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The Strong-Coupling Polaron in Electromagnetic Fields

M. Griesemer and D. Wellig∗

Universität Stuttgart, Fachbereich Mathematik
70550 Stuttgart, Germany

Abstract

This paper is concerned with Fröhlich polarons subject to external electromagnetic
fields in the limit of large electron-phonon coupling. To leading order in the coupling
constant,

√
α, the ground state energy is shown to be correctly given by the minimum

of the Pekar functional including the electromagnetic fields, provided these fields in the
Fröhlich model are scaled properly with α. As a corollary, the binding of two polarons in
strong magnetic fields is obtained.

1 Introduction

The purpose of this paper is to determine the ground state energy E(A, V, α) of Fröhlich
polarons subject to external electromagnetic fields B = curlA and E = −∇V in the limit of
large electron-phonon coupling, α → ∞. We show that E(A, V, α), to leading order in α, is
given by the minimum of the Pekar functional including the electromagnetic fields, provided
these fields in the Fröhlich model are scaled properly with α. Combining this result with our
previous work on the binding of polarons in the Pekar-Tomasevich approximation, we prove
here, for the first time, the existence of Fröhlich bipolarons in the presence of strong magnetic
fields. These results were announced in [7].

The Fröhlich large polaron model without external fields has only one parameter, α, which
describes the strength of the electron-phonon interaction. Hence the ground state energy E(α)
is a function of α only, and since α is not small for many polar crystals, one is interested
in the limit α → ∞. It had been conjectured long ago, and finally proved by Donsker and
Varadhan [4], that

E(α) = α2EP + o(α2), (α→∞), (1)

where EP is the minimum of the Pekar functional∫
|∇ϕ(x)|2dx−

∫ ∫
|ϕ(x)|2|ϕ(y)|2

|x− y|
dxdy, (2)

constrained by ∫
|ϕ(x)|2 dx = 1. (3)

Statement (1) has later been reproved by Lieb and Thomas who also provided a bound on
the error of the size O(α9/5) [11]. An interesting application of (1) is that it reduces the
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question of bipolaron formation, in the case α � 1, to the analog question regarding the
minimal energies of the Pekar and the Pekar-Tomasevich functionals. For these effective
energy-functionals the binding of two polarons follows from a simple variational argument,
provided the electron-electron repulsion constant belongs to the lower end of its physically
admissible range. The minimizer of (2), (3), which is needed for the variational argument,
is well-known to exist [9, 12]. This line of arguments, due to Miyao and Spohn [13], to our
knowledge provides the only mathematically rigorous proof of the existence of bipolarons.
While it assumes that α � 1, numerical work suggest that α ≥ 6.6 may be sufficient for
binding [15].

Whether or not polarons may form bound states if they are subject to external electro-
magnetic fields, e.g. constant magnetic fields, is an interesting open question. In view of
[13, 7], this question calls for a generalization of (1) to systems including a magnetic field. In
the present paper, for a large class of scalar and vector potentials V and A, respectively, we
establish existence of a constant C = C(A, V ), such that

α2EP (A, V ) ≥ E(Aα, Vα, α) ≥ α2EP (A, V )− Cα9/5, (4)

where Aα(x) = αA(αx), Vα(x) = α2V (αx) and EP (A, V ) is the infimum of the generalized
Pekar functional ∫

|DAϕ(x)|2 + V (x)|ϕ(x)|2 dx−
∫ ∫

|ϕ(x)|2|ϕ(y)|2

|x− y|
dxdy (5)

constrained by (3). Here DA = −i∇ + A. Non-scaled electromagnetic potentials become
negligible in the limit α→∞. In fact, we show that α−2E(A, V, α)→ EP as α→∞.

As explained above, (4) allows us to explore the possibility of bipolaron formation in the
external fields A, V . The corresponding question concerning the effective theories of Pekar
and Tomasevich with electromagnetic fields was studied in [7]. It was found, under the usual
condition on the electron-electron repulsion (see above), that two polarons will bind provided
the functional (5) attains its minimum, which is the case, e.g., for constant magnetic fields and
V ≡ 0. This leads to our second main result, the binding of two polarons in strong constant
magnetic fields, which follows from the more general Theorem 4.1, below. Of course it would
be interesting to know whether or not the binding of polarons is enhanced by the presence of
a magnetic field, as conjectured in [3]. This question is not addressed in the present paper.

The strong coupling result (1) was generalized in the recent work [1] to many-polaron
systems, and one of us, Wellig, is presently extending this work to include magnetic fields. In
work independent and simultaneous to ours, Frank and Geisinger have analyzed the ground
state energy of the polaron for fixed α > 0 in the limit of large, constant magnetic field, i.e.,
A = B ∧x/2 and |B| → ∞ [5]. They show that the ground state energy, both in the Fröhlich
and the Pekar models, is given by |B| − α2

48 (ln |B|)2 up to corrections of smaller order. The
question of binding is not addressed, however, and seems to require a similar analysis of the
ground state energy of the Pekar-Tomasevich model. For the binding of N > 2 polarons
in the Pekar-Tomasevich model with and without external magnetic fields we refer to [8]
and [2], respectively. For the thermodynamic stability, the non-binding, and the binding-
unbinding transition of multipolaron systems the reader may consult the short review [6] and
the references therein.
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2 The Lower Bound

In this section we study the strong coupling limit of the minimal energy of the polaron subject
to given external electric and magnetic fields. To exhibit the general validity of the method
we shall allow for fairly general electric and magnetic potentials V : R3 → R and A : R3 → R3.
We assume that Ak ∈ L2

loc(R3), V ∈ L1
loc(R3) and that for any ε > 0 and all ϕ ∈ C∞0 (R3),

|〈ϕ, V ϕ〉| ≤ ε‖∇ϕ‖2 + Cε‖ϕ‖2. (6)

This is satisfied, e.g., when V ∈ L3/2(R3) + L∞(R3), see [14] or the proof of (22). Of course,
here 〈ϕ, V ϕ〉 denotes a quadratic form defined by 〈ϕ, V ϕ〉 =

∫
V |ϕ|2dx. Since 〈DAϕ,DAϕ〉

on H1
A(R3) := {ϕ ∈ L2(R3) | DAϕ ∈ L2(R3)} is a closed quadratic form with form core

C∞0 (R3), it follows, by the KLMN-theorem, that 〈DAϕ,DAϕ〉+ 〈ϕ, V ϕ〉 is the quadratic form
of a unique self-adjoint operator D2

A + V whose form domain is H1
A(R3). Our assumptions

allow for constant magnetic fields, the case in which we are most interested.
We shall next define the Fröhlich model associated with V and A through a quadratic

form, which we shall prove to be semi-bounded. In this way the introduction of an ultraviolet
cutoff is avoided. However, such a cutoff is used in the proof of semi-boundedness. The
Hilbert space of the model in this section is the tensor product H = L2(R3) ⊗ F , where F
denotes the symmetric Fock space over L2(R3), and the form domain is Q := H1

A(R3) ⊗ F0

where
F0 :=

{
(ϕ(n)) ∈ F|ϕ(n) ∈ C0(R3n), ϕ(n) = 0 for almost all n

}
.

We define a quadratic form H on Q by

H(ψ) :=
〈
ψ, (D2

A + V )ψ
〉

+N(ψ) +
√
αW (ψ)

N(ψ) :=
∫
‖a(k)ψ‖2 dk (7)

W (ψ) :=
1√
2π

∫
dk

|k|
(〈
ψ, eikxa(k)ψ

〉
+
〈
eikxa(k)ψ,ψ

〉)
. (8)

Note that a(k) is a well-defined, linear operator on F0 but a∗(k) is not and neither is∫
|k|−1e−ikxa∗(k) dk, because |k|−1e−ikx is not square integrable with respect to k. The

Theorems 3.1 and 3.2 in the next section relate

E(A, V, α) := inf{H(ψ) | ψ ∈ Q, ‖ψ‖ = 1}

to the minimum, EP (A, V ), of the Pekar functional (5) on the unit sphere ‖ϕ‖ = 1. For
the proofs it is convenient to introduce a coupling constant α in the Pekar functional and to
define EP (A, V, α) as the minimum of

Eα(A, V, ϕ) =
∫
|DAϕ(x)|2 + V (x)|ϕ(x)|2 dx− α

∫ ∫
|ϕ(x)|2|ϕ(y)|2

|x− y|
dxdy

with the constraint ‖ϕ‖ = 1. We set E(ϕ) = Eα=1(0, 0, ϕ), which is the Pekar functional (2).
It is easy to check that

EP (Aα, Vα, α) = α2EP (A, V ) (9)

where Aα(x) = αA(αx), Vα(x) = α2V (αx).
The number EP (A, V, α) is finite because EP (A, V, α) ≥ EP (0, V, α), by the diamagnetic

inequality [10], and EP (0, V, α) > −∞ by assumption on V and a simple exercise using the
Hölder and Hardy inequalities. Our key result is the following lower bound on E(A, V, α):
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Proposition 2.1. Suppose that A, V satisfy the assumptions described above and β = 1 −
α−1/5. Then

E(A, V, α) ≥ βEP (A, β−1V, αβ−2)−O(α9/5), (α→∞), (10)

the error bound being independent of A and V .

The proof of Proposition 2.1 is done in several steps following [11]. Some of them can be
taken over verbatim upon the substitution −i∇x → −i∇x+A(x). Surprisingly, the translation
invariance that seemed to play some role in [11] is not needed for the arguments to work. For
the convenience of the reader we at least sketch the main ideas.

To begin with, we introduce a quadratic form 〈ψ,HΛψ〉 on Q in terms of

HΛ := βD2
A + V +NBΛ

+
√
α√
2π

∫
BΛ

dk

|k|
(eikxa(k) + e−ikxa∗(k))

where β := 1− 8α
πΛ , BΛ := {k ∈ R3 : |k| ≤ Λ} and generally, for subsets Ω ⊂ R3,

NΩ :=
∫

Ω
a∗(k)a(k) dk.

The quadratic form HΛ is bounded below provided that Λ > 8α/π.

Lemma 2.2. In the sense of quadratic forms on Q, for any Λ > 0,

H(ψ) ≥
〈
ψ, (HΛ − 1

2)ψ
〉
.

This lemma, without electromagnetic fields, is due to Lieb and Thomas [11]. Its proof is
based on the operator identity

eikxa(k) =
3∑
`=1

[
DA,`,

k`
|k|2

eikxa(k)
]

(11)

where DA,` = −i∂x`
+ A`(x). Obviously, A(x) plays no role in (11) as it drops out of the

commutator, but we need it for the estimates to follow. For any given Λ > 0 and x ∈ R3 we
define the Fock space operators

φΛ(x) :=
1√
2π

∫
BΛ

(eikxa(k) + e−ikxa∗(k))
dk

|k|

Z`(x) :=
1√
2π

∫
R3\BΛ

k`
|k|3

eikxa(k) dk

and we extend them to operators φΛ, Z` on H by setting (φΛψ)(x) := φΛ(x)ψ(x), (Z`ψ)(x) :=
Z`(x)ψ(x) for ψ ∈ H ' L2(R3;F). Then, by (11), the electron-phonon interaction W can be
written as

W (ψ) =
〈
ψ,
(
φΛ +

∑3
`=1[DA,`, Z` − Z∗` ]

)
ψ
〉
. (12)

Following [11] one now shows that

√
α

3∑
`=1

[DA,`, Z` − Z∗` ] ≥ − 8α
πΛ

D2
A − (N −NBΛ

)− 1
2
. (13)
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The Lemma 2.2 follows from (12) and (13).
The next step is to localize the electron in a box of side length L. To this end we define

the localization function

ϕ(x) =

{∏3
j=1 cos( πLxj) for |xj | ≤ L/2,

0 otherwise,

and ϕy(x) := ϕ(x− y).

Lemma 2.3. For given ∆E > 0 define L > 0 by 3β( πL)2 = ∆E and let ϕ be as above. Then
for every non-vanishing ψ ∈ Q there exists a point y ∈ R3, such that ϕyψ 6= 0 and

〈ϕyψ,HΛϕyψ〉 ≤ (E + ∆E)‖ϕyψ‖2,

where E := 〈ψ,HΛψ〉.

Proof. Using ϕyD2
Aϕy = DAϕ

2
yDA + ϕy(−∆ϕy) and βϕy(−∆ϕy) = ϕ2

y∆E one shows that∫
〈ϕyψ, (HΛ − E −∆E)ϕyψ〉 dy = 0,

which proves the lemma.

The Lemma 2.3 is to be read as a bound on E = 〈ψ,HΛψ〉 from below: using that HΛ

is translation invariant, except for the terms involving A and V , it implies together with
Lemma 2.2 that

E(A, V, α) ≥ inf
y∈R3

(
inf

ψ∈QL, ‖ψ‖=1
〈ψ,HΛ,yψ〉

)
−∆E − 1

2
, (14)

where HΛ,y is defined in terms of the shifted potentials Ay(x) = A(x+y) and Vy(x) = V (x+y),
QL := (L2(CL) ⊗ F) ∩ Q, and CL = supp(ϕ) ⊂ R3 is the cube of side length L centered at
the origin.

The next step is the passage to block modes. For given P > 0 and n ∈ Z3 we define

B(n) := {k ∈ BΛ | |ki − niP | ≤ P/2},
ΛP := {n ∈ Z3 | B(n) 6= ∅}.

In each set B(n) we pick a point kn, to be specified later, and we define block annihilation
and creation operators an and a∗n by

an :=
1
Mn

∫
B(n)

dk

|k|
a(k), Mn =

(∫
B(n)

dk

|k|2

)1/2

.

For given δ > 0 we define the block Hamiltonian

Hblock
Λ,y := βD2

Ay
+ Vy + (1− δ)

∑
n∈ΛP

a∗nan

+
√
α√
2π

∑
n∈ΛP

Mn

(
eiknxan + e−iknxa∗n

)
,

and we set Hblock
Λ := Hblock

Λ,0 . The reason for introducing block modes is well explained in [11]
and related to (18).
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Lemma 2.4. In the sense of quadratic forms in QL, for all (kn),

HΛ,y ≥ Hblock
Λ,y −

9αP 2L2Λ
2πδ

.

Proof. For each n ∈ ΛP , by a completion of squares w.r.t. a(k) and a∗(k) we find, in the
sense of quadratic forms in QL,

δNB(n) +
√
α√
2π

∫
B(n)

dk

|k|
(
eikxa(k) + e−ikxa∗(k)

)
≥

√
α√
2π

∫
B(n)

dk

|k|
(
eiknxa(k) + e−iknxa∗(k)

)
− α

2π2δ

∫
B(n)

dk

|k|2
|eikx − eiknx|2

≥
√
α√
2π
Mn

(
eiknxan + e−iknxa∗n

)
− α

2π2δ
(
3
2
PL)2

∫
B(n)

dk

|k|2
, (15)

where we used the definition of an and that

|eikx − eiknx| ≤ 3
2
PL, for x ∈ CL, k ∈ B(n).

After summing (15) with respect to n ∈ ΛP , the lemma follows from
∫
BΛ
|k|−2dk = 4πΛ and

from a∗nan ≤ NB(n).

We now use Lemma 2.4 to bound (14) from below and then we replace QL by Q. This
leads to

E(A, V, α) ≥ inf
ψ∈Q,‖ψ‖=1

sup
kn

〈
ψ,Hblock

Λ,y ψ
〉
− 9αP 2L2Λ

2πδ
−∆E − 1

2
. (16)

Recall that L depends on ∆E. It remains to compare
〈
ψ,Hblock

Λ,y ψ
〉

with the minimum of the
Pekar functional. This will be done in the proof of the following lemma using coherent states.

Lemma 2.5. Let µ = αβ−1(1− δ)−1. Then for every normalized ψ ∈ Q and every y ∈ R3,

sup
kn

〈
ψ,Hblock

Λ,y ψ
〉
≥ βEP (A, V, µ)− |ΛP |.

Proof. Since EP (Ay, Vy, µ) is independent of y it suffices to prove the asserted inequality
without the y-shift in the block Hamiltonian. Let M = span{| · |−1χB(n) | n ∈ ΛP }, which
is a finite dimensional subspace of L2(R3). From L2(R3) = M ⊕M⊥ it follows that F is
isomorphic to F(M)⊗F(M⊥) with the isomorphism given by

Ω 7→ Ω⊗ Ω
a∗(h) 7→ a∗(h1)⊗ 1 + 1⊗ a∗(h2)

where h1 and h2 are the orthogonal projections of h onto M and M⊥ respectively. Here Ω
denotes the normalized vacuum in any Fock space. Note that

F(M) = span
{ ∏
n∈Λp

(a∗n)mnΩ
∣∣∣mn ∈ N

}
(17)
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where span denotes the closure of the span. With respect to the factorization H = HM ⊗
F(M⊥) where HM = L2(R3) ⊗ F(M), the block Hamiltonian is of the form Hblock

Λ ⊗ 1. To
bound Hblock

Λ ⊗ 1 on HM ⊗F(M⊥) from below we introduce coherent states |z〉 ∈ F(M) for
given z = (zn)n∈ΛP

, zn ∈ C, by

|z〉 :=
∏
n∈ΛP

ezna∗n−z̄nanΩ.

Clearly, 〈z, z〉 = 1 and it is easy to check that an|z〉 = zn|z〉. On F(M), in the sense of weak
integrals, ∫

dz|z〉〈z| = 1,∫
dz(|zn|2 − 1)|z〉〈z| = a∗nan, (18)

where
∫
dz :=

∏
n∈ΛP

1
π

∫
dxndyn. The second equation follows from a∗nan = ana

∗
n−1 and from

the first one. Now suppose that ψ ∈ Q and let ψz(x) = 〈z, ψ(x)〉. Then ψz ∈ L2(R3)⊗F(M⊥)
and 〈

ψ,Hblock
Λ ψ

〉
=
∫
dz〈ψz, (hz ⊗ 1)ψz〉

where hz denotes the Schrödinger operator in L2(R3) given by

hz = βD2
A + V + (1− δ)

∑
n∈ΛP

(|zn|2 − 1) +
√
α√
2π

∑
n∈ΛP

Mn

(
zne

iknx + zne
−iknx

)
.

Let ρ̂z(k) :=
〈
ψz, e

−ikxψz
〉

be the Fourier transform of ρz(x) = |ψz(x)|2. By completion of
the square w.r.to zn and zn it follows that

sup
kn

∫
dz〈ψz, (hz ⊗ 1)ψz〉

≥
∫
dzβ‖DAψz‖2 + 〈ψz, V ψz〉 −

α

2π2(1− δ)

∫
dz

∫
BΛ

dk

|k|2
|ρ̂z(k)|2 1

‖ψz‖2
− |ΛP |

≥
∫
dz
(
β‖DAψz‖2 + 〈ψz, V ψz〉 −

α

(1− δ)‖ψz‖2

∫
ρz(x)ρz(y)
|x− y|

dxdy
)
− |ΛP |.

The integrand is readily recognized as

β‖ψz‖2Eµ(A, β−1V, ψz/‖ψz‖),

with coupling constant µ := αβ−1(1− δ)−1. Its minimum is

β‖ψz‖2EP (A, β−1V, µ).

Since
∫
‖ψz‖2dz = 1, the proof of the lemma is complete.

Proof of Proposition 2.1. By (16) and Lemma 2.5 it follows that

E(A, V, α) ≥ βEP (A, β−1V, µ)− |ΛP | −
9αP 2L2Λ

2πδ
−∆E − 1

2

where β = 1− 8α
πΛ , µ = αβ−1(1−δ)−1 and L2 = π23β/∆E. Λ, δ, P and ∆E are free parameters.

We choose Λ = 8
πα

6/5, δ = α−1/5, P = α3/5 and ∆E = α9/5. Then β = 1− δ and hence the
proposition follows.
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3 The Strong Coupling Limit

Equipped with Proposition 2.1 we can turn to the proofs of the results described in the
introduction in the more precise forms of Theorems 3.1 and 3.2, below.

Theorem 3.1. Suppose the potentials A and V satisfy the assumptions of Proposition 2.1,
Aα(x) := αA(αx) and Vα(x) := α2V (αx). Then there exists a constant C = C(A, V ) such
that for α > 0 large enough,

α2EP (A, V ) ≥ E(Aα, Vα, α) ≥ α2EP (A, V )− Cα9/5.

Proof. The first inequality follows from the well-known EP ≥ E, see the proof of (30), and
from the scaling property (9) of EP . Using Proposition 2.1 and (9), we see that

E(Aα, Vα, α) ≥ α2βEP (A, β−1V, β−2)−O(α9/5) (19)

where β = 1 − α−1/5 and where the function λ 7→ EP (A, λV, λ2), as an infimum of concave
functions, is concave. Therefore it has one-sided derivatives, which implies that

EP (A, β−1V, β−2) ≥ EP (A, V )−O(α−1/5). (20)

Combining (19) and (20) the second inequality from Theorem 3.1 follows.

Theorem 3.2.

(a) If A ∈ L3
loc(R3) and V ∈ L3/2

loc (R3) with (6), then α−2E(A, V, α)→ EP as α→∞.

(b) If A = (B ∧ x)/2 and V ∈ L5/3(R3) + L∞(R3), then

E(A, V, α)
α2

= EP +O(α−1/5), (α→∞).

The fact that non-scaled fields A, V should become negligible in the limit α→∞ is seen
as follows: by Proposition 2.1 and by (9), α−2E(A, V, α) is bounded from above and from
below by

EP (Aα−1 , Vα−1) ≥ E(A, V, α)
α2

≥ βEP (Aα−1 , β−1Vα−1 , β−2)−O(α−1/5), (21)

where Aα−1(x) = α−1A(x/α) and Vα−1(x) = α−2V (x/α). In the limit α→∞ these fields are
vanishing in the sense of the following lemma. The theorem will thus follow from parts (b)
and (c) of Lemma 3.4 below. As a preparation we need:

Lemma 3.3. (i) Suppose A ∈ L3
loc(R3) and V ∈ L3/2

loc (R3). Then

Aα−1 → 0 (α→∞) in L2
loc(R3),

Vα−1 → 0 (α→∞) in L1
loc(R3).

(ii) If V = V1 + V2 ∈ L5/3(R3) + L∞(R3), then for all ϕ ∈ H1(R3)

|〈ϕ, V ϕ〉| ≤ C‖V1‖5/3‖ϕ‖2H1 + ‖V2‖∞‖ϕ‖2. (22)

In particular, V is infinitesimally form bounded w.r.to −∆.

8



Proof. (i) Let Ω ⊂ R3 be compact. By Cauchy-Schwarz,∫
Ω
|Aα−1(x)|2dx = α

∫
α−1Ω

|A(x)|2dx

≤
(∫
|A(x)|3χα−1Ω(x)dx

)2/3

|Ω|1/3 → 0 (α→∞).

The second statement of (i) is proved similarly.
In statement (ii) the contribution due to V2 is obvious. Let us assume that V = V1 ∈

L5/3(R3). By Hölder‘s inequality |〈ϕ, V ϕ〉| ≤ ‖V ‖5/3‖ϕ‖25 and∫
|ϕ|5 dx ≤ ‖ϕ‖1/2

(∫
|ϕ|6 dx

)3/4

. (23)

Using the general inequality ab ≤ p−1ap + q−1bq with p = 10 and q = 10/9 we obtain

‖ϕ‖25 ≤ ‖ϕ‖1/5‖ϕ‖
9/5
6 ≤ 1

10
‖ϕ‖2 +

9
10
‖ϕ‖26.

Statement (ii) now follows from the Sobolev inequality ‖ϕ‖26 ≤ C‖∇ϕ‖2. The infinitesimal
form bound follows from the fact that the norm of the L5/3-part of V can be chosen arbitrarily
small.

Lemma 3.4. Let A, V be real-valued potentials satisfying the hypothesis of Lemma 3.3 (i),
and suppose that (6) holds. If limα→∞ λ(α) = 1, then

(a) limα→∞ Eλ2(Aα−1 , λVα−1 , ϕ) = E(ϕ) for all ϕ ∈ C∞0 (R3),

(b) limα→∞EP (Aα−1 , λVα−1 , λ2) = EP .

If A = (B ∧ x)/2, V ∈ L5/3(R3) + L∞(R3) and limα→∞ λ(α) = 1, then

(c) EP (Aα−1 , λVα−1 , λ2) = λ4EP +O(α−1/5), (α→∞).

Proof. (a) For ϕ ∈ C∞0 (R3), Lemma 3.3 implies that ‖Aα−1ϕ‖ → 0 and 〈ϕ, Vα−1ϕ〉 → 0 as
α→∞. This proves (a).

(b) For any normalized ϕ ∈ C∞0 (R3), by (a),

lim sup
α→∞

EP (Aα−1 , λVα−1 , λ2) ≤ lim sup
α→∞

Eλ2(Aα−1 , λVα−1 , ϕ) = E(ϕ).

This implies that lim supα→∞EP (A, λV, λ2α)α−2 ≤ EP .
For (b) it remains to prove that lim infα→∞EP (Aα−1 , λVα−1 , λ2) ≥ EP . By the hypothesis

on V , for any ε > 0 and any normalized ϕ ∈ C∞0 (R3),

|〈ϕ, Vα−1ϕ〉| ≤ ε‖∇|ϕ|‖2 +
Cε
α2
. (24)

From (24), the diamagnetic inequality and the scaling property of EP , it follows that

Eλ2(Aα−1 , λVα−1 , ϕ) ≥ (1− λε)EP (0, 0, λ2/(1− λε))− λCε
α2

(25)

≥ λ4

(1− λε)
EP − λ

Cε
α2
, (26)
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and hence that

EP (Aα−1 , λVα−1 , λ2) ≥ λ4

(1− λε)
EP − λ

Cε
α2
.

Now letting first α→∞ and then ε→ 0, the desired lower bound is obtained.
The proof of the lower bound in (c) is similar to the proof of the lower bound in (b), the

main difference being that we now have (22) from Lemma 3.3, which implies that

|〈ϕ, Vα−1ϕ〉| ≤ Cα−1/5
(
‖ϕ‖2 + ‖∇|ϕ|‖2

)
(27)

with some C > 0 that is independent of α and ϕ. By the diamagnetic inequality and by (27),
for any normalized ϕ ∈ C∞0 (R3),

Eλ2(Aα−1 , λVα−1 , ϕ) ≥ Eλ2(0, 0, |ϕ|)− Cλα−1/5
(
1 + ‖∇|ϕ|‖2

)
≥ (1− Cλα−1/5)EP (0, 0,

λ2

1− Cλα−1/5
)− Cλα−1/5

=
λ4

1− Cλα−1/5
EP − Cλα−1/5.

Hence EP (Aα−1 , λVα−1 , λ2) ≥ λ4EP −O(α−1/5).
It remains to prove the upper bound on EP (Aα−1 , λVα−1 , λ2) in (c). To this end let ϕ0 be

a (real-valued) minimizer of the Pekar functional [9], i.e. E(ϕ0) = EP and let ϕλ be scaled in
such a way that Eλ2(ϕλ) = λ4E(ϕ0). Then

EP (Aα−1 , λVα−1 , λ2) ≤ Eλ2(Aα−1 , λVα−1 , ϕλ)

= λ4EP + ‖Aα−1ϕλ‖2 + λ〈ϕλ, Vα−1ϕλ〉
= λ4EP +O(α−1/5).

We have used that Re 〈−i∇ϕλ, Aα−1ϕλ〉 = 0, since ϕλ is real-valued, and (22) from Lemma 3.3

4 Existence of Bipolarons

Let A, V be vector and scalar potentials, respectively, satisfying the assumptions of the Sec-
tion 2. Let α,U > 0. We define a two-body Hamiltonian HA,V

U on L2(R6) by

HA,V
U := (D2

A + V )⊗ 1 + 1⊗ (D2
A + V ) + UVC (28)

where VC(x, y) := |x − y|−1. More precisely, we define HA,V
U in terms of the quadratic form

given by the right hand side of (28) on C∞0 (R6). Its form domain will be denoted by H1
A(R6).

In the two-polaron model of Fröhlich, the minimal energy, E2(A, V, U, α) of two electrons
in a polar crystal is the infimum of the quadratic form〈

ψ, (HA,V
U ⊗ 1)ψ

〉
+N(ψ) +

√
αW2(ψ), (29)

whose domain is the intersection of H1
A(R6) ⊗ F0 with the unit sphere of the Hilbert space

L2(R6) ⊗ F . Here N(ψ) and W2(ψ) are defined by expressions similar to (7) and (8), the
main difference being that eikx in (8) becomes eikx1 + eikx2 in W2(ψ).
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In the two-polaron model of Pekar and Tomasevich the minimal energy, EPT (A, V, U, α)
of two electrons in a polar crystal is the infimum of the functional〈

ϕ,HA,V
U ϕ

〉
− α

∫ ∫
ρ(x)ρ(y)
|x− y|

dxdy

on the L2-unit sphere of H1
A(R6), where ρ(x) :=

∫ (
|ϕ(x, y)|2 + |ϕ(y, x)|2

)
dy. For any fixed

ϕ ∈ L2(R6) ∩H1
A(R6), ‖ϕ‖ = 1, and corresponding density ρ the identity

inf
‖η‖=1

(
N(ϕ⊗ η) +

√
αW2(ϕ⊗ η)

)
= −α

∫ ∫
ρ(x)ρ(y)
|x− y|

dxdy

holds. By choosing ψ = ϕ⊗ η in (29) it follows that

EPT (A, V, U, α) ≥ E2(A, V, U, α), (30)

which, together with Theorem 3.1 and the results of [7] enables us to prove the following
theorem on the binding of polarons:

Theorem 4.1. Suppose A, V ∈ L2
loc(R3) and that V is infinitesimally operator bounded w.r.to

∆. Let Aα(x) = αA(αx) and Vα(x) = α2V (αx). If the Pekar functional (5) attains its
minimum, then there exists uA,V > 2 such that for U < αuA,V and α large enough

2E(Aα, Vα, α) > E2(Aα, Vα, U, α).

Proof. Let U = αu. By a simple scaling argument

EPT (Aα, Vα, αu, α) = α2EPT (A, V, u, 1), (31)

which is analogous to (9). By Theorem 3.1 of [7] there exists uA,V > 2 such that for u < uA,V ,

2EP (A, V ) > EPT (A, V, u, 1). (32)

From Theorem 3.1, (32), (31), and (30) it follows that, for α large enough,

2α−2E(Aα, Vα, α) = 2EP (A, V )− o(1)
> EPT (A, V, u, 1)

= α−2EPT (Aα, Vα, αu, α)

≥ α−2E2(Aα, Vα, U, α),

which proves the theorem.
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2011-016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines

2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function

2011-014 Müller, S.; Dippon, J.: k-NN Kernel Estimate for Nonparametric Functional Regression
in Time Series Analysis

2011-013 Knarr, N.; Stroppel, M.: Unitals over composition algebras

2011-012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of
characteristic two

2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes

2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with
special holonomy

2011-009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations

2011-008 Stroppel, M.: Orthogonal polar spaces and unitals

2011-007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe
Gruppenalgebra

2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic
spaces

2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
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2008-002 Hertweck, M.; Höfert, C.R.; Kimmerle, W.: Finite groups of units and their composition
factors in the integral group rings of the groups PSL(2, q)

2008-001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a
correction term

2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term



2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya’s conjecture in the presence of a constant
magnetic field

2007-004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger operators on
metric trees

2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides

2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry

2007-001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and
smoothness restrictions


	Introduction
	The Lower Bound
	The Strong Coupling Limit
	Existence of Bipolarons

