = 2, e = 1 (r is a Mersenne prime);
 - **(b)** r = 2, f = 1 (*s is a Fermat prime*);
 - (c) r = 2, e = 3, s = 3, f = 2.
- **2.4 Proposition.** Let \mathcal{L} be a finite elation Laguerre plane admitting a group Γ of automorphisms fixing a circle K and two-transitive on K. If the socle of $Q := \Gamma/\Gamma_{[K]}$ is abelian then \mathcal{L} is a Miquelian Laguerre plane of order $q \in \{2, 3, 4\}$.

Proof. Let r^e be the order of \mathcal{L} . The socle has order s^f for some prime s and acts regular on \mathcal{G} , see 2.2. Thus we have $r^e + 1 = |\mathcal{G}| = s^f$, and 2.3 leaves three cases to consider.

Case (a): s = 2, e = 1. Then \mathcal{L} has prime order q = r and is Miquelian by 1.3. Any Sylow 2-subgroup S of $P\Gamma L(2, r) = PGL(2, r)$ has order $2(r + 1) = 2^{f+1}$, and contains a cyclic subgroup of order 2^f (from the multiplicative group of a field of order r^2 contained in the matrix ring $M(2, 2; \mathbb{F}_r)$). The elementary abelian socle Σ of Q then meets that cyclic group in a cyclic subgroup of order at least 2^{f-1} . This yields $f \leq 2$, and q = r = 3 follows.

We note that $P\Gamma L(2,3) = PGL(2,3) \cong S_4$ contains a unique candidate for Q, namely the alternating group $A_4 \cong AGL(1,4)$.

Case (b): r = 2, f = 1. Then the socle has prime order $s = 2^e + 1$ and thus is cyclic. Hence Q is contained in the affine group $A\Gamma L(1,q) = AGL(1,q)$ and then actually coincides with AGL(1,q) because it has the same order (being two-transitive). In particular, the stabilizer of a point in K is cyclic, and is a Sylow 2-subgroup of Q.

Let G be a Sylow 2-subgroup of Γ . The order of Δ_K divides 2^e-1 , see 1.6. Thus it is odd, and G has trivial intersection with Δ_K . Thus $G \cong \pi(G)$ is cyclic of order $q-1=2^e$. Furthermore, G is faithfully and linearly represented on $E_\infty\cong \mathbb{F}_2^{2e}$, that is, we have an embedding $\rho\colon G\to \mathrm{GL}(2e,2)$. Since a generator g of G has order g0 and because g1 because g2 is injective in any field of characteristic 2, we see that 1 is the only eigenvalue of g3 and that g4 is unipotent in g5. Hence g6 hence g7 is that the order of g8 is g8. Hence g9 and g9 is unipotent in g9 and that g9 is g9. Hence g9 is g9 induction that g9 is g9. Hence g9 is g9 induction that g9 is g9. Hence g9 is g9 induction that g9 is g9. Hence g9 is g9 induction that g9 is g9. Hence g9 is g9 induction that g9 is g9 induction in the fact that the order of g9 is g9 is g9. Hence g9 is g9 is g9 induction that g9 is Miquelian.

We identify the group Q inside the group $P\Gamma L(2, q)$ induced by the stabilizer of the circle in the Miquelian plane, as follows.

- For q = 2 we have $P\Gamma L(2, 2) = PGL(2, 2) \cong S_3$, and Q = PGL(2, 2) follows.
- For q = 4 we have $P\Gamma L(2, 4) \cong S_5$, and Q is the normalizer of a Sylow 5-subgroup.

Note that Q is substantially different from the other minimally two-transitive subgroup of S_5 , namely the simple group A_5 . One may interpret the group Q as the smallest (and non-simple) example $S_2(2)$ of a Suzuki group. The series $S_2(2^m)$ of Suzuki groups (with $m \ge 1$) forms one of the infinite series of two-transitive groups; we discuss them in a separate section in [28] (and show that they do not occur in the context of a two-transitive action on the set of generators of a Laguerre plane, except if m = 1).

Case (c): $r^3 = 8$, $s^f = 9$. Then \mathcal{L} has order 8, is ovoidal by 1.2, and Miquelian by 2.1. In this case, the Sylow s-subgroup Σ of Q is elementary abelian of order 9, and the Sylow 2-subgroups of Q induce subgroups of order 8 in $\operatorname{Aut}(\Sigma) \cong \operatorname{GL}(2,3)$. One of the candidates is the multiplicative group of a field of order 9, this is cyclic and intersects each other group of order 8 in $\operatorname{GL}(2,3)$ in a cyclic subgroup of order 4 at least because the Sylow 2-subgroups of $\operatorname{GL}(2,3)$ have order 2^4 .

The group P Γ L(2, 8) induced by the stabilizer of a circle in the Miquelian plane of order 8 has elementary abelian Sylow 2-subgroups, and contains no elements of order 4. Thus the present case is indeed impossible.

Σ	v	remarks/restrictions		
A_n	n	$n \ge 6$, (two representations if $n = 6$)		
PSL(d, f)	$(f^d-1)/(f-1)$	$d \ge 2$, $(d, f) \notin \{(2, 2), (2, 3)\}$		
		(two representations if $d > 2$)		
$PSU(3, f^2)$	$f^3 + 1$	f > 2		
$Sz(2^{2a+1})$	$2^{4a+2}+1$	$a > 0$, Suzuki groups: ${}^{2}B_{2}(2^{2a+1})$		
$R(3^{2a+1})$	$3^{6a+3}+1$	$a > 0$, Ree groups: ${}^{2}G_{2}(3^{2a+1})$		
PSp(2 <i>d</i> , 2)	$2^{2d-1} \pm 2^{d-1}$	d > 2		
PSL(2, 11)	11	(two representations)		
A ₇	15	(two representations)		
PSL(2,8)	28	socle of R(3)		
M_n	n	Matthieu groups, $n \in \{11, 12, 22, 23, 24\}$		
		(two representations if $n = 12$)		
M_{11}	12	Mathieu group		
Co ₃	276	Conway group		
HS	176	Higman-Sims group (two representations)		

Table 1: Non-abelian socles: all possibilities

The simple non-abelian case

The two-transitive groups with non-abelian socle are also known explicitly (thanks to the classification of finite simple groups). The list given in Table 1 can be found¹, for instance, in [3] or [13].

2.5 Theorem. Let Q be a finite group that acts two-transitively and faithfully on a set with v points. If the socle Σ is not abelian then Σ is one of the groups listed in Table 1.

Note that the value of f in the different cases in Table 1 will always be a prime power. The group Q will be contained in the automorphism group of its socle.

There are some isomorphisms between these groups. For example, $PSL(2,4) \cong A_5 \cong PSL(2,5)$, $PSL(2,7) \cong PSL(3,2)$, $PSL(2,9) \cong A_6$, and $PSL(4,2) \cong A_8$, which shows that a group may have two non-equivalent two-transitive permutation representations. The second permutation representation of A_6 arises arises from $PSp(4,2) \cong S_6$, cf. [31] or [29]. We have left out the natural action of A_5 in the first row because that action is equivalent to the action of PSL(2,4) occurring in the second (and we will treat the action of $PSL(2,2^e)$ systematically in [28]).

2.6 Proposition. Let \mathcal{L} be a finite elation Laguerre plane of order q admitting a group Γ of automorphisms fixing a circle K and acting two-transitively on K. Assume that $Q := \Gamma/\Gamma_{[K]}$ has non-abelian socle Σ . Then Σ is one of the groups listed in Table 2 (and q is a prime power).

Proof. If Q arises from a circle stabilizer in the automorphism group of an elation Laguerre plane \mathcal{L} then q = v - 1 must be a prime power r^e by 1.3. If v - 1 is actually a prime r then \mathcal{L} is the Miquelian plane of order r, and the socle Σ occurs as a subgroup of PSL(2, r). These

¹ We have modified the names for the parameters to avoid confusion with our fixed meaning for q. Also, we use the order f^2 of the quadratic extension field for the unitary groups.

Σ	q	restrictions	reference
A_{q+1}	q	prime power $q \ge 4$	2.7
PSL(2,q)	q	$q \neq 2, 3, d = \gcd(2, q - 1)$	[28]
$PSU(3, f^2)$	f^3	$f > 2$, $d = \gcd(3, f + 1)$	[28]
$Sz(2^{2a+1})$	2^{4a+2}	a > 0	[28]
$R(3^{2a+1})$	3^{6a+3}	a > 0	[28]
PSL(2,8)	3^{3}	socle of R(3)	[28]
PSp(6, 2)	3^{3}		2.8

Table 2: Non-abelian socles: the restricted list

two observations exclude all the Matthieu groups (M_n for $n \in \{11, 12, 22, 23, 24\}$), the Conway group Co_3 and the Higman-Sims group HS.

Of the other groups not occurring in families in Table 1 only the socle PSL(2, 8) of R(3) acts on a set of the right size, that is, of the form 1 plus a proper prime power.

Finally, we discuss the groups occurring in families.

- PSL(d, f): If $(f^d 1)/(f 1) = f^{d-1} + \ldots + f + 1 = f(f^{d-2} + \ldots + 1) + 1$ is of the form 1 plus a prime power, then the prime involved must be the same as in f and the sum in the parentheses $f^{d-2} + \ldots + 1$ must be 1. Hence d = 2.
- PSp(2d, 2): Let $\varepsilon = \pm 1$. Then $r^e = 2^{2d-1} + \varepsilon 2^{d-1} 1 = (2^d \varepsilon)(2^{d-1} + \varepsilon)$ and r is odd. Furthermore, because d > 2, we find that $2^d \varepsilon \ge 2^d 1 > 1$ and $2^{d-1} + \varepsilon \ge 2^{d-1} 1 > 1$. Hence $2^d \varepsilon = r^l$ and $2^{d-1} + \varepsilon = r^k$ for some $1 \le k \le l < m$. But then r^k divides $p^l + p^k = 2^{d-1} \cdot 3$ so that r = 3 and k = 1. Thus $2^{d-1} + \varepsilon = 3$ which implies $\varepsilon = -1$ and d = 3. Therefore only PSp(6, 2) acting on a set of size $2^5 2^2 = 28 = 3^3 + 1$ can possibly occur.

In the present paper, we are going to eliminate the groups A_n (for n > 5, see 2.7) and PSp(6,2) (see 2.8) from Table 2. The remaining cases (PSL(2,q), unitary groups, Suzuki groups, Ree groups, and the socle PSL(2,8) of the smallest Ree group R(3)) are treated in a separate paper [28]. There we show that only the groups PSL(2,q) actually occur, and the corresponding Laguerre planes are Miquelian.

2.7 Proposition. Let \mathcal{L} be a finite elation Laguerre plane of order q > 4 admitting a group Γ of automorphisms fixing some circle K and two-transitive on K. Then the socle of $Q := \Gamma/\Gamma_{[K]}$ is not isomorphic to A_{q+1} .

Proof. Aiming at a contradiction, we assume that the socle Σ of Q is isomorphic to A_{q+1} . Let $\pi\colon\Gamma\to Q$ be the restriction map, and let $G:=\pi^{-1}(\Sigma)\leq\Gamma$ denote the full pre-image of the socle. The order of that pre-image is then $|G|=\frac{(q+1)!}{2}d$ where $d=|\Gamma_{[K]}|$ divides q-1, see 1.6. In particular, $1\leq d\leq q-1$.

For $u \in K$ we consider the stabilizer G_u in G. Then $\pi(G_u) \leq \Sigma$ is the stabilizer of u in Σ . Thus $\pi(G_u) \cong A_q$ is simple, and $|G_u| = \frac{q!}{2} d$. The group G_u acts on the set $[u] \setminus \{u\}$ of q-1 points. The kernel N_u of that action is not trivial because $(q-1)! < |G_u|$.

As Δ_K acts semi-regularly outside K, the intersection $\Delta_K \cap N_u$ is trivial, and $\pi(N_u) \cong N_u$ is a normal subgroup of the simple group $\Sigma_u \cong A_q$. We have just noted that N_u is not trivial; so $\pi(N_u) = \Sigma_u$ has order $\frac{q!}{2}$.

Now pick three different points $x, y, z \in K$. Then

$$|N_x \cap N_y| = \frac{|N_x| \cdot |N_y|}{|N_x N_y|} \ge \frac{|N_x|^2}{|G|} = \frac{q!}{2d(q+1)} \quad \text{and}$$

$$|N_x \cap N_y \cap N_z| = \frac{|N_x \cap N_y| \cdot |N_z|}{|(N_x \cap N_y)N_z|} \ge \frac{q!}{2(d(q+1))^2} \ge \frac{q!}{2(q+1)^2(q-1)^2};$$

we have used $d \leq q-1$ for the last inequality. The sequence whose n-th term is $\frac{n!}{2(n+1)^2(n-1)^2}$ is strictly increasing for $n \geq 5$. Therefore, $|N_x \cap N_y \cap N_z| \geq \frac{7!}{2\cdot 8^2\cdot 6^2} = \frac{35}{32} > 1$ for $q \geq 7$. This shows that $N_x \cap N_y \cap N_z$ is non-trivial. However, any automorphism in $N_x \cap N_y \cap N_z$ fixes every circle of $\mathcal L$ and thus must be the identity—a contradiction.

The case q = 6 cannot occur because it is not a prime power.

It remains to discuss q = 5; then \mathcal{L} is Miquelian, see 1.2. In the automorphism group of the Miquelian Laguerre plane of order 5, the stabilizer of a circle induces a group isomorphic to $P\Gamma L(2,5) = PGL(2,5)$ on K, acting two-transitively with a socle isomorphic to $PSL(2,5) \cong A_5$. However, we are considering a two-transitive group Q with socle $A_{q+1} = A_6$, and arrive at a contradiction because $|A_6| = 720 > 120 = |P\Gamma L(2,5)|$.

2.8 Proposition. Let \mathcal{L} be a finite elation Laguerre plane of order 27, and let Γ be a group of automorphisms fixing some circle K. Then $Q := \Gamma/\Gamma_{[K]}$ does not contain a normal subgroup isomorphic to PSp(6,2) that is two-transitive on K.

Proof. Assume, to the contrary, that there is such a subgroup $\Sigma \cong PSp(6,2)$ in Q. The order $2^9 \cdot 3^4 \cdot 5 \cdot 7 = 1451520$ of PSp(6,2) is divisible by 5 but $|\Delta_K|$ is not because it divides 27 − 1. However, by 1.5.(e) we have an involution $\delta \in \Delta_K$; clearly this involution is centralized by Γ.

We consider a Sylow 5-subgroup S of the pre-image $G := \pi^{-1}(\Sigma) \leq \Gamma$. This group has order 5, and has orbits of lengths 1 or 5. Therefore S fixes at least 3 points on K, and for each fixed point $u \in K$ there is at least one more fixed point $v \in [u] \setminus \{u\}$, where [u] denotes the generator containing u. The central involution δ acts semi-regularly on $[u] \setminus \{u\}$, so $\delta(v)$ is another fixed point of S. But then S fixes at least 7 points in [u].

Let x, y, z be three distinct fixed points of S in K. If $x' \in [x]$ and $y' \in [y]$ are fixed by S then the circle L(x', y', z) through x', y' and z is fixed by S. This gives T^2 fixed circles through T.

Now let $w \in K \setminus \{x, y, z\}$ be arbitrary. Since [w] has 27 points, there exists at least one point $w' \in [w]$ lying on two of the fixed circles. These two circles have the two points w' and z in common. Thus S fixes w', the generator [w'] = [w], and then also the point w in $[w] \cap K$. We obtain that $S \leq \Delta_K$, contradicting the fact that $|\Delta_K|$ is not divisible by 5.

2.9 Main Theorem. If the automorphism group of an elation Laguerre plane of order q contains a subgroup Γ fixing a circle and acting two-transitively on that circle, then the Laguerre plane is Miquelian.

The socle of the group induced on the fixed line is either isomorphic to PSL(2, q), or we have q = 4 and the socle is isomorphic to AGL(1, 5).

Proof. The socle is either abelian, or a simple group contained in the list shown in Table 1. The abelian case has been discussed in 2.4. By the arguments given in 2.6 that list has been reduced to the list in Table 2. Propositions 2.7 and 2.8 have excluded the groups A_{q+1} (for q > 4) and PSp(6, 2).

There remain the series PSL(2,q), $PSU(3,f^2)$, $Sz(2^{2a+1})$, and $R(3^{2a+1})$ for prime powers q, f and positive integers a, respectively (i.e., the groups of Lie type $A_1(q)$, ${}^2A_2(f^2)$, ${}^2B_2(2^{2a+1})$, and ${}^2G_2(3^{2a+1})$), and the commutator group $R(3)' \cong PSL(2,8)$ with its transitive action on 28 points; these are all treated in [28].

2.10 Acknowledgement. The present investigation has been conducted during a stay of the second author as a Visiting Erskine Fellow at the University of Canterbury, Christchurch, New Zealand.

References

- [1] R. C. Bose and K. A. Bush, *Orthogonal arrays of strength two and three*, Ann. Math. Statistics **23** (1952), 508–524, ISSN 0003-4851. MR 0051204 (14,442c). Zbl 0048.00803.
- [2] W. Burnside, *Theory of groups of finite order*, Dover Publications Inc., New York, 2nd edn., 1955. MR 0069818 (16,1086c). JfM 42.0151.02.
- [3] P. J. Cameron, *Finite permutation groups and finite simple groups*, Bull. London Math. Soc. **13** (1981), no. 1, 1–22, ISSN 0024-6093, doi:10.1112/blms/13.1.1. MR 599634 (83m:20008). Zbl 0463.20003.
- [4] L. R. A. Casse, J. A. Thas, and P. R. Wild, $(q^n + 1)$ -sets of PG(3n 1, q), generalized quadrangles and Laguerre planes, Simon Stevin **59** (1985), no. 1, 21–42, ISSN 0037-5454. MR 795269 (86k:51012). Zbl 0568.51020.
- [5] Y. Chen and G. Kaerlein, Eine Bemerkung über endliche Laguerre- und Minkowski-Ebenen, Geometriae Dedicata 2 (1973), 193–194, ISSN 0046-5755, doi:10.1007/BF00147856. MR 0407718 (53 #11489). Zbl 0274.50021.
- [6] T. Czerwinski, Finite translation planes with collineation groups doubly transitive on the points at infinity, J. Algebra 22 (1972), 428–441, ISSN 0021-8693, doi:10.1016/0021-8693(72)90159-7. MR 0313933 (47 #2485). Zbl 0243.50011.
- [7] D. G. Glynn and G. F. Steinke, *Translation Laguerre planes of order* 16, European J. Combin. 14 (1993), no. 6, 529–539, ISSN 0195-6698, doi:10.1006/eujc.1993.1056. MR 1248061 (95a:51025). Zbl 0801.51008.
- [8] T. Grundhöfer, M. J. Stroppel, and H. Van Maldeghem, *Unitals admitting all translations*, J. Combin. Des. (2012), ISSN 1063-8539, doi:10.1002/jcd.21329.
- [9] M. Hall, Jr., Steiner triple systems with a doubly transitive automorphism group, J. Combin. Theory Ser. A **38** (1985), no. 2, 192–202, ISSN 0097-3165, doi:10.1016/0097-3165(85)90069-X. MR 784715 (86h:05029). Zbl 0579.05017.
- [10] D. G. Higman and J. E. McLaughlin, Geometric ABA-groups, Illinois J. Math. 5 (1961), 382–397, ISSN 0019-2082, http://projecteuclid.org/getRecord?id=euclid.ijm/ 1255630883. MR 0131216 (24 #A1069). Zbl 0104.14702.

- [11] Y. Hiramine, On finite affine planes with a 2-transitive orbit on l_{∞} , J. Algebra **162** (1993), no. 2, 392–409, ISSN 0021-8693, doi:10.1006/jabr.1993.1262. MR 1254783 (94m:20006). Zbl 0799.51005.
- [12] M. Joswig, Pseudo-ovals, elation Laguerre planes, and translation generalized quadrangles, Beiträge Algebra Geom. 40 (1999), no. 1, 141–152, ISSN 0138-4821. MR 1678599 (2000d:51008). Zbl 0965.51002.
- [13] W. M. Kantor, *Homogeneous designs and geometric lattices*, J. Combin. Theory Ser. A **38** (1985), no. 1, 66–74, ISSN 0097-3165, doi:10.1016/0097-3165(85)90022-6. MR 773556 (87c:51007). Zbl 0559.05015.
- [14] N. Knarr, A geometric characterization of elation Laguerre planes, Arch. Math. (Basel) **78** (2002), no. 2, 162–165, ISSN 0003-889X, doi:10.1007/s00013-002-8230-4. MR 1888418 (2003a:51005). Zbl 1004.51005.
- [15] R. Löwen and U. Pfüller, Two-dimensional Laguerre planes with large automorphism groups, Geom. Dedicata 23 (1987), no. 1, 87–96, ISSN 0046-5755, doi:10.1007/BF00147394. MR 886777 (88g:51029). Zbl 0615.51007.
- [16] R. Löwen and G. F. Steinke, Actions of $\mathbb{R} \cdot \operatorname{SL}_2\mathbb{R}$ on Laguerre planes related to the Moulton planes, J. Lie Theory 17 (2007), no. 4, 685–708, ISSN 0949-5932, http://www.heldermann.de/JLT/JLT17/JLT174/jlt17038.htm. MR 2377905 (2009b:51015). Zbl 1155.51008.
- [17] H. Lüneburg, Translation planes, Springer-Verlag, Berlin, 1980, ISBN 3-540-09614-0.MR 572791 (83h:51008). Zbl 0446.51003.
- [18] A. Maschietti, *Two-transitive ovals*, Adv. Geom. **6** (2006), no. 2, 323–332, ISSN 1615-715X, doi:10.1515/ADVGEOM.2006.019. MR 2243304 (2007c:51015). Zbl 1100.51008.
- [19] D. Passman, Permutation groups, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0237627 (38 #5908). Zbl 0179.04405.
- [20] S. E. Payne and J. A. Thas, *Generalized quadrangles with symmetry*, Simon Stevin **49** (1975/76), no. 1/2, 3–32, ISSN 0037-5454. MR 0419266 (54 #7290a). Zbl 0328.50017.
- [21] R.-H. Schulz, Über Translationsebenen mit Kollineationsgruppen, die die Punkte der ausgezeichneten Geraden zweifach transitiv permutieren, Math. Z. 122 (1971), 246–266, ISSN 0025-5874, doi:10.1007/BF01109919. MR 0287429 (44 #4633). Zbl 0208.23604.
- [22] B. Segre, Ovals in a finite projective plane, Canad. J. Math. 7 (1955), 414–416, ISSN 0008-414X, doi:10.4153/CJM-1955-045-x. MR 0071034 (17,72g). Zbl 0065.13402.
- [23] G. F. Steinke, Semiclassical 4-dimensional Laguerre planes, Forum Math. 2 (1990), no. 3, 233–247, ISSN 0933-7741, doi:10.1515/form.1990.2.233. MR 1050407 (91i:51022). Zbl 0696.51008.
- [24] G. F. Steinke, On the structure of finite elation Laguerre planes, J. Geom. **41** (1991), no. 1-2, 162–179, ISSN 0047-2468, doi:10.1007/BF01258517. MR 1116911 (92i:51026). Zbl 0737.51003.

- [25] G. F. Steinke, *A remark on Benz planes of order* 9, Ars Combin. **34** (1992), 257–267, ISSN 0381-7032. MR 1206567 (94g:51019). Zbl 0770.51006.
- [26] G. F. Steinke, Finite Laguerre planes of order 8 are ovoidal, J. Combin. Theory Ser. A 102 (2003), no. 1, 143–162, ISSN 0097-3165, doi:10.1016/S0097-3165(03)00025-6. MR 1970982 (2004b:51010). Zbl 1033.51004.
- [27] G. F. Steinke, Elation Laguerre planes of order 16 are ovoidal, J. Combin. Des. 14 (2006), no. 4, 313–323, ISSN 1063-8539, doi:10.1002/jcd.20076. MR 2229882 (2007c:51001). Zbl 1099.51003.
- [28] G. F. Steinke and M. J. Stroppel, Simple groups acting two-transitively on the set of generators of a finite elation Laguerre plane, Preprint 2012/015, Fachbereich Mathematik, Universität Stuttgart, Stuttgart, 2012, http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-015.pdf.
- [29] B. Stroppel and M. J. Stroppel, *Desargues, doily, dualities, and exceptional isomorphisms,* Manuscript, Stuttgart, 2012.
- [30] M. J. Stroppel, Reconstruction of incidence geometries from groups of automorphisms, Arch. Math. (Basel) 58 (1992), no. 6, 621–624, ISSN 0003-889X, doi:10.1007/BF01193534. MR 1161931 (93e:51026). Zbl 0781.51002.
- [31] M. J. Stroppel, *Buttons, holes and loops of string: lacing the doily,* Preprint 2012/006, Fachbereich Mathematik, Universität Stuttgart, Stuttgart, 2012, http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-006.pdf.
- [32] J. A. Thas, The m-dimensional projective space $S_m(M_n(GF(q)))$ over the total matrix algebra $M_n(GF(q))$ of the $n \times n$ -matrices with elements in the Galois field GF(q), Rend. Mat. (6) 4 (1971), 459–532, ISSN 0034-4427. MR 0315585 (47 #4134). Zbl 0233.05010.

Günter F. Steinke Department of Mathematics and Statistics University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand

Markus J. Stroppel Fachbereich Mathematik Fakultät für Mathematik und Physik Universität Stuttgart D-70550 Stuttgart Germany

Erschienene Preprints ab Nummer 2007/2007-001

- Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints
- 2012-015 Steinke, G.F.; Stroppel, M.J.: Simple groups acting two-transitively on the set of generators of a finite elation Laguerre plane
- 2012-014 *Steinke, G.F.; Stroppel, M.J.:* Finite elation Laguerre planes admitting a two-transitive group on their set of generators
- 2012-013 *Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.:* Polar actions on complex hyperbolic spaces
- 2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces
- 2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs
- 2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces
- 2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations
- 2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces
- 2012-007 *Ferrario, P.:* Partitioning estimation of local variance based on nearest neighbors under censoring
- 2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily
- 2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
- 2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
- 2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
- 2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
- 2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian
- 2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group
- 2011-027 *Griesemer, M.; Hantsch, F.; Wellig, D.:* On the Magnetic Pekar Functional and the Existence of Bipolarons
- 2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression
- 2011-025 Felber, T.; Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent static forecasting of stationary and ergodic time series via local averaging and least squares estimates
- 2011-024 *Jones, D.; Kohler, M.; Walk, H.:* Weakly universally consistent forecasting of stationary and ergodic time series
- 2011-023 *Györfi, L.; Walk, H.:* Strongly consistent nonparametric tests of conditional independence
- 2011-022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors
- 2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels
- 2011-020 Frank, R.L.; Geisinger, L.: Refined Semiclassical Asymptotics for Fractional Powers of the Laplace Operator
- 2011-019 Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain
- 2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks
- 2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
- 2011-016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines

- 2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function
- 2011-014 *Müller, S.; Dippon, J.:* k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis
- 2011-013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
- 2011-012 *Knarr, N.; Stroppel, M.:* Baer involutions and polarities in Moufang planes of characteristic two
- 2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
- 2011-010 *Jentsch, T.; Moroianu, A.; Semmelmann, U.:* Extrinsic hyperspheres in manifolds with special holonomy
- 2011-009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
- 2011-008 Stroppel, M.: Orthogonal polar spaces and unitals
- 2011-007 *Nagl, M.:* Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
- 2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces
- 2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
- 2011-004 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part II Gain-Scheduled Control
- 2011-003 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part I Robust Control
- 2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G₂-structures
- 2011-001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
- 2010-018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
- 2010-017 *Gauduchon, P.; Moroianu, A.; Semmelmann, U.:* Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
- 2010-016 Moroianu, A.; Semmelmann, U.: Clifford structures on Riemannian manifolds
- 2010-015 *Grafarend, E.W.; Kühnel, W.:* A minimal atlas for the rotation group *SO*(3)
- 2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
- 2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
- 2010-012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
- 2010-011 *Györfi, L.; Walk, H.:* Empirical portfolio selection strategies with proportional transaction costs
- 2010-010 *Kohler, M.; Krzyżak, A.; Walk, H.:* Estimation of the essential supremum of a regression function
- 2010-009 *Geisinger, L.; Laptev, A.; Weidl, T.:* Geometrical Versions of improved Berezin-Li-Yau Inequalities
- 2010-008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
- 2010-007 *Grundhöfer, T.; Krinn, B.; Stroppel, M.:* Non-existence of isomorphisms between certain unitals
- 2010-006 *Höllig, K.; Hörner, J.; Hoffacker, A.:* Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods
- 2010-005 *Kaltenbacher, B.; Walk, H.:* On convergence of local averaging regression function estimates for the regularization of inverse problems

- 2010-004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
- 2010-003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
- 2010-002 *Gulde, M.; Stroppel, M.:* Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
- 2010-001 *Leitner, F.:* Examples of almost Einstein structures on products and in cohomogeneity one
- 2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
- 2009-007 *Griesemer, M.; Moeller, J.S.:* Bounds on the minimal energy of translation invariant n-polaron systems
- 2009-006 *Demirel, S.; Harrell II, E.M.:* On semiclassical and universal inequalities for eigenvalues of quantum graphs
- 2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
- 2009-004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator
- 2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation
- 2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
- 2009-001 Brehm, U.; Kühnel, W.: Lattice triangulations of E³ and of the 3-torus
- 2008-006 *Kohler, M.; Krzyżak, A.; Walk, H.:* Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
- 2008-005 *Kaltenbacher, B.; Schöpfer, F.; Schuster, T.:* Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems
- 2008-004 *Leitner, F.:* Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
- 2008-003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
- 2008-002 *Hertweck, M.; Höfert, C.R.; Kimmerle, W.:* Finite groups of units and their composition factors in the integral group rings of the groups PSL(2,q)
- 2008-001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a correction term
- 2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
- 2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field
- 2007-004 *Ekholm, T.; Frank, R.L.; Kovarik, H.:* Eigenvalue estimates for Schrödinger operators on metric trees
- 2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
- 2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
- 2007-001 *Meister, A.:* Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions