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On the Prime Graph of the Unit Group
of Integral Group Rings of Finite Groups

II

W. Kimmerle and A. Konovalov

1. Introduction

Let G be a group. The prime graph Π(G) is defined as follows. The vertices of Π(G) are the
primes p for which G has an element of order p. Two different vertices p and q are joined by an
edge provided there is an element of G of order pq.

The integral group ring of G is denoted by ZG and V (ZG) denotes the subgroup of the unit
group U(ZG) consisting of all units with augmentation 1. The object of this article, which is a
continuation of [14], is the prime graph of V (ZG) in the case when G is a finite group.

The question is whether the prime graph of V (ZG) coincides with that of G [13, Problem 21].
This question, known as the “Prime Graph Question” (PQ) may be regarded as a weak version of
the first Zassenhaus conjecture ZC–1 which says that each torsion unit of V (ZG) is conjugate to
an element of G – here G is considered in a natural way as subgroup of V (ZG) and its elements are
then called trivial units of ZG. The conjecture ZC–1 is certainly one of the major open questions
for integral group rings and if it is valid for a specific group G it provides of course a positive
answer to the prime graph question for V (ZG).

In Section 2 we reduce the study of the prime graph question to the study of nonabelian
composition factors and their automorphism groups. This gives many calculations made in the
last years with respect to simple groups (see e.g. [2, 3, 9]) a new value. These calculations are
not only examples. In particular with respect to sporadic simple groups they might be the only
way to a general result. We note that not only simple groups have to be checked but also their
automorphism groups have to be examined which has been done up to now only very rarely.

In Section 3 we consider groups whose order is only divisible by three primes. The prime
graph question has a positive answer for all simple groups G of this type and for all their groups of
automorphisms sandwiched betweenG and AutG except possibly the cases of M10 and PGL(2, 9) ∼=
A6.22. For these two groups we are not yet able to show that the normalized unit group of its
integral group ring has no elements of order 6.

2. The reduction to almost simple groups

An almost simple group is a subgroup of the automorphism group of a finite non-abelian simple
group which contains InnG ∼= G. The object of this section is the following result which reduces
the prime graph question to the study of almost simple groups.

Theorem 2.1. Let G be a finite group. Assume that for each almost simple group X which occurs
as image of G the prime graph question has a positive answer. Then the prime graph question has
a positive answer for G.

The first step for the proof is the following.
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Proposition 2.2. [14, Proposition 4.3] Let

1 −→ A −→ E
φ−→ G −→ 1

be a short exact sequence of groups. Assume that A is a p - group. Then

Π(V (ZG)) = Π(G) =⇒ Π(V (ZE)) = Π(E).

So it remains to study what happens under minimal perfect extensions.

Proposition 2.3. Let

1 −→ N −→ E
φ−→ G −→ 1

be a short exact sequence of groups. Assume that N is a perfect minimal normal subgroup of G.
Let q ∈ π(E) \ π(N) and p ∈ π(E) with q 6= p. Then V (ZE)) has elements of order p · q if and
only if E has elements of this order.

Proof. Note first that if G has elements of order p ·q then E has elements of order p ·q. Assume
that V (ZE) has a unit u of order p · q but E does not have an element of this order. Then G has
no elements of order p · q and it follows from the assumption that φ̂(up) = 1 or φ̂(uq) = 1, where
φ̂ denotes the homomorphism from V (ZE) to V (ZG) induced from φ.

Let v be a non-trivial torsion unit of ZE. By [17, Theorem 2.7] the partial augmentations of v
for a conjugacy class of elements whose order is divisible by a prime not dividing the order of V
are zero. By S.D. Berman [1] and G. Higman [12, 18] the 1-coefficient of non-trivial torsion units
with augmentation 1 has to be zero. It follows that torsion elements of prime order in the kernel
of φ̂ divide the order of N. Because of the assumption that q does not divide |N | we must have
φ̂(uq) = 1.

For a group X and a prime r denote by X(r) the set of all elements of X which order is a
positive power of r. Write u as

u =
∑

g∈E(p)

agg +
∑

g∈E(q)

bgg +
∑
g∈R

cgg,

where R = E \ (E(p) ∪ E(q)). Clearly

φ̂(u) =
∑

g∈E(p)

agφ(g) +
∑

g∈E(q)

bgφ(g) +
∑
g∈R

cgφ(g),

By the previous φ̂(u) has order q. Thus by [17] u has on conjugacy classes of elements in R partial
augmentation zero. If x ∈ E(p) and φ(x) 6= 1 then the partial augmentation of φ(x) is zero.
Thus the sum of partial augmentations of y ∈ E with φ(y) = x is zero. Note that y is either an
element of E(p) or of R. Finally, if x ∈ E(q), then φ(x) 6= 1 because q does not divide |N |. Thus
the 1-coefficient of φ(u) is the sum of partial augmentations of elements of E(p) and R. Again by
Berman and Higman the 1-coefficient of φ(u) is zero. Summarizing, we get that∑

g∈E(p)

ag +
∑
g∈R

cg = 0.

(Note that the arguments even show that
∑
g∈E(p) ag =

∑
g∈R cg = 0. However this fact will not

be required for the proof of the proposition.)
Because normalized units have augmentation 1 it follows that

(∗)
∑

g∈E(q)

bg = 1.

Now uq has order p and clearly

uq ≡
∑

g∈E(p)

agg
q +

∑
g∈E(q)

bgg
q +

∑
g∈R

cgg
q mod [ZE,ZE] + qZE.
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Again by Berman and Higman and by [17] applied now to uq it follows that the sum over the
coefficients of uq of all elements of order a positive power of q is also zero. Hence we see that∑

g∈E(q)

bg ≡ 0 mod q.

This contradiction to (∗) completes the proof. �

Remarks. a) Instead of [17, Theorem 2.7] we could have used the stronger result [9, Theorem
2.3] which says that partial augmentations of a torsion unit of ZG are non-zero only for conjugacy
classes of G whose representative has order dividing that one of u. It is clear that this and modi-
fications of the arguments for Proposition 2.3 will lead to stronger results on the possible orders
of torsion units in integral group rings. However in this article we restrict ourselves on (PQ).
b) A typical example for an application of Proposition 2.3 is the automorphism group of the
smallest Suzuki group Sz(8). Because 3 does not divide |Sz(8)| but |Out(Sz(8)| = 3 it follows from
Proposition 2.3 that V (ZAut(Sz(8)) has elements of order 3 · p if, and only if, this is the case in
Aut(Sz(8)).

Proof of Theorem 2.1. Clearly Theorem 2.1 holds when G itself is almost simple.
Thus we may apply induction on the length of a chief series. If G has a minimal normal

subgroup N which is abelian we see by Proposition 2.2 that the Theorem is valid provided it holds
for G/N.

Suppose that all minimal normal subgroups of G are perfect. Let p, q ∈ π(G) be different primes
and suppose that V (ZG) has an element of order p · q. By Proposition 2.3 it follows that G has an
element of order p · q provided p ∈ π(G) \ π(G/N) or q ∈ π(G) \ π(G/N) for at least one minimal
normal subgroup N. So assume that p and q divide the order of each minimal normal subgroups
of G.

If G has at least two different minimal normal subgroups N1, N2 then obviously G has elements
of order p · q because N1 ×N2 is a subgroup of G. The same argument applies if G has a minimal
normal perfect subgroup which is not simple because such a subgroup is a direct product of at
least two copies of isomorphic simple groups.

Thus the only case which remains is that G has a unique minimal normal subgroup which is a
non-abelian simple group S and p and q divide the order of S. But this case holds by assumption.

�

3. Groups of orders divisible by three primes only

The goal of this section is the following result.

Theorem 3.1. Let G be a finite group of order paqbrc, where p, q and r are primes. Then
Π(V (ZG) = Π(G) except possibly the case that M10 or PGL(2, 9) = A6.22 are involved in G.

Proof. By [11] the simple groups of order divisible by three primes only are

PSL(2, 5) ∼= A5, PSL(2, 7), PSL(2, 8), PSL(2, 9) ∼= A6

PSL(2, 17), PSL(3, 3), PSP (3, 4) ∼= U(4, 2), U(3, 3).

For some of these groups and their automorphism groups the first Zassenhaus conjecture ZC–
1 holds. This has been proved for A5 and S5 by Luthar and Passi [15] and by Luthar and
Trama [16] respectively. Hertweck verified the prime graph question for PSL(2, p), p a prime [9]
and for A6 [10].

For the remaining cases the Luthar-Passi-Hertweck algorithm (also called the HeLP-method)
yields the following.

Case 1. Let G = PSL(2, 8). Then |G| = 504 = 23 · 32 · 7 and exp(G) = 126 = 2 · 32 · 7. The
group G has elements of orders 2, 3, 7 and 9. By [8] (Proposition 3.1), it follows immediately that
torsion units of orders 2 and 3 are rationally conjugate to an element of G.
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For torsion units of order 7 we obtain the system of inequalities

µ1(u, χ7, ∗) = 1
7 (5ν7a − 2ν7b − 2ν7c + 9) ≥ 0;

µ2(u, χ7, ∗) = 1
7 (−2ν7a + 5ν7b − 2ν7c + 9) ≥ 0;

µ3(u, χ7, ∗) = 1
7 (−2ν7a − 2ν7b + 5ν7c + 9) ≥ 0;

µ1(u, χ2, 2) = 1
7 (5ν7a − 2ν7b − 2ν7c + 2) ≥ 0;

µ2(u, χ2, 2) = 1
7 (−2ν7a + 5ν7b − 2ν7c + 2) ≥ 0;

µ3(u, χ2, 2) = 1
7 (−2ν7a − 2ν7b + 5ν7c + 2) ≥ 0;

µ1(u, χ5, 2) = 1
7 (3ν7a + 3ν7b − 4ν7c + 4) ≥ 0;

µ2(u, χ5, 2) = 1
7 (−4ν7a + 3ν7b + 3ν7c + 4) ≥ 0;

µ3(u, χ5, 2) = 1
7 (3ν7a − 4ν7b + 3ν7c + 4) ≥ 0;

which has only three solutions:

(ν7a, ν7b, ν7c) ∈ {(1, 0, 0), (0, 0, 1), (0, 1, 0)}.

For torsion units of order 9, first in inequalities

µ3(u, χ2, ∗) = 1
9 (6ν3a − 3ν9a − 3ν9b − 3ν9c + 3) ≥ 0;

µ0(u, χ2, ∗) = 1
9 (−12ν3a + 6ν9a + 6ν9b + 6ν9c + 3) ≥ 0;

put t1 = 2ν3a − ν9a − ν9b − ν9c, then t1 = −1.
Next, in inequalities

µ1(u, χ2, 2) = 1
9 (+6ν9a − 3ν9b − 3ν9c + 3) ≥ 0;

µ1(u, χ3, ∗) = 1
9 (−6ν9a + 3ν9b + 3ν9c + 6) ≥ 0;

put t2 = +2ν9a − ν9b − ν9c, then t2 ∈ {−1, 2}.
Finally, in inequalities

µ2(u, χ3, ∗) = 1
9 (+3ν9a − 6ν9b + 3ν9c + 6) ≥ 0;

µ2(u, χ2, 2) = 1
9 (−3ν9a + 6ν9b − 3ν9c + 3) ≥ 0;

put t3 = +ν9a − 2ν9b + ν9c, then t3 ∈ {−2, 1}.
After adding the condition ν3a + ν9a + ν9b + ν9c = 1, solving the system of linear equations for

each possible combination of t1, t2 and t3 and using the additional inequality

µ4(u, χ2, 2) = 1
9 (−3ν9a − 3ν9b + 6ν9c + 3) ≥ 0;

we obtain only three possible solutions for partial augmentations of torsion units of order 9:

(ν3a, ν9a, ν9b, ν9c) ∈ {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0)}.

Thus, torsion units of orders 2, 3, 7 and 9 are rationally conjugate to group elements. It remains
to show that no other orders of torsion units are possible in ZG, and it suffices to show this for
orders 6, 14 and 21.

For elements of order 6, the system of inequalities

µ0(u, χ2, ∗) = 1
6 (−2ν2a − 4ν3a + 2) ≥ 0;

µ1(u, χ2, ∗) = 1
6 (−ν2a − 2ν3a + 10) ≥ 0;

µ3(u, χ2, ∗) = 1
6 (2ν2a + 4ν3a + 4) ≥ 0;

µ0(u, χ3, ∗) = 1
6 (−2ν2a + 2ν3a + 8) ≥ 0;

has no solutions.



5

For elements of order 14, we use (2, 7)-constant characters approach (cf. [3]). Taking the
ordinary character χ2 with χ2(1) = 7, χ2(C2) = −1, χ2(C7) = 0, we obtain the system

µ0(u, χ2, 0) = 1
14 (−6ν2 + 6) ≥ 0;

µ7(u, χ2, 0) = 1
14 (6ν2 + 8) ≥ 0;

µ1(u, χ2, 0) = 1
14 (ν2 + 8) ≥ 0;

which has no solutions.
Similarly, for elements of order 21 we use the same character χ2 to construct the system

µ0(u, χ2, 0) = 1
21 (−24ν3 + 3) ≥ 0;

µ7(u, χ2, 0) = 1
21 (12ν3 + 9) ≥ 0;

µ1(u, χ2, 0) = 1
21 (−2ν3 + 9) ≥ 0;

which has no solutions.
Therefore, the 1st Zassenhaus conjecture holds for PSL(2, 8).

Case 2. Let G = PSL(3, 3). Then |G| = 5616 = 24 ·33 ·137 and exp(G) = 312 = 23 ·3 ·13. The
group G has elements of orders 2, 3, 4, 6, 8 and 13. By [8] (Proposition 3.1), it follows immediately
that torsion units of orders 2 are rationally conjugate to an element of G.

Using the Luthar–Passi–Hertweck method, we are able to show the rational conjugacy for
torsion units of orders 4, 8 and 13, but we are unable to eliminate non-trivial solutions for orders 3
and 6. However, for the prime graph question, we need only to show that V (ZG) has no elements
of orders 26 and 39.

For elements of order 26, we use the (2, 13)-constant ordinary character χ3 of degree 13, with
χ3(C2) = −3 and χ(C13) = 0. Then the system

µ0(u, χ3, 0) = 1
26 (−36ν2 + 10) ≥ 0;

µ13(u, χ3, 0) = 1
26 (36ν2 + 16) ≥ 0;

µ1(u, χ3, 0) = 1
26 (−3ν2 + 16) ≥ 0;

has no solutions.
For elements of order 39, we use the (3, 13)-constant ordinary character χ8 of degree 26, with

χ(C3) = −1 and χ(C13) = 0. It yields

µ0(u, χ8, 0) = 1
39 (−24ν3 + 24) ≥ 0;

µ13(u, χ8, 0) = 1
39 (12ν3 + 27) ≥ 0;

µ1(u, χ8, 0) = 1
39 (−1ν3 + 27) ≥ 0;

and this system has no solutions either.

Case 3. Let G = PSP (3, 4) ∼= U(4, 2). Then |G| = 25920 = 26 · 34 · 5 and exp(G) = 180 =
22 · 32 · 5. The group G has elements of orders 2, 3, 4, 5, 6, 9 and 12. By [8] (Proposition 3.1), it
follows immediately that torsion units of order 5 are rationally conjugate to an element of G. To
give the positive answer to the (PQ) we need to show that V (ZG) has no elements of orders 10
and 15.

For elements of order 10, we use ordinary characters χ9 of degree 20 with χ9(C2) = 4 and
χ9(C5) = 0, and χ17 of degree 45 with χ17(C2) = −3 and χ17(C5) = 0. Then the system

µ0(u, χ9, 0) = 1
10 (16ν2 + 24) ≥ 0;

µ5(u, χ9, 0) = 1
10 (−16ν2 + 16) ≥ 0;

µ1(u, χ17, 0) = 1
10 (−3ν2 + 48) ≥ 0;

has no solutions.
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For elements of order 15, first we use the ordinary characters χ11 of degree 30 with χ11(C3) = 3
and χ11(C5) = 0. Then from

µ0(u, χ11, 0) = 1
15 (24ν3 + 36) ≥ 0;

µ5(u, χ11, 0) = 1
15 (−12ν3 + 27) ≥ 0;

it follows that ν3 = 1, so ν5 = 0. Now using the ordinary character χ20 of degree 81 such that
χ20(C3) = 0 and χ20(C5) = 1, we obtain that µ0(u, χ20, 0) = 1

15 (8ν5 + 85) ≥ 0 is not an integer
when ν5 = 0.

Case 4. Let G = U(3, 3). Then |G| = 6048 = 25 ·33 ·7 and exp(G) = 168 = 23 ·3 ·7. The group
G has elements of orders 2, 3, 4, 6, 7, 8 and 12. By [8] (Proposition 3.1), it follows immediately
that torsion units of order 2 are rationally conjugate to an element of G. To give the positive
answer to the (PQ) we need to show that V (ZG) has no elements of orders 14 and 21.

For elements of order 14, consider the ordinary character χ4 of degree 7 with χ(C2) = 3,
χ(C7) = 0. Then the system of constraints

µ0(u, χ4, 0) = 1
14 (18ν2 + 10) ≥ 0;

µ1(u, χ4, 0) = 1
14 (3ν2 + 4) ≥ 0;

µ7(u, χ4, 0) = 1
14 (−18ν2 + 4) ≥ 0;

has no solutions.
For elements of order 21, consider the ordinary character χ10 of degree 27 with χ10(C3) = 0,

χ10(C7) = −1. Then the system

µ0(u, χ10, 0) = 1
21 (−12ν7 + 21) ≥ 0;

µ1(u, χ10, 0) = 1
21 (−1ν7 + 28) ≥ 0;

µ7(u, χ10, 0) = 1
21 (6ν7 + 21) ≥ 0;

has no solutions.
Now we need to look at automorphism groups, as specified in the next table (we use the same

notations for groups as in the GAP Character Table Library [5]). Only the case of S5 is covered by
Luthar and Trama in [16]. For the remaining groups, we will investigate the prime graph question
(PQ) below. Note that for some groups the results are stronger.

G Aut(G) Remark
PSL(2, 5) ∼= A5 S5

PSL(2, 7) PSL(3, 2) : C2
PSL(2, 8) PSL(2, 8).3

PSL(2, 9) ∼= A6 (A6.C2) : C2 i.e. to check:S6, A6.22,M10, A6.22

PSL(2, 17) PSL(2, 17).2
PSL(3, 3) PSL(3, 3).2

PSP (3, 4) ∼= U(4, 2) U(4, 2).2
U(3, 3) U(3, 3).2

• Let G = Aut(PSL(2, 7)) = PSL(3, 2) : C2. Then |G| = 336 = 24 · 3 · 7 and exp(G) = 168 =
23 ·3 ·7. The group G has elements of orders 2, 3, 4, 6, 7 and 8. By [8] (Proposition 3.1), it follows
immediately that torsion units of orders 3 and 7 are rationally conjugate to an element of G. For
this automorphism group we are able to show that the first Zassenhaus conjecture holds, and to
do this it remains to prove rational conjugacy for torsion units of orders 2, 4, 6 and 8, and then
show that V (ZG) has no elements of orders 12, 14 and 21.

For units of order 2, the system of inequalities

µ0(u, χ2, ∗) = 1
2 (ν2a − ν2b + 1) ≥ 0;

µ1(u, χ2, ∗) = 1
2 (−ν2a + ν2b + 1) ≥ 0;

has only two trivial solutions (ν2a, ν2b) ∈ {(1, 0), (0, 1)}.



7

For units of order 4, the system

µ0(u, χ2, ∗) = 1
4 (2ν2a + 2ν4a − 2ν2b + 2) ≥ 0;

µ2(u, χ2, ∗) = 1
4 (−2ν2a − 2ν4a + 2ν2b + 2) ≥ 0;

µ0(u, χ3, ∗) = 1
4 (−4ν2a + 4ν4a + 4) ≥ 0;

µ2(u, χ3, ∗) = 1
4 (4ν2a − 4ν4a + 4) ≥ 0;

has only three solutions (ν2a, ν4a, ν2b) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. After the Cohn-Livingstone
test (Theorem 4.1, [6]) it remains only one solution (ν2a, ν4a, ν2b) = (0, 1, 0).

For units of order 6 we need to consider two cases dependently on whether χ(u3) = χ(2a) or
χ(u3) = χ(2b).

When χ(u3) = χ(2a), we obtain the system

µ0(u, χ3, ∗) = 1
6 (−4ν2a + 4) ≥ 0;

µ2(u, χ3, ∗) = 1
6 (2ν2a + 4) ≥ 0;

µ0(u, χ8, ∗) = 1
6 (−2ν3a + 4ν2b − 2ν6a + 6) ≥ 0;

µ1(u, χ8, ∗) = 1
6 (−ν3a + 2ν2b − ν6a + 9) ≥ 0;

µ3(u, χ8, ∗) = 1
6 (+2ν3a − 4ν2b + 2ν6a + 6) ≥ 0;

µ0(u, χ3, 7) = 1
6 (−2ν2a − 2ν2b + 4ν6a + 2) ≥ 0;

µ0(u, χ4, 7) = 1
6 (−2ν2a + 2ν2b − 4ν6a + 2) ≥ 0;

µ0(u, χ5, 7) = 1
6 (2ν2a − 2ν3a + 2ν2b + 2ν6a + 4) ≥ 0;

which has no solutions.
When χ(u3) = χ(2b), we get the system

µ0(u, χ3, ∗) = 1
6 (−4ν2a + 6) ≥ 0;

µ3(u, χ3, ∗) = 1
6 (4ν2a + 6) ≥ 0;

µ0(u, χ8, ∗) = 1
6 (−2ν3a + 4ν2b − 2ν6a + 8) ≥ 0;

µ1(u, χ8, ∗) = 1
6 (−ν3a + 2ν2b − ν6a + 7) ≥ 0;

µ3(u, χ8, ∗) = 1
6 (+2ν3a − 4ν2b + 2ν6a + 4) ≥ 0;

which has only one trivial solution (ν2a, ν3a, ν2b, ν6a) = (0, 0, 0, 1).
For elements of order 8, we have to consider two cases: χ(u4) = χ(2a) and χ(u4) = χ(2b).
When χ(u4) = χ(2a), we get the system of inequalities

µ0(u, χ2, ∗) = 1
8 (4ν2a + 4ν4a − 4ν2b − 4ν8a − 4ν8b + 4) ≥ 0;

µ4(u, χ2, ∗) = 1
8 (−4ν2a − 4ν4a + 4ν2b + 4ν8a + 4ν8b + 4) ≥ 0;

µ0(u, χ3, ∗) = 1
8 (−8ν2a + 8ν4a + 8) ≥ 0;

µ4(u, χ3, ∗) = 1
8 (8ν2a − 8ν4a + 8) ≥ 0;

µ1(u, χ4, ∗) = 1
8 (+4ν8a − 4ν8b + 4) ≥ 0;

µ3(u, χ4, ∗) = 1
8 (−4ν8a + 4ν8b + 4) ≥ 0;

µ0(u, χ6, ∗) = 1
8 (−4ν2a − 4ν4a + 4ν2b − 4ν8a − 4ν8b + 4) ≥ 0;

µ4(u, χ6, ∗) = 1
8 (4ν2a + 4ν4a − 4ν2b + 4ν8a + 4ν8b + 4) ≥ 0;

µ0(u, χ7, ∗) = 1
8 (−4ν2a − 4ν4a − 4ν2b + 4ν8a + 4ν8b + 4) ≥ 0;

which has only two trivial solutions (ν2a, ν4a, ν2b, ν8a, ν8b) ∈ {(0, 0, 0, 0, 1), (0, 0, 0, 1, 0)}.
When χ(u4) = χ(2b), we get that µ1(u, χ2, 0) = 1/4 is not an integer, so this case is not possible.
Thus, now we proved rational conjugacy for elements of all orders that appear in G, and it

remains only to show that V (ZG) has no elements of orders 12, 14 and 21.
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For elements of order 12, we need to consider two cases. If χ(u6) = χ(2a), then µ1(u, χ2, 0) =
−1/6 is not an integer. If χ(u6) = χ(2b), then µ3(u, χ2, 0) = 1/2 is not an integer. Therefore, no
elements of order 12 can appear in V (ZG).

For the case of units of order 14, we use the ordinary character χ7 of degree 7 such that
χ(C2) = −1, χ(C7) = 0 to construct the system

µ0(u, χ7, 0) = 1
14 (−6ν2 + 6) ≥ 0;

µ1(u, χ7, 0) = 1
14 (ν2 + 8) ≥ 0;

µ7(u, χ7, 0) = 1
14 (6ν2 + 8) ≥ 0;

which has no solutions.
For the case of units of order 21, we use the ordinary character χ6 of degree 7 such that

χ(C3) = 1, χ(C7) = 0 to construct the system

µ0(u, χ6, 0) = 1
21 (12ν3 + 9) ≥ 0;

µ1(u, χ6, 0) = 1
21 (ν3 + 6) ≥ 0;

µ7(u, χ6, 0) = 1
21 (−6ν3 + 6) ≥ 0;

which has no solutions.
Thus, the Zassenhaus conjecture ZC–1 holds for G.

• Let G = Aut(PSL(2, 8)) = PSL(2, 8).3. Then |G| = 1512 = 23 · 33 · 7 and exp(G) = 126 =
2 · 32 · 7. The group G has elements of orders 2, 3, 6, 7 and 9. By [8] (Proposition 3.1), it follows
immediately that torsion units of orders 2 and 7 are rationally conjugate to an element of G. For
this automorphism group we are able to prove the rational conjugacy for all orders that appear
in G except the order 6, and then confirm the (IP-C) conjecture, showing that V (ZG) has no
elements of orders 14, 18 and 21.

For elements of order 3, the system

µ0(u, χ2, ∗) = 1
3 (2ν3a − ν3b − ν3c + 1) ≥ 0;

µ1(u, χ2, ∗) = 1
3 (−ν3a + 2ν3b − ν3c + 1) ≥ 0;

µ2(u, χ2, ∗) = 1
3 (−ν3a − ν3b + 2ν3c + 1) ≥ 0;

µ0(u, χ4, ∗) = 1
3 (−4ν3a + 2ν3b + 2ν3c + 7) ≥ 0;

µ1(u, χ4, ∗) = 1
3 (2ν3a − ν3b − ν3c + 7) ≥ 0;

µ0(u, χ5, ∗) = 1
3 (−4ν3a − ν3b − ν3c + 7) ≥ 0;

µ1(u, χ5, ∗) = 1
3 (2ν3a + 2ν3b − ν3c + 7) ≥ 0;

µ2(u, χ5, ∗) = 1
3 (2ν3a − ν3b + 2ν3c + 7) ≥ 0;

µ0(u, χ7, ∗) = 1
3 (6ν3a + 21) ≥ 0;

µ1(u, χ7, ∗) = 1
3 (−3ν3a + 21) ≥ 0;

µ0(u, χ8, ∗) = 1
3 (−2ν3a + 4ν3b + 4ν3c + 8) ≥ 0;

µ1(u, χ8, ∗) = 1
3 (ν3a − 2ν3b − 2ν3c + 8) ≥ 0;

µ1(u, χ9, ∗) = 1
3 (ν3a + 4ν3b − 2ν3c + 8) ≥ 0;

µ2(u, χ9, ∗) = 1
3 (ν3a − 2ν3b + 4ν3c + 8) ≥ 0;

µ0(u, χ4, 2) = 1
3 (−6ν3a + 6) ≥ 0;

µ1(u, χ4, 2) = 1
3 (3ν3a + 6) ≥ 0;

µ0(u, χ5, 2) = 1
3 (6ν3a + 12) ≥ 0;

µ1(u, χ5, 2) = 1
3 (−3ν3a + 12) ≥ 0;

has only three trivial solutions (ν3a, ν3b, ν3c) ∈ {(1, 0, 0), (0, 0, 1), (0, 1, 0)}.
For units of order 6, we have to consider three cases for χ(u2) ∈ {χ(3a), χ(3b), χ(3c)}.
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For χ(u2) = χ(3a), we have the system

µ0(u, χ4, ∗) = 1
6 (−2ν2a − 4ν3a + 2ν3b + 2ν3c − 2ν6a − 2ν6b + 2) ≥ 0;

µ1(u, χ4, ∗) = 1
6 (−ν2a − 2ν3a + ν3b + ν3c − ν6a − ν6b + 10) ≥ 0;

µ3(u, χ4, ∗) = 1
6 (2ν2a + 4ν3a − 2ν3b − 2ν3c + 2ν6a + 2ν6b + 4) ≥ 0;

µ0(u, χ5, ∗) = 1
6 (−2ν2a − 4ν3a − ν3b − ν3c + ν6a + ν6b + 2) ≥ 0;

µ1(u, χ5, ∗) = 1
6 (−ν2a − 2ν3a + ν3b − 2ν3c − ν6a + 2ν6b + 10) ≥ 0;

µ3(u, χ5, ∗) = 1
6 (2ν2a + 4ν3a + ν3b + ν3c − ν6a − ν6b + 4) ≥ 0;

µ4(u, χ5, ∗) = 1
6 (ν2a + 2ν3a − ν3b + 2ν3c + ν6a − 2ν6b + 8) ≥ 0;

µ0(u, χ7, ∗) = 1
6 (−6ν2a + 6ν3a + 24) ≥ 0;

which has 4 solutions
(ν2a, ν3a, ν3b, ν3c, ν6a, ν6b) ∈ {(2,−1,−1, 2, 1,−2), (2,−1, 0, 1, 0,−1),

(2,−1, 1, 0,−1, 0), (2,−1, 2,−1,−2, 1)}.

When χ(u2) = χ(3b), the system

µ0(u, χ4, ∗) = 1
6 (−2ν2a − 4ν3a + 2ν3b + 2ν3c − 2ν6a − 2ν6b + 8) ≥ 0;

µ2(u, χ4, ∗) = 1
6 (ν2a + 2ν3a − ν3b − ν3c + ν6a + ν6b + 5) ≥ 0;

µ0(u, χ5, ∗) = 1
6 (−2ν2a − 4ν3a − ν3b − ν3c + ν6a + ν6b + 5) ≥ 0;

µ1(u, χ5, ∗) = 1
6 (−ν2a − 2ν3a + ν3b − 2ν3c − ν6a + 2ν6b + 10) ≥ 0;

µ2(u, χ5, ∗) = 1
6 (ν2a + 2ν3a + 2ν3b − ν3c − 2ν6a + ν6b + 5) ≥ 0;

µ3(u, χ5, ∗) = 1
6 (2ν2a + 4ν3a + ν3b + ν3c − ν6a − ν6b + 7) ≥ 0;

µ4(u, χ5, ∗) = 1
6 (ν2a + 2ν3a − ν3b + 2ν3c + ν6a − 2ν6b + 8) ≥ 0;

µ5(u, χ5, ∗) = 1
6 (−ν2a − 2ν3a − 2ν3b + ν3c + 2ν6a − ν6b + 7) ≥ 0;

µ0(u, χ7, ∗) = 1
6 (−6ν2a + 6ν3a + 18) ≥ 0;

has 9 solutions:
(ν2a,ν3a, ν3b, ν3c, ν6a, ν6b) ∈ {(−2, 2,−1, 2, 1,−1), (−2, 2, 0, 1, 0, 0),

(−2, 2, 1, 0,−1, 1), (0, 0,−1, 1, 1, 0), (0, 0, 0, 0, 0, 1), (0, 0, 0, 3, 0,−2),

(0, 0, 1,−1,−1, 2), (0, 0, 1, 2,−1,−1), (0, 0, 2, 1,−2, 0)}

Finally, when χ(u2) = χ(3c), we obtain the system

µ0(u, χ4, ∗) = 1
6 (−2ν2a − 4ν3a + 2ν3b + 2ν3c − 2ν6a − 2ν6b + 8) ≥ 0;

µ2(u, χ4, ∗) = 1
6 (ν2a + 2ν3a − ν3b − ν3c + ν6a + ν6b + 5) ≥ 0;

µ0(u, χ5, ∗) = 1
6 (−2ν2a − 4ν3a − ν3b − ν3c + ν6a + ν6b + 5) ≥ 0;

µ1(u, χ5, ∗) = 1
6 (−ν2a − 2ν3a + ν3b − 2ν3c − ν6a + 2ν6b + 7) ≥ 0;

µ3(u, χ5, ∗) = 1
6 (2ν2a + 4ν3a + ν3b + ν3c − ν6a − ν6b + 7) ≥ 0;

µ4(u, χ5, ∗) = 1
6 (ν2a + 2ν3a − ν3b + 2ν3c + ν6a − 2ν6b + 5) ≥ 0;

µ0(u, χ7, ∗) = 1
6 (−6ν2a + 6ν3a + 18) ≥ 0;

which has 9 solutions
(ν2a,ν3a, ν3b, ν3c, ν6a, ν6b) ∈ {(−2, 2, 0, 1, 1,−1), (−2, 2, 1, 0, 0, 0),

(−2, 2, 2,−1,−1, 1), (0, 0,−1, 1, 2,−1), (0, 0, 0, 0, 1, 0), (0, 0, 1,−1, 0, 1),

(0, 0, 1, 2, 0,−2), (0, 0, 2, 1,−1,−1), (0, 0, 3, 0,−2, 0)}

For units of order 9, again we have to consider three cases for χ(u2) ∈ {χ(3a), χ(3b), χ(3c)}.
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For χ(u2) = χ(3a), we have the system

µ0(u, χ2, ∗) = 1
9 (6ν3a + 6ν9a − 3ν3b − 3ν3c − 3ν9b − 3ν9c + 3) ≥ 0;

µ3(u, χ2, ∗) = 1
9 (−3ν3a − 3ν9a + 6ν3b − 3ν3c + 6ν9b − 3ν9c + 3) ≥ 0;

µ6(u, χ2, ∗) = 1
9 (−3ν3a − 3ν9a − 3ν3b + 6ν3c − 3ν9b + 6ν9c + 3) ≥ 0;

µ0(u, χ4, ∗) = 1
9 (−12ν3a + 6ν9a + 6ν3b + 6ν3c + 6ν9b + 6ν9c + 3) ≥ 0;

µ3(u, χ4, ∗) = 1
9 (6ν3a − 3ν9a − 3ν3b − 3ν3c − 3ν9b − 3ν9c + 3) ≥ 0;

µ0(u, χ5, ∗) = 1
9 (−12ν3a + 6ν9a − 3ν3b − 3ν3c − 3ν9b − 3ν9c + 3) ≥ 0;

µ3(u, χ5, ∗) = 1
9 (6ν3a − 3ν9a + 6ν3b − 3ν3c + 6ν9b − 3ν9c + 3) ≥ 0;

µ6(u, χ5, ∗) = 1
9 (6ν3a − 3ν9a − 3ν3b + 6ν3c − 3ν9b + 6ν9c + 3) ≥ 0;

µ0(u, χ7, ∗) = 1
9 (18ν3a + 27) ≥ 0;

µ3(u, χ7, ∗) = 1
9 (−9ν3a + 27) ≥ 0;

µ0(u, χ8, ∗) = 1
9 (−6ν3a − 6ν9a + 12ν3b + 12ν3c − 6ν9b − 6ν9c + 6) ≥ 0;

µ3(u, χ8, ∗) = 1
9 (3ν3a + 3ν9a − 6ν3b − 6ν3c + 3ν9b + 3ν9c + 6) ≥ 0;

µ0(u, χ9, ∗) = 1
9 (−6ν3a − 6ν9a − 6ν3b − 6ν3c + 3ν9b + 3ν9c + 6) ≥ 0;

µ3(u, χ9, ∗) = 1
9 (3ν3a + 3ν9a + 12ν3b − 6ν3c − 6ν9b + 3ν9c + 6) ≥ 0;

µ6(u, χ9, ∗) = 1
9 (3ν3a + 3ν9a − 6ν3b + 12ν3c + 3ν9b − 6ν9c + 6) ≥ 0;

µ0(u, χ4, 2) = 1
9 (−18ν3a) ≥ 0;

µ3(u, χ4, 2) = 1
9 (9ν3a) ≥ 0;

µ0(u, χ5, 2) = 1
9 (18ν3a − 18ν9a + 18) ≥ 0;

µ3(u, χ5, 2) = 1
9 (−9ν3a + 9ν9a + 18) ≥ 0;

which has 5 solutions, only three of which remain after the Cohn-Livingstone test [6]:

(ν3a, ν9a, ν3b, ν3c, ν9b, ν9c) ∈ {(0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 0)}.

If χ(u3) = χ(3b), then µ1(u, χ2, 0) = 1/3 is not an integer, so this case is impossible. Similarly,
when χ(u3) = χ(3c), then µ2(u, χ2, 0) = 1/3, so this case is not possible as well.

Now, after we have covered orders that appear in the group G, we need to show that V (ZG)
has no elements of orders 14, 18 and 21.

For elements of order 14, we use the ordinary character χ4 of degree 7 with χ(C2) = −1,
χ(C7) = 0. Then the system

µ0(u, χ4, 0) = 1
14 (−6ν2 + 6) ≥ 0;

µ1(u, χ4, 0) = 1
14 (−1ν2 + 8) ≥ 0;

µ7(u, χ4, 0) = 1
14 (6ν2 + 8) ≥ 0;

has no solutions.
For elements of order 18, we need to consider 22×3×3 = 198 cases determined by combinations

of χ(u6), χ(u3) and χ(u2). Using the development version of the GAP package LAGUNA [4] we
verified that each case leads to a contradiction since there is certain µi(u, χj , 0) which is not an
integer. We omit full details here (but may provide a table summarising the results, if need be).

For elements of order 21, we use the ordinary character χ11 of degree 27 with χ(C3) = 0,
χ(C7) = −1. Then the system

µ0(u, χ11, 0) = 1
21 (−12ν7 + 21) ≥ 0;

µ1(u, χ11, 0) = 1
21 (−ν7 + 28) ≥ 0;

µ7(u, χ11, 0) = 1
21 (6ν7 + 21) ≥ 0;

has no solutions.
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• Let G = Aut(PSL(2, 9)) = (A6.C2) : C2. For this group we need to consider four possible
cases. Here, as well as in the rest of the proof, we give only the outline, specifying which orders of
torsion units we considered. The detailed proof will be included in the full version of the paper.

Case 1. Let G = S6. Then |G| = 720 = 24 · 32 · 5 and exp(G) = 60 = 22 · 3 · 5. By [8]
(Proposition 3.1), it follows immediately that torsion units of order 5 are rationally conjugate to
an element of G. For this group we are able to confirm the (IP-C) conjecture, showing that there
are no elements of orders 10, 12 and 15 in V (ZG).

Case 2. Let G = A6.22. Then |G| = 720 = 24 · 32 · 5 and exp(G) = 120 = 23 · 3 · 5. By [8]
(Proposition 3.1), it follows immediately that torsion units of order 3 are rationally conjugate to
an element of G. For the remaining orders, we are able to prove the rational conjugacy for all
orders that appear in G (2,3,4,5,8 and 10), and also to show that there are no elements of orders
15 and 20 in V (ZG). However, we are not yet able to eliminate the tuple (ν2a, ν3a, ν2b) = (−2, 3, 0)
for torsion units of order 6, so (PQ) still remains open for this group.

Case 3. Let G = M10. Then |G| = 720 = 24 · 32 · 5 and exp(G) = 120 = 23 · 3 · 5. By [8]
(Proposition 3.1), it follows immediately that torsion units of orders 2,3 and 5 are rationally
conjugate to an element of G. We can also prove rational conjugacy for the order 4, but not for
the order 8. For orders that do not appear in G, we are able to show that there are no elements of
orders 10 and 15 in V (ZG). However, we are not yet able to eliminate the tuple (ν2a, ν3a) = (−2, 3)
for torsion units of order 6, so (PQ) still remains open for this group.

Case 4. Let G = A6.22. In this case using the HeLP - method we are able to give positive
answer to (PQ) eliminating the order 15.

For the remaining four automorphism groups the HeLP - method answers (PQ) positively,
eliminating the following orders of torsion units of V (ZG): orders 34 and 51 for Aut(PSL(2, 17)) =
PSL(2, 17).2; orders 26 and 39 for Aut(PSL(3, 3)) = PSL(3, 3).2; order 15 for Aut(PSP (3, 4)) =
U(4, 2).2; and finally, orders 14 and 21 for Aut(U(3, 3)) = U(3, 3).2. This completes the proof.
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