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THE INFLUENCE OF SURFACE TENSION AND
CONFIGURATIONAL FORCES ON THE

STABILITY OF LIQUID-VAPOR INTERFACES

B. KABIL & C. ROHDE ∗

Abstract
The stability of liquid-vapor interfaces in a multidimensional van der Waals fluid is

analyzed. We consider interfaces which connect liquid and vapor states as subsonic shock
waves. Surface tension and configurational forces in the form of a kinetic relation determine
the evolution of the interface.
Stability results for the interface in the sense of energy estimates for solutions of the
linearized problem are given. The normal mode analysis of the problem shows that in
particular the uniform Kreiss-Lopatinskĭı condition is satisfied as long as surface tension
and amount of energy dissipation are positive but remain small.
The analysis relies on [6], where surface tension is arbitrary but energy dissipation is zero.
Non-stability results for the same system without surface tension and without energy
dissipation can be found in [3].

Keywords: Liquid-vapor interface, Kreiss-Lopatinskĭı condition, uniform stability, Kreiss symmetri-
zer, energy estimate.

1 Introduction
We consider a system of evolution equations which describes the motion of an isothermal compressible
fluid which appears in a liquid and a vapor phase. The motion of the fluid in the bulk phase is modeled
by the Euler equations (see (2.1.1), (2.1.2) below). At the interface the mass conservation law and a
dynamical version of the Young-Laplace law for momentum balance hold (see (2.2.1), (2.2.2)). We
consider as interfaces subsonic phase transitions. In this case it is well-known that one more condition
has to be added to ensure well-posedness [1, 20].
Together with curvature and surface tension it drives as a configurational force the dynamics of the
interface. We choose as additional condition a kinetic relation as in [9] ((2.3.2) below). In this way
solutions of the resulting free boundary problem satisfy the second law of thermodynamics while the
amount of energy dissipation is exactly prescribed. The kinetic relation depends solely on the relative
mass flux across the interface. For more details on the modeling background see [1, 9, 10].
We are interested in the stability of propagating liquid-vapor interfaces in the sense of proving energy
estimates for the solutions of the linearized system.
The standard approach to analyze stability of compressive (Laxian) shocks can be found in e.g. [14].
In our case, this method cannot be applied directly for undercompressive shock waves since curved
sharp liquid-vapor interfaces cannot be seen as weak solutions of the Euler equations.
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Stuttgart, Germany.
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The dynamical stability analysis of (curved) liquid-vapor interfaces using energy estimates has been
initiated by Benzoni-Gavage [2, 3] and by Benzoni-Gavage & Freistühler [6]. In passing we note, that
in [2] the stable subspace of the linearized Euler equations is given explicitly, a result which we use in
our work. In [2], neither surface tension nor kinetic relations are considered. So-called surface waves
can occur and uniform stability is not achieved. We mention that the existence of surface waves is
not necessarily contradicting uniform stability, see e.g. [6] for a result in this direction. For a detailed
study on the different types of surface waves we refer to [12]. The work [3] treats the interface problem
with small amount of energy dissipation but neglecting surface tension. Here the so-called Lopatinskĭı
determinant has no roots on the right complex half plane. Especially central neutral modes do not
exist. In [6], the system without dissipation but with surface tension is studied.
The major issue of this paper is to study the stability of solutions of the linearized system with small
but positive surface tension and small but positive energy disspation. The main result of this work is
presented in Theorem 8 where the stability result is given by energy estimates for the linear constant
coefficients version of the free boundary problem.

The derivation of the energy estimate is based on the so-called Lopatinskĭı determinant of the evolution
operator for the ODE system associated via Fourier-Laplace transformation with the linearized free
boundary problem, see Section 3. In this matter, we follow the usual methods, e.g. [5, 6, 13, 7, 15].
The behavior of the roots of the Lopatinskĭı determinant is crucial. If this function has no zeros on the
right complex half plane, it will be possible to get energy estimates. We show by a careful perturbation
analysis that this function does not vanish for small surface tension and small dissipation on the right
complex half plane. We note that in our case the so-called uniform Kreiss-Lopatinskĭı (UKL) condition
is satisfied, such that it is possible to construct a Kreiss symmetrizer to get energy estimates for the
solutions of the system with respect to the initial data. The method to construct Kreiss symmetrizers
is based on so-called normal mode analysis.
The paper is organized as follows. In Section 2 we reformulate the system as an Initial Boundary
Value Problem and introduce the equations including dissipation and surface tension. In Section 3 we
define the Lopatinskĭı determinant and so we derive the Kreiss-Lopatinskĭı condition for the problem.
Then we explain how to construct a Kreiss symmetrizer and how to get the energy estimates for the
problem.

2 The Mathematical Model
2.1 Bulk Equations
We consider the motion of an ideal compressible fluid in Rd with constant temperature, for d > 1 . The
system of equations is given for space variable x = (x1, ..., xd) ∈ Rd , time variable t > 0 , unknown
density ρ = ρ(x, t) > 0 and velocity u(x, t) = (u1(x, t), ..., ud(x, t)) ∈ Rd by the Euler equations

ρt +∇ · (ρu) = 0, (2.1.1)
(ρu)t +∇ · (ρu⊗ u) +∇p(ρ) = 0. (2.1.2)

In this system p denotes the pressure of the fluid. We choose a nonmonotone pressure law p = p(ρ)
such that there are constants l∗ > v∗ > 0 (see figure 1):

p′(ρ) > 0, if 0 < ρ < v∗ (vapor states),
p′(ρ) < 0, if v∗ < ρ < l∗ (spinodial states),
p′(ρ) > 0, if l∗ < ρ (liquid states).

For example, one can choose for the pressure the van der Waals law which is given in the form

p(ρ) = RTρ

1− bρ − aρ
2, (2.1.3)
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Figure 1: Pressure law

where R > 0 is the perfect gas constant and T > 0 is the temperature. The constants a ≥ 0 and b > 0
are given and depend on the fluid. For T below a critical temperature the van der Waals pressure
behaves as in figure 1.

We consider fluid states outside of the spinodal region. Under this assumption the system (2.1.1), (2.1.2)
becomes hyperbolic. Such assumption on pressure yields outside the spinodal region the coexistence of
liquid and vapor phases, where we observe propagating phase boundaries, e.g. [2, 3]. These propagating
phase boundaries are discontinuous solutions of the Euler equations.
In this work we study the stability of the linearized equations obtained by (2.1.1), (2.1.2). We consider
piecewise smooth solutions of (2.1.1), (2.1.2) in the following sense (see figure 2). There exist a smooth
hypersurface Σ(t) and two smooth functions (ρ+,u+) and (ρ−,u−) with either ρ+ (ρ− ) in the liquid
(vapor) region or ρ− (ρ+ ) in the vapor (liquid) region defined on respective domains V+(t) and V−(t)
on either side of the hypersurface Σ(t) such that

ρ±t +∇ · (ρ±u±) = 0, in V±(t), (2.1.4)
(ρ±u±)t +∇ · (ρ±u± ⊗ u±) +∇p± = 0, in V±(t). (2.1.5)

In the sequel we fix the jump conditions across Σ(t) .

2.2 Mechanical Jump Conditions
In the standard theory the Rankine-Hugoniot jump conditions associated with equations (2.1.1), (2.1.2)
are given by

[ρ(u · n− σ)] = 0, (2.2.1)
[ρ(u · n− σ)u + pn] = (d− 1)κsn, (2.2.2)

where the brackets denote the jump across the interface

[f ] = lim
ε↘0

f(x+ εn)− f(x− εn)

for any x ∈ Σ(t) , s > 0 the surface tension, κ the mean curvature, n ∈ Rd the unit normal vector to
the moving interface in x and σ ∈ R the normal speed of propagation of the interface in x . For the
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Figure 2: A smooth hypersurface Σ(t)

details on the model we refer to [8].

We define the mass transfer flux as

j := lim
ε↘0

(ρ(x− εn)(u(x− εn) · n− σ))

= lim
ε↘0

(ρ(x+ εn)(u(x+ εn) · n− σ)) .

As in [2], a phase transition in liquid-vapor interfaces is rather similar to an undercompressive shock,
see also [11]. That is why, we have to define one more jump condition which is physically seen com-
prehensible. We introduce the chemical potential g , where we have dρ p(ρ) = c2 and dρ e(ρ) = g . In
this case c denotes the sound speed and e = ρE , where E is the specific free energy. As it was used
in the literature like [6, 2, 3, 4, 19], we can take the kinetic relation without dissipation[

g + j2

2ρ2

]
= 0. (2.2.3)

The system with the kinetic relation (2.2.3) without dissipation was studied in [6], where surface waves
exist. Surface waves which are explained in [2] can destroy the stability estimates. But it was shown by
construction of modified Kreiss symmetrizers that one can get also energy estimates. It is mentioned
that the uniform Kreiss-Lopatinskĭı condition is not satisfied in this case. We consider the system
with dissipation, that means we have to change equation (2.2.3). This will be done by using a kinetic
relation proposed in [9], [10].

2.3 Kinetic Relation
The kinetic relation which we consider is assumed to be a relation between the mass transfer flux
and the driving force, see [9]. We denote the jump

[
g + j2

2ρ2

]
as the driving force. The aim is to put

a kinetic relation to describe subsonic phase transitions, see [3]. The following dissipation inequality
shows the change of entropy dissipation (see [9])

j ·
[
g + j2

2ρ2

]
≤ 0. (2.3.1)
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The simplest ansatz to satisfy the dissipation inequality is to use the following relation[
g + j2

2ρ2

]
= −Bj, (2.3.2)

where B > 0 is the so-called interfacial mobility constant. We choose equation (2.3.2) as the added
kinetic relation of the system. When B = 0 , we have the case as in [6] where dissipation was neglected.
Especially, entropy dissipation of the system is presented for the case B 6= 0 , see [9, 10]. The ansatz
shows that the left side of the dissipation inequality is strictly negative for nonzero mass transfer flux
j . Altogether we have the jump conditions

[ρ(u · n− σ)] = 0, (2.3.3)
[ρ(u · n− σ)u + pn] = (d− 1)κsn, (2.3.4)[

g + j2

2ρ2

]
= −Bj. (2.3.5)

Remark 1. Another possible kinetic relation as done in [3] is the following

[
g + j2

2ρ2

]
= −ν j

+∞∫
−∞

v′(ξ)2 d ξ, (2.3.6)

where ν is a positive constant and v is the solution to the viscous capillary profile equation v′′ =
νjv′ + p( 1

ρr
) + j2 1

ρr
− p(v) − j2v with v(±∞) = 1

ρr,l
, where ρr,l are given constants, see Section 3.

We note that one can get by linearization of (2.3.6) with B= α(j)ν + o(ν) the kinetic relation (2.3.2),
see [3].

2.4 Reformulation of the Jump Conditions
We assume that the interface Σ(t) is almost flat in the sense that Σ(t) can be written for X ∈
C2 (Rd−1 × [0,∞)

)
in the following form

Σ(t) =
{
x = (x1, . . . , xd)

∣∣ xd = X(x1, . . . , xd−1, t)
}
.

In the sequel the gradient operator with respect to all components except the last component is given
by

∇̌ = (∂x1 , . . . , ∂xd−1)
ᵀ
,

and we define y = (x1, . . . , xd−1) . Then, we can write the unit normal vector n in terms of X as
follows

n := 1√
1 + ‖∇̌X‖2

(
−∇̌X, 1

)ᵀ
, (2.4.1)

which yields

σ = ∂tX√
1 + ‖∇̌X‖2

. (2.4.2)

The curvature κ can also be given in terms of X as

κ = 1
d− 1 ∇̌ ·

 ∇̌X√
1 + ‖∇̌X‖2

 . (2.4.3)
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We consider now the hyperplane
{
x ∈ Rd

∣∣ xd = 0
}

and decompose the velocity u = (v, u) , where v
denotes the tangential part and u its normal part with respect to this hyperplane.
With these notations we write all jump conditions (2.3.3)-(2.3.5) in terms of X as[

ρ (u− ∂tX − v · ∇̌X)
]

= 0, (2.4.4)[
ρ (u− ∂tX − v · ∇̌X)v− p∇̌X

]
= 0, (2.4.5)[

ρ (u− ∂tX − v · ∇̌X)u+ p
]

= s∇̌ · ∇̌X, (2.4.6)[(
1 + ‖∇̌X‖2

)
g + 1

2 (u− ∂tX − v · ∇̌X)2
]

= −Bj
(

1 + ‖∇̌X‖2
)
. (2.4.7)

3 Kreiss-Lopatinksĭı Condition
The aim of this section is to derive the so-called Lopatinskĭı determinant. The Lopatinskĭı determinant,
∆ : (τ, η) 7→ ∆(τ, η) , depends on frequency τ ∈ C and wave number η ∈ Rd−1 . If this function does
not vanish on the right complex half plane, this will be equivalent to the UKL condition. If there are
only roots for Reτ = 0 on the right complex half plane, the UKL condition won’t be satisfied. As done
in [2, 3] we consider a planar dynamic interface as a reference interface. That means, we consider a
weak solution of (2.1.4)-(2.1.5) and (2.3.3)-(2.3.5) with κ = 0 of the form

(ρ±,u±) =

 ρr,l
vr,l
ur,l

 , (3.1)

where (ρr,l,vr,l, ur,l) is a constant vector. We consider subsonic phase transitions. Define the Mach
number

Mr,l := |ur,l · n− σ|
cr,l

> 0

for c2
r,l = p′(ρr,l) . In our case, we require for subsonic phase transitions that

0 < Mr,l < 1 (3.2)

is satisfied. Further, we note that we assume

(ur − ul)(cr − cl) < 0 (3.3)

to ensure entropy dissipation. We can assume without loss of generality that the mass transfer flux

j = ρl(ul · n− σ) = ρr(ur · n− σ)

is positive. Further we assume that the right and left tangential parts of the solutions and also the
normal speed of the interface are zero, that is

vr = vl = 0, σ = 0.

This can also be done without loss of generality due to Galilean invariance. Altogether, we study the
stability of planar interfaces with respect to nonplanar perturbations.

3.1 The Linearized System
The next step is to linearize the system (2.1.4), (2.1.5). As it is done in [2, 3, 6], we are going to
linearize the system (2.1.4), (2.1.5) about the special solution (3.1). We plug

(ρ±(x, t),v±(x, t), u±(x, t)) = (ρr,l , vr,l, ur,l ) + δ · (ρ±(x, t),v±(x, t), u±(x, t))
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for δ > 0 and some perturbation functions (ρ±(x, t),v±(x, t), u±(x, t)) into the equations (2.1.4),
(2.1.5), differentiate with respect to δ and evaluate in δ = 0 . Then we obtain with c2

r,l = p′(ρr,l) > 0
the linearized system

∂tρ± + ρr,l ∇̌ · v± ± ρr,l ∂zu± ± ur,l ∂zρ± = 0, in z > 0, (3.1.1)

∂tv± ± ur,l ∂zv± +
c2
r,l

ρr,l
∇̌ρ± = 0, in z > 0, (3.1.2)

∂tu± ± ur,l ∂zu± ±
c2
r,l

ρr,l
∂zρ± = 0, in z > 0. (3.1.3)

This is a system of 2(d + 1) first order partial differential equations in the half space. Note that we
have transformed the coordinates to

z = ±(xd −X(y, t)).

Let U := (ρ−,v−, u−, ρ+,v+, u+) , and L := L(∂t,∇) be the vector valued differential operator, such
that the linearized system (3.1.1), (3.1.3) can be written for z > 0 in the form

L[U] = 0.

Further we obtain d+ 2 boundary conditions at z = 0 by linearizing the boundary conditions (2.4.4)-
(2.4.7) about (ρr,l,vr,l, ur,l) and X = 0 . The linearized conditions are the following

ur ρ+ + ρr u+ − ul ρ− − ρl u− − [ρ] ∂tX = 0, (3.1.4)
ρr ur v+ − ρl ul v− − [p] ∇̌X = 0, (3.1.5)

(c2
r + u2

r) ρ+ + 2ρr ur u+ − (c2
l + u2

l ) ρ− − 2ρl ul u− = s∇̌ · ∇̌X, (3.1.6)
c2
r

ρr
ρ+ + ur u+ −

c2
l

ρl
ρ− − ul u− − [u] ∂tX

+B ρl u− + Bul ρ− − B ρl ∂tX = 0. (3.1.7)

We can also write the boundary conditions for z = 0 in the following way

b[X] + MU = 0, (3.1.8)

where M ∈ R2(d+1)×2(d+1) is a matrix and b is given by

b(∂t, ∇̌) =


−[ρ]∂t
−[p]∇̌
−s ∇̌ · ∇̌

− ([u] + Bρl) ∂t

 . (3.1.9)

Remark 2. We have mentioned in Remark 1 that one can also consider the kinetic relation (2.3.6).
By linearizing one can get the same equation as the one in [3] in the following way

c2
r

ρr
ρ+ + ur u+ −

c2
l

ρl
ρ− − ul u− − [u] ∂tX

+ν̃ (ρl u− + ul ρ− − ρl ∂tX) = 0.

where ν̃ = α(j)ν + o(ν) , see for details [3].

3.2 Determination of the Lopatinskĭı Determinant
In the general theory, one derives the Kreiss-Lopatinskĭı condition by looking for particular solutions
of the problem (3.1.1)-(3.1.7) of the form

w(y, z, t) = eτt+iη·yW(z),
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where η ∈ Rd−1 , τ ∈ C and W : R+ → Rd+1 is some function. This procedure called Normal Mode Analysis
means to search solutions of (2.1.4), (2.1.5) and (2.3.3)-(2.3.5) that could contradict well-posedness.
For that, we are interested in vectors

(R−,V−, U−, R+,V+, U+),

which belong to the stable invariant subspace Es(τ, η)1 of the ordinary differential equations obtained
by inserting the particular solution in equations (3.1.1)-(3.1.3), where the components of the particular
solution are given for χ ∈ C in the following form

ρ±(y, z, t) = eτt+iη·y R±(z), (3.2.1)
v±(y, z, t) = eτt+iη·yV±(z), (3.2.2)
u±(y, z, t) = eτt+iη·y U±(z), (3.2.3)
X(y, t) = eτt+iη·y χ. (3.2.4)

Substituting this ansatz in (3.1.4)-(3.1.7) yields the algebraic system

ur R+ + ρr U+ − ulR− − ρl U− − [ρ] τ χ = 0, (3.2.5)
ρr urV+ − ρl ulV− − i[p]χη = 0, (3.2.6)

(c2
r + u2

r)R+ + 2ρr ur U+ − (c2
l + u2

l )R− − 2ρl ul U− = −s‖η‖2 χ, (3.2.7)
c2
r

ρr
R+ + ur U+ −

c2
l

ρl
R− − ul U− − [u] τ χ

+B ρl U− + BulR− − B ρl τ χ = 0. (3.2.8)

The stable subspace Es(τ, η) was studied already in [3, Lemma 3], where one can find the proof of the
following lemma.

Lemma 3. Assume that there exist η ∈ Rd−1 , τ ∈ C with Re τ > 0 , such that (3.2.1)-(3.2.3) are
solutions of equations (3.1.1)-(3.1.3) with R±(+∞) = 0 , V±(+∞) = 0 and U±(+∞) = 0 .

Then the vector
(R−,V−, U−)

has to be parallel for z ≥ 0 to the vector

(ρl (τ − ul ωl),−ic2
l η, c

2
l ωl), (3.2.9)

while
(R+,V+, U+)

has to be orthogonal to

(ωr(c2
r − u2

r) + τur, iρrurη,−ρrτ). (3.2.10)

In equations (3.2.9), (3.2.10) the complex wave numbers ωr,l are defined by the solutions of the following
dispersion relation

c2
r,l(ω2

r,l − ‖η‖2) = (τ − ur,l ωr,l)2,

with Reωl < 0 and Reωr > 0 .

We abbreviate by introducing

ar,l := ωr,l(c2
r,l − u2

r,l) + τur,l.

Now we derive an algebraic system which is equivalent to (3.2.5)-(3.2.8) and define the Lopatinskĭı
determinant. We use the form of the stable invariant subspace such that we can simplify equations
(3.2.5)-(3.2.8) to a system written in matrix form as done in [6].

1A stable invariant subspace of a matrix A with n rows, n columns and entries in C is formed of vectors
v ∈ Cn such that (exp(tA))v tends to zero as t → ∞ and the decay is exponentially fast.
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Lemma 4. The vector (R−,V−, U−, R+,V+, U+, χ) is a nonzero solution of the equations (3.2.5)-
(3.2.8) and belongs to the stable subspace Es(τ, η) if and only if there exists a complex number ζ ∈ C
such that (ζρl, R+,V+, U+, χ) is nonzero and

−τ [ρ] ur ρr al
‖η‖2[p] −ar ρrτ ulc

2
l ‖η‖2

s‖η‖2 u2
r + c2

r 2ρrur ulal + c2
l τ

−τ([u] + Bρl) c2
r

ρr
ur τ

c2
l

ρl
− Bal




χ
R+
U+
−ζρl

 =


0
0
0
0

 .

Definition 5. The Lopatinskĭı determinant ∆ : C× R+ → C is defined as

∆(τ, ‖η‖; s,B) :=

∣∣∣∣∣∣∣∣
−τ [ρ] ur ρr al
‖η‖2[p] −ar ρrτ ulc

2
l ‖η‖2

s‖η‖2 u2
r + c2

r 2ρrur ulal + c2
l τ

−τ([u] + Bρl) c2
r

ρr
ur τ

c2
l

ρl
− Bal

∣∣∣∣∣∣∣∣ . (3.2.11)

Remark 6. For the case η = 0 , the Lopatinskĭı determinant does not vanish, i.e.

∆(τ, 0) 6= 0,

as in [2, 3, 6].

We write the Lopatinskĭı determinant as a polynomial of the form

∆(τ, ‖η‖; s,B) = p1(τ, ‖η‖) + s p2(τ, ‖η‖) + B p3(τ, ‖η‖) + sB p4(τ, ‖η‖), (3.2.12)

where pi are given polynomials. The properties of the roots of p1 , p1 + sp2 and p1 +Bp3 are studied
in [2, 3, 6] and summarized below. We want to use these results to make statements about the roots
of ∆(τ, ‖η‖) for small s and small B.

In the literature the following quantities

V := τ

i‖η‖ , Wl := al
i‖η‖cl

, Wr := ar
i‖η‖cr

are used to simplify the Lopatinskĭı determinant. The results for the polynomials p1 +sp2 and p1 +Bp3
were derived with these quantities, which do not change the arguments for the roots with respect to
τ and η .

The Lopatinskĭı determinant is then given as follows

∆(τ, ‖η‖; s,B) := i‖η‖3 cl
u2
rul

(jϕ1(τ, ‖η‖) + is‖η‖urulϕ2(τ, ‖η‖) + Bϕ3(τ, ‖η‖))

+sBϕ4(τ, ‖η‖). (3.2.13)

The functions ϕ1, ϕ2, ϕ3 and ϕ4 are given by

ϕ1(τ, ‖η‖) = −[u]2 (crV − urWr)
(
clcrV

2 + urulWlWr

)
,

ϕ2(τ, ‖η‖) =

∣∣∣∣∣∣
ur 1 Wl

crWr V −ulcl
c2
rur u2

r ulclV

∣∣∣∣∣∣ ,
ϕ3(τ, ‖η‖) = jV (crV − urWr) (clurWr + crulWl)

−jur[u]
(
c2
r − u2

r

)
(clV − ulWl) ,

ϕ4(τ, ‖η‖) = −al‖η‖2 (ρrurτ + arρr) .

We summarize the properties of the polynomials p1 + sp2 and p1 + Bp3 in the following.
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Case: s = B = 0

In this case we have the polynomial ∆(τ, ‖η‖; 0, 0) = p1(τ, ‖η‖) as the Lopatinskĭı determinant of the
system. It was shown in [2] that p1 does not vanish for Re τ > 0 but there are zeros with Re τ = 0 .
One has also surface waves in this case, see for the details [2]. The Kreiss-Lopatinskĭı condition is
satisfied but not the uniform one. The polynomial p1 has the form

p1(τ, ‖η‖) = c1τ
3 + c2τ

2η + c3τη2 + c4η3,

where the coefficients c1, c2, c3 and c4 are real constants and where we have used η instead of ‖η‖ .

Case: s > 0, B = 0

The Lopatinskĭı determinant becomes ∆(τ, ‖η‖; s, 0) = p1(τ, ‖η‖) + s p2(τ, ‖η‖) . It was shown in [6,
Theorem 3.2] that p1 +s p2 does not vanish for Re τ > 0 but there are zeros with Re τ = 0 for a small
range, for a given η0 . For η > η0 , the polynomial p1 + s p3 does not vanish for Re τ ≥ 0 . In other
words, for Re τ ≥ 0 and η > η0 we have p1 +s p2 6= 0 . It is noted that the uniform Kreiss-Lopatinskĭı
condition is not satisfied. The polynomial has the form

p1(τ, ‖η‖) + s p2(τ, ‖η‖) = c1τ
3 + c2τ

2η + c3τη2 + c4η3

+s
(
cs2τ

2η2 + cs3τη3 + cs4η4) ,
where all the coefficients cs2, cs3 and cs4 are real constants.

Case: s = 0, B > 0

In this case we obtain the polynomial ∆(τ, ‖η‖; 0,B) = p1(τ, ‖η‖) + B p3(τ, ‖η‖) . It was shown in [3]
that p1 +B p3 does not vanish for Re τ ≥ 0 and for small B > 0 . There exists a constant B0 > 0 such
that for all B ∈ (0,B0) , Re τ ≥ 0 and η ∈ Rd−1 , we have that

p1 + B p3 6= 0.

The polynomial has the form

p1(τ, ‖η‖) + B p3(τ, ‖η‖) = c1τ
3 + c2τ

2η + c3τη2 + c4η3

+B
(
cB

1 τ
3 + cB

2 τ
2η + cB

3 τη2 + cB
4 η3) ,

where the coefficients cB
1 , c

B
2 , c

B
3 and cB

4 are also real constants.

The aim is now to show that ∆(τ, ‖η‖; s,B) = p1 + s p2 + B p3 + sB p4 defined by (3.2.12) does not
vanish in Re τ ≥ 0 and η ∈ Rd−1 for small s and small B. We will show this in two steps. In the first
step we consider the polynomial for all η ≤ η0 , where η0 is given as in [6, Theorem 3.2]. The second
step is to consider the other values.
We also take the perturbation constant B0 > 0 from [3, Theorem 1]. It is possible that we have B
smaller as B0 > 0 in [3]. Then we will take the minimum of these two constants. We get the following
theorem for the roots of the Lopatinskĭı determinant.

Theorem 7. Let ∆(τ, ‖η‖) be defined by (3.2.11). Assume that the numbers ur,l and cr,l satisfy the
inequalities (3.2), (3.3).
Then there are constants s0 > 0 and B0 > 0 depending continuously on ur,l and cr,l , such that for
all s ∈ (0, s0) and B ∈ (0,B0) , we have for Re τ ≥ 0 and η ∈ Rd−1

∆(τ, ‖η‖) 6= 0.
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Proof. We will use the information about the polynomials derived above. First we consider the deter-
minant for fixed small η ≤ η0 . We consider the polynomial

∆(τ, ‖η‖; s,B) = (p1 + Bp3) + s · (p2 + B p4) . (3.2.14)

We know from [3, Theorem 1] that ∆(τ, ‖η‖; 0,B) = p1 +Bp3 with these assumptions does not vanish
for Re τ ≥ 0 and for some B ∈ (0, µ0) with µ0 > 0 . Let λB be a root of p1 + Bp3 and fix B> 0 .
Differentiating equation (3.2.14) with respect to s yields

∂

∂τ
(p1 + Bp3) (λ(s)) · λ′(s) + (p2 + Bp4)(λ(s)) + s · λ(s) · ∂

∂τ
(p2 + Bp4) (λ(s)) = 0.

Evaluating at s = 0 implies for the root λ(s) of ∆ and for ∂
∂τ (p1 + Bp3) (λB) 6= 0

λ′(0) = − (p2 + B p4) (λB)
∂
∂τ (p1 + Bp3) (λB)

.

The case for ∂
∂τ (p1 + Bp3) (λB) = 0 is clear, since λB is then also a root of p2 +B p4 and thus a root

of ∆ . The roots depend continuously on s , so we conclude that the root λ of ∆ is in a neighborhood
of λ(0) := λB , i.e. |λ−λB| = O(s) , see figure 3 and for more details [18]. If we choose s small enough,
we obtain that the real part of λ is still strictly negative, because the real part of λ(0) was negative.

Reτ

Imτ

λ(0)

λ(s)

ε > 0

Figure 3: Ball around a perturbed root λ(s) in the complex halfplane. The radius of the ball
depends on the perturbation factor s .

Second, we consider the determinant for η > η0 . We consider again the polynomial

∆(τ, ‖η‖; s,B) = (p1 + s p2) + B · (p3 + sp4) .

We know from [6, Theorem 3.2] that ∆(τ, ‖η‖; s, 0) = p1 + s p2 does not vanish for Re τ ≥ 0 and for
all s > 0 . We fix s . The same arguments as above show that the perturbed root with respect to B is
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located in a ball around the root of the polynomial p1 + s p2 . Altogether we obtain for small s and B
that for Re τ ≥ 0 and η ∈ Rd−1

∆(τ, ‖η‖) 6= 0.

We remark that the polynomial ∆ as the determinant of the matrix (3.2.11) above is well-defined for
η ∈ Rd−1 and Re τ ≥ 0 . It is also analytic in (τ, η) , see Remark 6.

4 Stability
The aim of this section is to get weighted energy estimates for the solutions of the linearized system
(3.1.1)-(3.1.7). A standard way to derive energy estimates for this kind of problems relies on so-called
Kreiss symmetrizers.

4.1 Linearized System and Weighted Estimates
We consider the linearized system (3.1.1)-(3.1.3). We use again the abbreviations U := (ρ−,v−, u−, ρ+,v+, u+)
and L = L(∂t,∇) . The linearized system has for z > 0 the form

L[U] = 0. (4.1.1)

We write the boundary conditions (3.1.4)-(3.1.7) in the form (3.1.8). The operator b is given by

b(∂t, ∇̌) =


−[ρ]∂t
−[p]∇̌
−s ∇̌ · ∇̌

− ([u] + Bρl) ∂t

 . (4.1.2)

The associated nonhomogeneous problem is given by

L[U] = f for z > 0, (4.1.3)
b[X] + MU = g for z = 0. (4.1.4)

We also use weighted-in-time functions, namely,

Ũ = exp(−γt) ·U and X̃ = exp(−γt) ·X

as well as
f̃ = exp(−γt) · f and g̃ = exp(−γt) · g,

for γ > 0 . Using weighted functions we consider the following modified system. It is easy to see, that
Ũ, X̃ satisfy the equations

Lγ [Ũ] = f̃ for z > 0, (4.1.5)
bγ [X̃] + MŨ = g̃ for z = 0, (4.1.6)

where Lγ = L + γ and bγ is given by replacing ∂t by γ + ∂t in b.

Now we specify the stability results in the sense of energy estimates for the system (4.1.5)-(4.1.6) in
the following main theorem.

Theorem 8 (Energy Estimate). Assume that (3.2), (3.3) hold and s0 and B0 are given by Theorem
7.
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Then for all B ∈ (0,B0) , s ∈ (0, s0) and γ0 > 0 , there exists a constant C > 0 such that for all
γ ≥ γ0 and all solutions

(Ũ, X̃) ∈ C1(R+, L2(Rd))×H1(Rd) (4.1.7)

of (4.1.5)-(4.1.6) with f̃, g̃ ∈ L2 the following inequality holds

γ‖Ũ‖2
L2(Rd×R+) + ‖Ũ(0)‖2

L2(Rd) + ‖X̃‖2
H1
γ(Rd) (4.1.8)

≤ C
(
‖g̃ ‖2

L2(Rd) + 1
γ
‖̃f ‖2

L2(Rd×R+)

)
. (4.1.9)

We note that the space Hs
γ(Rd) stands for the usual Sobolev space equipped with weighted norms

‖u‖2
Hsγ(Rd) =

∫
Rd

(
γ2 + ‖η‖2 + δ2)s |û(η, δ)|2 d η d δ ,

where û(η, δ) is the Fourier transform of u in (y, t) .

The proof of Theorem 8 is based on Kreiss symmetrizers. The standard way is to take the Fourier
transform of the equations (4.1.5)-(4.1.6) and symmetrizing the equations by the Kreiss symmetrizer.
We take the Fourier transform for the problem (4.1.5)-(4.1.6) in (y, t) , where we denote the Fourier
variable as (η, δ) . We obtain the system

Lγ(iδ, iη)Û = f̂ for z > 0, (4.1.10)
bγ(iδ, iη)X̂ + MÛ = ĝ for z = 0, (4.1.11)

where Û, X̂, f̂ and ĝ denote the Fourier transforms of Ũ, X̃, f̃ and g̃ . We can also write this system
in the form

L(γ + iδ, iη)Û = f̂ for z > 0, (4.1.12)
b(γ + iδ, iη)X̂ + MÛ = ĝ for z = 0. (4.1.13)

It is noted that we will write τ instead of γ+iδ in what follows. The system (4.1.12)-(4.1.13) represents
a system of ordinary differential equations. We can write the system (4.1.12) in the form

d Û
d z = A(τ, iη)Û + A−1

z f̂, (4.1.14)

where the matrices A(τ, iη) and A−1
z are given. Especially the matrix A(τ, iη) has a block diagonal

structure which allows us to construct a Kreiss symmetrizer, see [16].

4.2 Kreiss Symmetrizer
A Kreiss symmetrizer is a uniformly bounded and matrix-valued C∞ -mapping (τ, η) 7→ K(τ, η) on
D := {(τ, η) ∈ C× Rd−1

∣∣Re τ ≥ 0, |τ |+ |η| 6= 0} such that there are constants c0 , c1 , c2 > 0 with

KA + A∗K∗ ≥ c0(Re τ) I in D, (4.2.1)
K + c1Σ∗Σ ≥ c2I in D. (4.2.2)

Here we used the notation in the sense of bilinear forms and Σ := PM where P is the orthogonal
projection on b⊥ . The projection can be written as

P := I− b⊗ b
‖b‖2 ,
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where I is the identity.

In this part we will use a Kreiss symmetrizer for the problem as in [13], so that we can estimate the solu-
tions of the linearized system. The general theory about Kreiss symmetrizers can be found in [5, 6, 13].

The fact that the uniform Kreiss-Lopatinskĭı condition is satisfied (Theorem 7) allows us to construct
this kind of symmetrizer, see for details [6, 5, 15, 7, 13]. Especially the construction is based on three
steps, see [6]. The first step is to build so-called local symmetrizers in boundary points Re τ = 0 ,
the second step is to collect these symmetrizers to a global one and the last step is to find suitable
constants such that (4.2.2) holds. In our case we have a non homogeneous boundary condition. The
boundary conditions are quasi-homogeneous which also allows us as in [6] the construction of a Kreiss
symmetrizer. We note that b is quasi-homogeneous in the sense of introducing a variable ζ := ‖η‖2

such that b(τ, iη, ζ) is homogeneous.

Now we assume that Û ∈ H1(R+) is a solution of the following problem

d Û
d z = A(τ, iη) · Û + A−1

z · f̂, z > 0, (4.2.3)

Σ · Û = P · ĝ, z = 0. (4.2.4)

The first step is to multiply the equation (4.2.3) with Û
∗
K from the left. This implies

Û
∗
K d Û

d z = Û
∗
KAÛ + Û

∗
KA−1

z f̂.

We take the real part of this equation and obtain

1
2

d
d z

(
Û
∗
KÛ

)
= Re

(
Û
∗
KAÛ

)
+ Re

(
Û
∗
KA−1

z f̂
)
.

Further we get
Re
(
Û
∗
KAÛ

)
= 1

2 Û
∗

(KA + A∗K∗) Û,

and this equation implies

d
d z

(
Û
∗
KÛ

)
= Û

∗
(KA + A∗K∗) Û + 2 Re

(
Û
∗
KA−1

z f̂
)
.

Integrating on R+ yields

−
(
Û
∗
(0)KÛ(0)

)
=
〈
Û
∗
, (KA + A∗K∗) Û

〉
+ 2 Re

〈
Û
∗
, KA−1

z f̂
〉
.

Using the properties of the Kreiss symmetrizer (4.2.1), (4.2.2), we obtain the following inequality for
a generic constant c > 0 and all ε > 0

c0 Re τ ‖Û‖2
L2(R+) + c2‖Û(0)‖2 ≤ c1‖ĝ‖2 + c

(
1
ε
‖̂f ‖2

L2(R+) + ε‖Û‖2
L2(R+)

)
.

We choose ε = c0 Re τ
2c so that we can absorb the last term on the right side. That means, we obtain

c0 Re τ
2 ‖Û‖2

L2(R+) + c2‖Û(0)‖2 ≤ c1‖ĝ‖2 + 2c2

c0 Re τ ‖̂f ‖
2
L2(R+).

Altogether we obtain for a generic constant c

Re τ ‖Û‖2
L2(R+) + ‖Û(0)‖2 ≤ c

(
‖ĝ‖2 + 1

Re τ ‖̂f ‖
2
L2(R+)

)
. (4.2.5)
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Using Plancherel’s theorem we get an estimate in weighted norms

Re τ ‖e−γtU‖2
L2(Rd×R+) + ‖e−γtU(0)‖2

L2(Rd) (4.2.6)

≤ c
(
‖e−γtg‖2

L2(Rd) + 1
Re τ ‖e

−γtf ‖2
L2(Rd×R+)

)
, (4.2.7)

where we note that (y, t, z) ∈ Rd−1 × R× R+ .

4.3 Estimate for the Interface
We estimate the unknown front X in a quite technical way. We have

b(τ, iη) =


−[ρ]τ
−[p]iη
s‖η‖2

− ([u] + Bρl) τ

 (4.3.1)

and

b(τ, iη)X̂ + MÛ = 0, (4.3.2)

for z = 0 . As done in [6] one can construct a Kreiss symmetrizer with the properties (4.2.1) and (4.2.2).

We know from (4.1.13)
b(τ, iη)X̂ = ĝ−MÛ(0),

so that we can estimate the front for a generic primitive constant c

(‖τ‖2 + ‖η‖2) · |X̂|2 ≤ c(‖τ‖2 + ‖η‖2 + s2‖η‖4) · |X̂|2

≤ c
(
‖ĝ‖2 + ‖Û(0)‖2

)
.

We note that the mapping

m(τ, η, ζ) :
{
C× Es(τ, η) → Cd+2

(χ,U) 7→ χb(τ, η, ζ) + MU

is one-to-one and onto, such that the standard theory allows us to construct a Kreiss symmetrizer
as in the uniform Lopatinski condition with homogenous boundary conditions. Altogether we get the
estimate

γ‖Ũ‖2
L2(Rd×R+) + ‖Ũ(0)‖2

L2(Rd) + ‖X̃‖2
H1
γ(Rd)

≤ C
(
‖g̃ ‖2

L2(Rd) + 1
γ
‖f̃ ‖2

L2(Rd×R+)

)
as stated in Theorem 8.

5 Conclusions
In this part we give further comments on possible extensions of the preceding analysis. The energy
estimate given in Theorem 8 is valid only for small surface tension s < s0 and interfacial mobility
constant B < B0 . In particular it gives no statement for small B and arbitrary s which appears to
be a stable setting in view of the results in [6]. The difficulty in this context is that η0 is not given
explicitly and therefore it is difficult to estimate η0 to s0 . The situation for arbitrary value of B is
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not so clear with respect to the expected stability.
It has also been suggested that the mobility constant B in the kinetic relation depends on the pressure,
as in [10], i.e. [

g + j2

2ρ2

]
= −B (p(ρl))−1

j.

In our case where a van der Waals law is included, the linearized system changes to a more complicated
one. The associated Lopatinskĭı determinant takes a structure such that the perturbation analysis is
not directly transferable.
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2010-007 Grundhöfer, T.; Krinn, B.; Stroppel, M.: Non-existence of isomorphisms between certain

unitals
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