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HOMOGENEOUS ALMOST QUATERNION-HERMITIAN MANIFOLDS

Abstract. An almost quaternion-Hermitian structure on a Riemannian manifold (M4n, g)
is a reduction of the structure group of M to Sp(n)Sp(1) ⊂ SO(4n). In this paper we
show that a compact simply connected homogeneous almost quaternion-Hermitian mani-
fold of non-vanishing Euler characteristic is either a Wolf space, or S2×S2, or the complex
quadric SO(7)/U(3).

2010 Mathematics Subject Classification: Primary: 53C30, 53C35, 53C15. Secondary:
17B22

Keywords: Quaternion-Hermitian structures, homogeneous spaces, root systems, Clifford
structures.

1. Introduction

The notion of (even) Clifford structures on Riemannian manifolds was introduced in [12].
Roughly speaking, a rank r (even) Clifford structure on M is a rank r Euclidean bundle
whose (even) Clifford algebra bundle acts on the tangent bundle of M . For r = 3, an even
Clifford structure on M is just an almost quaternionic structure, i.e. a rank 3 sub-bundle
Q of the endomorphism bundle End (TM) locally spanned by three endomorphisms I, J,K
satisfying the quaternionic relations

I2 = J2 = K2 = −id, IJ = K.

If moreover Q ⊂ End −(TM) (or, equivalently, if I, J,K are g-orthogonal), the structure
(M, g,Q) is called almost quaternion-Hermitian [7, 8, 9, 17].

Homogeneous even Clifford structures on homogeneous compact manifolds of non-vanishing
Euler characteristic were studied in [11], where it is established an upper bound for their
rank, as well as a description of the limiting cases. In this paper we consider the other
extremal case, namely even Clifford structures with the lowest possible (non-trivial) rank,
which is 3 and give the complete classification of compact homogeneous almost quaternion-
Hermitian manifolds G/H with non-vanishing Euler characteristic. This last assumption
turns out to be crucial at several places throughout the proof (see below). Without it,
the classification is completely out of reach, but there are lots of homogeneous examples
constructed for instance by D. Joyce [4, 5] and O. Maciá [6].

Our classification result is the following:

Theorem 1.1. A compact simply connected homogeneous manifold M = G/H of non-
vanishing Euler characteristic carries a homogeneous almost quaternion-Hermitian struc-
ture if and only if it belongs to the following list:

This work was supported by the contract ANR-10-BLAN 0105 “Aspects Conformes de la Géométrie”.
The second-named author thanks the Centre de Mathématiques de l’École Polytechnique for hospitality
during the preparation of this work.
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2 HOMOGENEOUS ALMOST QUATERNION-HERMITIAN MANIFOLDS

• Wolf spaces G/N where G is any compact simple Lie group and N is the normalizer
of some subgroup Sp(1) ⊂ G determined by a highest root of G, cf. [18].
• S2 × S2.
• SO(7)/U(3).

Let us first give some comments on the above list. The Wolf spaces are quaternion-
Kähler manifolds [18], so they admit not only a topological but even a holonomy reduction
to Sp(n)Sp(1). In dimension 4, every orientable manifold is almost quaternion-Hermitian
since Sp(1)Sp(1) = SO(4). In this dimension there exist (up to homothety) only two
compact simply connected homogeneous manifolds with non-vanishing Euler characteristic:
S2×S2 and S4. The latter is already a Wolf space since S4 = HP1, this is why in dimension 4,
the only extra space in the list is S2×S2. Finally, the complex quadric SO(7)/U(3) ⊂ CP7,
which incidentally is also the twistor space of S6, carries a 1-parameter family of Sp(3)U(1)
structures with fixed volume. Motivated by our present classification, F. Mart́ın Cabrera
and A. Swann [10] are currently investigating the quaternion Hermitian type of this family.

The outline of the proof of Theorem 1.1 is as follows: The first step is to show (in
Proposition 3.3) that G has to be a simple Lie group, unless M = S2 × S2. The condition
χ(M) 6= 0 (which is equivalent to rk(H) = rk(G)) is used here in order to ensure that
every subgroup of maximal rank of a product G1 × G2 is itself a product. The next step
is to rule out the case G = G2 which is the only simple group for which the ratio between
the length of the long and short roots is

√
3. Once this is done, we can thus assume that

either all roots of G have the same length, or the ratio between the length of the long and
short roots is

√
2. We further show that if G/H is symmetric, then H has an Sp(1)-factor,

so M is a Wolf space.
Now, since rk(H) = rk(G), the weights of the (complexified) isotropy representation

mC can be identified with a subset of the root system of G. We show that the existence
of a homogeneous almost quaternion-Hermitian structure on G/H implies that the set
of weights W(mC) can be split into two distinct subsets, one of which is obtained from
the other by a translation (Proposition 3.1 below). Moreover, if G/H is not symmetric,
then [m,m] ∩ m 6= 0, so (W(mC) +W(mC)) ∩ W(mC) 6= ∅. Putting all this information
together we are then able to show, using the properties of root systems, that there is one
single isotropy weight system satisfying these conditions, namely the isotropy representa-
tion of SO(7)/U(3), whose restriction to SU(3) is isomorphic to C3⊕ (C3)∗ and is therefore
quaternionic.

2. Preliminaries

Let M = G/H be a homogeneous space. Throughout this paper we make the following
assumptions:

• M is compact (and thus G and H are compact, too).
• The infinitesimal isotropy representation is faithful (this is always the case after

taking an appropriate quotient of G)
• M has non-vanishing Euler characteristic: χ(M) 6= 0, or, equivalently, rk(H) =

rk(G).
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• M is simply connected. An easy argument using the exact homotopy sequence
shows that by changing the representation of M as homogeneous space if neces-
sary, one can assume that G is simply connected and H is connected (see [13] for
example).

Denote by h and g the Lie algebras of H and G and by m the orthogonal complement
of h in g with respect to some adg-invariant scalar product on g. The restriction to m of
this scalar product defines a homogeneous Riemannian metric g on M .

An almost quaternion-Hermitian structure on a Riemannian manifold (M, g) is a three-
dimensional sub-bundle of the bundle of skew-symmetric endomorphisms End−(TM),
which is locally spanned by three endomorphisms satisfying the quaternion relations [7, 17].
In the case where M = G/H is homogeneous, such a structure is called homogeneous if
this three-dimensional sub-bundle is defined by a three-dimensional H-invariant summand
of the second exterior power of the isotropy representation Λ2m = End−(m). For our pur-
poses, we give the following equivalent definition, which corresponds to the fact that an
almost quaternion-Hermitian structure is just a rank 3 even Clifford structure (cf. [11, 12]):

Definition 2.1. A homogeneous almost quaternion-Hermitian structure on the Riemann-
ian homogeneous space (G/H, g) is an orthogonal representation ρ : H → SO(3) and
an H-equivariant Lie algebra morphism ϕ : so(3) → End−(m) extending to an algebra
representation of the even real Clifford algebra Cl03 on m.

The H-equivariance of the morphism ϕ : so(3) → End−(m) is with respect to the
following actions of H: the action on so(3) is given by the composition of the adjoint
representation of SO(3) with ρ, and the action on End−(m) is the one induced by the
isotropy representation ι of H. Since ϕ extends to a representation of Cl03 ' H on m, the
above definition readily implies the following result (see also [11, Lemma 3.2] or [15]):

Lemma 2.2. The complexified isotropy representation ι∗ on mC is isomorphic to the tensor
product mC = H ⊗C E, where H is defined by the composition µ := ξ ◦ ρ∗ of ρ∗ with the
spin representation ξ of so(3) = spin(3) = sp(1) on H, and E is defined by the composition
λ := π ◦ ι∗ of the isotropy representation with the projection of h to the kernel of ρ∗.

3. The classification

In this section we classify all compact simply connected homogeneous almost quaternion-
Hermitian manifolds M = G/H with non-vanishing Euler characteristic.

We choose a common maximal torus of H and G and denote by t ⊂ h its Lie algebra.
Then the root system R(g) ⊂ t∗ is the disjoint union of the root system R(h) and the set
W of weights of the complexified isotropy representation of the homogeneous space G/H.
This follows from the fact that the isotropy representation is given by the restriction to H
of the adjoint representation of g.

The weights of the complex spin representation of so(3) on ΣC
3 ' H are W(ΣC

3 ) ={
±1

2
e1
}

, where e1 is some element of norm 1 of the dual of some Cartan sub-algebra of

so(3). We denote by β ∈ t∗ the pull-back through µ of the vector 1
2
e1 and by A :=

{±α1, . . . ,±αn} ⊂ t∗ the weights of the self-dual representation λ. By Lemma 2.2, we
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obtain the following description of the weights of the isotropy representation of any homo-
geneous almost quaternion-Hermitian manifold M = G/H, which is a particular case of
[11, Proposition 3.3]:

Proposition 3.1. The set W := W(m) of weights of the isotropy representation is given
by:

(1) W = {εiαi + εβ}1≤i≤n;εi,ε∈{±1}.

As an immediate consequence we have:

Lemma 3.2. Let (G/H, g, ρ, ϕ) be a homogeneous almost quaternion-Hermitian structure
as in Definition 2.1. Then the infinitesimal representation ρ∗ : h→ so(3) does not vanish.

Proof. Suppose for a contradiction that ρ∗ = 0. Then the h-representation H defined in
Lemma 2.2 is trivial, so β = 0 and mC = E⊕E. Every weight of the (complexified) isotropy
representation appears then twice in the root system of G, which is impossible (cf. [16, p.
38]). �

Our next goal is to show that the automorphism group of a homogeneous almost quaternion-
Hermitian manifold is in general a simple Lie group:

Proposition 3.3. If G/H is a simply connected compact homogeneous almost quaternion-
Hermitian manifold with non-vanishing Euler characteristic, then either G is simple or
G = SU(2)× SU(2) and M = S2 × S2.

Proof. We already know that G is compact and simply connected. If G is not simple, then
G = G1 ×G2 with dim(Gi) ≥ 3. Let gi denote the Lie algebra of Gi, so that g = g1 ⊕ g2.
By a classical result of Borel and Siebenthal ([3, p. 210]), the Lie algebra of the subgroup
H splits as h = h1 ⊕ h2, where hi = h ∩ gi. Correspondingly, the isotropy representation
splits as m = m1 ⊕m2, where mi is the isotropy representation of hi in gi.

Let {e1, e2, e3} be an orthonormal basis of so(3) and let us denote by Ji := ϕ(ei), for
1 ≤ i ≤ 3. The H-equivariance of ϕ implies that

(2) ϕ(ρ∗(X)ei) = [adX , Ji], ∀ X ∈ h, 1 ≤ i ≤ 3.

We claim that the representation ρ∗ does not vanish on h1 or on h2. Assume for instance
that ρ∗(h1) = 0. We express each endomorphism Ji of m = m1 ⊕m2 as

Ji =

(
Ai Bi

Ci Di

)
.

For every X ∈ h1, (2) shows that adX commutes with Ji. Expressing

adX =

(
adg1

X 0
0 0

)
we get in particular that adg1

X ◦ Bi = 0 for all X ∈ h1. On the other hand, since rk(h1) =
rk(g1), there exists no vector in m1 commuting with all X ∈ h1, so Bi = 0 and thus Ci =
−B∗i = 0 for 1 ≤ i ≤ 3. However, this would imply that the map ϕ1 : so(3)→ End −(m1)
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given by ϕ1(ei) = Ai for 1 ≤ i ≤ 3 is a homogeneous almost quaternion-Hermitian structure
on G1/H1 with vanishing ρ∗, which contradicts Lemma 3.2. This proves our claim.

Now, since ρ∗ : h→ so(3) is a Lie algebra morphism, we must have in particular

[ρ∗(h1), ρ∗(h2)] = 0.

By changing the orthonormal basis {e1, e2, e3} if necessary, we thus may assume that
ρ∗(h1) = ρ∗(h2) = 〈e1〉. The Lie algebras h1 and h2 decompose as hi = h′i ⊕ 〈Xi〉 where
h′i := ker(ρ∗) ∩ hi and ρ∗(Xi) = e1 for 1 ≤ i ≤ 2.

¿From (2), the following relations hold:

(3) [adXi
, J2] = J3, [adXi

, J3] = −J2, 1 ≤ i ≤ 2.

Like before we can write

adX1 =

(
adg1

X1
0

0 0

)
, adX2 =

(
0 0
0 adg2

X2

)
,

so (3) implies that A2 = A3 = 0 and D2 = D3 = 0. In particular

−1 = J2
2 =

(
0 B2

C2 0

)2

=

(
B2C2 0

0 C2B2

)
,

thus showing that B2 defines an isomorphism between m2 and m1 (whose inverse is −C2).
On the other hand, since by (2) adX commutes with J2 for all X ∈ h′1, we obtain as

before that adg1
X ◦ B2 = 0 for all X ∈ h′1. Since B2 is onto, this shows that the isotropy

representation of G1/H1 restricted to h′1 vanishes, so h′1 = 0 and similarly h′2 = 0. We
therefore have h1 = h2 = R, and since rk(Gi) = rk(Hi) = 1, we get g1 = g2 = su(2). We
thus have G = SU(2)× SU(2), and H = T2 is a maximal torus, so M = S2 × S2. �

We are in position to complete the proof of our main result:

Proof of Theorem 1.1. By Proposition 3.3 we may assume that G is simple. We first study
the case G = G2 (this is the only simple group for which the ratio between the length of
long and short roots is neither 1, nor

√
2). The only connected subgroups of rank 2 of G2

are U(2), SU(3), SO(4) and T2. The spaces G2/U(2) and G2/SU(3) have dimension 10 and
6 respectively, therefore they can not carry almost quaternion-Hermitian structures.

The quotient G2/SO(4) is a Wolf space, so it remains to study the generalized flag man-
ifold G2/T2. We claim that this space has no homogeneous almost quaternion-Hermitian
structure. Indeed, if this were the case, using Proposition 3.1 one could express the root
system of G2 as the disjoint union of two subsets

W+ := {εiαi + β}1≤i≤3;εi∈{±1}, W− := {εiαi − β}1≤i≤3;εi∈{±1}
such that there exists some vector v (:= 2β) with W+ = v +W−. On the other hand, it
is easy to check that there exist no such partition of R(G2).

Consider now the case where M = G/H is a symmetric space. If M is a Wolf space there
is nothing to prove, so assume from now on that this is not the case. The Lie algebra of H
can be split as h = ker(ρ∗) ⊕ h0, where h0 denotes the orthogonal complement of ker(ρ∗).
Clearly h0 is isomorphic to ρ∗(h) ⊂ so(3) so by Lemma 3.2, h0 = u(1) or h0 = sp(1). The
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latter case can not occur since our assumption that M is not a Wolf space implies that
h has no sp(1)-summand. We are left with the case when h = ker(ρ∗) ⊕ u(1). We claim
that this case can not occur either. Indeed, if such a space would carry a homogeneous
almost quaternion-Hermitian structure, then the representation of ker(ρ∗) on m would be
quaternionic. Two anti-commuting complex structures I, J of m induce non-vanishing
elements aI , aJ in the center of ker(ρ∗) (see the proof of [14, Lemma 2.4]). On the other
hand, the adjoint actions of aI and aJ on m are proportional to I and J respectively ([14,
Eq. (4)]) and thus anti-commute, contradicting the fact that aI and aJ commute (being
central elements).

We can assume from now on, that M = G/H is non-symmetric, G is simple and G 6= G2.
Up to a rescaling of the adG-invariant metric on g, we may thus assume that all roots of g
have square length equal to 1 or 2.

¿From (1), it follows that

R(g) =W(m) ∪R(h) = {εiαi + εβ}1≤i≤n;εi,ε∈{±1} ∪R(h).

Up to a change of signs of the αi’s, we may assume:

(4) 〈 β, αi 〉 ≥ 0, for all 1 ≤ i ≤ n.

Then either the roots β + αi and β − αi of G have the same length, or |β + αi|2 = 2 and
|β − αi|2 = 1. This shows that for each 1 ≤ i ≤ n,

(5) 〈 β, αi 〉 ∈
{

0,
1

4

}
.

¿From the general property of root systems (10) below, it follows that:

(6) |β|2 ∈
{

1

4
,
3

4
,
5

4

}
.

Since the homogeneous space G/H is not symmetric, we have [m,m] 6⊆ h, so there exist
subscripts i, j, k ∈ {1, . . . , n} such that (±β ± αi) + (±β ± αj) = ±β ± αk. Taking (5)
into account, we need to check the following possible cases (up to a permutation of the
subscripts):

a) β = ±2α1 ± α2.
b) β = α1

3
.

c) β = α1±α2±α3

3
.

d) β = α1 ± α2 ± α3.

We will show that cases a), b) and c) can not occur and that in case d) there is only one
solution.

a) If β = 2α1 +α2, then β+α2 = 2(β−α1) and this would imply the existence of two
proportional roots, β + α2 and β − α1, in W ⊆ R(g), contradicting the property
R2 of root systems (cf. Definition A.1). For all the other possible choices of signs
in a) we obtain a similar contradiction.

b) If β = α1

3
, then there exist two proportional roots: β + α1 = −2(β − α1) in R(g),

which again contradicts R2.
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c) If β = α1±α2±α3

3
, then |β|2 = 1

3
(〈 β, α1 〉 ± 〈 β, α2 〉 ± 〈 β, α3 〉). From (5) and (6), it

follows that the only possibility is:

β =
α1 + α2 + α3

3
, |β|2 =

1

4
and 〈 β, αi 〉 =

1

4
, for 1 ≤ i ≤ 3.

Together with (10), this implies that for each 1 ≤ i ≤ 3 we have: |β + αi|2 = 2,
|β − αi|2 = 1 and |αi|2 = 5

4
. Thus, for all 1 ≤ i, j ≤ 3, i 6= j, we have:

〈 β + αi, β − αj 〉 =
1

4
− 〈αi, αj 〉,

which by (10) must be equal to 0 or ±1, showing that 〈αi, αj 〉 ∈ {−3
4
, 1
4
, 5
4
}. On

the other hand, a direct computation shows that

〈α1, α2 〉+ 〈α1, α3 〉+ 〈α2, α3 〉 =
1

2

(
9|β|2 − 15

4

)
= −3

4
,

which is not possible for any of the above values of the scalar products, yielding a
contradiction.

d) ¿From (5) and (6), it follows that there are three possible sub-cases:

Case 1. β = α1 ± α2 ± α3, |β|2 = 1
4
, 〈 β, α1 〉 = 1

4
, 〈 β, α2 〉 = 〈 β, α3 〉 = 0.

Case 2. β = α1 + α2 − α3, |β|2 = 1
4
, 〈 β, αi 〉 = 1

4
, 1 ≤ i ≤ 3.

Case 3. β = α1 + α2 + α3, |β|2 = 3
4
, 〈 β, αi 〉 = 1

4
, 1 ≤ i ≤ 3.

Case 1. From (10) it follows |α1|2 = 5
4

and |α2|2 = |α3|2 = 3
4
. Since 〈 β +α1, β −α1 〉 =

−1 and |β+α1|2 = 2|β−α1|2, the reflexion property (11) shows that 2β = (β+α1)+(β−α1)
and 3β − α1 = (β + α1) + 2(β − α1) belong to R(g). We show that these roots actually
belong to R(h), i.e. that 2β, 3β − α1 /∈ W . We argue by contradiction.

Let us first assume that 2β ∈ W . Then there exists k, 1 ≤ k ≤ n, such that 2β = ±β±αk.
If β = ±αk we obtain that 0 = β∓αk belongs to R(g), which contradicts the property R1
of root systems. If β = ±αk

3
, then the roots β + αk and β − αk are proportional, which

contradicts R2.
Now we assume that 3β − α1 ∈ W and conclude similarly. In this case there exists k,

1 ≤ k ≤ n such that either 2β = α1 ± αk or 4β = α1 ± αk. In the first case we obtain
β − α1 = −β ± αk, which contradicts the fact that roots of G are simple. In the second
case (5) yields |β|2 = 1

4
〈 β, α1 〉 ± 1

4
〈 β, αk 〉 ≤ 1

8
, which contradicts (6).

This shows that 2β, 3β−α1 ∈ R(h). Moreover 〈 2β, 3β−α1 〉 = 1 and thus, by (11), their
difference is a root of h too: β − α1 = (3β − α1)− (2β) ∈ R(h), which is in contradiction
with β − α1 ∈ W . Consequently, case 1. can not occur.

Case 2. From (10) it follows that |αi|2 = 5
4
, for all 1 ≤ i ≤ 3. For all 1 ≤ i, j ≤ 3, i 6= j,

we then compute: 〈 β + αi, β + αj 〉 = 3
4

+ 〈αi, αj 〉, which by (10) must be equal to 0 or

±1, implying that 〈αi, αj 〉 ∈ {−7
4
,−3

4
, 1
4
}. On the other hand, we obtain

〈α1, α2 〉+ 〈α1, α3 〉+ 〈α2, α3 〉 =
1

2

(
|β|2 − 15

4

)
= −7

4
,
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which is not possible for any of the above values of the scalar products, yielding again a
contradiction.

Case 3. From (10) it follows that |αi|2 = 3
4
, for all 1 ≤ i ≤ 3. Computing the norm of

β−αk = αi+αj, where {i, j, k} is any permutation of {1, 2, 3}, yields that 〈αi, αj 〉 = −1
4
,

for all 1 ≤ i, j ≤ 3, i 6= j. We then get

〈 β + αi, β + αj 〉 = 1, for all 1 ≤ i, j ≤ 3, i 6= j,

which by the reflexion property (11) implies that

(7) {αi − αj}1≤i,j≤3 ⊆ R(g).

We claim that n = 3 (recall that n denotes the number of vectors αi, or equivalently the
quaternionic dimension of M). Assume for a contradiction that n ≥ 4. By (5), 〈 β, αl 〉 = 1

4

or 〈 β, αl 〉 = 0, for any 4 ≤ l ≤ n.
If 〈 β, αl 〉 = 1

4
for some l ≥ 4, it follows that |αl|2 = 3

4
and |β+αl|2 = 2, implying by (10)

that the scalar product 〈 β − αi, β + αl 〉 belongs to {±1, 0}, for 1 ≤ i ≤ 3. This further
yields that 〈αi, αl 〉 ∈ {74 ,

3
4
,−1

4
}. On the other hand, the Cauchy-Schwarz inequality

applied to αi and αl and the fact that W has only simple roots (being a root sub-system)
imply that the only possible value is 〈αi, αl 〉 = −1

4
, for 1 ≤ i ≤ 3 and 4 ≤ l ≤ n. Thus,

|β + αl|2 = 0, which contradicts the property R1 of root systems (cf. Definition A.1).
We therefore have 〈 β, αl 〉 = 0, for all 4 ≤ l ≤ n. If |β ± αl|2 = 2 for some l ≥ 4 then
|αl|2 = 5

4
, so 〈 β−αl, β+αl 〉 = −1

2
, contradicting (10). Thus |β±αl|2 = 1 for all 4 ≤ l ≤ n.

If n ≥ 5, (10) implies

〈 β − αl, β + αs 〉, 〈 β − αl, β − αs 〉 ∈
{

0,±1

2

}
, for 4 ≤ l, s ≤ n, l 6= s.

This contradicts the equality 〈 β−αl, β+αs 〉+ 〈 β−αl, β−αs 〉 = 3
2
, showing that n ≤ 4.

It remains to show that the existence of α4 ∈ A, which by the above necessarily satisfies
〈 β, α4 〉 = 0 and |α4|2 = 1

4
, leads to a contradiction. By (10), it follows that

1 + 〈αi, α4 〉 = 〈 β + αi, β + α4 〉 ∈ {±1, 0}, ∀ 1 ≤ i ≤ 3.

This constraint together with the Cauchy-Schwarz inequality, |〈αi, α4 〉| ≤
√
3
4

, implies that
〈αi, α4 〉 = 0, for 1 ≤ i ≤ 3.

Applying the reflexion property (11) to β + α4 and β + αi, for 1 ≤ i ≤ 3, which satisfy
〈 β+αi, β+α4 〉 = 1 and |β+αi|2 = 2|β+α4|2, it follows that αi−α4, β+2α4−αi ∈ R(g).
We now show that all these roots actually belong to R(h). Let us assume that αi−α4 ∈ W
for some i ≤ 3, i.e. there exists s, 1 ≤ s ≤ 4, such that αi − α4 ∈ {±β ± αs}. Since α4 is
orthogonal to β and to αi, for 1 ≤ i ≤ 3, it follows that αi−α4 must be equal to ±β−α4,
leading to the contradiction that 0 = β ∓ αi ∈ W . Therefore αi − α4 ∈ R(h). A similar
argument shows that β + 2α4 − αi ∈ R(h).

Now, since the scalar product of these two roots of h is 〈αi − α4, β + 2α4 − αi 〉 = −1,
it follows again by (11) that their sum β + α4 also belongs to R(h), contradicting the fact
that β + α4 ∈ W(m). This finishes the proof of the claim that n = 3.
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Since the determinant of the Gram matrix (〈αi, αj 〉)1≤i,j≤3 is equal to 5
16

, the vectors
{αi}1≤i≤3 are linearly independent. Thus the roots of g given by (7) can not belong to W ,
and therefore {αi − αj}1≤i,j≤3 belong to R(h).

Concluding, we have proven that n = 3 and that the following inclusions hold (after
introducing the notation γi := αj + αk for all permutations {i, j, k} of {1, 2, 3}):
(8) {γi − γj}1≤i 6=j≤3 ⊆ R(h), {γi − γj}1≤i 6=j≤3 ∪ {±γi}1≤i≤3 ⊆ R(g),

where 〈 γi, γj 〉 = δij, for all 1 ≤ i, j ≤ 3.
Since these sets are closed root systems and we are interested in the representation of M

as a homogeneous space G/H with the smallest possible group G, we may assume that we
have equality in (8). Hence R(h) = {γi− γj}1≤i 6=j≤3, with {γi}1≤i≤3 an orthonormal basis,
(which is exactly the root system of the Lie algebra su(3)), and R(g) = {γi− γj}1≤i 6=j≤3 ∪
{±γi}1≤i≤3, which is the root system of so(7). We conclude that the only possible solution
is the simply connected homogeneous space SO(7)/U(3).

It remains to check that this space indeed carries a homogeneous almost quaternionic-
Hermitian structure. Using the sequence of inclusions

u(3) ⊂ so(6) ⊂ so(7),

we see that the isotropy representation m of SO(7)/U(3) is the direct sum of the restric-
tion to U(3) of the isotropy representation of the sphere SO(7)/SO(6), (which is just the
standard representation of U(3) on C3), and of the isotropy representation of SO(6)/U(3),
which is Λ2(C3) (cf. [2, p. 312]):

m = C3 ⊕ Λ2(C3).

Let I denote the complex structure of m. After identifying U(1) with the center of U(3)
via the diagonal embedding, an element z ∈ U(1) acts on m by complex multiplication
with z3, i.e. ι(z) = z3. Since Λ2(C3) = (C3)∗ as complex SU(3)-representations, it follows
that the restriction to SU(3) of the isotropy representation m is C3 ⊕ (C3)∗, and thus
carries a quaternionic structure, i.e. a complex anti-linear automorphism J . We claim
that a homogeneous almost quaternionic-Hermitian structure on SO(7)/U(3) in the sense
of Definition 2.1 is given by ρ : U(3)→ SO(3) and ϕ : so(3) ' Im(H)→ End −(m) defined
by

ρ(A) = det(A), ϕ(i) = I, ϕ(j) = J, ϕ(k) = IJ,

where det(A) ∈ U(1) is viewed as an element in SO(3) via the composition

U(1) = S(C)→ S(H) = Spin(3)→ SO(3).

Indeed, the only thing to check is the equivariance of ϕ, i.e.

(9) ϕ(ρ(A)Mρ(A)−1) = ι(A)ϕ(M)ι(A)−1, ∀M ∈ so(3), ∀A ∈ U(3).

Write A = zB with B ∈ SU(3). Then ρ(A) = z3, ι(A) = z3ι(B) and ι(B) commutes with
I, J,K, thus with ϕ(M). The relation (9) is trivially satisfied for M = i, whereas for M = j
or M = k one has Mz = z̄M = z−1M and similarly ϕ(M)ι(z)ι(B) = ι(z−1)ι(B)ϕ(M), so

ϕ(ρ(A)Mρ(A)−1) = ϕ(z3Mz−3) = ϕ(z6M) = z6ϕ(M) = ι(z2)ϕ(M) = ι(A)ϕ(M)ι(A)−1.
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This finishes the proof of the theorem. �

Appendix A. Root systems

For the basic theory of root systems we refer to [1] and [16].

Definition A.1. A set R of vectors in a Euclidean space (V, 〈 ·, · 〉) is called a root system
if it satisfies the following conditions:

R1: R is finite, span(R) = V , 0 /∈ R.
R2: If α ∈ R, then the only multiples of α in R are ±α.

R3: 2〈α, β 〉
〈α, α 〉 ∈ Z, for all α, β ∈ R.

R4: sα : R → R, for all α ∈ R (sα is the reflection sα : V → V , sα(v) := v− 2〈α, v 〉
〈α, α 〉 α).

Let G be a compact semi-simple Lie group with Lie algebra g endowed with an adg-
invariant scalar product. Fix a Cartan sub-algebra t ⊂ g and let R(g) ⊂ t∗ denote its root
system. It is well-known that R(g) satisfies the conditions in Definition A.1. Conversely,
every set of vectors satisfying the conditions in Definition A.1 is the root system of a unique
semi-simple Lie algebra of compact type.

Remark A.2 (Properties of root systems). Let R be a root system. If α, β ∈ R such that
β 6= ±α and ‖β‖2 ≥ ‖α‖2, then either 〈α, β 〉 = 0 or

(10)

(
‖β‖2

‖α‖2
,
2〈α, β 〉
〈α, α 〉

)
∈ {(1,±1), (2,±2), (3,±3)}.

In other words, either the scalar product of two roots vanishes, or its absolute value equals
half the square length of the longest root. Moreover,

(11) β − sgn

(
2〈α, β 〉
〈α, α 〉

)
kα ∈ R, for all k ∈ Z, 1 ≤ k ≤

∣∣∣∣2〈α, β 〉〈α, α 〉

∣∣∣∣.
Definition A.3 ([11]). A set P of vectors in a Euclidean space (V, 〈 ·, · 〉) is called a
root sub-system if it satisfies the conditions R1 - R3 from Definition A.1 and if the set P
obtained from P by taking all possible reflections is a root system.
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