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Simple groups acting two-transitively
on the set of generators

of a finite elation Laguerre plane

Günter F. Steinke, Markus J. Stroppel∗

Abstract

We show that finite elation Laguerre planes with a group of automorphisms acting two-
transitively on the set of generators are Miquelian. In this paper we discuss in detail
four series of groups of (twisted) Lie type that may possibly occur as socles of the two-
transitive group induced on the set of generators; all other cases have been treated in a
separate paper.
MSC 2010: 51E25, 51B15, 20B20.
Keywords: Laguerre plane, elation group, two-transitive group, socle, simple group of
Lie type, unitary group, Ree group, Suzuki group.

Introduction

Elation Laguerre planes were introduced in [27] and [22]. They seem to play a role similar
to translation planes among the projective planes; at least in the infinite case where several
constructions of non-classical (i.e., non-Miquelian) elation Laguerre planes are known. All
finite elation Laguerre planes (in fact, all finite Laguerre planes) known to date are ovoidal;
they are even Miquelian if the order is odd. However, it is not clear whether this situation is
due to the fact that no other examples exist, or to the fact that the appropriate constructions
have not yet been found.

We refer the reader to the more detailed introduction in [25], and collect in the sequel just
briefly some basic facts that we need in the present paper.

Recall that a finite Laguerre plane L = (P,C,G) of order n consists of a set P of n(n + 1)
points, a set C of n3 circles and a set G of n + 1 generators (or parallel classes), where circles
and generators are both subsets of P, such that the following three axioms are satisfied.

Axioms for Laguerre planes.

(G) G partitions P, each generator contains n points, and there are n + 1 generators.

(C) Each circle intersects each generator in precisely one point.

(J) Three points no two of which are on the same generator are joined by a unique circle.

∗ This research was supported by a Visiting Erskine Fellowship from the University of Canterbury for the
second author.
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The internal incidence structure Ax at a point x ∈ P has the collection of all points not on
the generator [x] through x as point set and, as lines, all circles passing through x (without
the point x) and all generators apart from [x]. The axioms for a Laguerre plane yield easily
thatAx is an affine plane, the derived affine plane at x. Circles through x are called touching in x
if they are equal or have no other point in common. Circles that touch each other in x give
parallel lines inAx.

The group Aut(L) of a Laguerre plane L acts on the set G of generators; the kernel ∆ of
that action is a normal subgroup. We call L an elation Laguerre plane if ∆ acts transitively on
the set C of circles. It is known (see [22, 1.3]) that in every finite elation Laguerre plane the
group ∆ has a (unique) regular normal subgroup E; this group will be called the elation group.
It is also known that E is elementary abelian; the derivationAx of an elation Laguerre plane
is a dual translation plane with the stabilizer Ex inducing the full group of translations on
the dual. In particular, the order n of a finite elation Laguerre plane is a power of a prime.

While it seems hopeless in the present situation to prove that all finite Laguerre planes
are ovoidal, it appears sensible to study Laguerre planes under additional homogeneity
assumptions. Doubly transitive groups of automorphisms have been investigated for various
classes of geometries, see for example [6], [21], [12], [11], [17], [10]. In the present note we
complete the proof that finite elation Laguerre planes with automorphism groups acting
two-transitively on the set of generators are Miquelian.

In [25] we treat the cases where some two-transitive subgroup Γ either contains a normal
subgroup isomorphic to Aq+1 (for q ≥ 5), or a regular abelian normal subgroup. The cases of
two-transitive actions that do not fit arithmetically are also discussed (and disposed of) there.
The focus in the present paper is on the four infinite series of two-transitive groups where
the socle is isomorphic either to a linear group PSL(2, q) (of Lie type A1(q)), or a unitary
group PSU(3, f 2) (of Lie type 2A2( f 2)), a Suzuki group Sz(22a+1) (of Lie type 2B2(22a+1)), a
Ree group R(32a+1) (of Lie type 2G2(32a+1). The commutator group R(3)′ � PSL(2, 8) of the
smallest (and non-simple) Ree group is also included here. It turns out (see 9.1 below) that
the only case that actually occurs is the first one (of linear groups); the Laguerre plane has to
be the Miquelian plane.

1 Notation and basic facts

We consider a finite elation Laguerre plane L = (P,C,G) of order q, and assume that Aut(L)
acts two-transitively on the set G of generators.

1.1 Notation. We fix names for objects that will play their roles in the discussion.

• ∆ B Aut(L)[G] denotes the kernel of the action of Aut(L) on G. We assume that ∆ acts
transitively on the set C of circles.

• E is the elation group of the Laguerre plane, i.e., the (unique, normal, and abelian)
subgroup of ∆ that acts regularly on C, see [22, 1.3]. Note that Aut(L) = Aut(L)KE
holds for each circle K ∈ C.

• The order of L is a power of some prime r; we write q = re.

• The generator containing c will be denoted by [c]. (Square brackets will also be used to
denote various other objects; usually in the context of partitions/equivalence relations.)

• For any point ∞, we have the affine plane A∞ obtained by derivation at ∞; we write
T < E∞ for the group of translations along the generators (i.e., in the vertical direction)
inA∞.

2



Simple groups acting on an elation Laguerre plane G. F. Steinke, M. J. Stroppel

We remark that two-transitivity of Aut(L) on G is equivalent to the existence of a circle K
such that some subgroup Γ of the stabilizer Aut(L)K acts two-transitively on K. Transitivity
on G appears to be the more natural assumption as it avoids the choice of a circle. In the
proofs, however, it will be convenient to study the actions of Γ on K, on PrK, on C and onG.

1.2 Lemma. Let L be a Laguerre plane of finite order q, and let σ be an automorphism of L fixing
some circle K. If σ is an involution, then one of the following holds.

1. σ fixes every point on K;

2. The order q is a square and σ fixes precisely 1 +
√

q points on K;

3. σ fixes at most two points on K.

Proof. Suppose that σ fixes at least three points on K (so we exclude case 3), and let∞ be one
of them.

In the projective closureP∞ ofA∞ the automorphismσ induces an involutory collineationσ′.
By a theorem of Baer [4], we know that either σ′ has an axis, or q is a square and the fixed
elements of σ′ form a (projective) subplane of order

√
q in P∞. In the former case the axis is

the line induced by K, and we have case 1. In the latter case σ′ fixes precisely 1 +
√

q points
on the line induced by K, and we have case 2. �

2 Covering the simple socle

Let L be an elation Laguerre plane of order q, and let K be an arbitrary circle. The following
information is taken from [22, Theorem 3], see also [27].

2.1 Lemma. The stabilizer ∆K is a subgroup of the multiplicative group of the kernel of the dual
translation plane obtained as derivation at any point of K. This kernel is a finite field, whence ∆K is
cyclic of some order dividing q − 1. Moreover, the group ∆K acts semi-regularly on P r K. �

Assume that Γ ≤ Aut(L)K acts two-transitively on K, and induces a group π(Γ) with simple
socle F on K. Let Φ denote the stationary term of the commutator series of the full pre-image
of F under the restriction map

π : Γ→ SK : γ 7→ π(γ) B γ|K ;

here SK � Sq+1 is the group of all permutations of the set K. Then Φ is perfect (i.e., coincides
with its commutator group). As the simple group F coincides with each term of its commu-
tator series, we have π(Φ) = F. The kernel ∆K ∩ Γ of π is cyclic, its automorphism group is
thus abelian, and the perfect group Φ centralizes ∆K. This means:

2.2 Lemma. The group Φ ≤ Γ is a perfect central extension of the socle F, and its center Φ ∩ ∆K is a
quotient of the Schur multiplier of F. �

2.3 Remark. In general, the group SL(2, q) is the universal covering of PSL(2, q); there are
only two exceptions to this rule (see [14, 25.7], cf. [3, 3.3.6]):

1. SL(2, 4) = PSL(2, 4) � A5 � PSL(2, 5) has a double cover, namely SL(2, 5).

2. The Schur multiplier of PSL(2, 9) � A6 is cyclic of order 6, see [3, 33.15].
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In the present investigation, these two types of groups are interesting in their actions on
Laguerre planes of order q ≤ 9. Such Laguerre planes are known to be ovoidal (and even
Miquelian if q , 8), see [5], [23], [24]. However, we will study the coverings of PSL(2, 4) and
of PSL(2, 9) anyway, because they can be excluded quite easily (see 8.3 and 8.10 below).

For f > 2, the group1 SU(3, f 2) is the universal covering of PSU(3, f 2). The Schur multiplier
is isomorphic to the center of SU(3, f 2), and thus cyclic of order gcd(3, f + 1) in these cases;
see [8, Thm. 2]. Recall that the group PSU(3, 22) is isomorphic to a subgroup of AGL(2,F3),
and thus solvable (cf. [7, Ch. II, § 4]).

For s > 1, the Schur multiplier of Sz(22s+1) is trivial (see [1], cf. [3, 4.2.4]). The multiplier
of Sz(23) is elementary abelian of order 4, and Sz(2) � AGL(1, 5) is not perfect. (Incidentally,
there is a two-transitive subgroup of S5 � PGL(2, 4) isomorphic to AGL(1, 5) acting two-
transitively on a line of the Miquelian plane of order 4, see [25].) The Ree groups R(32t+1)
have trivial multiplier if t > 1, see [1]. The group R(3) � PΓL(2, 8) is not perfect, it contains
the perfect group PSL(2, 8) as a normal subgroup of index 3. Note that the latter has trivial
multiplier.

3 Zsigmondy groups

3.1 Definition. Zsigmondy [28] has proved the following. If a, b are co-prime positive
integers, then for any natural number n > 1 there is a prime number z that divides an

− bn

but does not divide ak
− bk for any positive integer k < n, with the following exceptions:

• {a, b} = {1, 2}, and n = 6; or

• a + b is a power of two, and n = 2.

We will use this in the case where a = r and b = 1, for n = e (so q = an). Then Zsigmondy’s
Theorem implies that there is a prime z such that the multiplicative group of Fq contains a
subgroup Z of order z but no proper subfield of Fq contains such a multiplicative subgroup
— unless either q = 26, or r = 2m

− 1 is a Mersenne prime and q = r2. Such a subgroup will
be called a Zsigmondy subgroup, for short.

3.2 Lemma. Let Z be a Zsigmondy subgroup of the multiplicative group of Fre for some prime r.
Then every non-trivial simple module V of Z over Fr has dimension e, and the centralizer of Z acts
semi-regularly on V r {0}.

Proof. Schur’s Lemma [16, 3.5, p. 118] yields that there is a field F (of characteristic r) such
that the endomorphisms induced by elements of Z on V are multiplications by scalars from F.
As no proper subfield of Fre contains a group isomorphic to Z, the field F contains a copy
of Fre , and V is a vector space over Fre . Now Z acts by scalars from Fre , and the irreducible
module V has dimension 1 over Fre . Thus the dimension over the prime field Fr is e. The
assertion about the centralizer follows from Schur’s Lemma, again. �

1 In the symbol for the unitary group, we give the order f 2 of the quadratic extension field, rather than the
order f of the ground field.
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4 Even order: regular action of the torus

Let Γ ≤ Aut(L)K be two-transitive on K, and assume that the socle F of the group π(Γ) ≤ SK is
simple. We refer to the stabilizer D of the two points∞ and o as a torus in F. The torus D acts
semi-regularly on K r {∞, o}. In its pre-image D̃, the stabilizer of any point outside [∞] ∪ [o]
is therefore contained in ∆.

4.1 Notation. For any subgroup X of F we denote the preimage {ξ ∈ Φ | π(ξ) ∈ X} in Φ by X̃.
In cases where we know that the restriction π|Φ of π to Φ is injective, we will suppress this
notation, identifying X̃ with X.

Pick an element ι̃ ∈ Φ that induces an involution ι on K interchanging the two fixed points
of the torus. (If we know that π|Φ is injective, we will also identify ι̃ with ι.)

In any one of the simple socles we will be dealing with in the sequel, the torus D will be
a cyclic group (see 5.1, 6.1, and 8.1), and often its full pre-image D̃ in Φ will also be cyclic.
Then the following result applies.

4.2 Lemma. Assume that the torus D is cyclic. For any subgroup B ≤ D, the pre-image B̃ ≤ Φ is
normalized by ι̃; in fact, the involution induces inversion on D. Consequently, the actions of D̃ on the
two generators [∞] and [o] are quasi-equivalent. If D̃ is also cyclic then ι̃ normalizes any subgroup
of D̃ (not only the full pre-images of subgroups of D).

Proof. The assertion follows from the fact that subgroups of cyclic groups are invariant under
arbitrary automorphisms (because they are characterized by their orders). �

4.3 Corollary. Assume that D̃ is cyclic. If some element δ ∈ D̃ fixes a point u ∈ [∞] r {∞} then 〈δ〉
also fixes the circle C through u touching K in o. Then 〈δ〉 = ι̃〈δ〉ι̃ also fixes the point ι(u) ∈ [o] r {o}
and the circle ι̃(C) which touches K in ∞ (and thus occurs as a parallel to the horizontal line [0, 0]
induced by K in the affine planeA∞). �

The characteristic 2 case comes with a somewhat surprising feature:

4.4 Lemma. Assume that q is even. If C , K is any circle touching K in a point different from ∞
then C meets every circle touching K in∞ (in other words, each parallel to the line [0, 0] induced by K
in the affine planeA∞) in precisely one point.

Proof. As the affine plane A∞ has even order, every oval in its projective completion has a
knot, i.e., a point such that the set of tangents to the oval is precisely the set of lines through
that point, see [13, Lemma 12.10, p. 244]. The circle C shows up as an oval in the completion
of A∞, one tangent is the line at infinity while [0, 0] is another tangent. Thus the knot is the
intersection of these two lines in the projective completion ofA∞, and every parallel to [0, 0]
is a tangent, as claimed. �

In all cases with even q and a simple socle F treated later on, the torus acts semi-regularly
on the complement of its set of fixed points on K (see 5.1, 6.1, and 8.1), and the following
applies.

4.5 Lemma. Assume that q is even, and that D̃ acts semi-regularly on K r {∞, o}. For each
u ∈ [∞] r {∞} the stabilizer D̃u is contained in ∆K. In particular, the order of that stabilizer divides
q − 1.

If Φ = F then the torus D acts semi-regularly both on [∞] r {∞} and on [o] r {o}.
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Proof. Let u be any point in [∞]r{∞}, and let C be the circle through u touching K in o. From 4.4
we know that C touches each parallel to [0, 0]. In particular, it meets ι̃(C) in precisely one
point a ∈ Pr([∞]∪[o]). Now the stabilizer D̃u will fix C, ι̃(C) and thus also a, the generator [a],
and the intersection [a] ∩ K. As D acts semi-regularly on K r {∞, o}, we obtain D̃u ≤ ∆K. �

4.6 Remarks. We already know Φ = F if q is even and F is simple, unless F � PSL(2, 4) or
F � Sz(23), cf. 2.3.

5 Unitary groups

In this section, we study the case of a socle isomorphic to PSU(3, f 2). Recall that PSU(3, f 2)
is simple if the prime power f is greater than 2; the group PSU(3, 22) is isomorphic to a
subgroup of the automorphism group of the affine plane of order 3, and thus solvable (cf. [7,
Ch. II, § 4]).

5.1 Notation. Assume that f is a power of the prime r, and let x 7→ x B x f denote the
generator of the Galois group Gal(F f 2/F f ). We describe a hermitian form h on F3

f 2 by using

the Gram matrix
(

0 0 1
0 −1 0
1 0 0

)
, so

h(x, y) = x1y3 − x2y2 + x3y1

where x = (x1, x2, x3) and y = (y1, y2, y3). Put2

δa B

[ a 0 0
0 a/a 0
0 0 1/a

]
=

[ a 0 0
0 a f−1 0

0 0 a− f

]
=

[
a f+1 0 0

0 a2 f−1 0
0 0 1

]
and τ ( x

z ) B
[

1 x z
0 1 x
0 0 1

]
.

Then the following facts are checked easily (cf. [3, Ch. 7, Sect. 22 and Ex. 8]): The set
R B {τ ( x

z ) | x, z ∈ F f 2 , z + z = xx} forms a Sylow r-subgroup of PSU(3, f 2), the set D B
{δa | a ∈ F f 2 r {0}} forms a subgroup of PSU(3, f 2), and the (semidirect) product RD is the
normalizer of R in PSU(3, f 2). Moreover, in its standard action on the unital

U B {[x] | x ∈ F f 2 , x , 0, h(x, x) = 0} ,

the group PSU(3, f 2) acts two-transitively, the stabilizer of the point
[

1
0
0

]
∈ U is RD, the

group R is a regular normal subgroup of the stabilizer, and D is the stabilizer of the two

points
[

1
0
0

]
and

[
0
0
1

]
. Note that |U| = f 3 + 1, and that D is cyclic of order f 2

− 1.

The center of SU(3, f 2) is cyclic, its order is the greatest common divisor gcd(3, f + 1). In
other words, we have PSU(3, f 2) � SU(3, f 2) precisely if 3 does not divide f + 1.

5.2 Theorem. The case F � PSU(3, f 2) is impossible.

Proof. If F � PSU(3, f 2) then f > 2 (because PSU(3, 22) is not simple) and either Φ � PSU(3, f 2)
or Φ � SU(3, f 2), cf. 2.3 and 2.2.

Assume first that f is odd. Let α ∈ SU(3, f 2) be an involution. Then α does not belong to
the center of SU(3, f 2). Therefore, it represents an involution [α] in PSU(3, f 2) and, in any
case, involutions β̃ ∈ Φ and β ∈ F.

2 Square brackets around a matrix indicate that we pass to the projective transformation represented by that
matrix, and square brackets around a vector indicate the subspace generated by that vector.
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The involutions in SU(3, f 2) form a single orbit under conjugation in U(3, f 2). Thus β acts
on K in the same way as δ−1 acts on the unital U, cf. 5.1. In particular, our involution β̃ ∈ Φ
fixes precisely f + 1 points on K. On the affine derivation in any one of the fixed points, the
involution β̃will then induce an involution fixing precisely f (affine) points on a line. This is
impossible in an affine plane of order q = f 3 by Baer’s result [4].

It remains to discuss the case where Φ is isomorphic either to PSU(3, f 2) or to SU(3, f 2)
with r = 2 and f = 2e/3.

Assume that D̃ ⊂ F f 2 contains a Zsigmondy subgroup Z of order z > 3; then Z is also
embedded in D. From 4.5 we know that Z acts semi-regularly on [o] r {o}, and thus semi-
regularly on the group T. By Maschke’s Theorem, the group T splits as a direct product of
minimal Z-invariant subgroups and each of those has order f 2 by 3.2. Thus f 3 = |T|must be
a power of f 2, which is impossible.

So either z = 3, or D̃ does not contain a Zsigmondy subgroup of F22e/3 . In the first case,
the multiplicative group of F22e/3 contains a subgroup of order 3 which is not contained in a
proper subfield. Then 2e/3 = 2 and f = 2, contradicting f > 2.

The second case only occurs if f 2 = 26 (whence q = 29) because Mersenne primes are
odd (cf. 3.2). Here 3 is not a divisor of q − 1, and D̃ acts semi-regularly on [o] r {o} by 4.5.
Now we apply our previous argument with D̃ instead of the Zsigmondy group, and reach a
contradiction, as before. �

6 Suzuki groups

Let Sz(2m) be one of the simple groups discovered3 by Suzuki [26]. Then m = 2s + 1 is an odd
number greater than 1, and Sz(2m) acts two-transitively on a set of size 22m + 1.

6.1 Remarks. For the reader’s convenience, we collect some information that will be relevant
later. Put θ := 2s+1 then x 7→ xθ is an automorphism of F2m such that the square of that
automorphism is the Frobenius automorphism (mapping x to x2).

The stabilizer of a point in said two-transitive action is the normalizer of a Sylow 2-
subgroup R of Sz(2m), and the semidirect product RD of R with a cyclic group D of order
2m
− 1. We parametrize the group D by the multiplicative group of the field F2m such that

D = {δa | a ∈ F2m r {0}} and δaδb = δab. The Sylow 2-subgroup R can be parametrized by F2
2m

such that R =
{
τ
( a

b
) ∣∣∣ a, b ∈ F2m

}
with multiplication τ

( a
b
)
τ
( c

d
)

= τ
(

a+c
b+d+acθ

)
. We find the

commutators [τ
( a

b
)
, τ

( c
d
)
] = τ

(
0

aθ+1+cθ+1

)
and [δc, τ

( a
b
)
] = τ

( (1+c)a
(1+cθ+1)b+(1+cθ)aθ+1

)
.

6.2 Lemma. Every non-trivial normal subgroup of RD either contains R, or is the commutator
subgroup R′ of R.

Proof. Assume that N is a normal subgroup containing a non-trivial element h = τ
(

x
y
)
δa. If

h < R then a , 1 and the commutator [τ
(

1
0

)
, h] is an element of R r R′ in N. If h ∈ R r R′

then a = 1 and x , 0. In that case, the commutators [δc, h] = τ
( (1+c)x

(1+cθ+1)y+(1+cθ)xθ+1

)
with c , 0

run over a complete set of representatives of R/R′, and their squares fill R′. So the normal
subgroup N contains R if it is not contained in R′.

3 Actually, the Suzuki group Sz(2m) is a group of Lie type 2B2(sm), but the twisted types were introduced after
Suzuki’s discovery.
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It remains to consider the case where h ∈ R′; then h = τ
(

0
y

)
with y , 0 and the commutators

[δc, h] = τ
(

0
(1+cθ+1)y

)
with c , 0 fill R′. �

6.3 Theorem. The case F � Sz(2m) is impossible.

Proof. Assume F � Sz(2m). If Φ , F then m = 3 and the center of Φ contains some involution ζ,
see 2.3. Then ζ fixes each generator and each point on K. Moreover, at least one more point
is fixed on each generator because q = 22m is even. Thus ζ induces on A∞ an involutory
collineation, fixing each point on the line induced by the circle K but also further points not
on that axis. This is impossible, see [4]. So we know Φ = F.

Consider the group V generated by T and its conjugate ιTι in E. This is an elementary
abelian 2-group; we will regard it as a vector space over F2 and use additive notation.

Choose a Zsigmondy subgroup Z in D, see 3.1. The actions of D on T and on [o] are
equivalent, and so are those on ιTι and on [∞]. From 4.5 we infer that D acts semi-regularly
on Vr {0}. Thus V is a direct sum of four irreducible Z-modules, each of dimension m overF2
by 3.2.

The subspace T ≤ V is invariant under R. On the quotient W B V/T we have an induced
action of R, with non-trivial space of fixed points U B CW(R) because both R and W are
2-groups. The action of D on W is equivalent to the action on some D-invariant complement
to U in W. Thus W is the direct sum of two irreducible D-modules of dimension m. If U , W
then U is such a submodule, and W/U is also an irreducible D-module. Now the set CW/U(R)
is again non-trivial, and a D-submodule of W/U. We find that R acts trivially on W/U.

In any case, the commutator subgroup R′ = {ρ2
| ρ ∈ R} therefore acts trivially on W. As

W = V/T acts regularly on [∞], we find that R′ acts trivially on [∞]. The involution ι is
conjugate to an involution in R′ (in fact, any two involutions in Sz(2m) are conjugates, cf. [19,
24.2]), and we obtain that ι fixes some generator pointwise. As this generator is fixed by ι,
it is different from [∞] and [o] = ι([∞]). We thus infer that ι acts trivially on the set C∞,o of
circles which represents the set of lines through o in the affine planeA∞.

Now the commutator subgroup D of the dihedral group generated by {ι} ∪D acts trivially
on C∞,o because it is generated by conjugates of ι. This means that D induces a group of
homologies with axis L∞ onA∞. This implies that the group RD acts trivially on L∞, see 6.2.
We obtain that R consists of translations of A∞, contradicting the fact that the group of all
translations of A∞ is commutative (because there are non-trivial translations with different
centers, cf. [2, Satz 1] or [13, Th. 4.14]). �

6.4 Remark. One can extend the definition of the Suzuki group Sz(2m) to the case m = 1, and
still gets a two-transitive group Sz(2) on 5 points. However, the group Sz(2) is no longer a
simple group; it is isomorphic to AGL(1, 5), and has a normal Sylow 5-subgroup. The torus
becomes trivial. This group acts on the Miquelian Laguerre plane of order 4, fixing a circle
and permuting the points on that circle two-transitively. This action forms a remarkable
exception to our results, see 9.1.

7 Ree groups

For each integer a ≥ 0, the Ree group R(32a+1) acts two-transitively on a set of size 36 a+3 + 1,
cf. [20]. In fact, the Ree group R(32a+1) may also be interpreted as the twisted group of Lie
type 2G2(32 a+1). The orbit carries a nice geometry known as the Ree unital; see [18], [9].
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The Ree group R(32a+1) is simple whenever a > 0, but R(3) has a normal subgroup iso-
morphic to PSL(2, 8), of index 3. This is a case where the socle of a two-transitive group
is transitive but not two-transitive. In any case, the socle of R(32a+1) is the commutator
subgroup.

7.1 Proposition. Let L be a finite elation Laguerre plane of order q, assume that the automorphism
group Γ of L acts two-transitively on the set of generators, and let F denote the socle of the group
induced on the set of generators. Then F is not the commutator subgroup of a Ree group.

Proof. Aiming at a contradiction, we assume that F is the commutator subgroup of R(32a+1);
then q = 36 a+3.

The involutions in F form a single conjugacy class; see [15, Theorem XI.13.2] or [18, p. 258].
We pick a Sylow 2-subgroup Σ of Φ and an involution τ ∈ S B π(Σ); then τ fixes 32a+1 + 1 ≥ 4
points on K; cf. [18]. The Sylow 2-subgroup S of F is elementary abelian of order 8; cf. [18,
p. 258] again.

Let ∞ be a point fixed by τ. Then the group A B {σ ∈ Σ | π(σ) ∈ 〈τ〉} also fixes ∞, and
acts on [∞] r {∞}. As S is elementary abelian, we have ϕ2

∈ Σ ∩ ∆K. If A would contain
an element ϕ of order 4 then 〈ϕ〉 could not act semi-regularly on [∞] r {∞} because the size
q − 1 of that set is not divisible by 4. Thus ϕ2

∈ ∆K fixes some point in [∞] r {∞}. This
contradicts 2.1, and we infer that S̃ is elementary abelian, as well.

Pick an involution σ ∈ Σ r ∆. Then σ fixes at least 4 points on K. Since q ≡ 3 (mod 4), the
order of L is not a square and we have a contradiction to 1.2.2. �

8 The PSL case

8.1 Notation. We fix some notation regarding the groups SL(2, q) and PSL(2, q), for q = re.
The stabilizer of a point in the natural two-transitive action of SL(2, q) on the projective line

is the normalizer of a Sylow r-subgroup, and isomorphic to a semidirect product RD̃ where
R = {τ (x) | x ∈ Fq} � Ce

r is the Sylow r-subgroup (with multiplication τ (x) τ
(
y
)

= τ
(
x + y

)
)

and the two-point stabilizer D̃ = {δa | a ∈ Fq r {0}} (with multiplication δaδb = δab) which
is cyclic of order q − 1. Here τ (x) =

(
1 x
0 1

)
and δc =

(
c 0
0 c−1

)
. The group D̃ acts on R via

δaτ (x) δ−1
a = τ

(
a2x

)
. Thus commutators are given by [δa, τ (x)] = τ

(
(a2
− 1)x

)
.

When passing to PSL(2, q), we factor out the group generated by δ−1 (which is trivial if
r = 2, and an involution otherwise). The Sylow r-subgroup R will be unharmed by this
process, and we do not change its name. The image D of D̃ in the quotient PSL(2, q) will have
order (q − 1)/2 if r is odd.

8.2 Lemma. Every non-trivial normal subgroup of RD contains R.

Proof. Let N be a normal subgroup of RD, and assume that N contains a non-trivial element
h = τ (x) δa. If h < R then a , ±1 and the commutator [h, τ (1)] = [δa, τ (1)] = τ

(
(a2
− 1)

)
is a

non-trivial element of R in N. For any non-trivial element τ (x) ∈ N ∩ R, the commutators
[δa, τ (x)] generate R because the set {a2

− 1 | a ∈ Fq} additively generates Fq (it coincides
with Fq if r = 2). �

9
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Characteristic two

We treat the characteristic two case separately. As the center of SL(2, q) is trivial in the
characteristic 2 case, we will identify SL(2, q) and PSL(2, q).

8.3 Lemma. If F � PSL(2, 2e) then Φ = F.

Proof. The group PSL(2, 2e) has trivial Schur multiplier if e > 2, see 2.3. The Schur multiplier
of PSL(2, 4) � PSL(2, 5) is not trivial but cyclic of order 2. If Φ � SL(2, 5) (on a Laguerre plane
of order 4) then the central involution would act as an involution on A∞, fixing each point
on the line induced by K. Thus it would fix each generator and at least one more point on
each generator. This is impossible as this set of fixed points generates the affine plane. �

8.4 Proposition. If F � PSL(2, 2e) then each element of order 2 in F is a translation.

Proof. Every involutory automorphism of a projective plane has either an axis (and then also
a center), or is a Baer involution (see [4]). In the latter case, it fixes at least three points on
any fixed line.

Under our present assumptions, the involution in question fixes the line induced by K and
induces a non-trivial element of R on that line. Therefore, it does not fix any affine point
on K, and then no affine point at all. The involution thus induces an axial collineation of
the projective completion of A∞; the axis is the line at infinity and the center is the point at
infinity for the line induced by K. �

8.5 Corollary. If F � PSL(2, 2e) then the projective closure ofA∞ has Lenz type V. �

8.6 Lemma. If F � PSL(2, 2e) then R acts trivially on [∞]. The involution ι ∈ F interchanging the
generators [∞] and [o] fixes some generator [c] pointwise, and acts trivially on the pencil C∞,o.

Proof. We already know that R fixes a point u ∈ [∞]r {∞}. As D normalizes R, the orbit D(u)
consists of fixed points of R. From 4.5 we know D(u) = [∞] r {∞}.

The involution ι fixes at least one point c ∈ K. Thus ι is a conjugate of some involution
in F∞, and acts trivially on [c] by the previous paragraph. Every circle in C∞,o is obtained by
joining {∞, o, v} for some v ∈ [c]. As the automorphism ι leaves the set {∞, o, v} invariant, it
fixes that circle. �

8.7 Theorem. If F � PSL(2, 2e) then L is isomorphic to the Miquelian Laguerre plane over the field
with 2e elements.

Proof. Let ι ∈ F be the involution interchanging the generators [∞] and [o]. Then {ι} ∪ D
generates a dihedral group G of order 2(2e

− 1). This group G acts on C∞,o with a kernel that
contains ι. As the conjugates of ι in G generate G, we have that D ≤ G acts trivially on C∞,o.
This set of circles induces the pencil of lines through o in A∞, and it turns out that D is a
transitive group of homologies in the translation planeA∞. This means that the planeA∞ is
Desarguesian, isomorphic to the plane over the field with 2e elements.

The action of ι on Pr([∞]∪[o]) is determined, as follows. We use the group R of translations
to introduce coordinates on the horizontal line [0, 0] induced by K, then the involution ι acts
on that line via

(
x
0

)
↔

(
1/x
0

)
for x , 0, and interchanges o =

(
0
0

)
with∞. Using the fact that ι

stabilizes the line [y/x, 0] for each x , 0 and y ∈ X, we then obtain ι
( x

y

)
=

( 1/x
y/x2

)
for each( x

y

)
∈ X2 r [o].

10
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In order to understand the circles, we first study the circle Cu through u ∈ [∞] r {∞}
touching K in o. From 4.4 we infer that the intersection of Cu with A∞ is the graph of some
bijection f : X → X. As Cu touches K in o, its image ι(Cu) is a circle touching K in ∞. Thus
ι(Cu) induces a horizontal line inA∞, and there is bu ∈ X such that [0, bu] r {o} = ι(Cu r {o}) ={
ι
( x

f (x)

) ∣∣∣ x ∈ X r {0}
}

=
{( 1/x

f (x)/x2

) ∣∣∣ x ∈ X r {0}
}
. This means f (x)/x2 = bu or f (x) = bux2, for all

x , 0.
Applying E∞ to C we obtain all other circles; in fact their traces on A∞ have the form{( x
bux2+zx+w

) ∣∣∣ x ∈ X r {0}
}

for arbitrary bu,w, z ∈ X. Note that the value of bu is determined
by the point u; the value bu = 0 corresponds to u = ∞.

We have thus determined all the circles, and see that L is the Miquelian plane over the
field with 2e elements. �

Odd characteristic

8.8 Lemma ([5]). A finite Laguerre plane of odd order with at least one Desarguesian affine derivation
is Miquelian. �

8.9 Lemma ([22, Thm. 2 d)]). If L is a finite elation Laguerre plane of odd order then at each circle C
there exists a unique reflection, i.e., an involutory automorphism of L fixing each point on C (and no
others). �

8.10 Lemma. If F � PSL(2, q) then Φ = F.

Proof. For even q, the assertion has been established in 8.3. So if Φ is not isomorphic
to PSL(2, q) then q is odd, and either q = 9 and Φ contains a central element of order 3,
or Φ � SL(2, q); see 2.3.

A central element δ of order 3 in Φ would act as a collineation of order 3 on A∞, fixing
each point on the line induced by K, and fixing at least two points in [x] r {x} for each x ∈ K.
This is impossible because the set of fixed points would generateA∞.

It remains to exclude Φ � SL(2, q) for odd q. Pick a generator a of the Sylow 2-subgroup
of the multiplicative group of Fq, and consider the group Q B

〈(
a 0
0 a−1

)
,
(

0 −1
1 0

)〉
. This group

has order 2s, where s is the maximal power of 2 dividing q − 1. Clearly, it fixes two points
on K, and acts on C∞,o r {K}. The latter set has q − 1 elements, so the stabilizer QC of any
element C in that set is not trivial, and contains an involution. However, there is only one
involution in Φ, corresponding to

(
−1 0
0 −1

)
∈ SL(2, q). As this involution acts trivially on K, it

is the unique reflection at K, see 8.9. If this involution lies in QC then it fixes each point on C,
contradicting the fact that it acts semi-regularly outside K. �

8.11 Theorem. If F � PSL(2, q) then Φ = F and L is the Miquelian Laguerre plane of order q.

Proof. If q is even then the assertion has been proved in 8.7.
It remains to treat the cases where q is odd; then Φ = F by 8.10. Let ι ∈ F be an involution

interchanging ∞ and o. Our arguments will be quite different in the cases where ι fixes
points on K or does not fix any points. These cases are distinguished by the residue of q − 1
modulo 4 because one needs square roots of −1 for eigenvalues in order to get fixed points
for the involutions in PSL(2, q).
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(A) Assume first that q ≡ 1 (mod 4).
A look at the standard action of F on PG(1, q) shows that each involution in F fixes precisely

two points on K. Consider an involution η which fixes the points ∞ and o. We note that
each involution ι ∈ F interchanging o with ∞ will centralize η because the involution η is
determined by its fixed points; in fact, we have η = δ j for some square root j of −1 in Fq.

The involution η̂ induced by η on the projective closure of A∞ is either axial, or a Baer
involution. In the latter case, more than two points would be fixed on each fixed line. As
η ∈ F fixes just two points on the circle K and this circle induces one of the lines of A∞, the
case of a Baer involution is excluded. Thus η̂ is axial. The affine fixed point o either is the
center of η̂ (then the axis is the line L∞ at infinity) or it lies on the axis (then that axis is the
completion of the vertical line [o] formed by the generator through o, and the center is the
point v at infinity belonging to the parallel class inA∞ formed by all circles touching K in∞).

The set ηR forms a conjugacy class in the generalized dihedral group B generated by {η}∪R,
and B is generated by ηR. As R fixes the line L∞ and the point v, we either have that each
element of B induces a collineation with axis L∞ (if η̂ has axis L∞) or we have that B induces a
group of collineations with center v. In any case, the group R induces a group of collineations
with axis L∞ and center v. Together with the group E∞,o of vertical translations, we obtain a
group E∞,oR of translations that is transitive on the points of A∞. Therefore, the projective
completion ofA∞ is a plane of Lenz type V, coordinatized by a semifield.

If η̂ has axis [o] we choose a conjugate ι of η interchanging the points ∞ and o. Then ι
fixes some generator pointwise, and thus acts trivially on the set C∞,o of circles that pass
through∞ and o. Now the commutator subgroup of the dihedral group generated by {ι} ∪D
acts trivially on C∞,o because it is generated by conjugates of ι. This commutator group is a
cyclic group of order (q − 1)/4. If q , 9 then Fq has no proper subfield of order greater than
(q − 1)/4. Thus the kernel of the semifield coordinatizingA∞ is Fq, andA∞ is Desarguesian.
The Laguerre plane L is then Miquelian, see 8.8. For q = 9 the order of the multiplicative
group of the subfield F3 has order 2 = (q − 1)/4. However, one knows that each Laguerre
plane of order 9 is Miquelian, see [5], [23], [24].

If η̂ has axis L∞ then o is the center of η̂. Let ζ be the unique reflection at K, see 8.9. Then ζ
centralizes F. The product σ B ηζ = ζη is an involution fixing ∞ and o. This involution
induces an automorphism σ̂ of A∞ that acts on L∞ just like ζ and on the line [0, 0] induced
by K just like η̂. Thus σ̂ has axis [o]. Now ιζ is a conjugate of σ, interchanges∞with o, fixes a
generator pointwise, and thus fixes each circle in C∞,o. Conjugation by ιζ induces inversion
on D, and again the commutator subgroup of the dihedral group generated by {ιζ} ∪D acts
trivially on C∞,o. As above, we find that the Laguerre plane L is Miquelian.

(B) Now consider the case where q ≡ 3 (mod 4); then the order (q − 1)/2 of the torus is odd.
We show first that D acts faithfully on the generators [o] and [∞]. Let N be the kernel of the

action of D on [∞]. Consider an involution ι ∈ F interchanging ∞ with o. Then conjugation
by ι normalizes every subgroup of the cyclic subgroup D, so N acts trivially on [o], as well.
Now N fixes every circle touching K in ∞ or o. Any point x < [∞] ∪ [o] ∪ K lies on two of
these circles, and its orbit under N has length at most 2. As the order of D is odd, we find
that N fixes x and [x], and is thus trivial.

The action on [o] is equivalent to the action via conjugation on the group T of translations.
That action is a linear representation over the prime field Fr, and completely reducible by
Maschke’s Theorem. We will show that this action is in fact irreducible, and quasi-equivalent
to the natural representation of D as a subgroup of Fq (namely, the group of squares).

12
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Our assumption on q implies that q is neither a square, nor even. Therefore, the exceptional
cases in Zsigmondy’s Theorem are excluded, cf. 3.1. So consider a Zsigmondy subgroup ofFq,
and let Z be the corresponding subgroup of D. As Z acts completely reducibly on T, we find
a minimal Z-invariant subgroup W of T such that Z acts faithfully on W. By minimality, this
action is irreducible, and 3.2 yields that the action of D on W is semi-regular, and |W| = q. We
obtain W = T, the action of Z is irreducible, and the endomorphisms induced by elements
of D on T are contained in the centralizer of this irreducible action, which has already been
identified as the scalar action of a field (with q elements).

The group RD induces a group of collineations of the affine plane A∞. This group fixes
the line induced by K, and the action on the set of parallels to that line is equivalent to the
action by conjugation on the group T of translations. As both R and T are r-groups, the set U
of fixed points of R in T is a non-trivial subgroup of T. The group D normalizes both R and T
and thus leaves U invariant. As D acts irreducibly on T, this implies U = T. Thus R fixes each
horizontal line and induces a group of translations. Now the group RT acts as a transitive
group of translations ofA∞, andA∞ is a translation plane.

The group Ψ B 〈ι, ζ〉will not act semi-regularly on C∞,o because 4 = |Ψ| is not a divisor of
q − 1 = |C∞,o r {K}|. So there exists a circle C ∈ C∞,o r {K} such that the stabilizer ΨC contains
some involution α. Clearly α , ζ, so α induces inversion on the cyclic group D.

The action of the group Ψ on the setC∞,o of circles is equivalent to the action by conjugation
on the group E∞,o. The latter is elementary abelian of order q = re and induces on A∞ the
group of shears with axis [o]. The involution ζ acts trivially on K and induces inversion
on E∞,o.

If α acts trivially on E∞,o then the whole dihedral group 〈{α} ∪ D〉 acts trivially on C∞,o.
Then D induces a group of homologies on the translation planeA∞. Arguments as those used
at the end of the proof of part (A) now show thatA∞ is Desarguesian, and L is Miquelian.

So assume that α does not act trivially on C∞,o. The group E∞,o splits as a direct product
of Fix(α) and Fix(αζ) because r is odd and ζ induces inversion, and both factors are non-trivial
by our assumption on α. Let β ∈ {α, ζα} be an involution with at least

√
q fixed elements

in E∞,o, then β fixes at least
√

q circles in C∞,o.
We consider a circle C ∈ C∞,o r {K} fixed by β. Then β also fixes ζ(C). The orbits D(C) and

D(ζ(C)) = ζ(D(C)) form a partition of C∞,o r {K} because ζ acts semi-regularly on C∞,o r {K}
and cannot leave a subset of odd order invariant. On each one of these orbits, the action of
the dihedral group 〈{β}∪D〉 is equivalent to the usual action of the dihedral group on (q−1)/2
points because the normal subgroup D acts regularly and the stabilizer of some element is
generated by the involution β. This implies that β fixes precisely one element in each one
of the orbits (recall that (q − 1)/2 is odd). Thus the set of fixed elements of β in E∞,o has 3
elements while there should be at least

√
q. This yields q ≤ 9; but one knows that (elation)

Laguerre planes of such small odd order are Miquelian (see [5], [23], [24]). If L is Miquelian
of odd order then ιζ in fact acts trivially on C∞,o. �

9 Main Theorem

9.1 Main Theorem. If the automorphism group of an elation Laguerre plane of order q contains
a subgroup Γ fixing a circle and acting two-transitively on that circle, then the Laguerre plane is
Miquelian.
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The socle of the group induced on the fixed circle is either isomorphic to PSL(2, q), or we have q = 4
and the socle is isomorphic to AGL(1, 5).

Proof. After the results in [25], it only remains to discuss the cases where the socle of the
group induced on the circle belongs to one of the following series (and has been treated at
the location given):

• PSL(2, q) (see 8.11),

• PSU(3, f 2) (see 5.2),

• Sz(22a+1) (see 6.3),

• R(32a+1) (see 7.1),

• and the commutator group R(3)′ � PSL(2, 8) with its transitive action on 28 points (also
treated in 7.1). �

9.2 Acknowledgement. The present investigation has been conducted during a stay of the
second author as a Visiting Erskine Fellow at the University of Canterbury, Christchurch,
New Zealand.
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2009-001 Brehm, U.; Kühnel, W.: Lattice triangulations of E3 and of the 3-torus
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