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De Casteljau’s Algorithm on Manifolds

Esfandiar Nava-Yazdani, Konrad Polthier

Abstract

This paper proposes a generalization of the ordinary de Casteljau algorithm to manifold-
valued data including an important special case which uses the exponential map of a symmetric
space or Riemannian manifold. We investigate some basic properties of the corresponding
Bézier curves and present applications to curve design on polyhedra and implicit surfaces as
well as motion of rigid body and positive definite matrices. Moreover, we apply our approach
to construct canal and developable surfaces.

Keywords. Bézier curve, Canal surface, Ruled surface, Symmetric spaces, Rigid body motion,
Euclidean group, Positive definite matrix, Nonlinear subdivision, Lie group, De Casteljau’s algo-
rithm

1 Introduction

In various applications like medical imaging, elasticity, array signal processing and dynamics, one
has to deal with data living in a manifold, Lie group or more generally symmetric space. In several
works including [19], [20], [23], [21], [5], [6], [10], [25], [11], [7] and [3] subdivision schemes have
been generalized and applied to nonlinear settings. Besides subdivision schemes, the de Casteljau
algorithm is of significant importance in modeling and computer aided geometric design. There
are several publications on Bézier curves in the sphere including the early work [17]. Moreover,
[9] generalizes the classical de Casteljau algorithm for constructing spherical Bézier based on
corner cutting. For further approaches and modifications concerning the de Casteljau algorithm
in certain nonlinear cases we refer to [12], [2] and [8]. In the present work, we introduce a framework
generalizing previous results to manifold-valued data and study some of main properties of the
resulting Bézier curve. For many practical purposes geodesics are computationally too expensive or
time-consuming. We show how to use alternative approaches preserving main desired properties of
the construction. Moreover, we present applications to the geodesic Bézier approach for polyhedral
surfaces, Euclidean group of motion and diffusion tensors and also use the produced curves to
construct canal and ruled surfaces. Throughout this work M denotes a Ck manifold, smooth
stands for Ck and we refer to p0, . . . , pn ∈M as control points.

Definition 1. Suppose that for each x ∈M there is a neighborhood Ux and a map

[0, 1]× Ux 3 (t, y) 7→ Φt(x, y) ∈ Ux

such that Φt is smooth in x and y. We call

L(x, y) := {Φt(x, y) : 0 ≤ t ≤ 1}

the segment from x to y and the function Φ basic iff the following holds. x 6= y implies that L(x, y)
is a simple and regular curve, i.e., t 7→ Φt(x, y) is an injective immersion and

Φ0(x, y) = x (1)

Φ1(x, y) = y (2)

L(x, x) = {x}. (3)
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In particular, if the map Φ is globally defined (Ux = M), then it is a smooth homotopy between
the first and second coordinate projection of M ×M relative to the diagonal diag(M) := {(x, x) :
x ∈M}.
Let g(x, y) := Φ̇0(x, y). We call Φ locally rigid if for each x ∈ M the identity D2g(x, x) = Id
holds. As the map x 7→ Φ·(x, ·) is in general only locally defined, in the following we assume that
the control points are close enough, i.e., there is a neighborhood U of {p0, · · · , pn} such that

x, y ∈ U =⇒ L(x, y) ⊂ U.

Next, we define the (Φ-) de Casteljau algorithm.

2 The Algorithm

Definition 2.

p0i (t) := pi, r = 1, . . . , n, i = 0, . . . , n− r,
pri (t) := Φt(p

r−1
i (t), pr−1i+1 (t))), 0 ≤ t ≤ 1.

Let p(t) := pn0 (t). Let us call B(p0, . . . , pn) := p([0, 1]) the Bézier curve with control points
p0, . . . , pn. Obviously, this curve is invariant under affine parameter transformations and satisfies
p(0) = p0 and p(1) = pn.

Definition 3. We call

L(p0, . . . , pn) := ∪n−1i=0 L(pi, pi+1)

the polygon of p0, . . . , pn.

In our framework many properties of the Bézier curve and its parametrization p from the linear
case remain valid. Smoothness of p is an immediate consequence of the fact that p is constructed as
a finite composition of smooth operations and L(x, y) is a smooth curve for all x, y ∈ U , provided
M and Φ are smooth. Moreover, reversing the order of control points does not affect their Bézier
curve:

B(pn, . . . , p0) = B(p0, . . . , pn).

Suppose now 0 = t0 < t1 < · · · < tn = 1. Our algorithm can simply be modified to produce a
solution to the interpolation problem p(ti) = pi by setting

pri (t) = Φ t−ti
ti+r−ti

(pr−1i (t), pr−1i+1 (t)) (Aitken’s algorithm).

Example 4. Suppose that M is a convex subset of the general linear group GLn. Then

Φt(x, y) = x((1− t)y + tx)−1y

defines a rational basic function on M . In many applications a natural symmetry condition to
impose on a basic function is the following

L(x, y) = L(y, x).

In this example a rational basic function meeting the symmetry condition is given by

Φt(x, y) =
1

2
(x((1− t)y + tx)−1y + y((1− t)y + tx)−1x).
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Example 5. Let x, y ∈ R2. Then the circle with the diameter ‖x− y‖ and center x+y
2 given by

Φt(x, y) =
1

2
((x+ y) +

[
cos(πt) sin(πt)
− sin(πt) cos(πt)

]
(x− y))

defines a basic function on R2.

In many applications, using a point wise linear structure associated to M and having a cor-
responding geometric or physical interpretation in mind, we may construct a basic function Φ as
follows.

Definition 6. Let TxM 3 g(x, y) := Φ̇0(x, y). We call Φ dynamical iff there is a map f : TM →
M such that for each x there exists a neighborhood U of x with

Φt(x, y) = f(x, tg(x, y)) for each 0 ≤ t ≤ 1, y ∈ U. (4)

Note that in this case

f(x, 0) = x, f(x, g(x, y)) = y

f(x, (s+ t)g(x, y)) = f(f(x, tg(x, y)), sg(x, y)) (local flow property).

A good example to have in mind is the following. Let M be Riemannian and f = exp the
Riemannian exponential map. In this case, if x, y ∈ U with a distance within the injectivity radius
of f at x, then g(x, y) is the velocity and Φ(x, y) is the geodesic from x to y. Moreover, if M is
geodesically complete, then f is defined on whole TM and any two points can be joined by a (not
necessarily unique) geodesic. For instance, see example 1. Another class of important applications
is given, if M is a Lie group or more generally a symmetric space with f the exponential map.
Note that if M is a Lie group admitting a bi-invariant metric (e.g., if M is compact), then the Lie
group exponential map coincides with the Riemannian one.
If M is just the m−dimensional Euclidean space Rm, then TM = Rm × Rm, f(x, v) = x+ v and
g(x, y) = y−x. In this case, definition (2) gives the ordinary linear de Casteljau algorithm. Other
examples are provided by g being the nearest point projection in the ambient Euclidean space onto
M as well as stereographic projection in case of a sphere. In this examples TM = M × RN and
the maps f and g are independent of the base point x. Another example is given by g(x, y) the
orthogonal projection of y to TxM the tangent space at x. Compared to the geodesic construction,
this approach has the advantages that it is computationally less time-consuming (f and g are
simpler) and one needs only to deal with the resp. linearization of the manifold M at the control
points. Next, consider any chart around x ∈ U and replace f and g by their local representation.
Let us denote derivatives of f and g in the first resp. second argument by D1f resp. D2f and
D1g resp. D2g. Due to f(x, g(x, y)) = y we have

D1f(x, g(x, y)) +D2f(x, g(x, y))D1g(x, y) = 0, (5)

D2f(x, g(x, y))D2g(x, y) = Id. (6)

We say that f is locally rigid iff

D2f(x, 0) = Id for all x ∈ U. (7)

We remark that this property is independent of the chosen chart. Moreover, due to f(x, 0) = x we
have D1f(x, 0) = Id on U . Note that (3) implies g(x, x) = 0. Hence, in view of (6) local rigidity
of Φ is equivalent to (7).

Definition 7. Suppose that the basic function is given by the pair (f, g) as defined above. We call

C(p0, . . . , pn) := ∪ni=0{f(pi,

n∑
j=0

tjg(pi, pj)) :

n∑
j=0

tj = 1, tj ∈ R≥0, j = 0, . . . , n}

the convex hull of p0, . . . , pn.
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Note that the Bézier curve B(p0, . . . , pn) is entirely contained in the convex hull of p0, . . . , pn.
Furthermore, if control points lie on the segment between endpoints, then the corresponding Bézier
curve coincides with that segment:

p1, . . . , pn−1 ∈ L(p0, pn) ⇒ B(p0, . . . , pn) = L(p0, . . . , pn).

The following theorem summarizes further properties of the de Casteljau’s algorithm.

Theorem 8. Consider control points P := (p0, . . . , pn) and Q := (q0, . . . , qn) in U . Then the
following holds.
a) Transformation invariance: Suppose a Lie group H acts on M by

H ×M 3 (h, x) 7→ hx ∈M

leaving U invariant, i.e., HU ⊂ U . If the action is segment-equivariant, i.e., for every h ∈ G

hL(x, y) = L(hx, hy) for all x, y ∈ U.

Then

hB(p0, . . . , pn) = B(hp0, . . . , hpn) for all h ∈ H.

b) Local control: Consider (w.l.o.g.) M as embedded in an Euclidean space with any norm ‖.‖.
Then

‖p− q‖∞ ≤ C‖P −Q‖∞

where C denotes a positive constant depending only on n, U and Φ.
c) Endpoint velocity: Suppose that Φ is given by (f, g). Denote ṗ(t) := d

dtp(t) and ∆pi :=
g(pi, pi+1). If f meets the local rigid condition (7), then:

ṗ(0) = n∆p0,

ṗ(1) = n∆pn−1.

Proof. For a) note that the segments L(hpi, hpi+1) and hL(pi, pi+1) have the same endpoints:

Φ0(hpi, hpi+1) = hpi = hΦ0(pi, pi+1),

Φ1(hpi, hpi+1) = hpi+1 = hΦ1(pi, pi+1).

To show b) note that by finiteness of n there is a positive constant K determined by U and
Lipschitz constants of Φ on U such that

‖pri (t)− qri (t)‖ = ‖Φt(pr−1i (t), pr−1i+1 (t))− Φt(q
r−1
i (t), qr−1i+1 (t))‖

≤ K‖(pr−1i (t), pr−1i+1 (t))− (qr−1i (t), qr−1i+1 (t))‖.

Iteration yields

‖p(t)− q(t)‖ = ‖pn0 (t)− qn0 (t)‖ ≤ Kn‖P −Q‖∞ for all 0 ≤ t ≤ 1

which immediately results in the desired inequality. To prove c) define p′i = pn−i for i = 0, . . . , n
and note that the Bézier curve with control points p′n, . . . , p

′
0 coincides with the one corresponding

to p0, . . . , pn. Hence the velocity vector of the curve B(p′n, . . . , p
′
0) at p′n is the same as the velocity

vector of B(p0, . . . , pn) at p0. On the other hand p(1− t) = p′(t) implies ṗ(0) = −ṗ′(1). Therefore,
the second equation in c) follows from the first one. Now, applying (5) and (6) the de Casteljau
algorithm yields

ṗri = (1− t)D1f(pr−1i , tg(pr−1i , pr−1i+1 ))ṗr−1i + tṗr−1i+1

+D2f(pr−1i , tg(pr−1i , pr−1i+1 ))g(pr−1i , pr−1i+1 ).
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Iterating this formula yields for i = 0 and r = n

ṗ(t) =

n−1∑
k=0

k∑
j=0

(
k

j

)
(1− t)jtk−jD1f(., .) . . . D1f(., .)︸ ︷︷ ︸

j times

D2f(., .)

.g(pn−1−kk−j , pn−1−kk−j+1 )

where all second arguments of D1f(., .) and D2f(., .) evaluate to zero at t = 0. Setting t = 0
in this formula and using the assumptions D2f(pi, 0) = Id and D1f(pi, 0) = Id we arrive at
ṗ(0) = n∆p0.

Given a basic function Φ on a manifold M , in many applications there is a canonical way
to construct another basic function Φ′ and the corresponding Bézier curves/patches etc. on a
manifold M ′. To proceed, we first present the following

Definition 9. Suppose that Φ resp. Φ′ are basic functions on manifolds M resp. M ′. We call
Φ and Φ′ conjugate iff there is a diffeomorphism H : M → M ′ such that for each 0 ≤ t ≤ 1 and
x, y ∈M

H(Φt(x, y)) := Φ′t(H(x), H(y))

and write Φ 'H Φ′.

Obviously ' defines an equivalence relation. Next we show how to construct new basic func-
tions from a given one and provide flexibility in design of new Bézier curves.

Theorem 10. Suppose that Φ resp. Φ′ are basic functions on manifolds M resp. M ′ and Φ 'H Φ′.
Then the following holds
a) If Φ is dynamical, then Φ′ is also dynamical.
b) Let p(.) resp. p′(.) denote the parametrization of Bézier curves corresponding to p0, . . . , pn resp.
H(p0), . . . ,H(pn). Then H(p(.)) = p′(.). Particularly H(B(p0, . . . , pn)) = B(H(p0), . . . ,H(pn)).
c) Let Φ̃ be a basic functions on M . Then

Ψt(x, y) := Φ̃t(Φt(x, y),Φt(x, y))

is also a basic function on M

Proof. a) Define the functions f ′ : TM ′ 7→M ′ and g′ : M ′ ×M ′ 7→ TM ′ by

f ′(x′, v′) = H(f(x, v)), g′(x′, y′) = dxHg(x, y)

where x′, y′ ∈M ′, v′ ∈ Tx′M ′, x′ = H(x) and y′ = H(y′). We can write

Φ′t(x
′, y′) = H(Φt(x, y)) = H(f(x, tg(x, y))) = f ′(x′, dxH(tg(x, y)))

= f ′(x′, tdxH(g(x, y))) = f ′(x′, tg′(x′, y′)).

b) and c) are straightforward.

Next, we present two applications of the preceding theorem.

Example 11. Suppose that computing a Bézier curve in a manifold M ′ in terms of a basic function
Φ′ is more manageable then in M and H : M → M ′ is a diffeomorphism. Then, we may use the
basic function Φt(x, y) := H−1(Φ′t(H(x), H(y))) on M . As example suppose that M is implicitly
given by a submersion h : R3 → R as M = h(0) and H3 = h. Then choosing Φ′ as the ordinary
affine linear function gives Φt(x, y) = H−1((1− t)H(x) +H(y)) on M .

Besides geometric and design issues, computational aspects are of great importance in most
applications. Particularly, a polynomial or at least rational basic function is desirable. Note that
the corresponding Bézier curve enjoys the same property.
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Example 12. Let π denote the stereographic projection from the north pole of M = Sm onto Rm.
Then

Φt(x, y) := π−1((1− t)π(x) + tπ(y))

defines a rational basic function on Sm.

From a geometric view point the following is a natural property for applications in design and
geometric approximation.

Definition 13. We call a basic function Φ on M segmenting iff for each x, z ∈M

y ∈ L(x, z)⇒ L(x, y) ∪ L(y, z) = L(x, z). (8)

Note that the basic functions given in examples 4 and 5 are not segmenting. Moreover, every
dynamical function is segmenting. Next, we characterize dynamical functions in terms of above
geometric intuitive property.

Theorem 14. Suppose that Φ is a locally rigid basic segmenting function on M . Then Φ is
dynamical.

Proof. Fix x ∈ M . Due to local rigidity there is a neighborhood U of x such that U 3 y 7→
g(x, y) := Φ̇0(x, y) is injective. Let f(x, .) := g(x, .)|−1U and v ∈ g(x, U). Then there exists
z ∈ U with g(x, z) = v. Let y ∈ L(x, z), i.e., y = Φt(x, z) for some 0 ≤ t ≤ 1. Since [0, 1] 3 s 7→
Φst(x, z) parametrizes L(x, y) and due to segmenting property L(x, y) ⊂ L(x, z), we have g(x, y) =
d
ds |s=0Φst(x, z) = tΦ̇0(x, z) = tg(x, z). Hence Φt(x, z) = y = f(x, g(x, y)) = f(x, tg(x, z)).

3 Bézier curves

Example 15. The choice f = exp where exp denotes the Riemannian exponential map on M leads
to the geodesic de Casteljau’s algorithm. The following figure illustrates the corresponding Bézier
curve on a torus. This approach requires solving the geodesic boundary value problem. Another

Figure 1: Geodesic Bézier curve on torus
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choice is the computationally more suitable map g(x, y) given by the orthogonal projection of y
to the tangent plane of the surface at x

g(x, y) = y − x− 〈y − x, n〉n

and f(x, ·) the local inverse of g. Here 〈., .〉 denotes the Euclidean scalar product and n stands
for the normal at x. For few examples geodesics are explicitly known. For instance consider the
2-sphere M = S2 with f the Riemannian exponential map

f(x, v) = cos(‖v‖)x+ sin(‖v‖) v

‖v‖

g(x, y) = arccos(〈x, y〉) y − 〈x, y〉x
‖y − 〈x, y〉x‖

, x, y not antipodal.

The resulting segment between x and y is just the the geodesic

Φt(x, y) =
sin((1− t)ϕ)

sinϕ
x+

sin(tϕ)

sinϕ
y

where cosϕ = 〈x, y〉. The orthogonal projection of y to the tangent plane of the sphere at x and
its local inverse are given by

g(x, y) = y − 〈x, y〉x,

f(x, v) = v +
√

1− ‖v‖2 x.

resulting in the segment

Φ̃t(x, y) = (

√
1− t2 sin2 ϕ− t cosϕ)x+ ty.

Note that in this example Φ̃(x, y) is just a reparametrization of Φ(x, y) as for the sphere both
curves coincide with the arc of the great circle joining x and y.

Next, we consider Lie groups. We denote the Lie group of special orthogonal matrices by SOn,
i.e.,

SOn := {x ∈ Rn×n : xxt = id, det(x) = 1},

where id denotes the identity matrix in the general linear group GLn. In general, if M is a Lie
group, then the exponential map is given by

f(x, v) = x exp(v) = x

∞∑
k=0

1

k!
vk

where x ∈ M and v is a vector in the Lie algebra Lie(M) of M . As our consideration is local,
using Ado’s theorem ([18], Chapter 10) we may and do assume that M is a subgroup of the general
linear group GLn. Now, if h ∈ GLn satisfies ‖I − h‖ < 1 (for any matrix norm ‖.‖), then log is
well-defined and given by

log(h) =

∞∑
k=1

1

k
(I − h)k.

Considering M as a subgroup of GLn, we also may take the orthogonal projection. In the following
example we compare this two choices of f .

Example 16. Let x ∈ SE3 where SE3 denotes the special group of Euclidean motion. Then we
have

x =

[
q b
0 1

]
,

7



Figure 2: Application of projection onto SE3 to refine poses of a rigid body

with q being a rotation in R3, i.e., q ∈ SO3 and b ∈ R3 (translation). The standard scalar product
for x, y ∈ Rn×n is given by

〈x, y〉 = tr(xyt)

and the induced norm is the Frobenius norm

‖x‖ = (

n∑
j=1

n∑
i=1

xij)
1/2.

The closest point projection fπ onto SE3 can be computed efficiently using singular value decom-
position (see [GL96]). Let q = usvt be a singular decomposition of q where qt stands for the
transpose of q. It is well-known that

argminz∈SO3
‖q − z‖ = uvt = (qqt)−1/2q

provided det(q) > 0. Hence we have

fπ(x) =

[
(qqt)−1/2q b

0 1

]
.

Let us denote the Bernstein polynomials of degree n by B0, . . . , Bn. For control points p0, . . . , pn ∈
SE3 we define the Bézier curve in SE3 as the closest point projection of the corresponding Bézier
curve

∑n
i=0Bi(t)pi in the ambient Euclidean space R4×4 onto SE3

p(t) = fπ(

n∑
i=0

Bi(t)pi) = fπ(

[∑n
i=0Bi(t)qi

∑n
i=0Bi(t)bi

0 1

]
)

For well-definedness we have to show that for all 0 ≤ t ≤ 1 the condition det(
∑n
i=0Bi(t)qi) > 0

holds. Since
∑n
j=0Bj(t) = 1 for all 0 ≤ t ≤ 1, we have

‖
n∑
i=0

Bi(t)qi − q1‖ = ‖
n∑
i=0

Bi(t)(qi − q1)‖ ≤
n∑
i=0

Bi(t)maxi‖qi − q1‖ = maxi‖qi − q1‖.

In view of det(q1) = 1 and continuity of det it follows that for sufficiently dense control points the
desired condition det(

∑n
i=0Bi(t)qi) > 0 is satisfied. Note that another advantage of this choice of

f is independency of base point (g(x, y) = y, f(x, v) = fπ(v) and Λ = R4×4), resulting in a faster
approach. A vector v in the Lie algebra se3 of SE3 has the form
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v =

[
h u
0 0

]
.

Here h ∈ so3 where so3 consisting of 3 by 3 skew-symmetric matrices stands for the Lie algebra
of SO3 and u ∈ R3. The exponential map of SE3 reads now

Exp(x, v) = x

[
exp(h) Hu

0 1

]
,

H := 1 + 1−cos(‖h‖)
‖h‖2 h+ ‖h‖−sin(‖h‖)

‖h3‖ h2. The logarithm in this case is given by

Log(x, x′) = x−1
[
log(q′) H−1b′

0 0

]
where

x′ =

[
q′ b′

0 1

]
.

Example 17. Another map useful in computations for SOn is given by the Cayley map

f(x, v) := x(I +
1

2
v)(I − 1

2
v)−1 with x ∈ SO3, v ∈ so3.

Its point wise inverse is

g(x, y) = −2(I − x−1y)(I + x−1y)−1 with x, y ∈ SO3.

The Cayley map provides a suitable linearization of the exponential map near identity. In contrast
to the exponential map it is rational. This fact is useful in numerical applications, since evaluating
transcendental functions can be time-consuming. Cayley map is a first order Padé approximation.
In our example any higher order Padé approximation can be used to increase accuracy.

Next, we consider the generalization of Lie groups to symmetric spaces. There are various
applications of symmetric spaces in many areas and their structure admits the notion of exponential
map. Positive definite symmetric matrices provide a prominent example of a symmetric space and
arise in many applications like elasticity and medical imaging. Affine subspaces of Euclidean space
provide further examples. For convenient of the reader, we recall some basic facts and refer to
[22] and [11] for details. Suppose that M is a homogenous space, i.e., M = G/K where K is a
Lie subgroup of a Lie group G. Then M is called a symmetric space iff there is an involutive
automorphism s ∈ Aut(G) \ {id}, s2 = id such that the fixpoint set of s denoted by Fix(s) is
closed and contained in K, and K and Fix(s) have the same identity component.

Example 18. Let us consider the space of positive definite symmetric n × n matrices Posn =
GLn/On with its exponential map

Exp(x, v) = x
1
2 exp(x

−1
2 vx

−1
2 )x

1
2

and the logarithm which is globally defined

Log(x, y) = x
1
2 log(x

−1
2 yx

−1
2 )x

1
2 .

Here x, y ∈ Posn and v ∈ Symn (symmetric n × n matrices). The following figure shows an
application of de Casteljau’s algorithm to four control points in Pos3. Note that Posn is also a
Riemannian symmetric space with the geodesic distance given by

d(x, y) = ‖ log(x
−1
2 yx

−1
2 )‖.
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Figure 3: Diffusion tensors visualized as ellipsoids

Moreover, the corresponding geodesic joining x and y is given by

Φt(x, y) = x1/2(x−1/2y1/2x−1/2)tx1/2.

Note that the corresponding Bézier curve in Posn coincides with the one inherited as a subset of
GLn, since

x
1
2 exp(x

−1
2 vx

−1
2 )x

1
2 = x exp(x−1v).

Example 19. This example addresses construction of Bézier curves on polyhedral surfaces. In
polyhedra, one can consider shortest as well as straightest geodesics. The concept of straightest

Figure 4: exp: straightest geodesics Figure 5: log: shortest geodesics

geodesics has been introduced by Polthier and Schmiess in [14]. Straightest geodesics in polyhedral
surfaces are characterized by the property that at inner point of an edge outbound and inbound
angles coincide and at a vertex left and right angles sum up to half of total vertex-angle. In
contrast to shortest, straightest geodesics uniquely solve the geodesic initial value problem (see
[14]). Moreover a straightest geodesic coincides with the shortest, provided the geodesic does not
pass through a spherical vertex. Hence, for an initial point x ∈ M and initial velocity v the
Riemannian exponential map exp(x, v) is the endpoint of the corresponding straightest geodesic.
As for n vertices computation of the endpoint exp(x, v) is done by a loop using at most all n
vertices, the underlying time complexity is just O(n). The optimal algorithm for the computation
of log(x, y), i.e., the initial velocity of the shortest path joining x and y in M can be found in [1]
resp. [16] and has time complexity O(n2) resp. O(n log n) for convex polyhedra.

4 Construction of surfaces

Many important surfaces can be constructed as a 1-parameter family of simple curves. The most
important examples are canal and ruled surfaces (1-parameter family of circles resp. straight lines).
Envelope of a family of spheres whose centers lie on a space curve is a canal surface. Particularly,
if the sphere centers lie on a straight line, then the canal surface is a surface of revolution. A
surface S is ruled if through every point of S there is a straight line that lies on S. Hence it can
be parametrized as a one-parameter family of straight lines. For applications of canal and ruled
surfaces in architecture we refer to [15].
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Figure 6: Bézier curve on a polyhedron

Example 20. Consider a canal surface S generated by a regular curve m, i.e., S : x(s, t) =
m(t) + r(t)(cos(s)N(t) + sin(s)B(t)) with N the normal and B the binormal of the curve m and
0 ≤ t ≤ 1, 0 ≤ s < 2π. Denote the unit tangent map of the curve m by n. We may write S as
S = ∪0≤t≤1St where St denotes the circle with center m(t) and radius r(t) in the plane through
the point m(t) with the normal n(t). Now, given control points (mi, ri, ni) ∈ R3 × R+ × S2 we
may apply our approach to construct an approximation of the surface S.

Figure 7: Canal surface Figure 8: Ruled surface

Example 21. For control points p0, . . . , pn in a ruled surface given by S : x(s, t) = m(t) + sv(t) we
may write pi = (mi, vi) ∈ R3 × S2.
Our approach can also be applied to produce further classical surfaces. For instance, [13] gives
a constructive approach to design cylinders with constant negative curvature using their charac-
terization via Gauß map. Therein the task is reduced to refine a discrete Chebyshev net in the
2-sphere. The Chebyshev net is completely determined by initial points Ni,i and Ni+1,i. Due to
theorem 3 applying (2) parallelograms refine to parallelograms. Hence we may apply (2) with
M = S2 and f and g from our first example to construct the net. Using the method described in
[13] the surface can then be reconstructed.
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Figure 9: Bi-cubic Chebyshev net on the 2-sphere and corresponding k-surface

5 Conclusion

Considering computational and geometric aspects with focus on applications in CAGD and approx-
imation tasks, we have presented a generalization of de Casteljaus’s algorithm to manifold-valued
data. The canonical choice for Riemannian manifolds as well as Lie groups and more generally
symmetric spaces uses an accurate approximation of the exponential map. The Cayley map and
orthogonal projection on the tangent space provide further examples. Also, using certain Bézier
curves on the 2-sphere we can efficiently construct canal resp. ruled surfaces as 1-parameter family
of circles resp. straight lines.
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2011-004 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part II —
Gain-Scheduled Control
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2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups

2009-004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator

2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation

2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
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