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Heisenberg Groups, Semifields,
and Translation Planes

Norbert Knarr, Markus J. Stroppel

Abstract

For Heisenberg groups constructed over semifields (i.e., not neccessarily associative divi-
sion rings), we solve the isomorphism problem and determine the automorphism groups.
We show that two Heisenberg groups over semifields are isomorphic precisely if the semi-
fields are isotopic or anti-isotopic to each other. This condition means that the corre-
sponding translation are isomorphic or dual to each other.
Mathematics Subject Classification:
12K10 17A35 20D15 20F28 51A35 51A10
Keywords: Heisenberg group, nilpotent group, automorphism, translation plane, semi-
field, division algebra, isotopism, autotopism

In [7], Heisenberg’s example of a step 2 nilpotent group has been generalized, replacing
the ground field by an arbitrary associative ring S with 2 ∈ S×. The main focus of [7]
was on the group of automorphisms of such a Heisenberg group. In the present note we
extend this further (see 1.2 below), dropping the restriction on invertibility of 2 and allowing
the multiplication in S to be non-associative. The main results of the present paper require
that S is a semifield. In fact, it has already become clear in [7, 11.2] that there are rings
(containing zero divisors) where the corresponding Heisenberg group does not determine
the ring. However, in [14] we have obtained positive results for the case where S is a split
composition algebra.

The groups that we consider here have already been studied by Cronheim [3] who char-
acterized those that arise from semifields (and actually reconstructed the semifield from the
group, up to isotopism). However, in Cronheim’s work a pair of commutative subgroups with
special properties is distinguished (this pair occurs as (XS , YS) below), and this pair is kept
fixed by assumption. We clarify in the present paper that these subgroups are not invariant
in general (although they are in certain cases, cf. 4.5, 5.4, and [14]). However, in each of the
cases that we study here, it turns out that the collection of pairs in question forms a single
orbit under automorphisms (see 5.4 and 5.5).

Theorem 5.7 below extends the result (implicit in Cronheim’s paper [3]) that the isomor-
phism types of groups in the class considered here correspond to isomorphism types of in-
cidence graphs of projective planes of Lenz type V. Our results extend Hiramine’s paper [9]
who has proved versions of 5.4 and 5.7 for finite semifields.

We note that semifields exist in abundance; see [11] and [15] for the finite case (and [6]
for a recent addition to that copious supply), [17, 64.16, 82.1, 82.16, 82.21] for topological
semifields (where the Heisenberg group is a real Lie group), and [5] for a general theory.
The notion of Heisenberg group used in the present paper is more general than that used
elsewhere (e.g., in [8], [7], or [18]); we include characteristic two cases.
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1 Heisenberg groups defined by semifields

1.1 Definitions. Let (S,+, ·) be a (not necessarily associative) unitary algebra, i.e., a set S
with two binary operations + and · called addition and multiplication, and two distinguished
elements 0 and 1 such that

• (S,+) is a group with neutral element 0,

• the distributive laws a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c hold,

• the element 1 is a neutral element for the multiplication.

Note that these conditions imply that addition is commutative. For the sake of readability, we
will often suppress the symbol for the multiplication, writing ab for a · b.

Mostly, we are interested in the case of a semifield1, i.e., a unitary algebra such that

• the equations a ·x = b or y ·a = b have unique solutions x and y, respectively, whenever
a ∈ S r {0}.

The middle nucleus Sm := {m ∈ S | ∀ a, c ∈ S : a(mc) = (am)c} of a semifield S is, in gen-
eral, a skew field. If (the multiplication of) S is commutative then Sm is a field. The sets
Sr := {x ∈ S | ∀ a, c ∈ S : a(cx) = (ac)x} and Sl := {x ∈ S | ∀ a, c ∈ S : (xa)c = x(ac)} are, re-
spectively, called the right nucleus and the left nucleus of S; these form skew fields in general.
If S is commutative, we observe a(rc) = a(cr) = (ac)r = (ca)r = c(ar) = (ar)c. In that case,
we have that Sl = Sr is a subfield of the middle nucleus Sm.

1.2 Definition. Let S be a unitary algebra. We define two binary operations on the set S3, as
follows.

(a, s, x)� (b, t, y) := (a+ b, s+ t, x+ y + sb) ,
(a, s, x) # (b, t, y) := (a+ b, s+ t, x+ y + sb− ta) .

Straightforward verification shows that both hS := (S3,�) and HS := (S3,#) are groups.
We identify S2 × S = {(v, x) | v ∈ S2, x ∈ S} with S3 whenever this seems convenient. In

order to keep notation simple, we write 〈(a, s)
S
(b, t)〉 := sb− ta.

1.3 Proposition. 1. The group hS is nilpotent of class 2, more explicitly, the subset ZS :=
{(0, 0)} × S equals both the center and the commutator subgroup of hS .

2. Commutators in the group hS are given by
[
(u, x), (v, y)

]
� =

(
0, 〈u

S
v〉
)
; those in HS by[

(u, x), (v, y)
]
#

=
(
0, 2〈u

S
v〉
)
.

3. If 2 id is invertible in End(S,+) then ηS : hS → HS : (a, s, x) 7→ (a, s, 2x − sa) is an
isomorphism.

4. If 2 id = 0 (i.e., if charS = 2) then HS is elementary abelian while hS is not abelian.

5. If S is a semifield then every non-trivial element of HS has the same order, namely, the
characteristic of S if this is finite, and infinite order otherwise.

6. If charS = 2 then every element of {(a, s, x) ∈ hS | as 6= 0} has order 4, and every element
of {(a, s, x) ∈ hS | as = 0}r{(0, 0, 0)} has order 2. The latter set contains ZSr{(0, 0, 0)}.

1 Other sources call these structures division algebras.
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Proof. We compute the inverse of (a, s, x) in hS as (−a,−s, sa − x) and the commutator of
(a, s, x) and (b, t, y) then as (a, s, x)(b, t, y)(−a,−s, sa−x)(−b,−t, tb−y) = (0, 0, sb−ta). This
gives the assertions about center and commutator subgroup of hS .

Regarding assertion 3 we note that the map ηS : hS → HS : (a, s, x) 7→ (a, s, 2x − sa) is a
homomorphism. It is bijective if 2 is invertible in S.

The remaining assertions are well known facts about generalized Heisenberg groups (see
the general treatment in [7, 2.4]); we do not need the special definition of sb via the semifield
multiplication but only the fact that mapping ((a, s), (b, t)) to sb is bi-additive.

1.4 Lemma. The centralizer of (a, s, x) in hS is ChS
(a, s, x) = {(b, t, y) | sb = ta}.

1.5 Definition. For (a, s) ∈ S2 put C(a,s) := {(b, t) ∈ S2 | at = bs}; this means ChS
(a, s, x) =

C(a,s) × S. We call C(a,s) abelian if the subgroup C(a,s) × S is commutative.

1.6 Remark. For each semifield S, the group hS acts on the affine plane over S, and thus on
the projective closure of that plane. To make this explicit, we define more generally the inci-
dence structure DAP(S) for any algebra S as DAP(S) := (S2,L) with L := {[m, b] |m, b ∈ S},
where [m, b] := {(x,mx+ b |x ∈ S}. (In [3], our DAP(S) is studied systematically, as the P -
system corresponding to hS , considered as a T -group with distinguished subgroups C(1,0)×S
and C(0,1) × S.)

If S is a semifield, we recall that the that affine plane over S is an extension of DAP(S);
we add the set L∞ := {[v] | v ∈ S} of vertical lines of the form [v] := {v}×S to obtain the line
set L ∪ L∞.

Returning to the case of a general algebra S we note that

ωP : hS ×S2 → S2 : ((a, s, z), (x, y)) 7→ (a+ x, z + sx+ y)

is an action of the group hS on the point set of DAP(S) such that each line is mapped onto a
line (here we use both distributive laws). The corresponding action on the set of lines is

ωL : hS ×L → L : ((a, s, z), [m, b]) 7→ [s+m, z − sa−ma+ b] .

If S is a semifield then ((a, s, z), [c]) 7→ [c+ a] extends this action to the affine plane; and
we also obtain an action on the projective closure of the affine plane.

The subgroup C(1,0) × S consists of all translations of the plane, the subgroup C(0,1) × {0}
is the group of all shears with axis [0] and center L∞ (this parallel class is regarded as a point
at infinity, as usual).

A commutative group of automorphisms of a projective plane is called a shift group (cf. [12])
if there is an incident point-line pair (p, L) such that the group acts (sharply) transitively on
the set of points not on L and on the set of lines not through p. In 5.1 below, the subgroups
of the form Cu × S with u ∈ S2 such that Cu is abelian are characterized as the shift groups
in hS .

2 Isotopisms

2.1 Definition. Let (S,+, ·) and (T,+, ∗) be algebras (not necessarily associative). An iso-
topism2 from (S,+, ·) onto (T,+, ∗) is a triplet (A,B,C) of additive bijections from S onto T

2 Since we are going to interpret autotopisms as collineations as in [4, 3.1.32] (cf. also [13]), we use notation
that differs from the more algebraically oriented sources, such as [2], [16], or [15].
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such that B(x · y) = C(x) ∗A(y) holds for all x, y ∈ S. Note that (A,B,C) is an isomorphism
of algebras precisely if A = B = C. If S and T are unitary algebras, this is also equivalent
to A(1) = 1 = C(1); in fact, evaluating B(x · 1) = C(x) ∗ 1 and B(1 · y) = 1 ∗ C(y) we find
A = B = C.

A triplet (D,E, F ) of additive bijections from S onto T is called an anti-isotopism from
(S,+, ·) onto (T,+, ∗) if E(x · y) = D(y) ∗ F (x) holds for all x, y ∈ S.

For any isotopism (A,B,C) of an algebra S onto an algebra T we obtain an isomorphism
(i.e., a collineation) αA|B|C from DAP(S) onto DAP(T ) (which extends to isomorphisms
between the affine and between the projective planes, respectively, if S and T are semifields),
mapping (x, y) to (A(x), B(y)) and [m, b]→ [C(m), B(b)]; cf. [4, 3.1.32].

Each anti-isotopism (D,E, F ) from S onto T yields an isomorphism δD|E|F from DAP(S)
onto the dual of DAP(T ), mapping the point (x, y) to the line [D(x),−E(y)] and the line
[m, b] onto (F (m),−E(b)).

For isotopisms (A′, B′, C ′), (A,B,C) and anti-isotopisms (D′, E′, F ′), (D,E, F ), respec-
tively, the compositions

αA′|B′|C′ αA|B|C = αA′A|B′B|C′C and δD′|E′|F ′ δD|E|F = αF ′D|E′E|D′F

are collineations, while

αA′|B′|C′ δD|E|F = δC′D|−B′E|A′F and δD′|E′|F ′ αA|B|C = δD′A|−E′B|F ′C

are dualities. We obtain the subgroup

∇S := {αA|B|C | (A,B,C) is an autotopism of S}
∪ {δD|E|F | (D,E, F ) is an anti-autotopism of S}

in the group of all automorphisms and dualities of DAP(S).

2.2 Proposition. Let S and T be unitary algebras.

1. If (A,B,C) is an isotopism from S onto T then

bA|B|Cc : (a, s, x) 7→ (A(a), C(s), B(x))

is an isomorphism from hS onto hT , and an isomorphism from HS onto HT , as well.

2. If (D,E, F ) is an anti-isotopism from S onto T then

dD|E|F e : (a, s, x) 7→ (F (s), D(a), E(sa− x))

is an isomorphism from hS onto hT , and

dD|E|F e# : (a, s, x) 7→ (F (s), D(a),−E(x))

is an isomorphism from HS onto HT .

3. Now assume S = T . Then the map

ω :

{
αX|Y |Z 7→ bX|Y |Zc if (X,Y, Z) is an autotopism of S
δX|Y |Z 7→ dX|Y |Ze if (X,Y, Z) is an anti-autotopism of S

is a group homomorphism from the group ∇S into Aut(hS).
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Proof. Clearly bA|B|Cc and dD|E|F e are bijective. It remains to compute

bA|B|Cc(a, s, x)� bA|B|Cc(b, t, y) =
(
A(a), C(s), B(x))� (A(b), C(t), B(y)

)
=
(
A(a+ b), C(s+ t), B(x+ y) + C(s)A(b)

)
=
(
A(a+ b), C(s+ t), B(x+ y + sb)

)
= bA|B|Cc

(
(a, s, x)� (b, t, y)

)
and

dD|E|F e(a, s, x)� dD|E|F e(b, t, y) =
(
F (s), D(a), E(sa− x))� (F (t), D(b), E(tb− y)

)
=
(
F (s+ t), D(a+ b), E(sa+ tb− x− y) +D(a)F (t)

)
=
(
F (s+ t), D(a+ b), E(sa+ tb− x− y + ta)

)
= dD|E|F e(a+ b, s+ t, x+ y + sb)

= dD|E|F e
(
(a, s, x)� (b, t, y)

)
.

An analogous computation shows that bA|B|Cc is an isomorphism from HS onto HT , but
dD|E|F e is not. If 2 is invertible in S then ηT bA|B|Cc η

−1
S = bA|B|Cc and ηT dD|E|F e η

−1
S 6=

dD|E|F e are isomorphisms from HS onto HT ; here ηS and ηT are as in 1.3.3.

2.3 Remark. If 2 is invertible in S then the isomorphisms

ηS : hS → HS : (a, s, x) 7→ (a, s, 2x− sa)
and ηT : hT → HT : (b, t, y) 7→ (b, t, 2y − tb)

(cf. 1.3.3) yield ηT bA|B|Cc η
−1
S = bA|B|Cc and ηT dD|E|F e η

−1
S = dD|E|F e#.

2.4 Definition. For any algebra S, we write Atp(S) ≤ Aut(hS) for the group of all auto-
morphisms bA|B|Cc induced by autotopisms (A,B,C) of S, and AntiAtp(S) for the group of
automorphisms induced by autotopisms and anti-autotopisms.

3 Semifields that are isotopic to commutative ones

For any algebra (S,+, ·) and a ∈ S, we consider the endomorphisms λa : S → S : x 7→ a · x
and ρa : S → S : x 7→ x · a of the additive group (S,+).

3.1 Lemma. Let (S,+, ·) be a unitary algebra. Assume that there exists d ∈ S such that λd
is invertible and (d · x) · y = (d · y) · x holds for all x, y ∈ S. Then (S,+, ·) is isotopic to a
commutative algebra.

If (S,+, ·) is a semifield with this property then it is isotopic to a commutative semifield.

Proof. As we will change the multiplication on S, it is necessary to make the binary operations
explicit. Assume that the given semifield is (S,+, ·).

We define a new multiplication ∗ on S by d·(x∗y) = (d·x)·y. Our assumption yields that this
multiplication is commutative. Now (id, λd, λd) is an isotopism from (S,+, ·) onto (S,+, ∗).
The neutral element of the new multiplication is the same as for the old multiplication.

In order to distinguish it from λx, we write λ∗x : s 7→ x ∗ s for the left multiplication map
in (S,+, ∗). We have x∗y = λ−1

d (λd(x ∗ y)) = λ−1
d (λd·x(y)) = λ−1

d (ρy(λd(x))). Therefore, the
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left multiplication λ∗x = λ−1
d λd·x is invertible precisely if λd·x is invertible, and ρ∗y = λ−1

d ρyλd
is invertible precisely if ρy is invertible. In particular, the algebra (S,+, ∗) is a semifield if, and
only if, the algebra (S,+, ·) is a semifield.

3.2 Lemma. Let S be an unitary algebra, and consider a ∈ S r {0}.

1. If C(a,0) is abelian then C(a,0) = S×{0} and the endomorphism ρa : x 7→ xa of the additive
group (S,+) is injective.

2. If C(0,a) is abelian then C(0,a) = {0} × S and the endomorphism λa : x 7→ ax of (S,+) is
injective.

Proof. In any case, we have S × {0} ⊆ C(a,0) = {(b, t) ∈ S2 | ta = 0}. If C(a,0) is abelian then
(1, 0) ∈ C(a,0) yields 0 = 〈(1, 0)

S
(b, t)〉 = t. Thus C(a,0) ⊆ S × {0}, and equality is proved.

Injectivity of ρa now follows from S × (ker ρa) ⊆ C(a,0). The proof for (0, a) is completely
analogous.

For any semifield S and any a ∈ S r {0} the sets C(a,0) = S × {0} and C(0,a) = {0} × S
are abelian. In fact, for any x ∈ S the centralizers of (a, 0, x) and (0, a, x), respectively, are
vector spaces over the middle nucleus Sm; in particular, they are elementary abelian groups
if charS > 0.

In general, however, the set C(a,s) will not be abelian if sa 6= 0:

3.3 Lemma. Assume that S is a semifield and that there exists (a, s) ∈ S2 with sa 6= 0 such
that C(a,s) is abelian. Let d be the solution for da = s.

1. We have C(a,s) = C(1,d) = {(c, dc) | c ∈ S}.

2. The semifield S is isotopic to a commutative one.

3. If S is commutative then d belongs to the middle nucleus Sm.

Conversely, if S is commutative then C(1,d) is abelian for each d ∈ Sm.

Proof. For each b ∈ S let tb be the unique solution of the equation tb · a = s · b. Then C(a,x) =
{(b, tb) | b ∈ S}. Our assumption that C(a,x) is abelian yields C(a,x) ⊆ C(1,d) = {(c, d · c | c ∈ S}
for d := t1. As both sets contain precisely one pair for each possible left entry, they coincide.
As C(1,d) is abelian, we find (d · x) · y − (d · y) · x = 〈(x, d · x)

S
(y, d · y)〉 = 0. Then 3.3 yields

that S is isotopic to a commutative algebra.
If (S,+, ·) is commutative then (d ·x) · y− (d · y) ·x = 0 is equivalent to (x ·d) · y = x · (d · y).

This means d ∈ Sm, as claimed.

Assertion 3.3.2 is taken from [12, 9.3]. The reader may wonder how a non-commutative
semifield may be isotopic to a commutative one. In fact, this is a quite common feature in
the absence of associativity; every non-associative semifield is isotopic to a non-commutative
one, see [1, (2.4), p. 110], cf. also [10, 2.4].

Lemma 3.3.2 cannot be extended easily to algebras that are not semifields; see [7, 5.9].

3.4 Proposition. If S is a semifield with charS = 2 then the only elements in hS with elementary
abelian centralizers are those in (S × {0} × S) ∪ ({0} × S × S).
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Proof. Let (a, s, x) ∈ S3 with as 6= 0. If the centralizer of (a, s, x) in hS is commutative then
C(a,s) = C(1,d) = {(c, cd) | c ∈ S} for some d ∈ S r {0} by 3.3. For each c ∈ S r {0} we now
obtain that the square (c, cd, x) � (c, cd, x) = (0, 0, c(cd)) is not trivial, and the centralizer
C(a,s) × S is not elementary abelian.

4 Isomorphisms between Heisenberg groups

If S is a unitary algebra then ZS = {(0, 0)} × S = h′S is characteristic in hS . It is quite natural
to study the following map:

4.1 Definition. Let S be an algebra. The commutator map of hS is

γS : hS /ZS × hS /ZS → ZS : (ZS + (u, x), ZS + (v, y)) 7→
[
(u, x), (v, y)

]
� = (0, 0, 〈u

S
v〉) .

4.2 Definition. Let S be a (not necessarily associative) algebra and consider an arbitrary addi-
tive map N : S2 → S. Then ξN : S3 → S3 : (a, x, u) 7→ (a, x, u+N(a, x)) is an automorphism
both of hS and of HS . We call ξN a nil-automorphism and write ΞS := {ξN |N ∈ Hom(S2, S)}.

4.3 Lemma. The group ΞS of nil-automorphisms consists of those automorphisms that act triv-
ially both on ZS and on the quotient modulo ZS . If ZS is characteristic (in particular, if the
algebra S is unitary) then ΞS is a normal subgroup of Aut(hS) (and also of Aut(HS), if 2 is
invertible in S).

4.4 Definition. For any algebra S we put XS := S × {0} × S and YS := {0} × S × S.

4.5 Theorem. Assume that S and T are unitary algebras, and that ϕ : hS → hT is an isomor-
phism mapping {XS , YS} to {XT , YT }.

1. If ϕ(XS) = XT then there exists an isotopism η from S onto T such that ϕ ∈ ΞT ◦ bηc.

2. If ϕ(XS) = YT then there is an anti-isotopism α from S onto T with ϕ ∈ ΞT ◦ dαe.

If S is a semifield with charS = 2 or if S is a semifield not isotopic to a commutative one then
every isomorphism ϕ : hS → hT maps {XS , YS} to {XT , YT }.

Proof. The isomorphism ϕ maps the center ZS of hS onto ZT . Let U : S2 → T 2 be the
map induced between the quotients modulo the centers, i.e., such that ϕ(ZS + (u, 0)) =
ZT + (U(u), 0) holds for each u ∈ S2. Moreover, let U ′ : S → T be defined by ϕ(0, 0, x) =
(0, 0, U ′(x)). As ϕ translates the commutator map γS into γT we have

∀u, v ∈ S : 〈U(u)
T
U(v)〉 = U ′〈u

S
v〉 . (♦)

If ϕ(XS) = XT then ϕ(YS) = YT and there are additive bijections A and C from S onto T
such that U(a, s) = (A(a), C(s)). Equation (♦) now implies

U ′(s · b) = 〈U(0, s)
T
U(b, 0)〉 = 〈(0, C(s))

T
(A(b), 0)〉 = C(s) ∗A(b) .

Thus (A,U ′, C) is an isotopism, and ϕ ◦ bA|U ′|Cc−1 belongs to ΞT .
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Now assume U(S × {0}) = {0} × T . Then U({0} × S) = T × {0}, there are additive
bijectionsD and F from S onto T such that U(a, s) = (F (s), D(a)), and (♦) implies U ′(s · b) =
−D(b) ∗ F (s). Thus (D,−U ′, F ) is an anti-isotopism, and ϕ ◦ dD| − U ′|F e−1 belongs to ΞT .

If charS = 2 then 3.4 says that XS and YS are the only abelian centralizers. If charS 6= 2
then our assumptions on S again imply that XS and YS are the only abelian centralizers. In
any one of these cases, we have that ϕmaps the two-element set {XS , YS} onto {XT , YT }.

For any field R of characteristic two, the Heisenberg group hR×R contains many commu-
tative centralizers; cf. [14, 4.2]. Also, according to [7, 5.9], the direct product A of a com-
mutative ring with a non-commutative one yields a Heisenberg group hA with commutative
centralizers apart from those in {XA, YA}. These examples show that the extra assumption
(i.e., absence of zero divisors) in the last assertion of 4.5 is not superfluous.

If charS 6= 2 then HS belongs to the class of reduced Heisenberg groups, where isomor-
phisms are well understood, cf. [19] and [8]:

4.6 Lemma. Let S and T be unitary algebras such that 2 id is invertible in End(S,+), and
let ϕ : HS → HT be an isomorphism. Then there are uniquely determined additive bijections
U : S2 → T 2 and U ′ : S → T together with an additive map N : S2 → T such that

ϕ(u, x) = (U(u), U ′(x) +N(u))

holds for all (u, x) ∈ S2 × S. The maps U and U ′ satisfy (♦).
Conversely, if U : (S2,+) → (T 2,+) and U ′ : (S,+) → (T,+) are isomorphisms satisfying

equation (♦) then U ′ is uniquely determined by U , and

ψU : S2 × S → T 2 × T : (u, x) 7→ (U(u), U ′(x))

is an isomorphism from HS onto HT . We obtain ϕ = ξN◦U−1 ◦ ψU .

4.7 Definition. If S = T we write ΨS for the set of all ψU where U ∈ Aut(S2,+) satisfies
equation (♦). Thus Aut(HS) = ΞS ◦ΨS .

In order to show that 4.6 does not easily extend to the characteristic two case, we study
the smallest example. Here we use the field F2 for the semifield, and consider hF2:

4.8 Example. The group hF2 has order 8. The element (1, 1, 0) and its inverse (1, 1, 1) have
order 4; they both have the square (0, 0, 1). Each element (a, s, x) ∈ F3

2 with sa = 0 satisfies
(a, s, x)� (a, s, x) = (0, 0, sa) = (0, 0, 0). Thus the group hF2 contains precisely 5 involutions,
namely, the central involution ζ := (0, 0, 1), and the non-central elements σ := (1, 0, 0),
τ := (0, 1, 0), στσ = τζ = (0, 1, 1), and τστ = σζ = (1, 0, 1). Among the groups of order 8,
this characterizes those isomorphic to the dihedral group D4.

The group Aut(hF2) acts on the set of all involutions in hF2 , permuting the four involutions
different from ζ. The set {(σ, σζ), (τ, τζ)} of commuting pairs is invariant under that action.
This gives an embedding of Aut(hF2) into D4. On the other hand, we have that the dihedral
group D8 of order 16 acts by automorphisms via conjugation on D4 (which forms a normal
subgroup in D8). The kernel of that action has order 2, and we see that Aut(hF2) ∼= Aut(D4)
is isomorphic to D4.

The normal subgroup ΞF2 ≤ Aut(hF2) is elementary abelian of order 4. The unique invo-
lution interchanging σ with τ in Aut(hF2) generates a complement to ΞF2; so the extension
1→ ΞF2 → Aut(hF2)→ C2 → 1 splits.

The stabilizer of the set F2
2×{0} is trivial because it fixes τσ = (1, 1, 0) and interchanging σ

with τ would also interchange τσ with its inverse στ .
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4.9 Remark. Our results 4.5 and 5.5 yield that the group extension ΞS → Aut(hS) splits
whenever either W is a semifield, or associative (i.e., in all those cases there exists a subgroup
K ≤ Aut(hS) with trivial intersection ΞS ∩K and such that Aut(hS) = ΞSK is a semidirect
product). In [14] we obtain the same result for the case where S is a composition algebra.

However, example 4.8 shows that we can not, in general, use the stabilizer of the set
S2 × {0} (which forms a vector subspace of the Lie algebra associated with hS) for the com-
plement K. This is due to the fact that this set is not invariant under inversion in hS , and thus
not invariant under the action of dD|E|F e if (D,E, F ) is an anti-autotopism of S (cf. 2.2).

The problem disappears if charS 6= 2 because then we can use HS
∼= hS — and S2 × {0} is

invariant under inversion in HS .

5 Automorphisms of Heisenberg groups over semifields

We characterize the shift groups (cf. 1.6) inside hS:

5.1 Lemma. Let S be a commutative semifield. For a subgroup ∆ ≤ HS the following are
equivalent:

1. There is d ∈ Sm r {0} such that ∆ = C(1,d) × S.

2. There is d ∈ S r {0} such that ∆ = C(1,d) × S, and ∆ is commutative.

3. The actions ωP |P×∆ and ωL|(LrL∞)×∆ introduced in 1.6 are both transitive, and the
group ∆ is commutative.

Proof. The first two assertions are equivalent by 3.3. Straightforward computations show that
C(1,d) × S satisfies the transitivity assumptions imposed by the third assertion. It remains to
prove that the third assertion implies the first one; this has been done in [12, 9.4, 9.6].

5.2 Remarks. The subgroupsXS = C(1,0)×S and YX := C(0,1)×S are commutative subgroups
of hS but each of them satisfies only one of the two conditions on transitivity imposed in 5.1.
In fact, the group XS is transitive on the point set but not on L, while YS is transitive on L
but not on the point set.

5.3 Definition. Let S be a commutative semifield. We define

ΣS := {A ∈ GL(2, Sm) |detA ∈ Sr} .

The set of all commutative centralizers is

AS := {ChS
(g) | g ∈ hS , ChS

(g) is commutative}

= {Cu × S |u ∈ S2, Cu is abelian} .

5.4 Proposition. Let S be a commutative semifield.

1. The set ΣS forms a group (with respect to ordinary matrix multiplication).

2. The map ω : ΣS × HS → HS :
(
A, (u, x)

)
7→ (A(u), x detA) is an action of ΣS by auto-

morphisms of HS .
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3. If charS 6= 2 then this action induces a two-transitive action on the set AS of all commu-
tative centralizers in hS .

Proof. The set ΣS is the pre-image of the subgroup Sr r {0} of the multiplicative group of Sm

under the determinant homomorphism. Thus ΣS is a subgroup of GL(2, Sm).
Clearly ω is an action. In order to see that it is an action by automorphisms of HS , we

have to verify that the action of A ∈ ΣS satisfies condition (♦), see 4.6. To this end, we write
u = (a, s) and v = (b, t) and consider the following generators of ΣS:

A = ( 1 0
m 1 ) for m ∈ Sm: Here detA = 1. Using commutativity of S and the defining property
of the middle nucleus Sm we compute

〈A(u)
S
A(v)〉 = 〈(a,ma+ s)

S
(b,mb+ t)〉 = (ma+ s)b− (mb+ t)a

= (ma)b− (mb)a+ sb− ta
= (am)b− a(bm) + 〈u

S
v〉 = 〈u

S
v〉 ,

as required for (♦).

A = ( 1 m
0 1 ) for m ∈ Sm: This case is analogous to the previous one.

A = ( 1 0
0 r ) for r ∈ Sr: Here detA = r, and

〈A(u)
S
A(v)〉 = 〈(a, rs)

S
(b, rt)〉 = a(rt)− b(rs)

= a(tr)− b(sr) = (at− bs)r = 〈u
S
v〉detA

shows that (♦) is satisfied.

Thus the action of ΣS is an action by automorphisms of HS , and assertion 2 is established.
From 3.3 we know that C(1,d) is abelian precisely if d ∈ Sm, that each abelian set Cu is of

the form C(1,d) for a suitable d ∈ Sm, and that S(1, d) = Cu in that case. In order to prove
assertion 3 it remains to observe that

(
1 0
d 1

)
∈ ΣS maps C(1,0) × S to C(1,d) × S, and that

( 0 1
1 0 ) ∈ ΣS interchanges C(1,0) × S with C(0,1) × S.

5.5 Theorem. Assume that S is a semifield.

1. If S is isotopic to a commutative semifield T with charT 6= 2 then Aut(hS) ∼= Aut(HS) ∼=
Aut(HT ) = ΞT ◦ SL(2, Tm) ◦Atp(T ) = ΞT ◦ ΣT ◦Atp(T ).

2. If S is not isotopic to a commutative semifield then Aut(hS) = ΞS ◦AntiAtp(S).

3. If charS = 2 then Aut(hS) = ΞS ◦AntiAtp(S).

Proof. Under any automorphism of HS the subgroups XS and YS are mapped to elements
of AS . If S is commutative with charS 6= 2 we know from 5.4 that SL(2, Rm) ≤ ΣS acts
two-transitively on AS . If S is not isotopic to a commutative semifield then the set {XS , YS}
is invariant under all automorphisms of hS . Invariance of that set also holds if charS = 2,
see 4.5.

The stabilizer of the set {XS , YS} has been determined in 4.5. Note that anti-autotopisms
of S are autotopisms if S is commutative.
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5.6 Remark. Our result 4.5 also shows that we do not have an action of SL(2, Sm) or of ΣS

as in 5.4 if charS = 2.

5.7 Theorem. Let S and T be semifields. The following are equivalent:

1. S and T are isotopic or anti-isotopic.

2. The projective planes over S and T are isomorphic or dual to each other.

3. The incidence graphs of the projective planes over S and T are isomorphic to each other.

4. There is an isomorphism between hS and hT .

Proof. The equivalence of the first three assertions is well known; see 2.1.
The first assertion implies the last one, see 2.2. So assume that there is an isomorphism

ϕ : hS → hT . From 4.5 we know that the existence of ϕ yields the existence of an isotopism
or an anti-isotopism if charS = 2 or if S is not isotopic to a commutative semifield. It remains
to treat the case where S and T are (isotopic to) commutative semifields, and charS 6= 2.
According to 5.5, we may then assume that ϕ maps {XS , YS} to {XT , YT }. Now 4.5 yields
the existence of an isotopism or an anti-isotopism, as required.

5.8 Remark. For the equivalence of assertions 5.7.1 and 5.7.4 we only need to assume that
one of the algebras in question is a semifield; for the other one this then follows from the
existence of an (anti-)isotopism.
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2008-005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed
problems in Banach spaces: convergence and applications to parameter identification
problems

2008-004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale
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