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Desargues, Doily, Dualities,
and Exceptional Isomorphisms

Bernhild Stroppel, Markus Stroppel

Für Herrn Professor Dr. G. Pickert aus Anlass seines 95. Geburtstags.

Abstract
We study various graphs associated with symmetric groups. This leads to a quick under-
standing of automorphisms, dualities and polarities both for the Desargues configuration
and the smallest generalized quadrangle. The results are used to establish the existence
of outer automorphisms of the symmetric group on six symbols, and the exceptional iso-
morphism between the alternating group on six symbols and the little projective group
of the projective line over the field with nine elements.
Mathematics Subject Classification: 20B25, 20B30, 51A10, 51E12, 51B10, 05E20, 51D20.
Keywords: symmetric group, Desargues configuration, generalized quadrangle, inver-
sive plane, automorphism, duality, polarity, exceptional isomorphism, incidence graph,
collinearity graph, confluence graph.

1 Introduction

The Desargues configuration is an incidence structure with ten points and ten lines; it plays
an important role in the foundations of geometry (see 1.2 below). It turns out that it is also
of great interest of its own; this is due to its inherent symmetry. We give a sleek description
of this configuration first:

1.1 Definition. Let F be a set of 5 elements. As point set, we take the set
(F

2
)

of all subsets
of size 2 in F, the set

(F
3
)

of lines consists of all subsets of size 3, and incidence is inclusion:
D :=

((F
2
)
,
(F

3
)
,⊂

)
.

It seems that this labeling dates back to [6, IV, §1]. In the present notes, we will use it to give
a simple proof of the (long known) fact that the automorphism group ofD is isomorphic to
the symmetric group S5. We will also generalize the construction, so that the Petersen graph,
the doily (viz., the smallest generalized quadrangle) and the inversive planes of orders 2
and 3 can be treated together with the Desargues configuration, in a certain uniform way.
The study of dualities will shed light on the (also known) fact that the group S6 admits
automorphisms that are not inner ones. Finally, we use our observations to show that the
alternating group A6 is isomorphic to the little projective group PSL(2, 9) of the projective
line over the field with nine elements.

Levi’s labeling (as used in 1.1) does not give a good geometric intuition — unless you are
used to look at projective spaces in dimension 4, like Levi [6]. There are many ways to draw
the Desargues configuration in the euclidean plane, see Fig. 1.

1

http://www.ams.org/mathscinet/freeTools.html
http://www.ams.org/mathscinet/search/mscbrowse.html?code=20B25
http://www.ams.org/mathscinet/search/mscbrowse.html?code=20B30
http://www.ams.org/mathscinet/search/mscbrowse.html?code=51A10
http://www.ams.org/mathscinet/search/mscbrowse.html?code=51E12
http://www.ams.org/mathscinet/search/mscbrowse.html?code=51B10
http://www.ams.org/mathscinet/search/mscbrowse.html?code=05E20
http://www.ams.org/mathscinet/search/mscbrowse.html?code=51D20


B. Stroppel, M. Stroppel Desargues, Doily, Dualities

The shaded triangles in these drawings hint at an interpretation that is used frequently:
We have two triangles that lie central with respect to some point (labeled 01 in the drawing
on the left in Fig. 1) and axial with respect to some line (containing the points with the labels
23, 34 and 24 in Fig. 1). Any such drawing will hide some of the inherent symmetry of the
configuration (but see Fig. 2 below).

01

04

03

02

12

13

14

23

34

24

Figure 1: Different drawings of the Desargues configuration.

The following fact has long been known, see [3, § 19] for a proof:

1.2 Desargues’ Theorem. If two triangles (a1, a2, a3) and (b1, b2, b3) in a projective space of dimen-
sion at least 3 are in central position (i.e., if the lines a j ∨ b j are confluent) then they are in axial
position, as well (i.e., the points (a j ∨ ak) ∧ (b j ∨ bk) are collinear).

The two triangles, the center and the points on the axis form a Desargues configuration.
There are, however, many projective planes containing triangles in central position that

are not in axial position. The reader may consult Hilbert’s classic [2, V § 30] for the role of
the Desargues configuration in the foundations of geometry, or get an impression how the
Desargues configuration is used to understand the wealth of projective planes from Chapter 3
of [9] or Sections IV, V and VI in [4]. The early history of non-desarguesian plane geometries
is traced in [15].

2 Some graphs associated with symmetric groups

Let F be any set (finite or not), and let n be a natural number. By
(F
n
)

we denote the set of all
subsets of size n in F. In order to save some brackets, we denote the sets {i, j} and {i, j, k} by i j
and i jk, respectively.

We need some terminology: an incidence structure (with two types) is a triplet P = (P,B, I)
consisting of two sets P and B together with the incidence relation I ⊆ P × B. Often, one
calls the elements of P points and those of B blocks (sometimes lines, edges, or circles), the
elements of I are also called flags. The dual P∗ = (B,P, I∗) of P is obtained by interchanging
the roles of points and blocks; with the incidence relation I∗ B {(b, p) | (p, b) ∈ I}. If each block
b ∈ B is determined by its point row Pb B {p ∈ P | (p, b) ∈ I} then we may replace B by the
set {Pb | b ∈ B}; the incidence relation is then just “∈”. The set of blocks through a point p is
denoted by Bp.

2
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A graph1 is an incidence structure G = (V,E,∈) where E ⊆
(V

2
)
. Traditionally, the points are

called vertices, the blocks are called edges, and two vertices are called adjacent if they form an
edge. The complement graph Gc B

(
V,

(V
2
)
r E,∈

)
has the same vertex set, but two vertices are

adjacent in Gc precisely if they are not adjacent in G.
Two different graphs are naturally defined on the set

(F
2
)
:

2.1 Definitions. The graphEF has
(F

2
)

as vertex set, and two vertices (i.e., two subsets of size 2
in F) are adjacent if they are disjoint2. The graphMF B EF

c is the complement graph of EF.
If F is finite of size n, we replace it by the set { j ∈N | j < n} of the same size, identifying
En B EF andMn BMF.

2.2 Buttons and laces. For any set F of small size n, one obtains nice (and self-explaining)
labels for the elements of

(F
2
)

and PF by fixing a set of n points (“button holes”) in a suitable
arrangement, endowed with marks (“laces”) that indicate the subsets in question. We have
taken inspiration from [10, 4.3, p. 54] (cf. also [11] and [17]).

2.3 Definition. To any incidence structure P = (P,B, I) we associate the following graphs:

• The incidence graph JP B (P
∐

B, {{p, b} | p ∈ P, b ∈ B, (p, b) ∈ I},∈) has the disjoint union3

P
∐

B as vertex set; a point and a block are adjacent precisely if they are incident.

• The collinearity graphCP ofP is the graph with vertex set P where an edge is put between
two vertices if, and only if, these points are joined by a block in P.

• The confluence graph of P is the collinearity graph CP∗ of the dual P∗.

2.4 Examples. Let F B {0, 1, 2, 3, 4} be the standard set of size 5.

(a) The Desargues configurationD =
((F

2
)
,
(F

3
)
,⊂

)
hasM5 =MF as its collinearity graph.

(b) Various graphical representations of the incidence graph JD of D are shown in Fig. 2:
in 2(a), one sees an automorphism of order 5 (and its powers) plus five involutions;
these elements clearly form a dihedral group of order 10. The pictures in Figs. 2(b), 2(c)
and 2(d) should be thought of as spatial representations of the graph. These pictures
allow to “see” actions of groups isomorphic to S2 × S3 and S4, respectively. It is also
possible to see certain polarities. See 5.3 below.

(c) The graph E5 is the famous Petersen graph, see Fig. 3.

2.5 Definition. Let G = (V,E,∈) be a graph. A clique in G is a subset C ⊆ V such that any two
vertices in C are adjacent in G; we call a clique C maximal if it is not contained as a proper
subset in any other clique in G.

2.6 Theorem. Let F be a finite set with at least 4 elements.

(a) If |F| is even then the set PF of maximal cliques in EF consists of all partitions of F into
two-element subsets (of F).

1We only consider unordered graphs without loops here.
2We think ofMeeting sets and Empty intersections.
3If P ∩ B , ∅we have to use one of the standard tricks to replace them by a pair of disjoint sets.

3
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(a) showing a 5-cycle, and the polarity γ

 34 23 24 013014 012

234

 01

 14

123

023

 04

134

 12

 02

034

124  13

 03024

(b) showing γ, γτ, and S2 × S3

 01

013

 24

234

024

 03  13

124

012

014

 34

 23

 02  12

123023

 14

134034

 04

(c) showing γ and γδ

 14

 24

 34

 04

014
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234

034

024

134

 01

 12

 23

 03

 02

 13

023

013

012

123

(d) showing S4

Figure 2: Pictures of the incidence graph JD; cf. 5.1, 5.2, and 5.3.
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Figure 3: Collinearity graph CD = M5 of the Desargues configuration (with two maximal
cliques indicated, on the left), and its complement (in the middle and once more on
the right): this is the Petersen graph E5.

(b) If |F| is odd then PF consists of all partitions of complements of singleton subsets in F into
two-element subsets (of F).

(c) The maximal cliques inMF fall into two disjoint sets, namely4
TF B

{
{ab, bc, ca}

∣∣∣ abc ∈
(F

3
)}

andVF B
{
{ax | x ∈ F r {a}}

∣∣∣ a ∈ F
}
.

Proof. The first two assertions are obvious. In order to prove the last one, we note first that
the elements of VF and those of TF are in fact maximal cliques ofMF. If ab and ac lie in a
maximal clique C then {ab, ac} , C because |F| > 3. For yz ∈ Cr {ab, ac}we then obtain yz = bc
or a ∈ yz. Thus C ∈ TF or C = {ax | x ∈ F r {a}} ∈ VF, as claimed. �

3 Reconstruction, and full groups of automorphisms

We start with a general observation:

3.1 Lemma. Let G = (V,E,∈) be a graph, and let B be a set of cliques such that for each edge e ∈ E
there exists at least one B ∈ B with e ∈ B. Then the collinearity graph C(V,B,∈) coincides with G, and
Aut (V,B,∈) ≤ Aut (G).

Proof. It follows immediately from our assumption that two vertices x, y ∈ V are collinear
in (V,B,∈) precisely if they form an edge in G. Thus C(V,B,∈) = G. Clearly Aut (V,B,∈) ≤
Aut (C(V,B,∈)). �

We return to our incidence geometries constructed from subsets of a set F. The group SF
of all permutations of F acts in an obvious way by automorphisms of the incidence geome-
triesMF, EF,

((F
2
)
,TF,∈

)
,
((F

2
)
,VF,∈

)
, or

((F
2
)
,PF,∈

)
. The action in question is faithful if |F| > 2;

we will then identify SF with the induced group of automorphisms.

3.2 Lemma. For any set F, the incidence structure
((F

2
)
,VF,∈

)
is dual to

(
F,

(F
2
)
,∈

)
. This is the

complete graph on F, and Aut
((F

2
)
,VF,∈

)
= Aut

(
F,

(F
2
)
,∈

)
= SF.

4Here we think of Triangles andVertices.
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3.3 Theorem. Let F be any set, and let X be one of MF, EF,
((F

2
)
,TF,∈

)
,
((F

2
)
,VF,∈

)
, or

((F
2
)
,PF,∈

)
.

If |F| > 5 then SF = Aut (X).

Proof. We already know that SF is contained in Aut (X). It is also clear that Aut (MF) =
Aut (EF) because EF is the complement ofMF.

The members of TF have size 3 while those of VF have size |F| − 1. For |F| , 4, this
means that Aut (MF) leaves both TF and VF invariant. Now Aut (MF) is contained in the
automorphism group of

((F
2
)
,TF,∈

)
, of

((F
2
)
,VF,∈

)
, and of

((F
2
)
,PF,∈

)
, respectively.

Conversely, Lemma 3.1 yields Aut
((F

2
)
,TF,∈

)
≤ Aut (MF) and Aut

((F
2
)
,PF,∈

)
≤ Aut (EF) =

Aut (MF). Finally, we have Aut
((F

2
)
,VF,∈

)
= SF by 3.2. �

3.4 Theorem. The automorphism group of the Desargues configuration is Aut (D) = S5.

Proof. The group Aut (D) contains S5 and is embedded in the automorphism group of the
collinearity graph CD = M5, see 2.4. Our claim follows from the fact that Aut (M5) = S5,
see 3.3. �

3.5 Examples. The small values n ∈ {2, 3, 4} form exceptions to our general results, as follows:

(a) The symmetric group S2 acts trivially on
(2
2
)
.

(b) The graph M3 has only one type of maximal cliques; the set V3 does not consist of
maximal cliques.

(c) The sets T4 and V4 are fused under the action of Aut (M4). The group Aut (M4) is
indeed larger than S4, it is a semi-direct product of S3 with an elementary abelian group
of order 23. Thus |Aut (M4) | = 24

· 3 = 2 |S4|. Indeed, the complement graphM4
c has 6

vertices and 3 edges; every vertex belongs to precisely one edge.

4 The doily

Generalized quadrangles play an important role in Jacques Tits’ theory of buildings, but they
are also a quite classical object of geometry because a large family of “classical” examples is
provided by certain ruled quadrics. We will only consider the smallest specimen here (which
represents the unique isomorphism type of generalized quadrangles of order 2, cf. [14]).

4.1 Example. Let S B {0, 1, 2, 3, 4, 5}, and recall that PS denotes the set of all partitions of S
into three subsets of size 2, cf. 2.6. The incidence structureW B

((S
2
)
,PS,∈

)
is a generalized

quadrangle (i.e., its incidence graph JW has diameter 4 and girth 8, and every vertex has
valency at least three). In fact, it represents the isomorphism type of the smallest generalized
quadrangle, known as the doily, see Fig. 4.

The incidence structureW is shown in Fig. 4, its incidence graph in Fig. 6. The collinearity
graph of the doily is CW = E6, shown in Fig. 5 (it is isomorphic to the confluence graph
because the doily admits dualities, see 5.4).

4.2 Theorem. The automorphism group of the doily is Aut (W) = S6.

Proof. This is a special case of 3.3. �

6
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Figure 4: The doilyW, and its dual.

05 25

15

35

12

23

34

40

30

41

02 13

45

24

01

Figure 5: The collinearity graph CW of the doily.

5 Dualities

Recall that a duality of an incidence structure P = (P,B, I) is an isomorphism from P onto its
dual P∗. Every duality induces an automorphism of the incidence graph JP interchanging P
with B. The duality is called a polarity if this automorphism of JP is an involution.

BothD andW admit polarities. These induce (via conjugation) involutory automorphisms

7
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of Aut (D) = S5 and Aut (W) = S6, respectively. We study these in detail now.

5.1 Example. Let F = {0, 1, 2, 3, 4}. Interchanging X with its complement F r X gives a
polarity γ of D =

((F
2
)
,
(F

3
)
,∈

)
. This polarity commutes with every element α ∈ Aut (D) = S5

because FrXα = (FrX)α. Therefore, it induces the identity on Aut (D) = S5, and Aut (JD) �
S2 × S5.

Every other duality of D is obtained as γα for some α ∈ Aut (D), and induces an inner
automorphism of S5. We note that γα is a polarity precisely if α2 = id.

For β, σ ∈ Aut (D) we have β−1(γσ)β = γβ−1σβ. This yields that dualities γα1 and γα2 are
conjugates under S5 precisely if α1 and α2 are conjugates in S5. Using the representatives
τ = (01) and δ = (01)(24) of involutions in S5, we obtain:

5.2 Theorem. The set of all polarities of D is the union of three conjugacy classes, represented by γ,
γτ, and γδ.

5.3 Remark. One sees γ as the reflection at the center of the drawings of the incidence graph
in Fig. 2(a), in Fig. 2(b), and also in Fig. 2(c) — note that the latter representations are meant
to be three-dimensional. The reflection in a horizontal plane shows γδ in Fig. 2(c), and a
half-turn around the vertical axis describes γτ in Fig. 2(b) (we also have to interchange the
two inner vertices on the vertical axis).

An edge of the incidence graph is called an absolute flag with respect to a polarity if it is
fixed by the polarity. One sees immediately that γ does not have any absolute flags at all. It
is less obvious but still true that γτ does not have absolute flags, cf. Fig. 2(b).

The set of absolute flags of γδ is
{
{02, 023}, {04, 034}, {12, 123}, {14, 134}

}
; this is quite obvious

from Fig. 2(c).

5.4 Examples. The doilyW admits polarities.
One of these can be seen in the representation of the incidence graph JW in Fig. 6, as the

reflection ρ at a vertical axis. The conjugate π = (35)ρ(35) of the polarity ρ is also visible in
Fig. 4: we map each label p ∈

(S
2
)

used in the left image to the partition pπ used as the label
for the same position in the right image.

For the sake of easy reference, we number the six holes, as shown in the
drawing on the right. Then the polarity π can be described explicitly, as
follows (we write elements of

(S
2
)

as sets here, for the sake of clarity):

5

0

1

2 3

4

• For a point of the form {5, j} with j ∈ {0, 1, 2, 3, 4}, the image under π is the partition{
{5, j}, { j + 1, j − 1}, { j + 2, j − 2}

}
.

• For { j, j + 2}with j ∈ {0, 1, 2, 3, 4}; the image under π is
{
{5, j + 1}, { j, j − 2}, { j + 2, j − 1}

}
.

• For { j, j + 1}with j ∈ {0, 1, 2, 3, 4}; the image under π is
{
{5, j − 2}, { j, j − 1}, { j + 1, j + 2}

}
.

Of course, addition in {0, 1, 2, 3, 4} is performed modulo 5.
We use different conjugates because the polarity ρ in Fig. 6 should invert5 the “visible”

automorphism ϕ B (01234) of order 5, while the polarity π in Fig. 4 should centralize ϕ.

5 The polarity ρ centralizes 〈(01245)〉.
8



Desargues, Doily, Dualities B. Stroppel, M. Stroppel

Figure 6: The incidence graph JW of the doily —
and the complement of the confluence graph of the inversive plane Ip3 of order 3.

Conjugation by a duality of an incidence structure P induces an automorphism of Aut (P).
In particular, the polarity π ofW induces an involutory automorphism of Aut (W) = S6.

5.5 Theorem. For any duality δ of W, conjugation by δ induces an automorphism of S6 that is not
an inner automorphism of S6. In particular, conjugation by the polarity π induces an involutory
automorphism of S6 that is not inner.

Proof. For each ab ∈
(S

2
)
, the transposition τ = (ab) ∈ S6 is an automorphism of W fixing

precisely 7 points; namely, the point ab and each point collinear with ab. The lines fixed
by τ are precisely those through the point ab. Conjugation by any duality δ (such as π)
interchanges the set of fixed points of τ with the set of fixed lines of δ−1τδ. Thus τ and δ−1τδ
cannot be conjugates in the group S6. �

9
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5.6 Remark. Among all symmetric groups, the group S6 is singled out by the existence of
automorphisms that are not inner. For a nice proof, see [7]. An analogous result holds
for the alternating groups, see [8], cf. [19, 2.4.1]. See [19, 2.4.2] for a purely group theoretic
construction of an outer automorphism of S6 (using the fact that S5 has 6 Sylow 5-subgroups).

5.7 Classification of polarities. The doily is just the startW =W(2) of the infinite family of
(finite) symplectic quadranglesW(q) where q is a prime power. Note thatW(q) admits dualities
precisely if q is even, and thatW(q) admits polarities precisely if q is even and not a square,
cf. [12, 4.9]. One knows that there is just one conjugacy class of polarities, cf. [12, 5.4] (and
use the fact that there is at most one Tits endomorphism in a finite field).

One could also derive directly from our present description that there is only one conjugacy
class of polarities of the doily. However, this requires a detailed study of the action of π on
(conjugacy classes in) S6; cf. [17, 5.3].

6 Inversive planes

6.1 Definition. An incidence structure I = (P,C, I) is called a finite inversive plane of order n if
for each point p ∈ P the affine derivation Ip B (P r {p},Cp, Ip) at p is an affine plane of order n;
here Ip denotes the intersection of I with (P r {p}) × Cp.

We note that this is not the standard definition of inversive plane, but equivalent to the
usual one (see [1, 6.1, p. 253]) — and very well suited for our discussion here. The blocks of
an inversive plane are called circles because of the following fact (which is, in fact, one of the
axioms in the standard definition):

6.2 Lemma. Through any set of three points in an inversive plane there is precisely one circle. �

6.3 Example. We construct an inversive plane Ip3 of order 3, as follows. As point set, we take
the set P of all partitions of S B {0, 1, 2, 3, 4, 5} into three-element subsets. The set C of circles
is the union of

(S
2
)

and the set of all partitions of S into elements of size two. We resume our
convention that ab denotes {a, b} and xyz denotes {x, y, z}.

If xyz ∈
(S

3
)

then [xyz] denotes the partition {xyz,S r xyz}. A point [xyz] and a circle ab are
incident if xyz∩ ab has an even number of elements (i.e., if ab is completely contained in one
of the members of the partition). The point [xyz] is incident with the partition {ab, cd, e f } if
each one of the intersections xyz ∩ ab, xyz ∩ ab, and xyz ∩ e f has precisely one element.

Clearly S6 acts by automorphisms on this incidence structure, and that action is transitive
on the set of points.

The blocks of Ip3 through 024 are those in{
02, 13, 24, 35, 40, 51, {03, 14, 25}, {01, 23, 45}, {12, 34, 50}, {01, 25, 34}, {12, 30, 45}, {23, 41, 50}

}
.

In Table 1, we list the point rows of these lines in columns (skipping the point 024 which
belongs to each of these blocks); the black button on top indicates the line; the white buttons
below denote the points. In Fig. 7 we have labeled the points of the affine plane of order 3
with these point labels; one checks without difficulty that the lines of Table 1 are those in the
image of the affine plane. Thus we have verified that the affine derivation of Ip3 at 024 is an
affine plane of order 3. Transitivity of the automorphism group on the point set now gives
that Ip3 is indeed an inversive plane of order 3.

10
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Table 1: The lines of the affine derivation of Ip3 at 024.

The incidence graph and the collinearity or confluence graph of Ip3 are quite complicated
to draw. However, the complement of the confluence graph is rather simple: it is the same as
the incidence graph of the doily, see Fig. 6.

6.4 Lemma. The automorphism group of the inversive plane Ip3 contains S6 and is contained in
Aut (JW) = Aut (S6).

Proof. Clearly, we have S6 ≤ Aut (Ip3). The automorphism group of Ip3 acts on the confluence
graph CIp∗3 and then also on its complement graph. The latter is isomorphic to the incidence
graph of the doily, and we obtain Aut (Ip3) ≤ Aut (JW) = Aut (S6), cf. 4.2. �

6.5 Remark. There is only one isomorphism class of inversive planes, respectively, of order 2
or 3. For the planes of order 2, this is obvious; each such plane is isomorphic to

(
F,

(F
3
)
,∈

)
, for

any set F of order 5. The case of order 3 can be solved by direct and elementary arguments
([20], see 7.2 below); it also follows from a general — and much deeper — result, cf. [18].

The inversive planes of orders 2 and 3 are members of an infinite family of finite inversive
planes, constructed as follows: Take the field K B Fq of order q, and let L = Fq2 denote
the quadratic extension field. The point set of the projective line over K is embedded
in the point set PG(1,L) = {L v | v ∈ L2 r {0}} of the projective line over L as PG(1,K) B
{L v | v ∈ K2 r {0}}. We let CK denote the orbit of this subset under the natural action of
PΓL(2,L). Then IpK = (PG(1,L),CK,∈) is an inversive plane of order q = |K|. The full group
of automorphisms of IpK is just the group PΓL(2,L), cf. [1, 6.4.1]. In 6.6 below, we will only
need the rather obvious part of this assertion; namely, that PΓL(2,L) is contained in Aut (IpK).

Of course, we have Ip3 � IpF3
, and Aut (Ip3) � PΓL(2, 9) follows. This group has order

25
· 32
· 5 = 6! · 2.

6.6 Theorem. The automorphism group of the inversive plane Ip3 coincides with the automorphism
group of the incidence graph of the doily; and thus with Aut (S6).

Proof. It is clear that PΓL(2, 9) acts on IpF3
. The isomorphism IpF3

� Ip3 from 6.5 thus
yields |Aut (Ip3) | = |Aut (IpF3

) | ≥ |PΓL(2, 9)| = 25
· 32
· 5 = 6! · 2 = 2 |S6|. Now 6.6 yields the

assertion. �

As a corollary, we obtain one of the famous exceptional isomorphisms between finite
simple groups:

11
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6.7 Theorem. The groups PΓL(2, 9) and Aut (S6) are isomorphic, and so are their commutator
subgroups PSL(2, 9) and A6.

Note that PGL(2, 9) and S6 are not isomorphic; there are three different groups of order 6!
between A6 and Aut (S6).

7 Uniqueness of small inversive planes

It is easy to see that affine planes and inversive planes of order 2 are unique up to isomorphism
— we just obtain

(
A,

(A
2
)
,∈

)
and

(
F,

(F
3
)
,∈

)
, with |A| = 4 and |F| = 5, respectively. Note that the

automorphism groups are Aut
(
A,

(A
2
)
,∈

)
= SA � S4 and Aut

(
F,

(F
3
)
,∈

)
= SF � S5, respectively,

cf. 3.2. Figure 7 gives graphical representations of the affine planes of order 2 and 3.

Figure 7: The affine planes of order 2 and 3.

7.1 Proposition. Any two affine planes of order 3 are isomorphic. The automorphism group of any
affine plane of order 3 acts transitively on the set of non-degenerate quadrangles (i.e., sets of four
points such that no three of them are collinear).

Proof. In any non-degenerate quadrangle Q in an affine plane of order 3, the six lines joining
the four points form three sets such that two of them consist of parallel lines, the third
contains two lines intersecting in a point outside Q.

We choose a quadrangle and draw the two classes of parallels to the two non-intersecting
pairs of joining lines. Adding the missing lines (avoiding to add lines that contain two
points that are joined already) one finds that these missing lines are just those marked in
the drawing in Fig. 7. Thus there is just one isomorphism type of affine planes of order 3.
As our drawing of the plane may start with any non-degenerate quadrangle, we obtain the
transitivity assertion, as well. �

Now if we want to construct an inversive plane I of order 3, we may start with the affine
plane of order 3 and take it as the affine derivation Ip. Then it remains to find the circles
not passing through p; each one of these is a set of four points in the affine plane such that
no three of them are collinear. From 7.1 we infer that we may choose one circle S arbitrarily
among the non-degenerate quadrangles. We have fixed such a choice in Fig. 8(a); it consists
of the black points.

12
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(a) starting with circle S (b) finding the circle Q0

Figure 8: Finding circles for an inversive plane of order 3.

In I, there are 1 + 9 = 10 points, we have 12 circles through any given point (this is the
number of lines in an affine plane of order 3), and every circle contains 1 + 3 = 4 points. This
yields that there are 10 · 12 flags, and thus 120/4 = 30 circles. We know 12 + 1 = 13 of them
already, and proceed to determine the remaining ones. We use the observation 6.2 that each
circle is determined by any three of its points.

Consider the circle Q0 through the three points on the lower right corner of our drawing,
marked black in the first image in 8(b). The circle S contains two of these points. Therefore,
no other point of S (marked gray in the image) lies in Q0. The points marked by dots are on
lines containing two black points; thus none of these points belongs to Q0. Only one point
remains to complete Q0. Anti-clockwise rotation of the triplet of points yields the circles Q1,
Q2, and Q3.

(a) finding the circle Y0 (b) finding the circle R0

Figure 9: Finding more circles for an inversive plane of order 3.

Now we start with the three black points in the image of 9(a). The gray points belong to Q1
and Q2, respectively. The dots mark points on lines through two of the black points. We
obtain the circle Y0, and rotation gives Y1, Y2, and Y3.

We proceed in 9(b) and 10(a) in analogous ways: gray points belong to already established
circles sharing two points with the new circle in question (we use Q3, Y0 in 9(b) and Q3, S
in 10(a)), and dots mark points on joining lines.

We have thus found the 17 circles S,Q0,Q1,Q2,Q3,Y0,Y1,Y2,Y3,R0,R1,R2,R3, J0, J1, J2, J3
in addition to the 12 lines (i.e., circles through p). It remains to find one last circle L; this is
done in 10(b) using Y1 and Y2 (or R0 and R1). After the choice of S (which was unique up to
an automorphism of the affine plane) the set of the remaining circles is determined uniquely.

13
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(a) finding the circle J0 (b) finding the circle L

Figure 10: Finding the last circles for an inversive plane of order 3.

This means:

7.2 Theorem. There is precisely one isomorphism type of inversive planes of order 3. �

8 Further exceptional isomorphisms

We briefly mention two isomorphisms between classical groups that are related to the topics
discussed in this note.

It is well known (cf. [5, I, 8.14]) that there is only one isomorphism class of simple groups
of order 60, containing A5, PSL(2, 4), PSL(2, 5) and the commutator group Ω−(4, 2) of the
orthogonal group with respect to a quadratic form of Witt index 1 on a 4-dimensional vector
space over the field with two elements.

The group ΓL(2, 4) � PΓL(2, 4) is contained in Sp(4, 2) � PSp(4, 2) = PΓSp(4, 2), the auto-
morphism group of the symplectic quadrangle over the field with 2 elements. This yields a
natural action of PΓL(2, 4) on the doily; a spread is left invariant, and we find PΓL(2, 4) � S5
See [16] for details on the embedding and the action, for general ground fields.

The dual of the symplectic quadrangle is (in the finite case) the orthogonal quadrangle
defined by a quadratic form of Witt index 2 on a vector space of dimension 5. If the ground
field admits a suitable quadratic extension (in particular, if the ground field is finite) then
that vector space contains a hyperplane such that the restriction of the quadratic form has
Witt index 1. This hyperplane then defines an ovoid in the orthogonal quadrangle, invariant
under the corresponding orthogonal group. For the case of the finite field of order q, we
obtain the group O−(4, q), and for q = 2 we find the group O−(4, 2) in the stabilizer of
an ovoid in the orthogonal quadrangle of order 2 (which is isomorphic to the doily, by
uniqueness). The stabilizer in this smallest case is isomorphic to S5, the orders coincide, and
we obtain O−(4, 2) � S5. The restriction of that isomorphism to the commutator groups is the
isomorphism Ω−(4, 2) � A5 mentioned above.
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2010-007 Grundhöfer, T.; Krinn, B.; Stroppel, M.: Non-existence of isomorphisms between certain
unitals

http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-018.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-017.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-016.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-015.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-014.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-013.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-012.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-011.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-010.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-009.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-008.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-007.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-006.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-005.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-004.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-003.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-002.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-001.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-018.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-017.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-016.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-015.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-014.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-013.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-012.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-011.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-010.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-009.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-008.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2010/2010-007.pdf
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