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Parabolic Approximations of Diffusive-Dispersive Equations

Andrea Corli∗ Christian Rohde† Veronika Schleper†

July 22, 2013

Abstract

We consider a lower-order approximation for a third-order diffusive-dispersive con-
servation law with nonlinear flux. It consists of a system of two second-order parabolic
equations; a coupling parameter is also added.
If the flux has an inflection point it is well-known, on the one hand, that the diffusive-
dispersive law admits traveling-wave solutions whose end states are also connected by
undercompressive shock waves of the underlying hyperbolic conservation law. On the
other hand, if the diffusive-dispersive regularization vanishes, the solutions of the corre-
sponding initial-value problem converge to a weak solution of the hyperbolic conservation
law. We show that both of these properties also hold for the lower-order approximation.
Furthermore, when the coupling parameter tends to infinity, we prove that solutions of
initial value problems for the approximation converge to a weak solution of the diffusive-
dispersive law. The proofs rely on new a-priori energy estimates for higher-order deriva-
tives and the technique of compensated compactness.

1 Introduction

We are interested in the following initial-value problem for a diffusive-dispersive conser-
vation law:

uεt + f(uε)x = εuεxx + γε2uεxxx in ΩT : = R× (0, T ), T > 0,

uε(., 0) = u0 in R.
(1.1)

Here, f : R → R denotes a smooth flux with f(0) = 0, u0 : R → R is the initial datum
and ε, γ are positive real parameters.
The model (1.1) can be understood as a toy model to describe phase transition dynamics
when viscous and capillary effects are taken into account. To see this, let us consider first
the ideal case, i.e., the sharp interface limit ε→ 0 where the diffusive-dispersive equation
in (1.1) reduces to the hyperbolic conservation law

ut + f(u)x = 0. (1.2)

Assume that the flux f has an inflection point; this happens, for instance, in the modeling
of phase transitions [13], saturation fronts [26] and precursors in thin film flows [3]. In
such a case, shock-wave solutions to (1.2) that connect end states u−, u+ in different re-
gions of convexity may be interpreted as phase boundaries; in particular, such waves can
be undercompressive [11]. The crucial observation from [11, 13] is that these undercom-
pressive shock waves possess a diffusive-dispersive profile, i.e., the equation (1.1) admits
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for some γ > 0 smooth traveling-wave solutions that connect the same end states u−, u+.
Moreover, solutions of (1.1) converge for ε → 0 to a weak solution of the corresponding
initial-value problem for (1.2), see [11, 22].
Reverting to the dissipative equation in (1.1), it is obvious that its analytical treatment
and even more its numerical simulation gets intricate due to the appearance of the third-
order term. Therefore we introduce in the present paper lower-order approximations of
(1.1) that keep the property of allowing traveling-wave solutions associated with under-
compressive waves of (1.2) and reduce to (1.2) in the sharp-interface limit ε→ 0.
One possibility for lower-order approximations for (1.1) is the nonlocal equation

uε,αt + f(uε,α)x = εuε,αxx + γα (Kε,α ∗ uε,α − uε,α)x , (1.3)

which depends on the coupling parameter α > 1. In (1.3) the symbol “∗” denotes spatial
convolution and Kε,α : R→ R is a kernel function that satisfies∫

R
Kε,α(x) dx = 1, Kε,α(x) = Kε,α(−x) (α, ε > 0).

Under appropriate growth conditions on Kε,α, the existence of traveling waves for (1.3)
has been verified in [20]. For fixed ε > 0, formal asymptotics suggests that solutions uε,α

of (1.3) converge for α → ∞ to solutions of (1.1). Though this has not been proven so
far for arbitrary kernels Kε,α it holds true indeed for the choice

Kε,α(x) =

√
α

2ε
e−

√
α
ε |x|, (1.4)

see [6]. In this case (1.3) is equivalently rewritten in the local parabolic-elliptic form uε,αt + f(uε,α)x = εuε,αxx − α(uε,α − λε,α)x,

−γε2λε,αxx = α(uε,α − λε,α),
in ΩT . (1.5)

In other words, the approximation consists of a second-order equation for uε,α : ΩT →
R coupled with a linear elliptic equation for an additional unknown λε,α : ΩT → R.
The kernel (1.4) is then the Green function associated to (1.5)2. We note that (1.5)2 is
exactly the screened Poisson equation, which is widely used in mathematical physics and
visualization sciences (see for instance [9, 12]).
Instead of purely static equations as (1.5)2, one may also think to select time dependent
operators. The simplest choice in this context and indeed the main topic of this paper is
the system  uε,αt + f(uε,α)x = εuε,αxx − α(uε,α − λε,α)x,

βλε,αt − γε2λε,αxx = α(uε,α − λε,α),
in ΩT , (1.6)

for 0 < β ≤ 1. We omitted in the functions uε,α, λε,α the dependence on β both for
simplicity and because we shall see that β must be scaled with respect to α and ε in most
results. The latter issue can be intuitively motivated as follows. By (1.6)2 we can guess
that λε,α and uε,α converge to the same limit as α→∞. If we plug (1.6)2 into (1.6)1, we
see that a necessary condition to recover (1.1)1 in the limit α→∞ is that

β = β(α)→ 0 for α→∞. (1.7)

While (1.5) requires a single initial condition for uε,α we need two initial conditions for
(1.6). We put

uε,α(·, 0) = λε,α(·, 0) = u0 in R. (1.8)

The case λε,α(·, 0) 6= u0, with λε,α0 → u0 for α → ∞ or ε → 0 in some suitable norms,
only leads to minor changes in the following.
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As mentioned above, we are particularly interested in flux functions f that are neither
concave nor convex. To avoid technicalities, we focus on two classes of flux functions: we
assume that the flux function f : R → R has bounded first and second derivatives or it
coincides with the simple non-convex flux

f(u) = u3. (1.9)

In Section 2 we prove the existence of traveling waves to (1.6) for the cubic flux (1.9).
There we prove the first important result of this paper: under the assumption (1.7),
traveling waves exist for particular values of γ. The proof relies on geometric singular
perturbation theory [8].

The rest of the paper is concerned with fluxes having bounded derivatives. In Section 3
we prove some fundamental energy estimates for the initial-value problem (1.6)-(1.8); they
will be used in Section 4 to prove the wellposedness of the initial-value problem for classical
solutions.
The technical Section 5 presents refined a-priori estimates on smooth solutions of (1.6).
In these energy-type estimates the dependence on both the sharp-interface parameter ε
and, in particular, the coupling parameter α is carefully tracked. Such estimates provide
us with the necessary compactness to study the limit α→∞ in Section 6, where Theorem
6.1 is the second main result of this paper. It shows that a (sub)sequence of solutions to
(1.6)-(1.8) converges to a weak solution of the diffusive-dispersive problem (1.1). Again,
the scaling of β with respect to the coupling parameter α is crucial: we sharpen for fixed
value of ε the asymptotic relation (1.7) to

β = β(α) = O(α−1) for α→∞. (1.10)

We also obtain an explicit convergence rate with respect to the coupling parameter. Fi-
nally, the sharp interface limit ε → 0 is analyzed in Section 7, now using for fixed α the
scaling

β = β(ε) = O(ε) for ε→ 0. (1.11)

The main result there is Theorem 7.1, which is proven by using the compensated com-
pactness approach in the version presented in [16].

2 Undercompressive Shock Waves

In this section we prove that, for all ε > 0, the parabolic system (1.6) with f provided
by (1.9) admits smooth traveling-wave solutions for α sufficiently large and β sufficiently
small; moreover, such traveling waves converge almost everywhere for ε → 0 to an un-
dercompressive shock wave [15] of the homogeneous equation (1.2). Then, the parabolic
system (1.6) can be seen as a singular perturbation of (1.1), for α >> 1 and β << 1. We
refer to [13, 11] for traveling-wave profiles of both Lax and undercompressive shock waves
for the equation (1.1). More precisely, if

U(x, t) =

{
u− if x− st < 0,
u+ if x− st > 0,

is a shock wave for (1.2) and the flux function is given by (1.9), then s = u2
−+u−u+ +u2

+.
Undercompressive shock waves satisfying the condition f ′(u±) > s exist if, for instance,

−2u− < u+ < −u−
2
< 0. (2.1)

Traveling solutions Uε(x, t) = u
(
x−st
ε

)
of (1.1) are solutions to{

u′ = z, u(±∞) = u±,
γz′ = −z − su+ f(u) + c, z(±∞) = 0,

(2.2)
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for c := su− − f(u−) = su+ − f(u+). There are three rest points (u, 0) for the flow in
(2.2); they are u+ < u0 = −(u+ + u−) < u−. If we denote p(u) := su − f(u) − c, then
the eigenvalues at the rest points (u, 0) = (u±, 0) are λ = [−1±

√
1− 4γp′(u) ]/(2γ) and

u± are both saddles if and only if p′(u±) < 0. This condition is equivalent to (2.1). We
write system (2.2) as 

u′ = z, u(±∞) = u±,
γz′ = −z − p(u), z(±∞) = 0,
γ′ = 0, γ(0) = l.

(2.3)

The sets M±0 = {(u±, 0, l) | l ∈ R, l 6= 0} are easily seen to be normally hyperbolic [14].
We rewrite (2.3) by introducing w := z + p(u). We obtain

u′ = w − p(u), u(±∞) = u±,

w′ = −w
γ

+ p′(u)
(
w − p(u)

)
, w(±∞) = 0,

γ′ = 0.

(2.4)

The transformed manifolds M±0 = {(u±, 0, l) | l ∈ R, l 6= 0} of M±0 are still normally
hyperbolic. Inspired by [13] we proved in [6] the following result.

Theorem 2.1 Consider the boundary-value problem (2.4) under assumptions (1.9). If

−u− < u+ < −u−/2 < 0, (2.5)

then there is a unique γ̄ > 0 such that, up to shifts, problem (2.4) has a unique solution.
Moreover, the intersection of the unstable manifold Wu(u−, γ̄) from (u−, 0, γ̄) ∈ M−0

and the stable manifold W s(u+, γ̄) from (u+, 0, γ̄) ∈M+
0 is transverse with respect to the

flow of (2.4).

We pass now to (1.6). Since ε > 0 plays a minor role in this section and to avoid
multiple upper indices, we write in the rest of this section uα and λα instead of uε,α and
λε,α. A traveling-wave solution to (1.6) with speed s is a solution of the form

(
Uα(x, t), Lα(x, t)

)
=

(
uα

(
x− st
ε

)
, λα

(
x− st
ε

))

satisfying (uα(±∞), λα(±∞)) = (u±, λ±) and u′α(±∞) = λ′α(±∞) = 0. Then, denoting
β = εb to have the correct scaling in ε, the functions (uα, λα) must solve the system{

u′α = α(uα − λα)− p(uα),
−γλ′′α − sbλ′α = α(uα − λα).

(2.6)

We need λ± = u± in order that (u±, λ±) are rest points of the flow in (2.6); in turn, the
assumption u′α(±∞) = 0 implies c = −su± + f(u±). Then, system (2.6) is completed by
the boundary conditions

uα(±∞) = λα(±∞) = u± , λ′α(±∞) = 0. (2.7)

We make the change of variables

wα := α(uα − λα).

Equation (2.6)1 now reads u′α = wα − pα; then, denoting vα = w′α, we compute λ′α =
wα − pα − vα

α . By (2.6)2 we deduce

u′′α = vα − p′α(wα − pα),
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−λ′′α =
wα
γ

+
sb

γ
λ′α =

wα
γ

+
sb

γ
(wα − pα)− sb

γα
vα,

where we wrote pα = p(uα) for short. We deduce

w′′α = α(u′′α − λ′′α)

= α

(
vα − p′α(wα − pα) +

wα
γ

+
sb

γ
(wα − pα)− sb

γα
vα

)
=

α

γ

(
wα +

(
sb− γp′α

)
(wα − pα) +

(
γ − sb

α

)
vα

)
.

We denote

G(u,w, γ, v, α, b) =
1

γ

(
w +

(
sb− γp′(u)

) (
w − p(u)

)
+

(
γ − sb

α

)
v

)
and notice that until now the parameter b played no essential role; in particular. We
deduce that (2.6)–(2.7) is equivalent to

u′α = wα − p(uα), uα(±∞) = u±,
w′α = vα, wα(±∞) = 0,
γ′α = 0,

1
αv
′
α = G(uα, wα, γα, vα, α, b), vα(±∞) = 0.

(2.8)

We remark that, differently from [6], the functional G depends not only on β (through b)
but, in particular, on α, because of the presence of the term λαt in (1.6)2. However, for
α→∞ this dependence is not singular:

G(u,w, γ, v,∞, b) =
1

γ

(
w +

(
sb− γp′(u)

) (
w − p(u)

)
+ γv

)
.

In particular, G(u,w, γ, v,∞, b) = 0 is equivalent to

v = −w
γ

+

(
p′(u)− sb

γ

)(
w − p(u)

)
.

Now, we compare (2.8) with (2.4); we see that (2.4) is the reduced system for α = ∞ of
(2.8) if and only if

β = β(α)→ 0 as α→∞. (2.9)

We notice that the requirement (2.9) introduces no singular behavior in the functional G
defined above. Therefore, under the conditions (2.9), system (2.8), which is written with
respect to a slow-time scale, falls into the framework of the geometric singular perturbation
theory for α sufficiently large [8, 14]. We now state our final result.

Theorem 2.2 Consider the boundary-value problem (2.8) with f given by (1.9) and as-
sume (2.5), (2.9).

Then, for α >> 1 there is a unique γ̄α > 0 such that, up to shifts, problem (2.8) has a
unique solution, with γα = γ̄α. Moreover, we have γ̄∞ = γ̄.

Proof. We rely on the formulation of the geometric singular perturbation theory provided
in [8, Theorem 9.1]. A simplified statement can be found in [10, Proposition 3.2], even
if in that proposition G is independent from α; however, the result in [8, Theorem 9.1],
which allows a regular dependence on the vanishing parameter, applies straightforwardly
to the framework provided in [10].

We just need to check that the zero-set G(u,w, γ, v,∞, 0) = 0 is indeed the graph
C0 of a smooth function h = h(u,w, γ) and that the condition Gv(u,w, γ, v,∞, 0) 6= 0 is
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satisfied on C0. Both conditions are easily checked: since γ > 0, the implicit equation
G(u,w, γ, v,∞, 0) = 0 is uniquely solved as

v = −w
γ

+
(
s− f ′(u)

)
(w − p(u)) =: h(u,w, γ),

which defines a manifold C0 on which Gv ≡ 1. �

3 Energy estimates

In this section we prove some energy-type estimates for the case of flux functions with
bounded derivatives. We start by making an assumption about the existence of solutions
to (1.6); indeed, we shall prove in Section 4 that such solutions do exist by using the
estimates of this section. We denote by Ck1 (Ω) the space of functions defined in Ω ⊂ R2

having k continuous derivatives in x and one continuous derivative in t.

Assumption 3.1 Let L > 0 be a constant such that f ∈ C3(R) satisfies |f ′(u)|+|f ′′(u)| ≤
L and

F (u) :=

∫ u

0

f(w) dw ≥ 0 for all u ∈ R. (3.1)

The role of condition (3.1) is to ensure the non-negativity of certain energy terms, see
(3.11). Figure 1 illustrates a possible choice of f(u) and the resulting function F (u). In
particular, since we assumed f(0) = 0, the function F satisfies

0 ≤ F (u) ≤ L

2
u2. (3.2)

-
u

6
f

(a)

-
u

6
F

�
�
�
�
��

B
B
B
B
BB

(b)

Figure 1: Example of a function f fulfilling Assumption 3.1, (a), and its associated double-
well function F , (b).

We emphasize that Assumption 3.1 shall be fully exploited only from Section 5 on. As
regards the current section, it only suffices that f ∈ C1(R) satisfies |f ′(u)| ≤ L and (3.1).

Assumption 3.2 Let u0 ∈ H3(R) and T > 0 be fixed. We assume that for every ε, α, β >
0 there exists a classical solution (uε,α, λε,α) : Ω̄T → R2 of (1.6)-(1.8) satisfying

uε,α ∈ C2
1

(
(0, T ]× R

)
∩ L∞

(
0, T ;H3(R)

)
. (3.3)

We start by providing a representation formula of the function λε,α in terms of uε,α.
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Lemma 3.3 Let Assumptions 3.1 and 3.2 hold. Then the solution λε,α satisfies for
(x, t) ∈ Ω̄T the representation formula

λε,α(x, t) =

∫ t

0

∫
R
Kε,α(x− y, t− s)uε,α(y, s) dy +

β

α

∫
R
Kε,α(x− y, t)u0(y) dy , (3.4)

where

Kε,α(x, t) =
α

β

√
β

4πγε2t
e
−αβ t−

βx2

4γε2t (t > 0).

Furthermore, for t ∈ (0, T ] and l = 0, 1, 2, 3, we have the estimates

‖λε,α‖L∞(0,t;L2(R)) ≤ ‖uε,α‖L∞(0,t;L2(R)) + ‖u0‖L2(R), (3.5)

‖∂lxλε,α‖L2(Ωt)
≤ ‖∂lxuε,α‖L2(Ωt)

+

√
β

2α
‖∂lxu0‖L2(R). (3.6)

Proof. Consider in Ω̄T the initial-value problem{
λt − λxx + λ = g,
λ(., 0) = u0,

(3.7)

for g ∈ L∞
(
0, T ;L2(R)

)
and u0 ∈ L2(R). We define the Bessel potential

B(x, t) =


1√
4πt

e−t−
x2

4t if t > 0,

0 if t ≤ 0.

Arguing as in [7, Examples 1 and 2, pages 186-188, Remark page 51], we see that any
bounded solution of the initial value problem 3.7 satisfies

λ(x, t) =

∫ t

0

∫
R
B(x− y, t− s)g(y, s) dy ds+

∫
R
B(x− y, t)u0(y) dy

=

∫ t

0

(
B(t− s) ∗ g(s)

)
(x) ds+

(
B(t) ∗ u0

)
(x),

where we denoted by “∗” the convolution with respect to the x variable. Here and below
we often use a functional notation and then drop the dependence on the variable x.

The uniqueness follows by [7, Theorem 7, §2.3]. To find the representation formula
for λε,α we divide the equation (1.6)2 by α, denote a = β/α, b = γε2/α, and then make

the change of variables t′ = t/a, x′ = x/
√
b to reduce to the equation in (3.7) with uε,α

replacing g. Then, the kernel B becomes

Kε,α(x, t) =


α

β

√
β

4πγε2t
e
−αβ t−

βx2

4γε2t if t > 0,

0 if t ≤ 0,

and the solution is given by

λε,α(x, t) =

∫ t

0

(
Kε,α(t− s) ∗ uε,α(s)

)
(x) ds+

β

α

(
Kε,α(t) ∗ u0

)
(x), in Ω̄T . (3.8)

This proves (3.4). To prove (3.5)–(3.6) we notice that for every t > 0 we have∫
R
Kε,α(x, t) dx =

α

β
e−

α
β t (3.9)
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and then ‖Kε,α‖L1(R×R+) = 1. We first apply Minkowski’s inequality to (3.8) and then

Minkowski integral inequality [1, Theorem 2.9]; we obtain

‖λε,α(t)‖L2(R) ≤
∫ t

0

‖Kε,α(t− s) ∗ uε,α(s)‖L2(R) ds+
β

α
‖Kε,α(t) ∗ u0‖L2(R)

≤
∫ t

0

‖Kε,α(t− s)‖L1(R)‖u
ε,α(s)‖L2(R) ds+

β

α
‖Kε,α(t)‖L1(R)‖u0‖L2(R).

We fix any τ ∈ (0, T ]; by (3.9) we deduce

‖λε,α‖L∞(0,τ ;L2(R)) ≤ sup
t∈[0,τ ]

∫ t

0

‖Kε,α(t− s)‖L1(R)‖u
ε,α(s)‖L2(R) ds+ ‖u0‖L2(R)

≤
(

1− e−
α
β τ
)
‖uε,α‖L∞(0,τ ;L2(R) + ‖u0‖L2(R),

whence (3.5). We now consider (3.6); it is clearly sufficient to prove this estimate in the
case l = 0. By (3.8) it follows that

‖λε,α‖L2(Ωt)
≤ ‖Uε,α‖L2(Ωt)

+ ‖Uε,α0 ‖L2(Ωt)
,

where Uε,α and Uε,α0 denote the summands in (3.8). By Hölder inequality we have

∫
R

(∫ t

0

∫
R
Kε,α(t− s, x− ξ)uε,α(s, ξ) dξ ds

)2

dx

≤
∫
R

(∫ t

0

∫
R
Kε,α(t− s, x− ξ) dξ ds

)
·

(∫ t

0

∫
R
Kε,α(t− s, x− ξ)|uε,α(s, ξ)|2 dξ ds

)
dx

≤
∫ t

0

α

β
e−

α
β (t−s)‖uε,α(s, .)‖2L2(R) ds .

Now, we integrate in time to deduce

‖Uε,α‖2L2(Ωτ ) ≤
∫ τ

0

∫ t

0

α

β
e−

α
β (t−s)‖uε,α(s, .)‖2L2(R) dsdt

=

∫ τ

0

∫ τ

s

α

β
e−

α
β (t−s)‖uε,α(s, .)‖2L2(R) dtds ≤ ‖uε,α‖2L2(Ωτ ).

The estimate of ‖Uε,α0 ‖L2(Ωτ ) is proved by using Hölder inequality as above:

∫ τ

0

∫
R

(∫
R
Kε,α(t, x− ξ)u0(ξ) dξ

)2

dx dt ≤ α

2β

(
1− e−

2α
β τ
)
‖u0‖2L2(R) ≤

α

2β
‖u0‖2L2(R).

Then

‖Uε,α0 ‖L2(Ωτ ) ≤
√

β

2α
‖u0‖L2(R).

This proves (3.6). �

We point out that a much shorter proof of Lemma 3.3, which does not require a
representation formula of λε,α in term of uε,α, can be obtained by “energy methods”. For
instance, to obtain an estimate analogous to (3.6), l = 0, one multiplies (1.6)2 by λε,α,
integrates with respect to space and finally uses partial integration. However, this proof
provides slightly worse constants and requires more regularity on λε,α.
An estimate of ‖λε,αt ‖L2(Ωt)

could be deduced by exploiting directly equation (1.6)2 jointly

with (3.6); we omit it since we shall prove in a better estimate in Corollary 3.7.
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A natural energy for (1.1) is the van der Waals’ type energy

Eε[u] =

∫
R

(
F (u) + γ

ε2

2
u2
x

)
dx. (3.10)

The energy (3.10) is dissipated by any smooth solution uε of (1.1) in the sense that
d
dt

(
Eε[uε(., t)]

)
≤ 0, for t ∈ (0, T ). Another global ε-independent control on the evolution

of the solution of (1.1) is given by the L2-norm of uε.
The role of Eε for the elliptic approximation (1.5) considered in [6] is taken by

Eε,α[u, λ] =

∫
R

(
F (u) +

α

2
(u− λ)

2
+
γε2

2
λ2
x

)
dx.

We refer to [24, 25] for the variational analysis of Eε,α and to [4, 18, 19, 21] for related
functionals. Again, the L2-norm of solutions to (1.5) is uniformly bounded, now with
respect to ε and α [6].
Now, we introduce a further generalization of the energy Eε for the parabolic approxima-
tion (1.6). This is

Eε,α[u, λ] =

∫
R

(
F (u) +

α

2
(u− λ)

2
+
ε

2
(γε+ β)λ2

x

)
dx. (3.11)

It formally collapses to Eε,α setting β ≡ 0. We will show that both the energy Eε,α and
the L2-norm of the solution are bounded uniformly with respect to ε and α > 1 (see
(3.16)). Most notably, in the current parabolic case none of these two estimates can be
derived independently as in [6, Lemmas 3.2 and 3.3] for the elliptic approximation (see
Corollary 3.6 below).

Lemma 3.4 Let Assumptions 3.1 and 3.2 hold. Then, for all t ∈ [0, T ] we have the
estimate∫

R
(uε,α)2 dx+ε

∫ t

0

∫
R
(uε,αx )2 dxdt

≤ 2β2

ε

∫ t

0

∫
R

(λε,αt )2 dxdt+

∫
R

(u0)2 dx+
βε

2α

∫
R

(u0,x)2 dx .

(3.12)

Proof. We drop the upper indices and write for simplicity (u, λ) = (uε,α, λε,α). From
the regularity assumption (3.3) and Morrey’s estimate (see, e.g., [7, §5.6.2] or [5, Cor.
VIII.8]), we deduce that |∂lxu(x, t)| → 0 as |x| → ∞, for every t ∈ (0, T ] and l = 0, 1, 2.
By multiplying (1.6)1 by u and integrating with respect to x we find

1

2

d

dt

∫
R
u2 dx+ ε

∫
R

(ux)
2

dx = α

∫
R
(u− λ)λx dx ,

or, in the time-integrated form,

1

2

∫
R

(u(·, t))2
dx+ ε

∫ t

0

∫
R

(ux)
2

dxdt =
1

2

∫
R
u2

0 dx+ α

∫ t

0

∫
R

(u− λ)λx dxdt .

Using (1.6)2, we obtain

1

2

∫
R

(u(·, t))2
dx+ ε

∫ t

0

∫
R

(ux)
2

dxdt =
1

2

∫
R
u2

0 dx+ β

∫ t

0

∫
R
λxλt dx dt . (3.13)

Here, we exploited the fact that λε,αxx → 0 as |x| → ∞ because of Lemma 3.3 and then
argued as above. By the help of the basic inequality

ab ≤ ρa2 +
b2

4ρ
, (3.14)
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which holds for every a, b, ρ > 0 [7, (5) page 622] and estimate (3.6), we deduce

β

∫ t

0

∫
R
λxλt dx dt ≤ ρ

∫ t

0

∫
R

(λx)2 dx dt+
β2

4ρ

∫ t

0

∫
R

(λt)
2 dxdt

≤ 2ρ

∫ t

0

∫
R
(ux)2 dx dt+

β2

4ρ

∫ t

0

∫
R
(λt)

2 dx dt+
βρ

α

∫
R
(u0,x)2 dx .

Choosing ρ = ε
4 , by (3.13) we obtain (3.12). �

Due to the uncontrolled first term on the right-hand side of (3.12), Lemma 3.4 does
not yet provide a uniform estimate with respect to ε of the L2-norm of uε,α. This is
achieved by requiring that β is small with respect to ε, as in the following result where
we consider the evolution of the energy Eε,α.

Lemma 3.5 Let Assumptions 3.1 and 3.2 hold. Then, for all t ∈ [0, T ] we have the
estimate∫

R

{
F (uε,α) +

α

2
(uε,α − λε,α)2 +

ε

2
(γε+ β)(λε,αx )2

}
dx+

+

∫ t

0

∫
R

{
ε
(

(uε,αx )2f ′(uε,α) + α
(
uε,αx − λε,αx

)2
+ γε2(λε,αxx )2

)
+ β(λε,αt )2

}
dxdt

=

∫
R

{
F (u0) +

ε

2
(γε+ β)(u0,x)2

}
dx . (3.15)

Moreover, for β < ε
4L we have the estimate

Eε,α[uε,α(., t), λε,α(., t)]− Eε,α[u0, u0]

≤ L‖u0‖2L2(R) +
Lβε

2α
‖u0,x‖2L2(R) −

β

2

∥∥λε,αt ∥∥2

L2(Ωt)

−ε
(
α‖uε,αx − λε,αx ‖2L2(Ωt)

+ γε2‖λε,αxx ‖2L2(Ωt)

)
.

(3.16)

Proof. As in Lemma 3.4 we write (u, λ) = (uε,α, λε,α). We also recall the decay properties
of |∂ixu(x, t)| and |∂ixλ(x, t)| for |x| → ∞, for i = 0, 1, 2 and t ∈ [0, T ], mentioned in
Lemma 3.4; they are used below to justify integration by parts. We multiply (1.6)1 by
f(u) = F ′(u); then we multiply again (1.6)1 by α(u − λ) and (1.6)2 by λt. Finally, we
integrate with respect to x and obtain

d

dt

∫
R
F (u) dx+

∫
R
f(u)xf(u) dx = ε

∫
R
uxxf(u) dx− α

∫
R

(u− λ)xf(u) dx , (3.17)

α

∫
R
ut(u− λ) dx+ α

∫
R
f(u)x(u− λ) dx =εα

∫
R
uxx(u− λ) dx

− α2

∫
R

(u− λ)x(u− λ) dx ,

(3.18)

β

∫
R
(λt)

2 dx− γε2

∫
R
λxxλt dx = α

∫
R
(u− λ)λt dx . (3.19)

We notice that∫
R
uxx(u− λ) dx = −

∫
R

(ux)2 dx−
∫
R
uλxx dx

= −
∫
R

(ux)2 dx+

∫
R

(λx)2 dx+
γε2

α

∫
R
(λxx)2 dx− β

α

∫
R
λxxλt dx . (3.20)

The second line above was obtained by plugging the expression of u deduced from (1.6)2

into the first line. Summing up (3.17)–(3.19) and taking into account (3.20), we obtain

d

dt

∫
R

{
F (u) +

α

2
(u− λ)2 +

ε

2
(εγ − β)(λx)2

}
dx
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+

∫
R

{
ε (ux)2f ′(u) + εα(ux)2 + β(λt)

2
}

dx = ε

∫
R

{
α(λx)2 + γε2(λxx)2

}
dx . (3.21)

Moreover, by (1.6)2, we observe that

−γε2

∫
R
(λxx)2 dx = γε2

∫
R

{
2λxλxxx + (λxx)2

}
dx

=

∫
R

{
−2αλxux + 2α(λx)2 + 2βλtxλx + γε2(λxx)2

}
dx .

Then,∫
R

{
α(ux)2 − α(λx)2 − γε2(λxx)2

}
dx =

∫
R

{
α (ux − λx)

2
+ 2βλtxλx + γε2(λxx)2

}
dx .

Plugging this expression into (3.21) we obtain

d

dt

∫
R

{
F (u) +

α

2
(u− λ)2 +

ε

2
(γε+ β)(λx)2

}
dx+

+

∫
R

{
ε
(

(ux)2f ′(u) + α (ux − λx)
2

+ γε2(λxx)2
)

+ β(λt)
2

}
dx = 0 . (3.22)

If we integrate with respect to t we obtain (3.15). To deduce (3.16) we simply use
Lemma 3.4, the non-negativity of F and the assumption β < ε

4L . �

We observe that equality (3.15) cannot be fully exploited when deducing the inequality
(3.16) since the sign of f ′ is not prescribed. Of course, if f is increasing and thus F is
convex, the energy Eε,α is decreasing. We have however the following result.

Corollary 3.6 Let Assumptions 3.1 and 3.2 hold and assume β < ε
4L . Then, the follow-

ing estimate holds:

‖uε,α(., t)‖2L2(R) + ε‖uε,αx ‖2L2(Ωt)
≤ 2‖u0‖2L2(R) +

βε

α
‖u0,x‖2L2(R) +

1

L
Eε,α[u0, u0]. (3.23)

Proof. Since the energy Eε,α is non-negative, by (3.16) in Lemma 3.5 we deduce

β

2

∥∥λε,αt ∥∥2

L2(Ωt)
≤ Eε,α[u0, u0] + L‖u0‖2L2(R) +

Lβε

2α
‖u0,x‖2L2(R).

We plug this estimate into (3.12) of Lemma 3.4 and obtain

‖uε,α(., t)‖2L2(R) + ε‖uε,αx ‖2L2(Ωt)
≤(

1 +
4βL

ε

)
‖u0‖2L2(R) +

β

α

(
2Lβ +

ε

2

)
‖u0,x‖2L2(R) +

4β

ε
Eε,α[u0, u0]. (3.24)

Then, estimate (3.23) follows because β < ε
4L . �

Note that in the case of β = 0, (3.24) reduces to the estimate shown in the elliptic
case in [6, Lemma 3.2]. In the next Corollary, we summarize the most important a-priori
estimates for the subsequent analysis.

Corollary 3.7 Let Assumptions 3.1 and 3.2 hold and consider the initial energy

Eε,α[u0, u0] =

∫
R

(
F (u0) +

ε

2
(γε+ β)u2

0,x

)
.
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Then, Eε,α[u0, u0] is uniformly bounded with respect to ε > 0 and 0 < β < ε
4L as

Eε,α[u0, u0] ≤ L

2
‖u0‖2L2(R) +

ε

2
(γε+ β)‖u0‖2H1(R). (3.25)

Moreover, there is a constant C = C(L, γ) > 0 such that

max
{
εα‖uε,αx − λε,αx ‖

2
L2(Ωt)

, γε3‖λε,αxx ‖
2
L2(Ωt)

, β‖λε,αt ‖
2
L2(Ωt)

}
≤ C

(
‖u0‖2L2(R) + ε(ε+ β)‖u0‖2H1(R)

)
,

(3.26)

and

max
{
‖uε,α‖2L∞(0,t;L2(R)), ε‖u

ε,α
x ‖2L2(Ωt)

}
≤ C

((
1 +

β

ε

)
‖u0‖2L2(R) + εβ‖u0‖2H1(R)

)
.

(3.27)

Proof. Estimate (3.25) simply follows by (3.2) while estimates (3.26) and (3.27) are
consequence of (3.16) in Lemma 3.5 and Corollary 3.6, respectively. �

4 Wellposedness of Classical Solutions

In this section we prove that the initial-value problem (1.6)-(1.8) is well posed. By this
we mean that, for any sufficiently smooth initial data u0, problem (1.6)-(1.8) admits a
unique classical solution that is globally defined in time.

Indeed, by slightly strengthening the assumptions on the initial data u0 in Assumption
3.2, we show the existence of a solution uε,α as in (4.1) and therefore more regular of what
was required in (3.3). The additional derivative in the variable x plays a crucial role in
the following Section 5 and this is why we state Theorem 4.1 under this form. Clearly, the
existence of a solution in uε,α ∈ C2

1 (ΩT ) ∩ L∞
(
0, T ;H3(R) ∩W 3,∞(R)

)
for initial data

u0 ∈ H3(R) ∩W 3,∞(R) is a by-product of the proof.
We stress that the requirement of Assumption 3.1 in the next result is made only for

sake of simplicity: the weaker condition that f ′ ∈ C3 satisfies |f ′(u)| ≤ L is sufficient.

Theorem 4.1 (Global existence) Let Assumption 3.1 hold and assume u0 ∈ H4(R)∩
W 4,∞(R).
Then, for any ε, α > 0, 0 < β < ε

4L there is a unique classical solution (uε,α, λε,α) of
(1.6)-(1.8) defined in (0,+∞)× R. Moreover, for any T > 0 we have

uε,α ∈ C3
1

(
(0, T ]× R

)
∩ L∞

(
0, T ;H4(R) ∩W 4,∞(R)

)
. (4.1)

Proof. Since ε, α and β are fixed in this proof, we drop the upper indices and write (u, λ)
for (uε,α, λε,α). We reformulate system (1.6) as

zt − k(ε)zxx + h(z)x = g(z), (4.2)

where z = (u, λ)T , z0 = (u0, u0)T and

k(ε) =

(
ε 0

0 γε2

β

)
, h(z) =

(
f(u) + α(u− λ)

0

)
, g(z) =

(
0

α
β (u− λ)

)
.

The norm in the space R2
u,λ is defined as |z| = max{|u|, |λ|}. The fundamental solution

of the diagonal operator zt − k(ε)zxx is K = (K1,K2) with

Ki =

 1√
4πdit

e
− x2

4dit if t > 0,

0 if t ≤ 0,
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for d1 = ε and d2 = γε2/β. To obtain (local in time) existence and uniqueness of solutions,
we define the fixed-point mapping

Lz(t) = K(t) ∗ z0 −
∫ t

0

∂xK(t− s) ∗ h(z(s)) ds+

∫ t

0

K(t− s) ∗ g(z(s)) ds .

Since g is linear with respect to z and defining C1 = 2αβ , for j = 0, . . . , 4 we have

‖∂jxg(z)(t)‖L∞(R) ≤ C1‖∂jxz(t)‖L∞(R),

‖∂jxg(z)(t)‖L2(R) ≤ C1‖∂jxz(t)‖L2(R).

We fix T0 > 0 to be chosen sufficiently small later on. For t ∈ [0, T0] we have

‖Lz(t)‖L∞(R) ≤ ‖u0‖L∞(R) +

(
C1T0 + 2(L+ α)

∫ t

0

‖∂xK1(t− s)‖L1(R) ds

)
‖z‖L∞(ΩT0 )

≤ ‖u0‖L∞(R) +
(
C1T0 + C2

√
T0

)
‖z‖L∞(ΩT0 ),

for C2 = 4(L+α)/
√
πε. This mapping is contracting for T0 sufficiently small, yielding the

existence and uniqueness of the solution in L∞(ΩT0
). Following the same steps as above,

one can show that z ∈ L∞(0, T0;L2(R)).
To prove that z ∈ L∞(0, T0;H4(R) ∩ W 4,∞(R)), we argue as above and in Section 3.
First, we have

‖K(t) ∗ u0‖2L2(R) ≤ ‖K1(t) ∗ u0‖2L2(R) + ‖K2(t) ∗ u0‖2L2(R) ≤ 2‖u0‖2L2(R).

Moreover ∥∥∥∥∥
∫ t

0

K2(t− s) ∗ ∂xg(z(s)) ds

∥∥∥∥∥
L2(R)

≤ t · ‖∂xg(z(s))‖L∞(0,t;L2(R))

≤ C1t‖zx‖L∞(0,t;L2(R)).

At last, ∥∥∥∥∥
∫ t

0

∂xK1(t− s) ∗ ∂xh(z(s)) ds

∥∥∥∥∥
L2(R)

≤ 2
√
t√
πε

(L+ 2α)‖zx‖L∞(0,t;L2(R))

≤ C2

√
t‖zx‖L∞(0,t;L2(R)).

As a consequence,

‖∂xLz‖L∞(0,T0;L2(R)) ≤
√

2‖u0‖H1(R) +
(
C1T0 + C2

√
T0

)
‖∂xz‖L∞(0,T0;L2(R)).

Defining l = C1T0 + C2

√
T0 and using a fixed point argument, we deduce

‖∂xz‖L∞(0,T0;L2(R)) ≤
T0

1− l
‖u0‖H1(R),

for T0 sufficiently small to obtain l < 1. Now, we follow the same lines as [23, Lemma
6.2.4], with the above modifications to exploit the higher regularity of u0. In particular,
we use the L∞ bound of u proved above to control the derivatives of f ; here we need that
f ∈ C3. Then, we can deduce the following bounds, for j = 1, . . . , 4:

‖∂jxz‖L∞(ΩT0 ) ≤ C(‖u0‖W 4,∞(R), ‖u0‖H4(R))

‖∂jxz‖L∞(0,T0;L2(R)) ≤ C(‖u0‖W 4,∞(R), ‖u0‖H4(R)).
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To extend the solution up to time T , note that for any T > 0 and 0 < t ≤ T we have
by (3.5) and Corollary 3.6

‖z(., t)‖L2(R) ≤ ‖u(., t)‖L2(R) + ‖λ(., t)‖L2(R)

≤ C‖u0‖H1(R).

The proof of [23, Theorem 6.2.7] is therefore still valid and yields the existence of classical
solutions in L∞(0, T ;H4(R)∩W 4,∞(R)) for all T > 0. Using Sobolev’s embedding theorem
for H4(R) and equation (4.2), we also get z ∈ C3

1 ([0, T ];R) for all T > 0. �

5 Uniform boundedness of classical solutions

The main result of this technical section is Lemma 5.1, which shows that the L2-norms of
the derivatives of uε,α up to order 3 and the time derivative uε,αt are uniformly bounded
with respect to α. By Lemma 3.3 analogous bounds can be deduced for λα. Furthermore,
a uniform L∞-bound for uε,α is given in (5.3). We point out that the latter can be easily
proven by an embedding argument and requiring only uε,α ∈ L∞(0, T ;H1(R)); however,
this approach does not prove that the bound is independent of α. Below, the assumption
that u0 ∈ H4(R) and then the existence of solutions in C3

1 (ΩT ) ∩ L∞(0, T ;H4(R) ∩
W 4,∞(R)) is needed to justify partial integrations in the proof. At last, notice the stronger
scaling (1.10).

Lemma 5.1 (Uniform boundedness for higher-order norms) Let (1.10) and the
assumptions of Theorem 4.1 hold. Moreover, assume β < ε

4L .
Then there exist three continuous, monotone increasing functions Ci(ε, ·) : [0,∞) →
[0,∞), i ∈ {1, . . . , 3}, which depend on ‖u0‖H3(R) but are independent of α and such
that

‖uε,α‖L2(0,t;H3(R)) + ‖uε,αt ‖L2(Ωt)
≤ C1(ε, t) (t ∈ [0,∞)), (5.1)

‖uε,α‖L∞(0,t;H2(R)) ≤ C2(ε, t) (t ∈ [0,∞)), (5.2)

‖uε,α‖L∞(Ωt)
≤ C3(ε, t) (t ∈ [0,∞)). (5.3)

Furthermore, there exists a continuous, monotone increasing function C4(ε; ·) : [0,∞) →
[0,∞), depending on ‖u0‖H3(R) but independent of α such that the following estimate holds
for all t ∈ [0,∞):

εα‖ux − λx‖2L2(0,t,H2(R)) + β‖λxt‖2L2(0,t,H2(R)) ≤ C4(ε, t). (5.4)

Proof. First, estimate (5.3) follows by (5.2) because of the embedding of H2(R) into
L∞(R).

So we are left to prove (5.1), (5.2) and (5.4). We use again the notation (u, λ) =
(uε,α, λε,α). Remark that uniform estimates on ‖u‖L2(0,T ;H1(R)) and εα‖ux− λx‖L2(Ωt) +

β‖λxt‖L2(Ωt) are already contained in Corollary 3.6 and Corollary 3.7. We divide the
proof into four steps.

Step 1: estimate of ‖uxx‖L2(Ωt)
. The main idea of the proof is to make use of the

energy estimate in Lemma 3.5, which involves the energy functional Eε,α. We define
v = ux and µ = λx. Differentiating (1.6) with respect to x we see that v and µ must solve vt + f(u)xx = εvxx − α(v − µ)x,

βµt − γε2µxx = α(v − µ).
(5.5)
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First, we multiply (1.6)2 by µt and then integrate with respect to x; we find

β

∫
R
µtλt dx− γε2

∫
R
µtλxx dx = α

∫
R
µt(u− λ) dx .

The first summand in the left side vanishes and by partial integration we deduce that∫
R
µtµx dx =

α

γε2

∫
R
λt(u− λ)x dx . (5.6)

Second, we multiply (5.5)1 by v and then integrate with respect to x. It follows that

1

2

d

dt

∫
R
v2 dx+ ε

∫
R

(vx)2 dx = −
∫
R
f(u)xxv dx+ α

∫
R
µxv dx

≤ L
∫
R
|vxv|dx+ α

∫
R
µx(v − µ) dx

≤ Lρ1

∫
R

(vx)2 dx+
L

4ρ1

∫
R
v2 dx+ β

∫
R
µtµx dx ,

by (3.14). If we choose ρ1 = ε
2L and exploit identity (5.6) we deduce that

1

2

d

dt

∫
R
v2 dx+

ε

2

∫
R

(vx)2 dx ≤ L2

2ε

∫
R
v2 dx+

βα

γε2

∫
R
λt(u− λ)x dx .

Now, it is time to apply 3.5 and its consequence Corollary 3.6. Integrating with respect
to t and using once more (3.14) we deduce that for every t ∈ [0,+∞)

1

2
‖v(t)‖2L2(R) +

ε

2
‖vx‖2L2(Ωt)

≤ 1

2
‖u0,x‖2L2(R) +

L2

2ε
‖v‖2L2(Ωt)

+
β

γε2
‖λt‖2L2(Ωt)

+
βα2

4γε2
‖(u− λ)x‖2L2(Ωt)

≤ 1

2
‖u0,x‖2L2(R)

+

(
L

2ε2
+

2

γε2
+

βα

4γε3

)(
2L‖u0‖2L2(R) +

Lβε

2α
‖u0,x‖2L2(R) + Eε,α[u0, u0]

)
. (5.7)

Due to the scaling (1.10), the right side is uniformly bounded with respect to α.

Step 2: estimates on α‖vx − µx‖L2(Ωt) and β‖µt‖L2(Ωt). We multiply (5.5)1 by v, then
(5.5)1 by α(v − µ) and at last (5.5)2 by µt. Then integration with respect to x yields

1

2

d

dt

∫
R
v2 dx+ ε

∫
R

(vx)2 dx+

∫
R
f(u)xxv dx = −α

∫
R

(vx − µx)v dx , (5.8)

α

∫
R

(v − µ)vt dx+ α

∫
R
f(u)xx(v − µ) dx = εα

∫
R
vxx(v − µ) dx , (5.9)

β

∫
R

(µt)
2

dx− γε2

∫
R
µxxµt dx = α

∫
R

(v − µ)µt dx . (5.10)

About the right hand side of (5.9) we notice that, by (5.5)2,

α

∫
R
vxx(v − µ) dx = −α

∫
R

(vx)
2

dx− α
∫
R
vµxx dx

= −α
∫
R

(vx)
2

dx−
∫
R
µxx

(
βµt − γε2µxx + αµ

)
dx

=
β

2

d

dt

∫
R

(µx)
2

dx− α
∫
R

(vx)
2

dx+ α

∫
R

(µx)
2

dx+ γε2

∫
R

(µxx)
2

dx . (5.11)
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Now, we sum (5.8)–(5.10) and take into account (5.11) to deduce

1

2

d

dt

∫
R

(
v2 + α(v − µ)2 +

(
γε2 − εβ

)
(µx)

2

)
dx

+ ε(1 + α)

∫
R
(vx)2 dx+ β

∫
R

(µt)
2

dx+

∫
R
f(u)xx

(
v + α(v − µ)

)
dx

= − α
∫
R

(vx − µx)v dx+ ε

(
α

∫
R

(µx)
2

dx+ γε2

∫
R

(µxx)
2

dx

)
. (5.12)

We differentiate (5.5)2 with respect to x to deduce an expression for γε2µxxx and obtain

−γε2

∫
R

(µxx)
2

dx = γε2

∫
R

(
2µxµxxx + (µxx)

2
)

dx

= β
d

dt

∫
R

(µx)
2

dx− 2α

∫
R
vxµx dx+ 2α

∫
R

(µx)
2

dx+ γε2

∫
R

(µxx)
2

dx .

Therefore,∫
R

(
(1 + α) (vx)

2 − α (µx)
2 − γε2 (µxx)

2
)

dx

= β
d

dt

∫
R

(µx)
2

dx+

∫
R

(vx)
2

dx+ α

∫
R

(vx − µx)
2

dx+ γε2

∫
R

(µxx)
2

dx .

We insert this identity into (5.12) and use ∂ixλ0 = ∂ixu0 for all i = 0, . . . , 3 to obtain

1

2

∫
R

(
v2 + α(v − µ)2 +

(
γε2 + εβ

)
(µx)

2

)
dx

+

∫ t

0

∫
R

(
ε
(

(vx)
2

+ α (vx − µx)
2

+ γε2 (µxx)
2
)

+ β (µt)
2

)
dxds

=
1

2

∫
R

(
u2

0,x +
(
γε2 + εβ

) (
u0,xx

)2)
dx+Q[u, v, µ], (5.13)

where

Q[u, v, µ] = −
∫ t

0

∫
R
f(u)xxv dxds−

∫ t

0

∫
R
f(u)xxα(v − µ) dxds

− α
∫ t

0

∫
R

(vx − µx) v dxds

= I + II + III. (5.14)

About I in (5.14), by (5.7), Corollary 3.6 and the bound |f ′| ≤ L, we have, for t ∈ [0,∞),∣∣∣∣∣
∫ t

0

∫
R
f(u)xxv dxds

∣∣∣∣∣ =

∣∣∣∣∣
∫ t

0

∫
R
f ′(u)vxv dxds

∣∣∣∣∣
≤ 2L

(∫ t

0

∫
R

(vx)
2

dx ds+

∫ t

0

∫
R
v2 dxds

)
≤ CI(ε), (5.15)

where CI is a constant independent of α.
About II, by the bounds |f ′|, |f ′′| ≤ L, (5.5)2 and (3.14), we have∣∣∣∣ ∫ t

0

∫
R
α(v − µ)f(u)xx dxds

∣∣∣∣ =

∣∣∣∣∣
∫ t

0

∫
R
α(v − µ)

(
f ′(u)vx + f ′′(u)v2

)
dx ds

∣∣∣∣∣
16



=

∣∣∣∣∣
∫ t

0

∫
R

(
βµt − γε2µxx

)(
f ′(u)vx + f ′′(u)v2

)
dxds

∣∣∣∣∣
≤ L

∫ t

0

∫
R
β |µt| (|vx|+ v2) + γε2 |µxx| (|vx|+ v2) dxds

≤ 2L2
(
β + γε2

)∫ t

0

∫
R

(
(vx)2 + v4

)
dxds

+
β

4

∫ t

0

∫
R

(µt)
2 dxds+

γε2

4

∫ t

0

∫
R

(µxx)2 dxds . (5.16)

Concerning the summand ‖v‖4L4(Ωt)
on the right-hand side, we note that by [2, (13)] we

have
‖v‖4L4(R) ≤ K1

(
‖vx‖2L2(R) + ‖v‖6L2(R)

)
. (5.17)

Now, by (5.16) and using (5.17), Corollary 3.6, (5.7), we obtain∣∣∣∣∣
∫ t

0

∫
R
α(v − µ)f(u)xx dxds

∣∣∣∣∣
≤ CII(ε) · (1 + t) +

β

4

∫ t

0

∫
R
(µt)

2 dxds+
γε2

4

∫ t

0

∫
R
(µxx)2 dx ds . (5.18)

About III in (5.14), we notice that, by (3.14) and (5.7),∣∣∣∣∣
∫ t

0

∫
R
α (vx − µx) v dxds

∣∣∣∣∣ =

∣∣∣∣∣
∫ t

0

∫
R
(βµt − γε2µxx)vx dxds

∣∣∣∣∣
≤

(
β + γε2

)∫ t

0

∫
R

(vx)2 dxds+
β

4

∫ t

0

∫
R

(µt)
2 dxds+

γε2

4

∫ t

0

∫
R

(µxx)2 dxds

≤ CIII(ε) +
β

4

∫ t

0

∫
R

(µt)
2 dxds+

γε2

4

∫ t

0

∫
R

(µxx)2 dxds . (5.19)

Inserting (5.15), (5.18) and (5.19) in (5.13), we obtain

εα‖vx − µx‖2L2(Ωt)
+
β

2
‖µt‖2L2(Ωt)

≤ C̃(ε, t). (5.20)

for some function C̃ affine linear in t.

Step 3: estimate of ‖u‖L2(0,t;H3(R)). To derive this estimate, we need the assumption

u ∈ H4. We differentiate (5.5) with respect to x to obtain wt + f(u)xxx = εwxx − α(w − ν)x,

βνt − γε2νxx = α(w − ν),
(5.21)

where we used the notation w = vx = uxx and ν = µx = λxx. Analogously to the
deduction of (5.6) in Step 1, we multiply (5.5)2 by νt and integrate with respect to x and
t to obtain

β

∫ t

0

∫
R
νtνx dxds =

βα

γε2

∫ t

0

∫
R
µt(v − µ)x dx ds

≤ β
∫ t

0

∫
R

(µt)
2 dxds+

βα2

4γ2ε4

∫ t

0

∫
R

(vx − µx)2 dxds

≤
(

2 +
βα

4γ2ε3

)
C̃(ε, t) (5.22)
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by (5.20). Note that the scaling (1.10) ensures that βα = O(1) and then the term βα
4γ2ε3

does not depend on α in a critical way.
Multiply now (5.21)1 by w to obtain

1

2

d

dt

∫
R
w2 dx+ ε

∫
R

(wx)2 dx = −
∫
R
f(u)xxxw dx+ α

∫
R

(w − ν)νx dx

≤
∫
R

(
f ′′(u)v2 + f ′(u)vx

)
wx dx+ β

∫
R
νtνx dx

≤ L
∫
R
(|v2|+ |vx|)|wx|dx+ β

∫
R
νtνx dx

≤ L2

ε

(
‖v‖4L4(R) + ‖vx‖2L2(R)

)
+
ε

2

∫
R

(wx)2 dx+ β

∫
R
νtνx dx , (5.23)

where we used the bounds on f ′, f ′′ and (3.14). Integrating in time and using (5.17),
(5.7), Corollary 3.6 and (5.22) in (5.23), we obtain

1

2
‖w(t)‖2L2(R) +

ε

2
‖wx‖2L2(Ωt)

≤ C̄(ε, t), (5.24)

for some function C̄ affine linear in t.

Analogously to the derivation of (5.20) in Step 2, one can also show the estimate

εα‖wx − νx‖L2(Ωt) +
β

2
‖νt‖L2(Ωt) ≤ Ĉ(ε, t),

where Ĉ is affine linear in t.

Step 4: estimate of ‖ut‖L2(Ωt)
. Squaring (1.6)1 and integrating with respect to x, we

obtain∫
R

(ut)
2

dx = ε2

∫
R

(uxx)
2

dx+

∫
R

(f ′(u))2(ux)
2

dx+ α2

∫
R

(ux − λx)
2

dx

− 2ε

∫
R
f ′(u)uxuxx dx+ 2α

∫
R
f ′(u)ux(ux − λx) dx

− 2α

∫
R
εuxx(ux − λx) dx .

This leads to

‖ut‖2L2(Ωt)
≤ ε2‖uxx‖2L2(Ωt)

+ ‖f ′(u)ux‖
2
L2(Ωt)

+ ‖α(u− λ)x‖
2
L2(Ωt)

+ 2ε‖f ′(u)ux‖L2(Ωt)
‖uxx‖L2(Ωt)

+ 2‖f ′(u)ux‖L2(ΩT )‖α(u− λ)x‖L2(Ωt)

+ 2ε‖uxx‖L2(Ωt)
‖α(u− λ)x‖L2(Ωt)

.

We need to prove that the term ‖α(u− λ)x‖
2
L2(Ωt)

is uniformly bounded with respect to

α since this then also holds for the term ‖α(u− λ)x‖L2(Ωt)
. By (1.6)2, we have

‖α(u− λ)x‖
2
L2(Ωt)

≤ 2‖βλtx‖2L2(Ωt)
+ 2‖γε2λxxx‖

2

L2(Ωt)
.

The first summand on the right-hand side is 2‖βµt‖2L2(Ωt)
, which is bounded uniformly

with respect to α by (5.20). Using Lemma 3.3, the second summand is bounded by

4γ2ε4

(
‖uxxx‖2L2(Ωt)

+
β

2α
‖u0,xxx‖2L2(R)

)
,

which in turn is bounded uniformly with respect to α by (5.24). The uniform boundedness
of ‖ut‖L2(Ωt)

now follows from (5.7) and Corollary 3.7. �
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6 Asymptotics for the Coupling Limit α→∞
In this section we analyze the limit α→∞ of the system (1.6), for ε fixed, and prove that
solutions of (1.6) weakly converge to a solution of the diffusive-dispersive conservation
law (1.1). Moreover, we provide an estimate of the convergence rate. For simplicity,
we denote the family of classical solutions to (1.6), (1.8) by {(uα, λα)}, dropping the
superscript index ε.

Theorem 6.1 Let (1.10) and the assumptions of Theorem 4.1 hold. Furthermore, let
ε > 0, 0 < β < ε

4L and denote by {(uα, λα)}α>0 the family of unique classical solutions
to (1.6), (1.8), as provided by Theorem 4.1. At last, fix any T > 0.
Then there exists a subsequence of {(uα, λα)}α>0, still denoted by {(uα, λα)}α>0, and a
function u ∈ H1(ΩT ) ∩ L2(0, T ;H3(R)) such that:

(i) we have

uα ⇀ u in H1(ΩT ) ∩ L2(0, T ;H3(R)) for α→∞,
λα ⇀ u in H1(ΩT ) ∩ L2(0, T ;H3(R)) for α→∞;

(ii) there exists a positive constant C(ε, L, T ), depending on ‖u0‖H3(R) but not on α such
that

‖uα − u‖L2(0,T ;H1(R)) + ‖uα − u‖L∞(0,T ;L2(R)) ≤ C(ε, L, T ) · α− 1
2 ; (6.1)

(iii) u is a distributional solution of the initial value problem (1.1), (1.8), i.e.,∫ T

0

∫
R
uϕt + f(u)ϕx dxdt+

∫
R
u0ϕ(0, .) dx dt =

∫ T

0

∫
R
−εuϕxx + γε2uϕxxx dxdt ,

(6.2)
for all ϕ ∈ C∞0 ([0, T ),R).

Proof.

(i) Due to Lemma 5.1, we know that the sequence {uα}α>0 is bounded uniformly with
respect to α in the reflexive space H1(ΩT ) ∩ L2(0, T ;H3(R)). We can thus deduce
the existence of a function u ∈ H1(ΩT )∩L2(0, T ;H3(R)) and of a subsequence (still
denoted by {uα}α>0) such that uα ⇀ u in H1(ΩT ) ∩ L2(0, T ;H3(R)), as α → ∞.
This also implies ∂tu

α ⇀ ∂tu and ∂jxu
α ⇀ ∂jxu in L2(ΩT ), for j = 0, . . . , 3.

Due to Lemma 3.3, also the sequence {λα}α>0 is bounded and, analogously as above,
we can deduce the existence of a function λ ∈ H1(ΩT ) ∩ L2(0, T ;H3(R)) and of a
subsequence such that λα ⇀ λ in H1(ΩT ) ∩ L2(0, T ;H3(R)).

To prove that λ = u, we observe that by (1.6)2 we have, for all y ∈ H1(ΩT ) ∩
L2(0, T ;H3(R)),∫ T

0

∫
R
λαy dxdt =

∫ T

0

∫
R
(λα − uα)y dxdt+

∫ T

0

∫
R
uαy dxdt

=

∫ T

0

∫
R
λαt

(
β

α
y

)
dxdt−

∫ T

0

∫
R
γε2λαxx

(
1

α
y

)
dxdt+

∫ T

0

∫
R
uαy dxdt .

By the scaling (1.10), the weak convergence of λαt , λαxx, uα and the strong con-
vergence of β

αy, 1
αy, we thus obtain λα ⇀ u in H1(ΩT ) ∩ L2(0, T ;H3(R)) by the

uniqueness of the weak limit.

(ii) First, we note that the sequence {
√
β λαtx}α>0 is bounded uniformly with respect

to α because of Lemma 5.1. By the weak convergence of λα and its derivatives we
deduce∫ T

0

∫
R
α(uαx − λαx)y dxdt =

∫ T

0

∫
R

√
βλαtx(

√
βy) dx dt−

∫ T

0

∫
R
γε2λαxxxy dxdt
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⇀ −
∫ T

0

∫
R
γε2uxxxy dxdt . (6.3)

for all y ∈ H1(ΩT ) ∩ L2(0, T ;H3(R)). By (1.8) we have uα(0, .) = u0, which of
course converges strongly to u0. Due to the continuity in time of uα and u, we have
u(0, .) = u0 in L2(R). From the weak convergence of (uα)α>0 and (6.3), we deduce
that u fulfills ∫ T

0

∫
R

(
ut + f(u)x − εuxx − γε2uxxx

)
y dxdt = 0, (6.4)

for all y ∈ H1(ΩT )∩L2(0, T ;H3(R)). We define yα := uα−u. Since yα ∈ H1(ΩT )∩
L2(0, T ;H3(R)), we can use it as a test function both in (6.4) and in the analogous
expression for uα. Subtracting these two identities we find, by (3.14),

1

2

∫
R

(yα(T ))2 dx− 1

2

∫
R
(yα(0))2 dx+ ε

∫ T

0

∫
R

(yαx )2 dx dt

=

∫ T

0

∫
R

(f(uα)− f(u))yαx dxdt−
∫ T

0

∫
R

(
α(uαx − λαx) + γε2uxxx

)
yα dxdt

=

∫ T

0

∫
R

(f(uα)− f(u))yαx dxdt−
∫ T

0

∫
R

(
βλαtx + γε2(λαxxx − uxxx)

)
yα dxdt

≤ L2

4ρ1

∫ T

0

∫
R

(yα)2 dxdt+ ρ1

∫ T

0

∫
R
(yαx )2 dxdt+ 2ρ2

∫ T

0

∫
R

(yα)2 dxdt

+
γ2ε4

4ρ2

∫ T

0

∫
R

(λαxxx − uαxxx)2 dxdt− γ2ε4

4ρ2

∫ T

0

∫
R
yαxxxy

α dxdt

Now, we choose ρ1 = ε
2 and ρ2 = 1/2. By Lemma 5.1 and noting that yα(0) = 0,

we have

1

2

∫
R

(yα(T ))2 dx+
ε

2

∫ T

0

∫
R

(yαx )2 dxdt

≤

(
L2

2ε
+ 1

)∫ T

0

∫
R

(yα)2 dxdt+
β2

2

∫ T

0

∫
R

(λαtx)2 dxdt

+
γ2ε4

2

∫ T

0

∫
R

(λαxxx − uαxxx)2 dx dt

≤

(
L2

2ε
+ 1

)∫ T

0

∫
R

(yα)2 dxdt+
1

2

(
β +

γ2ε3

α

)
C4(ε, T ). (6.5)

Therefore the following estimate holds true:

‖yα(T )‖2L2(R) ≤

(
β +

2γ2ε3

α

)
C4(ε, T ) +

(
L2

ε
+ 2

)∫ T

0

‖yα(t)‖2L2(R) dt .

Since C4(ε, T ) is a constant, by Gronwall’s inequality we obtain

‖yα(T )‖2L2(R) ≤
1

2

(
β +

γ2ε3

α

)
C4(ε, T )e

(
L2

ε +2
)
T
. (6.6)

Combining (6.5), (6.6) and (1.10) yields (6.1).
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(iii) By the weak convergence of λα and the scaling (1.10) we deduce βλα ⇀ 0 in L2(ΩT ).
Any classical solution uα of (1.6), (1.8) fulfills∫ T

0

∫
R
uαϕt + f(uα)ϕx dxdt+

∫
R
u0ϕdx

=

∫ T

0

∫
R
εuαϕxx + γε2λαϕxxx + βλαϕtx dxdt ,

for all ϕ ∈ C∞0 ([0, T ];R). Since C∞0 ([0, T ],R) ⊂ L2(ΩT ), we obtain by weak conver-
gence that∫ T

0

∫
R
uϕt + f(u)ϕx dx dt+

∫
R
u0ϕdx =

∫ T

0

∫
R
εuϕxx + γε2uϕxxx dxdt .

for all ϕ ∈ C∞0 ([0, T );R), which proves (6.2).

�

7 Asymptotics for the Sharp-Interface Limit ε→ 0

In the previous section we studied the limit α→∞ of the system (1.6) for ε fixed. Here
we consider the sharp-interface limit ε→ 0 for fixed values of α > 0.

For any initial datum u0 ∈ L2(R) there is a family uε0 ∈ H4(R) ∩W 4,∞(R) of smooth
approximations of u0 satisfying

limε→0 ‖u0 − uε0‖L2(R) = 0 ,

‖uε0‖L2(R) + ε‖uε0‖H1(R) ≤ K0 for every ε > 0,
(7.1)

where K0 = K0(‖u0‖L2(R)) > 0 is a constant independent of ε. From Theorem 4.1 we

know that there is a family of classical solutions to (1.6) with initial datum uε0. To keep
notation short, we denote this family by {(uε, λε)}ε>0, dropping now the index α.

We prove below that if the coefficient β is suitably scaled with respect to ε, then the
solutions {uε} of (1.6) with initial datum uε0 converge for ε → 0 to a weak solution u of
the homogeneous equation (1.2); moreover, u(., 0) = u0 in a weak sense. More precisely,
we have the following result.

Theorem 7.1 Assume that f ∈ C3(R) satisfies |f ′| < L for some constant L > 0 and,
moreover, that

meas{u ∈ R : f ′′(u) = 0} = 0. (7.2)

Let u0 ∈ L2(R) and consider uε0 ∈ H4(R) ∩W 4,∞(R)) satisfying (7.1). We choose β =
εO(α−1) be given such that

β ≤ ε

4L
. (7.3)

Then, for a family {(uε, λε)}ε>0 of classical solutions of (1.6) with initial datum uε0,
there is a subsequence of {(uε, λε)}ε>0 still denoted by {(uε, λε)}ε>0, and a function u ∈
Lp(ΩT ), 1 ≤ p < 2, such that

uε, λε → u in Lploc(ΩT ) (1 ≤ p < 2) .

Moreover, u is a weak solution to the initial value problem (1.2) with datum u0 ∈ L2(R),
i.e., ∫ T

0

∫
R
uϕt + f(u)ϕx dx dt+

∫
R
u0ϕ(., 0) dx = 0,

for all ϕ ∈ C∞0 (R× [0, T )).
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From Section 2 we know that the limit solution u can contain undercompressive waves;
then, it may fail to be a Kružkov solution.

The proof of Theorem 7.1 relies on the compensated compactness theory [17] in the
Lp-framework [16, 22]. We recall that an entropy pair (η, q) for (1.2) is a pair of functions
of class C2(R) satisfying

η′(w)f ′(w) = q′(w)

for every w ∈ R. In the following, we consider entropies satisfying the condition

|η′(w)|+ |η′′(w)| ≤ Cη, (7.4)

for every w ∈ R. The following compactness lemma will lead to the proof of Theorem
7.1. Its proof is similar to that of an analogous result in [20]; see also [6]. We denote by
M(Q) the set of Radon measures on some open set Q.

Lemma 7.2 Let the assumptions of Theorem 7.1 be valid and consider the family of
classical solutions {(uε, λε)}ε>0 of (1.6) with initial datum uε0 defined above.
Then, for every open bounded set Q ⊂ ΩT there exist a compact set K ⊂W−1,2(Q) and a
bounded set B ⊂M(Q) such that

η(uε)t + q(uε)x ∈ K + B ,

for every entropy pair (η, q) satisfying (7.4).

Proof. We multiply (1.6) by η′(uε) and obtain

η(uε)t + q(uε)x = εη(uε)xx − εη′′(uε)(uεx)2 − α
(
η′(uε)(uε − λε)

)
x

+ αη′′(uε)uεx(uε − λε)

= Aε1 +Aε2 +Aε3 +Aε4.

In the sequel we use the notation 〈·, ·〉 both for the duality of H−1(Q) and H1
0 (Q) as well

as for the one betweenM(Q) and C0(Q). We will prove that Aε1, A
ε
3 ∈ K and Aε2, A

ε
4 ∈ B.

We notice that the estimates in Corollary 3.7 hold because of (7.3).
Let ϕ ∈ H1

0 (Q) and consider

|〈Aε1, ϕ〉| ≤ ε
∫
Q

|η′(uε)uεxϕx|dxdt ≤ Cηε‖uεx‖L2(Q)‖ϕx‖L2(Q).

By (3.27) in Corollary 3.7 we obtain

|〈Aε1, ϕ〉| ≤ Cη
√
C
√
ε
(

(1 + βε−1)‖uε0‖
2
L2(R) + εβ‖uε0‖

2
H1(R)

)1/2

‖ϕ‖H1(Q),

and then, by (7.3) and (7.1),

|〈Aε1, ϕ〉| ≤ Cη
√
C
√
ε
((

1 +
1

4L

)
‖u0‖2L2(R) +

K2
0

4L

)1/2

‖ϕ‖H1(Q)
ε→0−−−→ 0.

We turn to Aε3 and observe from equation (1.6)2 that

|〈Aε3, ϕ〉| ≤ α

∫
Q

| η′(uε)(uε − λε)ϕx | dxdt

≤ Cη

∫
Q

|βλεt − γε2λεxx| |ϕx| dxdt

≤ Cη

(
β‖λεt‖L2(Q) + γε2‖λεxx‖L2(Q)

)
‖ϕ‖H1(Q).

With Corollary 3.7 this leads to

|〈Aε3, ϕ〉| ≤ Cη(
√
β +
√
γε)
√
C
(
‖uε0‖

2
L2(R) + ε(ε+ β)‖uε0‖

2
H1(R)

)1/2

‖ϕ‖H1(Q).
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Condition (7.3) and (7.1) ensure then |〈Aε3, ϕ〉| → 0 for ε→ 0.
It remains to analyze Aε2 and Aε4. In view of (3.27) in Corollary 3.7 it is straightforward

to verify for any ψ ∈ C0(Q)

|〈Aε2, ψ〉| ≤ CηC
(

(1 + βε−1)‖uε0‖
2
L2(R) + εβ‖uε0‖

2
H1(R)

)
‖ψ‖C0(Q).

Once again, condition (7.3) and (7.1) show that |〈Aε2, ψ〉| is uniformly bounded with
respect to ε. For the remaining term Aε4 we have, for any ψ ∈ C0(Q),

|〈Aε4, ψ〉| ≤ α

∫
Q

|η′′(uε)uεx(uε − λε)| dxdt

≤ Cη

∫
Q

|βλεt + γε2λεxx| |uεx| |ψ| dxdt

≤ Cη

(
β‖λεt‖L2(Q) + γε2‖λεxx‖L2(Q)

)
‖uεx‖L2(Q)‖ψ‖C0(Q).

Estimates (3.26) and (3.27) in Corollary 3.7 apply to bound |〈Aε4, ψ〉| uniformly with
respect to ε. �

With this compactness result we can finally prove Theorem 7.1.

Proof of Theorem 7.1. The family of norms ‖uε‖L2(ΩT ) is uniformly bounded, because of
Corollary 3.6 and (7.1). By Lemma 7.2 and the results in [16, 17] we deduce that uε → u
in Lploc(ΩT ), for 1 ≤ p < 2. In particular, the Lipschitz bound on the flux and condition
(7.2) are necessary to apply the results in [16].

In order to prove that the limit function u solves (1.2), consider any ϕ ∈ C∞0 (R×[0, T ));
then ∫

ΩT

(
uεϕt + f(uε)ϕx

)
dx dt+

∫
R
uε0ϕ(., 0) dx

= −ε
∫

ΩT

uεϕxx dxdt− α
∫

ΩT

(uε − λε)ϕx dx dt .

We showed above that the sequence {uε} converges in Lploc(ΩT ) for 1 ≤ p < 2; therefore,
and using (7.1), the left side of the identity above converges to∫

ΩT

(
uϕt + f(u)ϕx

)
dtdx+

∫
R
u0ϕ(., 0) dx .

By the same reason, the first term on the right side vanishes in the limit. At last, by
(1.6)2, the second term equals

−
∫

ΩT

(
βλεt − γε2λεxx

)
ϕx dxdt .

This term vanishes in the limit ε → 0 due to (7.3) and the estimate (3.26) in Corollary
3.7.
The convergence λε → u is an immediate consequence of the parabolic equation (1.6)2 for
λε and (3.26). �
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