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Rational conjugacy of torsion units in

integral group rings of non-solvable

groups

Andreas Bächle, Leo Margolis

Abstract. We introduce a new method to study rational conjugacy of tor-

sion units in integral group rings. We use this method to prove the �rst Zassen-

haus Conjecture for PSL(2, 19). We then use the standard HeLP-method to

prove the Zassenhaus Conjecture for PSL(2, 23) and the introduced method to

show that there are no units of order 6 in the normalized units of the integral

group rings of the groups M10 and PGL(2, 9). This last fact completes the

proof of a theorem of W. Kimmerle and A. Konovalov that the prime graph

of a group G coincides with the prime graph of the corresponding group of

normalized units of the integral group ring, if the order of G is divisible by at

most three primes.

Let G be a �nite group, ZG the integral group ring of G and V(ZG) the group of aug-

mentation one units in ZG. The most famous open conjecture regarding torsion units in

ZG is

The Zassenhaus Conjecture (ZC): Let u ∈ V(ZG) be a torsion unit. Then there

exist a unit x ∈ QG and g ∈ G such that x−1ux = g.

If for a unit u such x and g exist we say that u is rationally conjugate to g. Though

the study of the Zassenhaus Conjecture mostly concentrated around solvable groups (e.g.
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A. Weiss proved it for nilpotent groups [Wei91], see [Her06], [Her08a], or [CMdR13] for

more recent results), it was also sometimes examined for non-solvable groups. E.g. it is

known for A5 [LP89], S5 [LT91], A6 [Her08b], or PSL(2, p) for p ≤ 17 a prime [Her07],

[KK12], [Gil12]. Sometimes weaker version of ZC are also considered, such as

The Prime Graph Question (PQ): Let p and q be di�erent primes such that V(ZG)

has a unit of order pq. Does this imply that G has an element of that order?

This is the same as to ask, whether G and V(ZG) have the same prime graph. Much

more is known here: E.g. it has an a�rmative answer for solvable groups [Kim06] or the

series PSL(2, p), p a prime [Her07]. V. Bovdi, A. Konovalov, and others also proved it

for many sporadic simple groups, see e.g. [BKS07], [BJK11], [BK12]. W. Kimmerle and

A. Konovalov proved, that (PQ) holds for groups whose order is divisible by at most three

primes, if there are no units of order 6 in V(ZM10) and V(ZPGL(2, 9)) [KK12].

All proofs of ZC for non-solvable groups rely on the so called Luthar-Passi-Hertweck-

method [LP89], [Her07], sometimes referred to as the HeLP-method. But in many cases

this method does not su�ce to prove ZC, e.g. it fails for A6 [Her08b], PSL(2, 19) (see

below) or M11 [BK07]. Sometimes special arguments were considered in such situations as

in [LT91], [Her06, Ex. 2.6], [Her08b]. But these arguments were designed for very special

situations and are either hard to generalize, such as the argument in [Her08b], or seem not

to give new information in other situations, such as the argument in [Her06, Ex. 2.6].

In this paper we introduce a new method to study rational conjugacy of torsion units

inspired by M. Hertweck's arguments for proving ZC for the alternating group of degree 6

[Her08b]. This method is especially interesting for units of mixed order (i.e. not of prime

power order) and in combination with the HeLP-method. We then give two applications

of this method to prove: (ZC for PSL(2, 23) is proved using known methods.)

Theorem 1. The Zassenhaus Conjecture holds for the groups PSL(2, 19) and PSL(2, 23).

Theorem 2. There are no units of order 6 in V(ZM10) and in V(ZPGL(2, 9)). Here M10

denotes the Mathieu group of degree 10.

Theorem 2 together with [KK12, Th. 2.1, Th. 3.1] directly yields:

Corollary 3. Let G be a group, whose order is divisible by at most three primes. Then

the prime graph question has a positive answer for G.
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1 From eigenvalues under ordinary representations to

the modular module structure

Let G be a �nite group. The main tool to study rational conjugacy of torsion units are

partial augmentations: Let u =
∑
g∈G

agg ∈ ZG and xG be the conjugacy class of the element

x ∈ G in G. Then εx(u) =
∑

g∈xG

ag is called the partial augmentation of u at x. This relates

to ZC via:

Lemma 1.1 ([MRSW87, Th. 2.5]). Let u ∈ V(ZG) be a torsion unit. Then u is rationally

conjugate to a group element if and only if εx(uk) ≥ 0 for all x ∈ G and all powers uk of

u.

It is well known that if u 6= 1 is a torsion unit in V(ZG), then ε1(u) = 0 by the so-called

Berman-Higman Theorem [Seh93, Prop. 1.4]. If εx(u) 6= 0, then the order of x divides the

order of u [MRSW87, Th. 2.7], [Her06, Prop. 3.1]. Moreover the exponents of G and of

V(ZG) coincide [CL65]. We will use this in the following without further mentioning.

Let K be a �eld and D a K-representation of G with corresponding character χ. If χ and

all partial augmentations of u and all its powers are known and the characteristic of K does

not divide the order of u we can compute the eigenvalues of D(u) in the algebraic closure

of K (there will be plenty of examples in �2). Let n be the order of u. The HeLP-method

makes use of the fact, that the multiplicity of each n-th root of unity as an eigenvalue of

D(u) is a non-negative integer.

Notations: We will use the following notation: p will always denote a prime, Qp the

p-adic completion of Q and Zp the ring of integers of Qp. By R we denote a complete

local ring with maximal ideal P containing p. The �eld of fractions of R will be denoted

by K and the residue class �eld of R by k. The reduction modulo P , also with respect to

modules, will be denoted by ¯.

The idea of our method is, that ifD is an R-representation of a group G and u is a torsion

unit in ZG of order divisible by p, we can reduce D modulo P and obtain restrictions

on the isomorphism type of kG-modules as k〈ū〉-modules. The connections between the

eigenvalues of ordinary representations and the isomorphism type of the modular modules
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for some cases are contained in the following propositions which are easy consequences of

known modular and integral representation theory.

The �rst proposition is standard knowledge in modular representation theory and may

be found e.g. in [HB82, Th. 5.3, Th. 5.5].

Proposition 1.2. Let G = 〈g〉 be a cyclic group of order pam, where p does not divide m.

Let k be a �eld of characteristic p containing a primitive m-th root of unity ζ. Then

a) Up to isomorphism there are m simple kG-modules. All these modules are one-

dimensional as k-vector spaces, gm acts trivially on them and gp
a
acts as ζ i for

1 ≤ i ≤ m. We call this modules k1, ..., km.

b) The projective indecomposable kG-modules are of dimension pa. They are all uniserial

and all composition factors of a projective indecomposable kG-module are isomorphic.

There are m projective indecomposable kG-modules.

c) Each indecomposable kG-module is isomorphic to a submodule of a projective inde-

composable module. So there are pam indecomposable modules, which are all uniserial

and all composition factors of an indecomposable kG-module are isomorphic.

Using Proposition 1.2 and the fact that idempotents may be lifted [CR81, Th. 30.4] we

obtain:

Proposition 1.3. Let G = 〈g〉 be a cyclic group of order pam, where p does not divide

m. Let R be a complete local ring containing a primitive m-th root of unity ζ. Let D be

an R-representation of G and let L be an RG-lattice a�ording this representation. Let Ai

be sets with multiplicities of pa-th roots of unity such that ζA1 ∪ ζ2A2 ∪ ... ∪ ζmAm are the

complex eigenvalues of D(g). (We may have Ai = ∅.) Let V1, ..., Vm be KG-modules such

that if Ei is a representation of G a�oding Vi the eigenvalues of Ei(g) are ζ iAi.

Then L ∼= L1 ⊕ ... ⊕ Lm and L̄ ∼= L̄1 ⊕ ... ⊕ L̄m such that rankR(Li) = dimk(L̄i) = |Ai|.
Moreover K ⊗R Li

∼= Vi and the only composition factor of L̄i is ki. (See notation in

Proposition 1.2.)

In some situations we can give a full description of the Li depending on Ai. The easiest

one is recorded in the next proposition. It is a consequence of [HR62, Th. 2.6].
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Proposition 1.4. Let the notation be as in Proposition 1.3, assume |G| = p and that K

is unrami�ed over Qp. Let ξ be a primitive p-th root of unity. Up to isomorphism there

are 3 indecomposable RG-lattices M1,M2,M3. Each M̄i remains indecomposable. The R-

rank and the corresponding eigenvalues of D(g) are: rankR(M1) = 1 with eigenvalue 1,

rankR(M2) = p − 1 with eigenvalues ξ, ξ2, ..., ξp−1, and rankR(M3) = p with eigenvalues

1, ξ, ξ2, ..., ξp−1.

Notation: We denote the lattices from Proposition 1.4 with the natural namesM1 = R,

M2 = I(RCp), and M3 = RCp.

Remark 1.5. Let the notation be as in Proposition 1.3. Some other useful results are:

a) The Krull-Schmidt-Azumaya Theorem holds for L [CR81, Th. 30.6].

b) Assume a = 1 and Li is indecomposable such that K⊗RLi
∼= a1S1⊕a2S2 with simple

non-isomorphic KG-modules S1 and S2 and a1, a2 ∈ N0. Then a1, a2 ≤ 1 [Gud67,

Th. 2.2].

c) Assume that up to isomorphism there exist exactly 3 simple K〈gm〉-modules S1, S2

and S3. Let S1 be the trivial module. If Li is indecomposable and a1, a2, a3 ∈ N0 are

such that K ⊗R Li
∼= a1S1 ⊕ a2S2 ⊕ a3S3, then a1 ≤ 2 and a2, a3 ≤ 1 [Jac67, Prop.

8].

2 Applications

For a group G we denote by χi an ordinary character of G and by Di a representation of

G a�ording this character. By ϕi we denote a Brauer character and by Θi a representation

a�ording ϕi. We write Di(u) ∼ diag(α1, ..., αj) or Θi(u) ∼ diag(α1, ..., αj) to indicate that

α1, ..., αj are the eigenvalues (with multiplicities) of the corresponding matrix. By ζn we

will denote some �xed complex primitive n-th root of unity.

Let K be an algebraically closed �eld, D a K-representation of G with character χ and u

a torsion unit in V(ZG) such that the characteristic of K does not divide the order of u.

Let m and n be natural numbers such that um+n = u. Let D(um) ∼ diag(α1, ..., αk) and

D(un) ∼ diag(β1, ..., βk). As D(um) and D(un) are simultaneously diagonalizable over K
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this means D(u) ∼ diag(α1βi1 , ..., αkβik) with {i1, ..., ik} = {1, ..., k}. On the other hand

χ(u) =
∑
xG

εx(u)χ(x), where the sum runs over all conjugacy classes xG of G. Comparing

this two computations is the basic idea of the Luthar-Passi method. We will use it freely

in the following computations.

2.1 The groups PSL(2, p): Proof of Theorem 1

Rational conjugacy of torsion units in integral group rings over the groups PSL(2, q) were

studied by Hertweck in [Her07]. For the rest of the paragraph let p be a prime. Combining

some propositions from that note we directly obtain:

Proposition 2.1 (Hertweck). Let G = PSL(2, p) and u a torsion unit in V(ZG). Then

there is an element g ∈ G of the same order as u. Moreover if u is of prime order or of

order 6 then u is rationally conjugate to a group element.

Proof. [Her07, Proposition 6.1, Proposition 6.3, Proposition 6.4, Proposition 6.6, and

Proposition 6.7].

The HeLP-method veri�es the Zassenhaus-Conjecture for PSL(2, p) if p ≤ 17. We give

a quick account: ZC is solved for p ∈ {2, 3} already in [SW86], p = 5 in [LP89], p = 7

in [Her06], p ∈ {11, 13} in [Her07], and p = 17 independently in [KK12] and [Gil12]. The

HeLP-method also su�ces to prove ZC for p = 23 (see below), but not for p = 19. We will

always use the character tables respectively Brauer tables from the ATLAS [Wil] 1.

For G = PSL(2, p) and p > 2 we have |PSL(2, p)| = (p−1)p(p+1)
2

, there are cyclic subgroups

of order p−1
2
, p, and p+1

2
in G and every cyclic subgroup of G lies in a conjugate of such a

subgroup. Elements of order p lie in exactly two conjugacy classes and if g is an element

of p′-order the only conjugate of g in 〈g〉 is g−1. All this follows from a result of Dickson

[Hup67, Satz 8.27].

Proof of Theorem 1. Proof of ZC for PSL(2, 19): We give the parts of the character tables

relevant for our proof in the tables 1, 2, and 3.

1This tables are accessible in GAP [GAP12] via the commands Display(CharacterTable("PSL(2,p)"));
and Display(CharacterTable("PSL(2,p)") mod p);.
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1a 2a 5a 5b 10a
χ18 18 −2 −α −β −α
χ19 19 −1 −1 −1 −1

with α = ζ5 + ζ45 , β = ζ25 + ζ35

Table 1: Part of the ordinary character table of PSL(2, 19)

1a 2a 3a 5a 5b 9a 9b 9c 10a 10b
ϕ3 3 −1 · −β −α x y z −2α− β −α− 2β
ϕ5 5 1 −1 · · x′ y′ z′ −2α −2β

with α = ζ5 + ζ45 , β = ζ25 + ζ35 ,
x = −ζ39 + ζ49 + ζ59 − ζ69 , x′ = −ζ29 − ζ39 − ζ69 − ζ79 ,
y = −ζ29 − ζ39 − ζ49 − ζ59 − ζ69 − ζ79 , y′ = −ζ39 − ζ49 − ζ59 − ζ69
z = ζ29 − ζ39 − ζ69 + ζ79 , z′ = ζ29 − ζ39 + ζ49 + ζ59 − ζ69 + ζ79 .

Table 2: Part of the Brauer table of PSL(2, 19) and p = 19

By Proposition 2.1 only normalized units of order 9 and 10 have to be checked. Let u

be of order 9. By [Her07, Prop. 6.5] we have ε3a(u) = 0, thus ε9a(u) + ε9b(u) + ε9c(u) = 1.

By the Brauer table given above we have Θ3(u
3) ∼ diag(1, ζ39 , ζ

6
9 ) and as ϕ3 has only real

values we get Θ3(u) ∼ diag(1, γ, δ) with (γ, δ) ∈ {(ζ9, ζ89 ), (ζ29 , ζ
7
9 ), (ζ49 , ζ

5
9 )}. Hence, with

x, y, z as in the Brauer table,

xε9a(u) + yε9b(u) + zε9c(u) ∈ {1 + ζ9 + ζ89 , 1 + ζ29 + ζ79 , 1 + ζ49 + ζ59}.

Substituting x, y, and z and using ζ29 , ζ
3
9 , ζ

4
9 , ζ

5
9 , ζ

6
9 , ζ

7
9 as a basis of Z[ζ9] (this is a basis

by [Neu92, Satz 10.2]) we obtain

(−ε9b(u) + ε9c(u), ε9a(u)− ε9b(u)) ∈ {(−1,−1), (1, 0), (0, 1)}.

Combining each possibility with ε9a(u) + ε9b(u) + ε9c(u) = 1 this gives

(ε9a(u), ε9b(u), ε9c(u)) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. So u is rationally conjugate to a group

element.

Now let u be of order 10 and set ζ = ζ5. If u is not rationally conjugate to a group

element, so is u3 and if u2 is rationally conjugate to an element in 5a, then u6 is rationally

conjugate to an element in 5b. So we may assume that u2 is conjugate to an element in
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5a. We have

ε2a(u) + ε5a(u) + ε5b(u) + ε10a(u) + ε10b(u) = 1.

By the Brauer table above we obtain Θ3(u
5) ∼ diag(1,−1,−1) and Θ3(u

6) ∼ diag(1, ζ2, ζ3).

As ϕ3 has only real values, we get Θ3(u) ∼ diag(1,−ζ2,−ζ3). Thus

−ε2a(u) + (−ζ2 − ζ3)ε5a(u) + (−ζ − ζ4)ε5b(u)

+ (−2ζ − ζ2 − ζ3 − 2ζ4)ε10a(u) + (−ζ − 2ζ2 − 2ζ3 − ζ4)ε10b(u) = 1− ζ2 − ζ3.

Using ζ, ζ2, ζ3, ζ4 as a basis of Z[ζ] we obtain

ε2a(u)− ε5b(u)− 2ε10a(u)− ε10b(u) = −1,

ε2a(u)− ε5a(u)− ε10a(u)− 2ε10b(u) = −2.

The same way we get Θ5(u
5) ∼ diag(1, 1, 1,−1,−1), Θ5(u

6) ∼ diag(1, ζ, ζ2, ζ3, ζ4) and

Θ5(u) ∼ diag(X) with X ∈ {(1,−ζ, ζ2, ζ3,−ζ4), (1, ζ,−ζ2,−ζ3, ζ4)}. We have ϕ5(u) =

ε2a(u)− 2(ζ + ζ4)ε10a(u)− 2(ζ2 + ζ3)ε10b(u). Hence

(−ε2a(u)− 2ε10a(u),−ε2a(u)− 2ε10b(u)) ∈ {(−2, 0), (0,−2)}.

Combining these equations with the equations obtained above we get

(ε2a(u), ε5a(u), ε5b(u), ε10a(u), ε10b(u)) ∈ {(0, 1,−1, 1, 0), (0, 0, 0, 0, 1)}. The possible partial
augmentations (ε2a(u), ε5a(u), ε5b(u), ε10a(u), ε10b(u)) = (0, 1,−1, 1, 0) can not be elimi-

nated using analogues computations with other characters. We will apply the observations

of �1 here.

1a 2a
ϕ1 1 1
ϕ18 18 -2

(a) Part of the
Brauer table

ϕ1 ϕ18

χ1 1 ·
χ18 · 1
χ19 1 1

(b) Part of the
decomposition
matrix

Table 3: Part of Brauer table and decomposition matrix of PSL(2, 19) for the prime 5

As D19 is a deleted permutation representation (i.e. the module corresponding to the
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representation is isomorphic to a permutation module factored by the trivial submodule)

coming from the action of PSL(2, 19) on the projective line over F19, we may assume that

D19 is a Z-representation, so also a Z5-representation. By a theorem of Fong [Isa76, Cor.

10.13] we may assume that D18 is a K-representation, where K is an unrami�ed extension

of Q5(ζ + ζ4). Denote by R the ring of integers of K. As always denote by ¯the reduction

modulo the maximal ideal of Z5 and of R. We may view Z̄5 as a sub�eld of R̄ =: k.

Note that L̄19 contains L̄18 as submodule (multiplying a module by the augemntation

ideal I(kG) annihilates precisely the trivial kG-submodules). L̄19/L̄18 is a trivial kG-

module, so also a trivial k〈ū〉-module. By Proposition 1.3, slightly abusing the notation,

as an R〈u〉-lattice and as Z5〈u〉-lattice we may write L18
∼= L1

18⊕L−118 and L19
∼= L1

19⊕L−119

resp. such that the composition factors of L̄1
i are all trivial and the composition factors of

L̄−1i are all non-trivial as k〈ū〉-modules for i ∈ {18, 19}. As L̄19/L̄18 is a trivial module, we

have L̄−118
∼= L̄−119 (as k〈ū〉-modules).

Since u6 and u5 are rationally conjugate to an element in 5b and 2a resp. we can compute

the eigenvalues of D19(u
6) and D19(u

5) using the character table given above. Using the

partial augmentations of u we then compute the eigenvalues of D19(u), which are not 5-th

roots of unity, i.e. which contribute to L−119 by Proposition 1.3, to be

(−1,−ζ,−ζ2,−ζ3,−ζ4,−1,−ζ,−ζ2,−ζ3,−ζ4). By Proposition 1.4 this implies, slightly

abusing the notation by making it intuitive: L−119
∼= X with X ∈ {2(Z5)−1 ⊕ 2I(Z5C5)−1,

(Z5)−1 ⊕ I(Z5C5)−1 ⊕ (Z5C5)−1, 2(Z5C5)−1}. In any case L̄−119 has two indecomposable

summands of k-dimension at least 4, as indecomposable summands of X stay indecompos-

able after reduction by Proposition 1.4.

On the other hand the eigenvalues of D18(u), which are not 5-th roots of unity are

(−1,−ζ,−ζ2,−ζ3,−ζ4,−1,−ζ,−ζ4,−ζ,−ζ4). Note that the simple R〈u〉-module S af-

fording the eigenvalues −ζ2 and −ζ3 appears exactly once as a composition factor of L−118 .

Let L−118
∼= Y ⊕ Z such that Y is indecomposable and S is a composition factor of Y .

There are at most 2 di�erent simple K〈u〉-modules involved in Z, namely the one a�ord-

ing eigenvalues −ζ and −ζ4 and the one a�ording the eigenvalue −1. Hence by Remark

1.5 b) the maximal R-rank of an indecomposable summand of Z is 3. On the other hand

up to isomorphism there are exactly 3 simple K〈u2〉-modules and so by Remark 1.5 c) the

maximal R-rank of Y is 6. As the Krull-Schmidt-Azumaya Theorem holds, we obtain a

contradiction to L̄−118
∼= L̄−119 and the above paragraph.
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Remark: The Schur index of every irreducible character of PSL(2, q) is actually 1

[Sha83], so in the above proof we may assume K = Q5(ζ5 + ζ45 ) and avoid using the The-

orem of Fong. However Fong's theorem could be really helpful, if this method is used for

other groups, as demonstrated above.

Proof of ZC for PSL(2, 23): By Proposition 2.1 only normalized units of order 4 and 12

have to be checked. We give the relevant part of the Brauer table for p = 23 in table 4.

1a 2a 3a 4a 6a 12a 12b
ϕ3 3 −1 · 1 2 1 + ζ12 + ζ−112 1− ζ12 − ζ−112

ϕ5 5 1 −1 −1 1 2 + ζ12 + ζ−112 2− ζ12 − ζ−112

ϕ7 7 −1 1 −1 −1 2 + ζ12 + ζ−112 2− ζ12 − ζ−112

ϕ11 11 −1 −1 1 −1 1 1

Table 4: Part of the Brauer table of PSL(2, 23) for p = 23.

Let u ∈ V(ZG) be a unit of order 4. By [Her07, Prop. 6.5] ε2a(u) = 0 and so u is

conjugate to a group element.

Let u ∈ V(ZG) be of order 12 and ζ = ζ12. We will use ζ, ζ−1, ζ4, ζ8 as a Z-basis of
Z[ζ]. This is a basis since ϕ(12) = 4, where ϕ denotes Euler's totient function, and 1 =

−ζ4−ζ8, ζ2 = −ζ8, ζ3 = ζ−ζ−1, ζ5 = −ζ−1, ζ6 = −1 = ζ4 +ζ8, ζ7 = −ζ, ζ9 = −ζ+ζ−1

and ζ10 = −ζ4. We have

ε2a(u) + ε3a(u) + ε4a(u) + ε6a(u) + ε12a(u) + ε12b(u) = 1. (1)

By the Brauer table above Θ3(u
6) ∼ diag(1,−1,−1), Θ3(u

9) ∼ diag(1, ζ3, ζ9) and

Θ3(u
4) ∼ diag(1, ζ4, ζ8). Thus, as ϕ3 has only real values, Θ3(u) ∼ diag(X) with X ∈

{(1, ζ5, ζ7), (1, ζ, ζ11)} = {(1,−ζ−1,−ζ), (1, ζ, ζ−1)}. Hence, by the Brauer table given

above, we obtain −ε2a(u) + ε4a(u) + 2ε6a(u) + (1 + ζ + ζ−1)ε12a(u) + (1− ζ − ζ−1)ε12b(u) ∈
{1 + ζ + ζ−1, 1− ζ − ζ−1}. Using ζ, ζ−1, ζ4, ζ8 as a basis of Z[ζ] this gives

ε12a(u)− ε12b(u) = ±1, (2)

−ε2a(u) + ε4a(u) + 2ε6a(u) + ε12a(u) + ε12b(u) = 1. (3)

Proceeding in the same way we get Θ5(u
6) ∼ diag(1, 1, 1,−1,−1),

Θ5(u
9) ∼ diag(1,−1,−1, ζ3, ζ9), Θ5(u

4) ∼ diag(1, ζ4, ζ8, ζ4, ζ8) and Θ5(u) ∼ diag(X) with
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X ∈ {(1, ζ2, ζ10, ζ, ζ11), (1, ζ2, ζ10, ζ5, ζ7)}. So, by the Brauer table and ζ2 + ζ10 = 1, we get

ε2a(u)− ε3a(u)− ε4a(u) + ε6a(u) + (2 + ζ + ζ−1)ε12a(u) + (2− ζ − ζ−1)ε12b(u) ∈ {2 + ζ +

ζ−1, 2− ζ − ζ−1}. Comparing coe�cients of ζ4 gives

ε2a(u)− ε3a(u)− ε4a(u) + ε6a(u) + 2ε12a(u) + 2ε12b(u) = 2. (4)

Applying the same for ϕ7 we obtain Θ7(u
6) ∼ diag(1, 1, 1,−1,−1,−1,−1),

Θ7(u
9) ∼ diag(1,−1,−1, ζ3, ζ9, ζ3, ζ9), Θ7(u

4) ∼ diag(1, ζ4, ζ8, 1, ζ4, ζ8, 1) and Θ7(u) ∼
diag(X) with X ∈ {(1,−1,−1, ζ, ζ11, ζ, ζ11), (1,−1,−1, ζ, ζ11, ζ5, ζ7),

(1,−1,−1, ζ5, ζ7, ζ5, ζ7), (1, ζ2, ζ10, ζ3, ζ9, ζ, ζ11), (1, ζ2, ζ10, ζ3, ζ9, ζ5, ζ7)}. So, by the

Brauer table, ζ2+ζ10 = 1, and ζ3+ζ9 = 0, we get ε2a(u)+ε3a(u)−ε4a(u)−ε6a(u)+(2+ζ+

ζ−1)ε12a(u) + (2− ζ− ζ−1)ε12b(u) ∈ {−1 + 2ζ+ 2ζ−1, −1, −1−2ζ−2ζ−1, 2 + ζ+ ζ−1, 2−
ζ−ζ−1}. As the �rst three possibilities would give ε12a(u)− varepsilon12b(u) ∈ {−2, 0, 2},
contradicting (2), only the last two remain and give

− ε2a(u) + ε3a(u)− ε4a(u)− ε6a(u) + 2ε12a(u) + 2ε12b(u) = 2. (5)

The same way we get Θ11(u
6) ∼ diag(1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1), Θ11(u

9) ∼
diag(1, 1, 1,−1,−1, ζ3, ζ9, ζ3, ζ9, ζ3, ζ9), Θ11(u

4) ∼ diag(1, ζ4, ζ8, 1, ζ4, ζ8, 1, ζ4, ζ8, ζ4, ζ8), and

Θ11(u) ∼ diag(1, ζ, ζ2, ζ3, ζ4, ζ5, ζ7, ζ8, ζ9, ζ10, ζ11) (note that ϕ11(u) must not only be real

valued, but even rational as ϕ11 has only rational values). Thus −ε2a(u)−ε3a(u)+ε4a(u)−
ε6a(u) + ε12a(u) + ε12b(u) = 1 giving

− ε2a(u)− ε3a(u) + ε4a(u)− ε6a(u) + ε12a(u) + ε12b(u) = 1. (6)

Now subtracting (1) from (6) gives ε2a(u)+ε3a(u)+ε6a(u) = 0 while subtracting (4) from

(5) gives ε2a(u)−ε3a(u)+ε6a(u) = 0. Thus ε3a(u) = 0. Then subtracting (1) from (3) gives

−2ε2a(u) + ε6a(u) = 0, so ε2a(u) = ε6a(u) = 0. Now multiplying (1) by 2 and subtracting

it from (4) gives ε4a(u) = 0. Using (1) and (2) this leaves only the trivial possibilities

(ε2a(u), ε3a(u), ε4a(u), ε6a(u), ε12a(u), ε12b(u)) ∈ {(0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)}. Thus u is

rationally conjugate to a group element and Theorem 1 is proved.
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2.2 Proof of Theorem 2

By [KK12] if a unit u of order 6 exists in V(ZM10) or in V(ZPGL(2, 9)), then all partial aug-

mentations of u vanish except at the elements of order 2 and 3 in A6 (note that A6 is a nor-

mal subgroup of index 2 in M10 and in PGL(2, 9)) and then (ε2a(u), ε3a(u)) = (−2, 3). As

both groupsM10 and PGL(2, 9) are subgroups of Aut(A6) and the conjugacy classes 2a and

3a are the same in all these groups, we will handle both cases at once showing, that there is

no unit of order 6 in V(ZAut(A6)) having partial augmentations (ε2a(u), ε3a(u)) = (−2, 3).

The relevant parts of the character tables are given in table 5, the corresponding decom-

position matrix in table 6.

1a 2a 3a
χ1a 1 1 1
χ1b 1 1 1
χ1c 1 1 1
χ1d 1 1 1
χ10a 10 2 1
χ16a 16 · −2
χ16b 16 · −2
χ20 20 −4 2

(a) Used part of the ordi-
nary character table

1a 2a
ϕ1a 1 1
ϕ1b 1 1
ϕ1c 1 1
ϕ1d 1 1
ϕ6a 6 −2
ϕ6b 6 −2
ϕ8 8 ·

(b) Used part of
the Brauer ta-
ble for p = 3:

Table 5: Parts of ordinary character table and Brauer table for the prime 3 for the group
Aut(A6)

ϕ1a ϕ1b ϕ1c ϕ1d ϕ6a ϕ6b ϕ8

χ1a 1 · · · · · ·
χ1b · 1 · · · · ·
χ1c · · 1 · · · ·
χ1d · · · 1 · · ·
χ10a 1 1 · · · · 1
χ16a 1 · 1 · 1 · 1
χ16b · 1 · 1 · 1 1
χ20 · · · · 1 1 1

Table 6: Part of the decomposition matrix of Aut(A6) for the prime 3

Set G = Aut(A6) and let u be a unit of order 6 in V(ZG) such that (ε2a(u), ε3a(u)) =
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(−2, 3) and εg(u) = 0 for all other conjugacy classes (2a is the Aut(A6)-conjugacy class of

involutions of length 45 and 3a is the unique Aut(A6)-conjugacy class of elements of order

3). Denote by ζ a complex primitive 3rd root of unity. Using the HeLP-method and the

fact that each χi is real valued, we obtain

D10a(u) ∼ diag(1, ζ, ζ2, 1, ζ, ζ2,−1,−ζ,−ζ2,−1)

D16a(u) ∼ D16b(u) ∼ diag(ζ, ζ2, ζ, ζ2, ζ, ζ2, ζ, ζ2,−1,−ζ,−ζ2,−1,−ζ,−ζ2,−1,−1)

D20(u) ∼ diag(1, 1, 1, 1, 1, 1, 1, 1,−ζ,−ζ2,−ζ,−ζ2,−ζ,−ζ2,−ζ,−ζ2,−ζ,−ζ2,−ζ,−ζ2)

These can be computed in the way demostrated above. We give one example: As u4

is rationally conjugate to an element in 3a and u3 is rationally conjugate to an element

in 2a, we have χ10(u
4) = χ10(3a) = 1 and χ10(u

3) = χ10(2a) = 2. This gives D10(u
4) ∼

diag(1, ζ, ζ2, 1, ζ, ζ2, 1, ζ, ζ2, 1) andD10(u
3) ∼ diag(1, 1, 1, 1, 1, 1,−1,−1,−1,−1).Now χ10(u) =

ε2a(u)χ10(2a) + ε3a(u)χ10(3a) = −1 and as the eigenvalues of D10(u) are products of the

eigenvalues of D10(u
4) and D10(u

3) this gives

D10(u) ∼ diag(1, ζ, ζ2, 1, ζ, ζ2,−1,−ζ,−ζ2,−1).

As all the character values of all ordinary characters of G are integers on all conjugacy

classes of G, we may assume by a theorem of Fong [Isa76, Cor. 10.13] that all ordinary rep-

resentations mentioned above areK-representations, whereK is an unrami�ed extension of

Q3. So if R is the ring of integers ofK we may assume that they are even R-representations.

Let P be the maximal ideal of R, set k = R/P and let¯denote the reduction modulo P.

Denote by L∗ an RG-lattice a�ording the representation D∗. Denote by k, I(kC3), and

kC3 the indecomposable kC6 modules of k-dimension 1, 2, and 3 resp. having trivial com-

position factors and by (k)−, I(kC3)−, and (kC3)− the indecomposable kC6-modules of

k-dimension 1, 2, and 3 resp. having non-trivial composition factors (see Propositions 1.2

and 1.4). We will writeM∗ for a simple kG-module having character ϕ∗. Regarded as k〈ū〉-
modules using Propositions 1.2 and 1.3 we will write L̄∗ ∼= L̄1

∗⊕ L̄−1∗ and M∗ ∼= M1
∗ ⊕M−1

∗ ,

where all the composition factors of M1
∗ and L̄

1
∗ are trivial and all the composition factors

of M−1
∗ and L̄−1∗ are non-trivial. As u3 is rationally conjugate to an element in 2a it is

also 3-adically conjugate to this element by [Her06, Lemma 2.9]. Thus the k-dimensions

of M1
∗ and M

−1
∗ can be deduced from the Brauer table above. The k-dimensions of L̄1

∗ and

L̄−1∗ can be deduced from the eigenvalues given above using Proposition 1.3. We give the

dimensions in table 7.
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k〈ū〉-module M k-dimension of M1 k-dimension of M−1

L̄10a 6 4
L̄16∗ 8 8
L̄20 8 12
M1∗ 1 0
M6∗ 2 4
M8 4 4

Where ∗ takes all possible values in {a, b, c, d}.

Table 7: Dimensions of M1 and M−1 for certain k〈ū〉-modules

The Krull-Schmidt-Azumaya Theorem will be used without further mentioning. We will

use decomposition series of L̄∗ as kG-module, which we obtained using the GAP package

MeatAxe [GAP12]2 , as shown in table 8.

kG-module M Socle of M Head of M

L̄10a M1i M1j

L̄16a M6a ⊕M1a ⊕M1c M8

L̄16b M6b ⊕M1b ⊕M1d M8

L̄20 M6a ⊕M6b M8

Where (i, j) takes a value in {(a, b), (b, a)}.

Table 8: Decomposition factors of certain reduced ZAut(A6)-lattices

From now on all modules will be k〈ū〉-modules. With the eigenvalues of D20(u) as above

using Propositions 1.3 and 1.4 we get L̄−120
∼= 6I(kC3)−. As allM1∗ are trivial k〈ū〉-modules

by the Brauer table given above, using the eigenvalues of D10a(u) and Proposition 1.4, we

obtain M−1
8
∼= L̄−110

∼= X with X ∈ {(k)− ⊕ (kC3)−, 2(k)− ⊕ I(kC3)−}. But as M−1
8
∼=

L̄−120 /(M
−1
6a ⊕M−1

6b ), i.e. M−1
8 is also a quotient of L̄−120

∼= 6I(kC3)−, we get M
−1
8
∼= 2(k)−⊕

I(kC3)−. So 6I(kC3)−/(M
−1
6a ⊕M−1

6b ) ∼= L̄−120 /(M
−1
6a ⊕M−1

6b ) ∼= M−1
8
∼= 2(k)− ⊕ I(kC3)−

and this implies M−1
6a ⊕ M−1

6b
∼= 2(k)− ⊕ 3I(kC3)−. As dimk(M−1

6a ) = dimk(M−1
6b ) = 4,

this gives either M−1
6a
∼= 2(k)− ⊕ I(kC3)− and M−1

6b
∼= 2I(kC3)− or M−1

6a
∼= 2I(kC3)−

and M−1
6b
∼= 2(k)− ⊕ I(kC3)−. Consider the �rst possibility, the other one follows in an

analogues way interchanging a and b. Now by the eigenvalues of D16b(u) computed above

2The representations of irreducible modules are available in GAP by the command
IrreducibleRepresentationsDixon or AffordingIrreducibleRepresentation once the char-
acter is given.
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we get L̄−116b
∼= Y with Y ∈ {2(k)−⊕2(kC3)−, 3(k)−⊕I(kC3)−⊕(kC3)−, 4(k)−⊕2I(kC3)−}

by Proposition 1.3 and 1.4. In every case, as all M1∗ are trivial modules, we get M−1
8
∼=

L̄−116b/M
−1
6b
∼= L̄−116b/2I(kC3)− ∼= 4(k)−. Contradicting M

−1
8
∼= 2(k)− ⊕ I(kC3)−. �
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