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Heisenberg Groups
over Composition Algebras

Norbert Knarr, Markus J. Stroppel

Abstract

We solve the isomorphism problem for Heisenberg groups constructed over composition
algebras, including the split case and characteristic two. Such groups are isomorphic if,
and only if, the corresponding composition algebras are isomorphic as Z-algebras.
Mathematics Subject Classification: 17A75 20D15 20F28
Keywords: Heisenberg group, nilpotent group, automorphism, isomorphism, isotopism,
composition algebra, quaternion, octonion, Cayley algebra

1 Introduction

In [6] we have solved the isomorphism problem for Heisenberg groups over semifields; show-
ing that the Heisenberg groups over two semifields S and T are isomorphic if, and only if, the
semifields are either isotopic or anti-isotopic (meaning that the projective translation planes
over these semifields are either isomorphic or dual to each other). In the present notes, we
solve the isomorphism problem for (not necessarily associative) algebras that may contain
divisors of zero, under the extra assumption that at least one of the algebras is a composition
algebra.

If we allow divisors of zero in our algebra S, the structure of the group HS depends heavily
on the structure of S, even in the case where S is associative with 2 ∈ S× (this case has
been studied thoroughly in [3], where VS ∼= HS

∼= hS). Aiming at a temperate amount of
generalization we will thus retain a modest amount of associativity; we will study composition
algebras in the sequel.

1.1 Definition. Let S be a unitary algebra. We define two binary operations on the set S3, as
follows.

(a, s, x)� (b, t, y) := (a+ b, s+ t, x+ y + sb) ,
(a, s, x) # (b, t, y) := (a+ b, s+ t, x+ y + sb− ta) .

Straightforward verification shows that both hS := (S3,�) and HS := (S3,#) are groups.

In order to keep notation simple, we write 〈(a, s)
S
(b, t)〉 := sb− ta.

Recall from [6, 1.2] that hS is nilpotent of class 2 (the subset ZS := {(0, 0)}×S equals both
the center and the commutator subgroup of hS) but HS is elementary abelian if charS = 2.
However, we have:

1.2 Lemma. Let S be a unitary algebra. Then ηS : hS → HS : (a, s, x) 7→ (a, s, 2x − sa) is a
homomorphism; it is an isomorphism if 2 is invertible in S.
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2 Isotopisms of composition algebras

An important source of unitary non-associative algebras is the class of octonion algebras,
i.e., composition algebras of dimension 8 (also known as Cayley algebras). We treat these
algebras in the context of alternative algebras here, i.e., algebras satisfying the alternative
identities x(xy) = (xx)y and y(xx) = (xy)x, cf. [7, Sect. III]. In each alternative algebra, we
also have the Moufang identities (see [7, (3.4)–(3.6)] or [8, 1.4.1]):

(ax)(ya) = a((xy)a) , a(x(ay)) = (a(xa))y , x(a(ya)) = ((xa)y)a .

Among the consequences of these identities is Artin’s result (first published in Zorn’s pa-
per [10], cf. [7, Thm. 3.1, p. 29]) asserting that any subalgebra generated by two elements is
associative. In particular, we have a(xa) = (ax)a.

Assume now that A is an alternative unitary algebra, and consider a ∈ A. If the equations
ax = 1 and ya = 1 both have solutions in A then their solutions are unique and coincide; we
will denote the solution by a−1 and call a invertible in that case. The set A× of all invertible
elements is closed under multiplication; it forms a so-called Moufang loop.

Recall that a composition algebra A over a field R has a multiplicative quadratic form
N : A→ R with non-degenerate polar form fN : A×A→ R : (x, y) 7→ N(x+y)−N(x)−N(y).
The standard involution κ : A → A : x 7→ x := fN (x, 1) − x is an anti-automorphism, and
N(x) = xx = xx. A good reference for the basic theory of composition algebras is [8, Ch. 1].

Composition algebras occur in dimensions d ∈ {1, 2, 4, 8}. While each composition algebra
with d ≤ 4 is associative, the octonion algebras are not associative. However, they are still
alternative. In any composition algebra A, we have a ∈ A× ⇐⇒ N(a) 6= 0; in fact
a−1 := N(a)−1a.

We remark that every element of an octonion algebra A is contained in some quaternion
subalgebra of A (cf. [8, 1.6.4]). The set R of scalar multiples of 1 forms the center of A,
see [8, 1.9.1].

2.1 Lemma. If A is a composition algebra of dimension 8 then every invertible element can be
written as a product of two elements of the set P := {p ∈ A | p = −p} of pure elements in A.

Proof. Consider a ∈ A×. The set P is just the space of all elements orthogonal to 1 with
respect to the norm form N . Thus we have dim(P ) = 7 = dim(Pa) and dim(Pa ∩ P ) ≥ 6. As
the quadratic form N has non-degenerate polar form, its Witt index is at most 1

2 dim(A) = 4,
and the subspace Pa ∩ P cannot be contained ArA× = {x ∈ A |N(x) = 0}. Pick any p ∈ P
such that q := pa lies in P ∩ A×. Then N(p) 6= 0, we have p−1 = 1

N(p)p = − 1
N(p)p ∈ P , and

a = p−1q ∈ PP , as required.

We remark that the result in 2.1 remains true for composition algebras of dimension 4
(but needs a different proof for split quaternion algebras); it becomes false for 2-dimensional
algebras (where PP is one-dimensional).

2.2 Definition. Let (S,+, ·) and (T,+, ∗) be algebras (not necessarily associative). An iso-
topism1 from (S,+, ·) onto (T,+, ∗) is a triplet (A,B,C) of additive bijections from S onto T
such that B(x · y) = C(x) ∗A(y) holds for all x, y ∈ S. Note that (A,B,C) is an isomorphism

1 Our notation follows [6] and thus [2, 3.1.32] (cf. also [5]), where geometrical aspects lead to an assignment
of roles for the three bijections that may appear confusing to a more algebraically bent reader.
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of algebras precisely if A = B = C. If S and T are unitary algebras, this is also equivalent
to A(1) = 1 = C(1); in fact, evaluating B(x · 1) = C(x) ∗ 1 and B(1 · y) = 1 ∗ C(y) we find
A = B = C.

A triplet (D,E, F ) of additive bijections from S onto T is called an anti-isotopism from
(S,+, ·) onto (T,+, ∗) if E(x · y) = D(y) ∗ F (x) holds for all x, y ∈ S.

As usual, an (anti-)isotopism from S onto S itself is called an (anti-)autotopism.

See [5] for an application of autotopisms of octonion fields (i.e., semifields that are oc-
tonion algebras, viz. octonion algebras with anisotropic norm form) to polarities and Baer
involutions in the corresponding projective planes.

2.3 Examples. The Moufang identities yield that the following triplets are autotopisms, for
each a ∈ A×:

(ρa, λa ◦ ρa, λa) , (λa ◦ ρa, ρa, ρ−1a ) , (λ−1a , λa, λa ◦ ρa) ,

where λa : x 7→ ax and ρa : x 7→ xa.
For each z ∈ Z(A) ∩A× we also have the autotopisms (id, λz, λz) and (λz, λz, id).
If A is a composition algebra then the standard involution κ is an anti-automorphism of A,

and gives an anti-autotopism (κ, κ, κ).

2.4 Proposition ([6, 2.2]). Let S and T be unitary algebras.

1. If (A,B,C) is an isotopism from S onto T then

bA|B|Cc : (a, s, x) 7→ (A(a), C(s), B(x))

is an isomorphism from hS onto hT , and an isomorphism from HS onto HT , as well.

2. If (D,E, F ) is an anti-isotopism from S onto T then

dD|E|F e : (a, s, x) 7→ (F (s), D(a), E(sa− x))

is an isomorphism from hS onto hT , and

dD|E|F e# : (a, s, x) 7→ (F (s), D(a),−E(x))

is an isomorphism from HS onto HT .

2.5 Definition. For any algebra S, we write Atp(S) ≤ Aut(hS) for the group of all auto-
morphisms bA|B|Cc induced by autotopisms (A,B,C) of S, and AntiAtp(S) for the group of
automorphisms induced by autotopisms and anti-autotopisms.

Note that isotopisms need not preserve the neutral element of multiplication; there are
even isotopisms between unitary algebras and algebras without neutral element for the mul-
tiplication. Also, a commutative algebra may be isotopic to a non-commutative one. However,
associativity is preserved; see 2.6.

For each element a of an algebra S, we consider the endomorphisms λSa : S → S : s 7→ as
and ρSa : S → S : s 7→ sa of the additive group of S.

2.6 Lemma. Let (S,+, ·) and (T,+, ∗) be algebras, and let (A,B,C) be an isotopism from
(S,+, ·) onto (T,+, ∗).
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1. For each a ∈ S we have:

a. λSa is injective ⇐⇒ λTC(a) is injective, and λSa is surjective ⇐⇒ λTC(a) is surjective.

b. ρSa is injective ⇐⇒ ρTA(a) is injective, and ρSa is surjective ⇐⇒ ρTA(a) is surjective.

2. If S is unitary and T is a composition algebra then each X ∈ {A,C} maps 1 into T×.

3. If the algebras are unitary and at least one of them is associative or a composition al-
gebra then the algebras are (anti-)isomorphic (as Z-algebras) if, and only if, they are
(anti-)isotopic. In particular, (anti-)isotopic composition algebras are isomorphic.

Proof. The observations C(a) ∗ t = 0 ⇐⇒ a · A−1(t) = 0, t ∗ A(a) = 0 ⇐⇒ C−1(t) · a = 0,
C(a)∗T = B(a ·S), and T ∗A(a) = B(S ·a) yield the equivalences stated in the first assertion.

Now assume that S is unitary, and put a := A(1) and c := C(1). Then λTc and ρTa are bijec-
tions. If T is a composition algebra then T× = {t ∈ T |N(t) 6= 0} = {t ∈ T |λt is bijective} =
{t ∈ T | ρt is bijective}. This yields the second assertion.

If the algebra T is associative, it admits the autotopism (ρa, λcρa, λc). The composition
(ρa, λcρa, λc)

−1(A,B,C) is then an isomorphism from S onto T .
Now assume that T is a composition algebra, write P for the set of pure elements in T , and

put d := a−1 ∗ c. Without loss, we may assume that T is not associative; then dim(T ) = 8.
From 2.1 we know that there exist invertible elements p, q ∈ T× ∩ P with d = p ∗ q. Recall
that u ∈ T× ∩ P means u2 = −N(u) ∈ Z(T ). We have the autotopisms µb := (λbρb, ρb, ρ

−1
b )

for b ∈ T× and ζ := (λN(d), λN(d), id), cf. 2.3. Now the composition

(A′, B′, C ′) = ζ−1 µq µp (ρa, λaρa, λa)−1(A,B,C)

is an isotopism from S onto T , with A′(1) = 1 = C ′(1). Thus S and T are isomorphic.
If S (instead of T ) is associative or a composition algebra), we consider the inverse of the

given isotopism.
If (A,B,C) is an anti-isotopism, we use the opposite algebra (T,+, §), where x § y := y ∗ x.

Our arguments above show that (S,+, ·) is isomorphic to (T,+, §).

2.7 Remarks. For the associative case, the result from 2.6.3 seems to date back to [1, Thm. 2].
For split composition algebras of dimension at least 4, said result can also be deduced from
the fact that split composition algebras are determined, up to isomorphism, by the ground
field and the dimension (cf. [8, 1.8.1]). The present arguments for composition algebras
have been adapted from [5, 1.6, 1.7] where octonion fields were treated.

It remains as an open problem whether 2.6.3 can be extended to the general case of alter-
native algebras.

3 Isomorphisms between Heisenberg groups

3.1 Definitions. Let S be a (not necessarily associative) unitary algebra. Then the center
ZS = {(0, 0)} × S = h′S is characteristic in hS . The commutator map of hS is

γS : hS /ZS × hS /ZS → ZS : (ZS + (u, x), ZS + (v, y)) 7→ [(u, x), (v, y)]� = (0, 0, 〈u
S
v〉) .
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For (a, s) ∈ S2 put C(a,s) := {(b, t) ∈ S2 | at = bs}; this means ChS (a, s, x) = C(a,s) × S.
We call C(a,s) abelian if the subgroup C(a,s) × S is commutative. We abbreviate XS :=
ChS (1, 0, 0) = S × {0} × S and YS := ChS (0, 1, 0) = {0} × S × S.

Let N : S2 → S be an additive map. Then ξN : S3 → S3 : (a, x, u) 7→ (a, x, u+N(a, x))
is an automorphism both of hS and of HS . We call ξN a nil-automorphism and write ΞS :=
{ξN |N ∈ Hom(S2, S)}.

The group ΞS of nil-automorphisms consists of those automorphisms that act trivially both
on ZS and on the quotient modulo ZS; therefore, it is a normal subgroup of Aut(hS) (and
also of Aut(HS) if 2 ∈ S×).

3.2 Theorem ([6, 4.5]). Assume that S and T are unitary algebras, and that ϕ : hS → hT is
an isomorphism mapping {XS , YS} to {XT , YT }.

1. If ϕ(XS) = XT then there exists an isotopism η from S onto T such that ϕ ∈ ΞT ◦ bηc.

2. If ϕ(XS) = YT then there is an anti-isotopism α from S onto T with ϕ ∈ ΞT ◦ dαe.

If S is a semifield with charS = 2 or if S is a semifield not isotopic to a commutative one then
every isomorphism ϕ : hS → hT maps {XS , YS} to {XT , YT }.

See 4.2 below for an example of an associative algebra A of characteristic 2 where hA has
commutative centralizers apart from those in {XA, YA}. This shows that the extra assumption
(“semifield”) in the last assertion of 3.2 is not superfluous.

If charS 6= 2 then general results about isomorphisms between reduced Heisenberg groups
(cf. [9] and [4]) can be applied:

3.3 Lemma. Let S and T be unitary algebras such that 2 id is invertible in End(S,+), and
let ϕ : HS → HT be an isomorphism. Then there are uniquely determined additive bijections
U : S2 → T 2 and U ′ : S → T together with an additive map N : S2 → T such that

ϕ(u, x) = (U(u), U ′(x) +N(u))

holds for all (u, x) ∈ S2 × S. The maps U and U ′ satisfy (♦).
Conversely, if U : (S2,+) → (T 2,+) and U ′ : (S,+) → (T,+) are isomorphisms satisfying

equation (♦) then U ′ is uniquely determined by U , and

ψU : S2 × S → T 2 × T : (u, x) 7→ (U(u), U ′(x))

is an isomorphism from HS onto HT . We obtain ϕ = ξN◦U−1 ◦ ψU .

3.4 Definition. If S = T we write ΨS for the set of all ψU where U ∈ Aut(S2,+) satisfies
equation (♦). Thus Aut(HS) = ΞS ◦ΨS .

4 Heisenberg groups over composition algebras

If A is a composition algebra with divisors of zero then there is some commutative field R
such that either A = R × R, or A = R2×2 is a split quaternion algebra, or A is a split Cayley
algebra over R. Under the extra assumption charR 6= 2 the associative cases have been
studied in [3]. We recall the results about the group ΨA introduced in 3.4:

5
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4.1 Theorem ([3, 7.2, 7.5, 8.4]). Let R be a commutative field with charR 6= 2.

1. If A = R×R then ΨA = {ψU |U ∈ ΓL(2, A)} ∼= ΓL(2, A) ∼= 〈κ〉n (ΓL(2, R)×ΓL(2, R)).

2. If A = R2×2 then Cu is abelian precisely if u ∈ (GL(2, R)× {0}) ∪ ({0} ×GL(2, R)).

We remark that the automorphisms of HR×R and those of HR2×2 have been determined
completely under the additional assumption charR 6= 2, see [3, 7.2–7.7, 8.5–8.10]. The aim
of the present notes is to get rid of this additional assumption.

Recall that AS denotes the set of all commutative centralizers in hS .

4.2 Lemma. Let R be a commutative field, and abbreviate A := R×R.

1. In any case, the map

ι : A3 → A3 : ((a1, a2), (s1, s2), (x1, x2)) 7→ ((a1, s2), (s1,−a2), (x1, x2 − s2a2))

is an automorphism of hA.

2. If charR 6= 2 then

AA = {ChA(a, s, x) |x ∈ A, {a, s} ⊂ Ar ((R× {0}) ∪ ({0} ×R))} ,

and ΨA acts transitively both on AA and on the set

DAA :=
{

(B,C) ∈ AA

∣∣ [B,C]� = A
}
.

Therefore, we have2 Aut(hA) ∼= Aut(HA) = ΞA ◦ΨA.

3. If charR = 2 then the set of elementary abelian centralizers is

EAA :=

ChA(a, s, x)

∣∣∣∣∣∣ x ∈ A, (a, s) ∈
 (A× × {0}) ∪ ({0} ×A×)
∪ (R× × {0})× ({0} ×R×)
∪ ({0} ×R×)× (R× × {0})

 .

The set of all commutative centralizers is obtained as

AA = EAA ∪ {ChA(a, s, x) |x ∈ A, (a, s) ∈ (A× ×A) ∪ (A×A×)} .

The group 〈{ι} ∪Atp(A)〉 ≤ Aut(hA) acts transitively on EAA, and also transitively on

DEAA :=
{

(B,C) ∈ AA

∣∣ [B,C]� = A
}
.

Therefore, we have Aut(hA) = ΞA ◦ 〈{ι} ∪Atp(A)〉 in this case.

4. In any case, the group hS (for any algebra S) is isomorphic to hA precisely if S is isomor-
phic to A.

2 Note that Atp(A) ≤ ΨA in this case.
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Proof. We use the standard involution κ : A → A : (a1, a2) 7→ (a2, a1). In order to determine
AA we consider Cu for u = (a, s) ∈ A2. If a ∈ A× then C(a,s) = {(b, sba−1) | b ∈ A} is abelian
because A is commutative. If s 6= 0 then (1, sa−1, 0)2 = (2, 2sa−1, sa−1) 6= (0, 0, 0) shows that
the centralizer ChA(a, s, x) is not elementary abelian if charR = 2. Application of κ reduces
the case s ∈ A× to a ∈ A×.

Now assume that both a and s are not invertible. We may (after possible application of κ)
assume a ∈ R× × {0}. If a + s is invertible then s ∈ {0} × R×, and ι(a, s, x) = (a + s, 0, x)
belongs to the orbit of (1, 0, x) under Aut(hA). Thus this case is reduced to the one considered
above. If none of the elements a, s, and a + s is invertible then they all belong to R × {0}.
Now Ca,s contains ({0} ×R)2, and is not abelian.

From now on, we have to distinguish the cases according to the characteristic. Assume first
that charR = 2. For any B ∈ EAA we have seen that there is an element of 〈ι, dκ|κ|κe〉 ≤
Aut(hA) mapping B to ChA(1, 0, 0) = A×{0}×A, and transitivity on EAA is established. For
(B,C) ∈ DEAA we may thus assume B = ChA(1, 0, 0). Then [B,C]� = A yields that there
exist a, x ∈ A such that (a, 1, x) ∈ C. As C belongs to EAA we obtain C = ChA(a, 1, x) =
{0} ×A×A.

If charR 6= 2 then we consider the group HA; the isomorphism ηA in 1.2 leaves both AA

and DAA invariant. For (a, s) ∈ A2 and x ∈ A we note that CHA
(a, s, x) is commutative if,

and only if, there is (b, t) ∈ A2 such that the matrix ( a b
s t ) is invertible. Moreover, the pair

(CHA
(a, s, x),CHA

(b, t, y)) belongs to DAA precisely if det ( a b
s t ) ∈ A×. Therefore, the obvious

subgroup isomorphic to GL(2, A) in ΨA acts transitively both on AA and on DAA.
If ϕ : hS → hA is an isomorphism then our observations so far imply that (ϕ(XS), ϕ(YS))

belongs to DAA if charR 6= 2, and to DEAA if charR = 2. The transitivity properties
established above then yield the existence of an isomorphism mapping XS to XA and YS
to YA. From 3.2 we then know that there exists an isotopism from S onto A, and 2.6.3 yields
that S is isomorphic to A.

4.3 Lemma. Let R be a commutative field, and abbreviate B = R2×2.

1. We have AB = {XB, YB}.

2. The full group of automorphisms is Aut(hB) = ΞA ◦AntiAtp(B).

3. The group hS (for any algebra S) is isomorphic to hB precisely if S is isomorphic to B.

Proof. As B is associative, each triplet (u, v, w) of invertible elements yields an autotopism
(λuρv, λwρv, λwρ

−1
u ). Recall from 2.4 that such an autotopism induces an automorphism⌊

λuρv|λwρv|λwρ−1u

⌋
on hB mapping (a, s, x) to (uav,wsu−1, wxv). We will also use the stan-

dard involution

κ : B → B :

(
a11 a12
a21 a22

)
7→
(
a22 −a12
−a21 a11

)
;

this is an anti-automorphism of B, leading to the automorphism

dκ|κ|κe : (a, s, x) 7→ (κ(s),−κ(a), κ(x− sa)) .

If a is invertible then (u, v, w) = (1, a−1, 1) yields an automorphism mapping (a, s, x) to
(1, s, xa−1). As the commutator {xy − yx |x, y ∈ B} contains invertible elements, we find
that C1,s = {(b, sb) | b ∈ B} is abelian precisely if s = 0. If s is invertible, we apply dκ|κ|κe for
a reduction to the previous case.

7
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If a 6= 0 is not invertible then there exist u, v ∈ B× such that uav = p := ( 1 0
0 0 ). We note that

Cp,0 = B ×B(1− p) is not abelian. Again, we apply dκ|κ|κe to see that C0,p is not abelian.
It remains to study Ca,s if {a, s} ⊂ Br(B×∪{0}). We may assume (up to an automorphism

of hB) that a = p. Now upv = p holds whenever u =
( u11 u12

0 u22

)
and v =

(
v11 0
v21 v22

)
with

u22 v22 6= 0 and u11v11 = 1.
As s 6= 0 has linearly dependent rows, there exists w ∈ B× such that the second row of ws

is zero. Using suitable u, v, we may achieve upv = p and wsu−1 ∈ {p, n} with n = ( 0 1
0 0 ). The

transpose n′ of n satisfies nn′ = p. Using (1, p), (p, 1) ∈ Cp,p and (p, 0), (n′, p) ∈ Cp,n we now
see that Cp,p and Cp,n are not abelian.

Thus we have shown that the elements of (B× × {0} × B) ∪ ({0} × B× × B are just those
with commutative centralizers, and AB = {XB, YB} follows.

Every isomorphism from hS to hB will thus map {XS , YS} to {XB, YB}, and the last two
assertions follow with 3.2 and 2.6.3.

4.4 Lemma. Let A be a composition algebra over R. For each a ∈ A r {0} with N(a) = 0 we
have ker(λa) = aA and ker(ρa) = Aa. These subspaces are maximal totally singular ones, of
dimension 1

2 dim(A).

Proof. We show first that ker(λa) = {y ∈ A | ay = 0} is totally singular. In fact, for y ∈ ker(λa)
we have 0 = (ay)y = a(yy) by alternativity (see [8, 1.3.3]), and yy = 0 follows. We have
dim(ker(λa)) ≤ 1

2 dim(A) because the polar form is not degenerate.
For any b ∈ A and y ∈ ker(λa) we use [8, 1.3.2] to compute the polar form fN (ab, y) =

fN (b, ay) = fN (b, 0) = 0. This shows aA ≤ ker(λa). The previous paragraph yields dim(aA) =
dim(A) − dim(ker(λa)) ≥ 1

2 dim(A), and ker(λa) = aA follows. This means that ker(λa) is a
totally singular subspace of dimension 1

2 dim(A), and thus a maximal one.

4.5 Lemma. Let A be a octonion algebra, and consider a, s ∈ A. Then C(a,s) is abelian precisely
if (a, s) ∈ (A× × {0}) ∪ ({0} ×A×); i.e., if C(a,s) ∈ {C(1,0),C(0,1)}.

Proof. Clearly C(1,0) and C(0,1) are abelian. Conversely, consider (a, s) ∈ A2 such that C(a,s)

is abelian.
Assume first that N(a) 6= 0 6= N(s). From 2.3 we then know that (λ−1a , λa, λa ◦ ρa) is an

autotopism of A. The automorphism
⌊
λ−1a |λa|λa ◦ ρa

⌋
maps (a, s) to (1, d) with d := asa ∈

A×. If C(1,d) = {(b, db) | b ∈ A} were abelian then (dc)b = (db)c would hold for all b, c ∈ A.
Now [6, 3.1] and 2.6 yield that A is isotopic and then even isomorphic to a commutative

algebra. This is impossible.
Now assume N(s) = 0 6= s, and consider a quaternion subalgebra B of A with s ∈ B

(see [8, 1.6.4] for the existence of such a subalgebra). Then B is a split quaternion al-
gebra because s is not invertible, and B ∼= R2×2 follows. Under the isomorphism of al-
gebras, our element s corresponds to a matrix of rank 1 that annihilates each element of
{xy − yx |x, y ∈ R2×2}. The latter set contains invertible elements; and we have reached a
contradiction.

Thus we have proved s = 0 if a ∈ A× and C(a,s) is abelian. The case s ∈ A× is reduced to
the previous one by the automorphism dκ|κ|κe.

From now on, we assume N(a) = 0 = N(s). If s = 0 then C(a,0) = A × Aa by 4.4, and
〈(b, 0)|(c, a)〉 = ab shows that C(a,0) is not abelian. The case a = 0 is reduced to the case s = 0
via an application of dκ|κ|κe.
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It remains to treat the case where {a, s} ⊂ A r (A× ∪ {0}. According to 4.4, we have
sA × Aa ≤ C(a,s). Our assumption that C(a,s) is abelian entails (ya)(sc) = (da)(sx) for all
c, d, x, y ∈ A. Specializing d = a and c = 1 = y we find as = 0. Thus sa = 0, and s ∈ Aa
by 4.4.

If a = −a we consider s = da with d ∈ A. Then {1} × (−d + Aa) ⊆ C(a,s), and
〈(1,−d)|(1,−d− a)〉 = a 6= 0 shows that C(a,s) is not abelian.

If a 6= −a we consider a quaternion subalgebra B with a ∈ B: in that algebra (isomorphic
to R2×2) there exists an invertible element b such that ab has trace 0, i.e., such that ab = −ab.
Now the automorphism bρb|λb ◦ ρb|λbc maps C(a,s) to C(ab,bs) which is not abelian by the
previous paragraph. This contradiction finally shows that a 6= 0 6= s implies that C(a,s) is not
abelian.

4.6 Theorem. Let A be a composition algebra (possibly with divisors of zero), and let S be an
arbitrary algebra.

1. If A is not commutative then every isomorphism between hS and hA maps the set {XS , YS}
to the set {XA, YA}. In those cases, the full group of automorphisms is Aut(hA) = ΞA ◦
AntiAtp(A).

2. In any case, the algebras S and A are isomorphic (as Z-algebras) if, and only if, the
groups hS and hA are isomorphic.

Proof. If A is associative then A is a quaternion algebra, and not isotopic to any commutative
algebra (cf. 2.6.3). If A is not associative then A is an octonion algebra. From 4.3 and 4.6 we
now know that the set {XA, YA} is characteristic in hA in any case, and 3.2 applies as in the
proof of [6, 5.6].

For commutative composition algebras, the second assertion has been proved in 4.2 (for
the two-dimensional case with zero divisors) and in [6, 5.6].

If S and A are isotopic or anti-isotopic then they are in fact isomorphic as Z-algebras,
see 2.6.
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