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Convergence of Adaptive Finite Elements for
Control Constrained Optimal Control Problems

Kristina Kohls, Arnd Rösch and Kunibert G. Siebert

Abstract. We summarize our findings in the analysis of adaptive finite element
methods for the efficient discretization of control constrained optimal control
problems. We particularly focus on convergence of the adaptive method, i. e.,
we show that the sequence of adaptively generated discrete solutions converges
to the true solution. We restrict the presentation to a simple model problem
to highlight the key components of the convergence proof and comment on
generalizations of the presented result.

Keywords. Adaptive finite elements, a posteriori error estimators, convergence
analysis, optimal control, control constraints.

1. Statement of the Main Result

In this summary we analyze adaptive finite element discretizations for control
constrained optimal control problems of the form

min
(u,y)∈Uad×Y

1

2
‖y − yd‖2U +

α

2
‖u‖2U

subject to y ∈ Y : B[y, v] = 〈u, v〉 v ∈ Y.
(1.1)

In order to highlight the basic ideas of our convergence analysis we focus on the
most simple model problem in the following setting. We let Ω ⊂ Rd be a bounded
domain that is meshed exactly by some conforming initial triangulation G0. We
consider distributed control in U = L2(Ω) with a non-empty, convex, and closed
subset Uad of admissible controls. We use the L2(Ω) scalar product 〈·, ·〉 and write
‖ · ‖U = ‖ · ‖2;Ω for its induced norm. The PDE constraint is given by Poisson’s

problem in the state space Y = H̊1(Ω) equipped with norm ‖ · ‖Y = ‖∇ · ‖2;Ω and
the continuous and coercive bilinear form

B[y, v] = 〈∇y, ∇v〉 ∀y, v ∈ Y.

Finally, yd ∈ L2(Ω) is a desired state and α > 0 is some given cost parameter.
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Turning to the discretization of (1.1) we denote by G the class of all con-
forming refinements of G0 that can be constructed using refinement by bisection
[15]. For a given grid G ∈ G we let Y(G) ⊂ Y be a conforming finite element space
of piecewise polynomials of fixed degree q ∈ N. We then consider the variational
discretization of (1.1) by Hinze [5], i. e., we solve the discretized optimal control
problem

min
(U,Y )∈Uad×Y(G)

1

2
‖Y − yd‖2U +

α

2
‖U‖2U

subject to Y ∈ Y(G) : B[Y, V ] = 〈U, V 〉 V ∈ Y(G).

(1.2)

It is well-known that (1.1) as well as (1.2) admit a unique solution pair

(û, ŷ), respectively (ÛG , ŶG); compare with [11, 17]. Below we additionally utilize

the continuous and discrete adjoint states p̂ ∈ Y, P̂G ∈ Y(G), and consider the

solution triplets (û, ŷ, p̂) ∈ Uad × Y× Y and (ÛG , ŶG , P̂G) ∈ Uad × Y(G)× Y(G).
We use the following adaptive algorithm for approximating the true solution

of (1.1). Starting with the initial conforming triangulation G0 of Ω we execute the
standard adaptive loop

SOLVE −→ ESTIMATE −→ MARK −→ REFINE. (1.3)

In practice, a stopping test is used after ESTIMATE for terminating the iteration;
here we shall ignore it for notational convenience.

Assumption 1.1 (Properties of modules). For a given grid G ∈ G the four used
modules have the following properties.

(1) The output (ÛG , ŶG , P̂G) := SOLVE
(
G
)
∈ Uad × Y(G) × Y(G) is the exact

solution of (1.2).

(2) The output {EG((ÛG , ŶG , P̂G);E)}E∈G := ESTIMATE
(
(ÛG , ŶG , P̂G);G

)
is a

reliable and locally efficient estimator for the error in the norm ‖ · ‖U×Y×Y.
In §2 below we give an example of such an estimator.

(3) The output M = MARK
(
{EG((ÛG , ŶG , P̂G);E)}E∈G , G

)
is a subset of ele-

ments subject to refinement. We shall allow any marking strategy such that
M contains an element holding the maximal indicator, i. e.,

max{EG((ÛG , ŶG , P̂G);E) | E ∈ G} ≤ max{EG((ÛG , ŶG , P̂G);E) | E ∈M}.
All practically relevant marking strategies do have this property.

(4) The output G+ := REFINE
(
G,M

)
∈ G is a conforming refinement of G such

that all elements in M are bisected at least once, i. e., G+ ∩M = ∅.
The main contribution of this report is the following convergence result.

Theorem 1.2 (Main result). Let (û, ŷ, p̂) ∈ Uad×Y×Y be the true solution of (1.1).

Suppose that {Ûk, Ŷk, P̂k}k≥0 ⊂ Uad × Y× Y is any sequence of discrete solutions
generated by the adaptive iteration (1.3), where the modules have the properties
stated in Assumption 1.1. Then we have

lim
k→∞

‖(Ûk, Ŷk, P̂k)− (û, ŷ, p̂)‖U×Y×Y = 0 and lim
k→∞

EGk(Ûk, Ŷk, P̂k;Gk) = 0.
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The proof of this theorem uses results and ideas from the convergence proofs
of Morin, Siebert, and Veeser in [14] and Siebert in [16]. It is a two step pro-
cedure presented in §3 and §4. In §3 we utilize basic stability properties of the
algorithm to show that the sequence of discrete solutions converges to some triplet
(û∞, ŷ∞, p̂∞). The second step in §4 then relies on the steering mechanisms of
(1.3), mainly encoded in properties of ESTIMATE and MARK, to finally prove
(û∞, ŷ∞, p̂∞) = (û, ŷ, p̂).

We shortly comment on an existing convergence result for constrained optimal
control problems given in [2]. It is based on some non-degeneracy assumptions
on the continuous and the discrete problems and a smallness assumption on the
maximal mesh-size of G0. Our approach does not require any of these assumptions
and it is valid for a larger class of adaptive algorithms. In addition, it can easily
be extended in several directions; compare with §5.

2. Aposteriori Error Estimation

In this section we shortly summarize our findings from [8, 9] providing a unifying
framework for the aposteriori error analysis for control constrained optimal control
problems.

First order optimality systems. The analysis in [8] is based on the characterization
of the solutions by the first order optimality systems. We let S, S∗ : U→ Y be the
solution operators of the state and the adjoint equation, i. e., for any u ∈ U we
have

Su ∈ Y : B[Su, v] = 〈u, v〉 ∀ v ∈ Y (2.1)

and for any g ∈ U we have

S∗g ∈ Y : B[v, S∗g] = 〈g, v〉 ∀ v ∈ Y. (2.2)

We denote by Π: U→ Uad the nonlinear projection operator such that Π(p) is the
best approximation of − 1

αp in Uad, i. e.,

Π(p) ∈ Uad : 〈αΠ(p) + p, Π(p)− u〉 ≤ 0 ∀u ∈ Uad. (2.3)

Utilizing these operators, the continuous solution (û, ŷ, p̂) ∈ Uad × Y × Y is the
unique solution of the coupled nonlinear system

ŷ = Sû, p̂ = S∗(ŷ − yd), û = Π(p̂). (2.4)

For G ∈ G we next define the discrete solution operators SG , S
∗
G : U → Y(G)

for (2.1) and (2.2), i. e., for any u ∈ U we have

SGu ∈ Y(G) : B[SGu, V ] = 〈u, V 〉 ∀V ∈ Y(G), (2.5)

and for any g ∈ U we have

S∗Gg ∈ Y(G) : B[V, S∗Gg] = 〈g, V 〉 ∀V ∈ Y(G). (2.6)
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The discrete solution (ÛG , ŶG , P̂G) ∈ Uad × Y(G) × Y(G) is then uniquely charac-
terized by

ŶG = SGÛG , P̂G = S∗G(ŶG − yd), ÛG = Π(P̂G). (2.7)

Note, that this variational discretization of Hinze requires the evaluation of the
continuous projection operator Π for discrete functions P ∈ Y(G).

Coercivity of B with constant 1 in combination with the Friedrichs inequality
‖v‖2;Ω ≤ CF ‖∇v‖2;Ω for v ∈ H̊1(Ω) yields ‖S‖, ‖S∗‖, ‖SG‖, ‖S∗G‖ ≤ CF .
Basic error equivalence. The main obstacle in the aposteriori error analysis en-
countered for instance in [12, 4] can be explained as follows. One would like to
exploit Galerkin orthogonality in the linear state equation (2.1) and the adjoint

equation (2.2). However, we observe that triplet (ÛG , ŶG , P̂G) is the Galerkin ap-

proximation to the triplet (û, ŷ, p̂) but ŶG is not the Galerkin approximation to

the solution û of the linear problem (2.1) since we have ŷ = Sû but not ŷ = SÛG .
The same argument applies to the adjoint states. This observation shows that we
cannot directly employ Galerkin orthogonality for single components of (2.4) and
the nonlinearity in (2.3) prevents us from making use of Galerkin orthogonality
for the system (2.4). The resort to this problem is given by the following result
from [8, Theorem 2.2].

Proposition 2.1 (Basic error equivalence). If we set W = U × Y × Y we have for

ȳ = SÛG and p̄ = S∗(ŶG − yd) the basic error equivalence

‖(ÛG , ŶG , P̂G)− (û, p̂, ŷ)‖W ' ‖(ŶG , P̂G)− (ȳ, p̄)‖Y×Y.

For the problem under consideration, the constant hidden in ' depends on
α−1. For general B it will in addition depend on the inf-sup constant of B. Em-
ploying this error equivalence it is sufficient to construct a reliable and efficient
estimator for the right hand side ‖(ŶG , P̂G)− (ȳ, p̄)‖Y×Y. The functions ȳ and p̄ are

solutions to the linear problems (2.1) and (2.2) with given source ÛG and ŶG − yd,
respectively. They play a similar role as the elliptic reconstruction used in the
aposteriori error analysis of parabolic problems; compare with [13].

Aposteriori error estimation. We realize that ŶG is the Galerkin approximation to

ȳ and P̂G the one to p̄. We therefore can directly employ (existing) estimators for
the linear problems (2.1) and (2.2) and their sum then constitutes an estimator
for the optimal control problem; compare with [8, Theorem 3.2]. For ease of pre-
sentation we focus here on the residual estimator. For any subset G′ ⊂ G we set
Ω(G′) :=

⋃
E∈G′ E and for given E ∈ G we denote by NG(E) ⊂ G the subset con-

sisting of E and its direct neighbors. Finally, we indicate by ‖ · ‖W(ω) the natural
restriction of ‖ · ‖W to a subset ω ⊂ Ω. We then have the following result.

Theorem 2.2 (Aposteriori error control). For E ∈ G we define the indicator

E2
G((ÛG , ŶG , P̂G);E) := h2

E‖∆ŶG + ÛG‖22;E + hE‖[[∇ŶG ]]‖22;∂E∩Ω

+ h2
E‖∆P̂G + (ŶG − yd)‖22;E + hE‖[[∇P̂G ]]‖22;∂E∩Ω.
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Then we have the global upper bound

‖(ÛG , ŶG , P̂G)− (û, p̂, ŷ)‖2W . E2
G((ÛG , ŶG , P̂G);G) :=

∑
E∈G
E2
G((ÛG , ŶG , P̂G);E).

For any E ∈ G we have the local lower bound

E2
G((ÛG , ŶG , P̂G);E)

. ‖(ÛG , ŶG , P̂G)− (û, p̂, ŷ)‖2W(Ω(NG(E))) + osc2
G(ÛG , yd;NG(E)),

where

osc2
G(ÛG , yd;E) := h2

E

(
‖ÛG − PGÛG‖22;Ω(NG(E)) + ‖yd − PGyd‖22;Ω(NG(E))

)
is the typical oscillation term with the L2-projection PG onto the set of discontin-
uous, piecewise polynomials of degree q over G.

Bounds for the residuals. We shortly comment on the derivation of the estimators
for the linear problems and thereby recording an important intermediate estimate.
For given u ∈ U we set y = Su and let Y = SGu be its Galerkin-approximation in
Y(G). Defining the residual of the state equation (2.1) by

〈R(SGu;u), v〉 = 〈R(Y ;u), v〉 := B[Y, v]− 〈u, v〉 = B[Y − y, v] ∀v ∈ Y,

we find ‖R(Y ;u)‖Y∗ ' ‖Y − y‖Y = ‖(SG − S)u‖Y.

Employing Galerkin-orthogonality 〈R(Y ;u), V 〉 = 0 for all V ∈ Y(G) and
using piecewise integration by parts we deduce for any v ∈ Y and V ∈ V(G) the
bound

|〈R(Y ;u), v〉| ≤
∑
E∈G
‖∆Y + u‖2;E‖v − V ‖2;E +

1

2
‖[[∇Y ]]‖2;∂E∩Ω‖v − V ‖2;∂E .

Using for v ∈ Y the Scott-Zhang interpolant V ∈ Y(G) one obtains from interpo-
lation estimates in H1 by standard arguments the upper bound

‖Y − y‖Y ' ‖R(Y ;u)‖Y∗ .
(∑
E∈G

h2
E‖∆Y + u‖22;E + hE‖[[∇Y ]]‖22;∂E∩Ω

)1/2

.

If v is smooth, i. e., v ∈ H2(Ω) ∩Y, we may employ interpolation estimates in H2

to obtain the improved bound

|〈R(Y ;u), v〉| .
(∑
E∈G

h2
E

(
h2
E‖∆Y + u‖22;E + hE‖[[∇Y ]]‖22;∂E∩Ω

))1/2

|v|H2(Ω) .

(2.8)
Similar arguments apply to the adjoint problem. For given g ∈ U we set p = S∗g
and let P = S∗Gg be its Galerkin-approximation in Y(G). For the residual of (2.2),
defined by

〈R∗(S∗Gg; g), v〉 = 〈R∗(P ; g), v〉 := B[v, P ]− 〈g, v〉 = B[v, P − p] ∀v ∈ Y,
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we have

|〈R∗(P ; g), v〉| .
(∑
E∈G

h2s
E

(
h2
E‖∆P + g‖22;E + hE‖[[∇P ]]‖22;∂E∩Ω

))1/2

|v|Hs+1(Ω)

(2.9)
for any v ∈ Hs+1(Ω)∩Y, s = 0, 1. With s = 0 we may deduce the upper bound for
‖(S∗G − S∗)g‖Y = ‖P − p‖Y ' ‖R∗(P ; g)‖Y∗ The choice s = 1 yields the improved
estimate for the adjoint problem. Eqns. (2.8) and (2.9) will become important in
§4 to access local density of adaptively generated finite element spaces; compare
also with [16, Remark 3.4].

3. Convergence 1: Trusting Stability

In this section we start with the convergence analysis, where we first focus on sta-
bility properties of the algorithm that do not depend on the particular decisions
taken in MARK. Hereafter, {Gk, (Ûk, Ŷk, P̂k)}k≥0 is the sequence of grids and dis-
crete solutions generated by (1.3). For ease of notation we use for k ≥ 0 the short

hands Yk = Y(Gk), Ûk = ÛGk , Sk = SGk etc.

A first limit. Using piecewise polynomials in combination with refinement by bi-
section leads to nested spaces, i. e., Yk ⊂ Yk+1. This allows us to define the limiting
space

Y∞ =
⋃
k≥0

Yk
‖·‖Y

,

which is exactly the space that is approximated by the adaptive iteration. It is
closed in Y and therefore a Hilbert space. Consequently, the limiting optimal con-
trol problem

min
(u,y)∈Uad×Y∞

1

2
‖y − yd‖2U +

α

2
‖u‖2U

subject to y ∈ Y∞ : B[y, v] = 〈u, v〉 v ∈ Y∞
(3.1)

admits a unique solution (û∞, ŷ∞) ∈ Uad × Y∞. If S∞, S
∗
∞ : U → Y∞ denote

the solution operators of the state respectively the adjoint equation in Y∞ the
associated first order optimality system reads

ŷ∞ = S∞û∞, p̂∞ = S∗∞(ŷ∞ − yd), û∞ = Π(p̂∞). (3.2)

We next show that in fact (3.1) is the limiting problem of the adaptive it-

eration (1.3) in that (Ûk, Ŷk, P̂k) → (û∞, ŷ∞, p̂∞). An important ingredient for
this proof is the following crucial property of the adaptive algorithm shown in [1,
Lemma 6.1] and [14, Lemma 4.2].

Proposition 3.1 (Convergence of solution operators). For any u, g ∈ U we have
Sku→ S∞u and S∗kg → S∗∞g in Y as k →∞.
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We next show convergence Ûk → û∞. In this step we have to deal with the
nonlinearity of the constrained optimal control problem.

Lemma 3.2 (Convergence of the controls). The discrete controls {Ûk}k≥0 converge
strongly to û∞, i. e.,

lim
k→∞

‖Ûk − û∞‖U = 0.

Proof. Since both Ûk = Π(P̂k) and û∞ = Π(p̂∞) are feasible, i. e., Ûk, û∞ ∈ Uad,
the definition of Π in (2.3) yields

α‖Ûk − û∞‖22;Ω = 〈αû∞ + p̂∞, û∞ − Ûk〉 + 〈αÛk + P̂k, Ûk − û∞〉

+ 〈P̂k − p̂∞, û∞ − Ûk〉

≤ 〈P̂k − p̂∞, û∞ − Ûk〉

= 〈S∗k(ŷ∞ − yd)− p̂∞, û∞ − Ûk〉 + 〈P̂k − S∗k(ŷ∞ − yd), û∞ − Ûk〉.
We next estimate the last two terms separately. For the first one we immediately
obtain from p̂∞ = S∞(ŷ∞ − yd) by the Cauchy-Schwarz and Young inequalities

〈S∗k(ŷ∞ − yd)− p̂∞, û∞ − Ûk〉 = 〈(S∗k − S∗∞)(ŷ∞ − yd), û∞ − Ûk〉

≤ α

2
‖û∞ − Ûk‖22;Ω +

1

2α
‖(S∗k − S∗∞)(ŷ∞ − yd)‖22;Ω.

We next turn to the second term. Employing the definition of the solution operators
Sk and S∗k in (2.5) and (2.6) we estimate with P̂k = S∗k(Ŷk − yd) ∈ Yk and
ŷ∞ = S∞û∞

〈P̂k − S∗k(ŷ∞ − yd), û∞ − Ûk〉 = 〈û∞ − Ûk, S∗k(Ŷk − ŷ∞)〉

= B[Sk(û∞ − Ûk), S∗k(Ŷk − ŷ∞)] = 〈Ŷk − ŷ∞, Sk(û∞ − Ûk)〉

= 〈Ŷk − ŷ∞, ŷ∞ − Ŷk〉 + 〈Ŷk − ŷ∞, (Sk − S∞)û∞〉

= −‖Ŷk − ŷ∞‖22;Ω +
1

2
‖Ŷk − ŷ∞‖22;Ω +

1

2
‖(Sk − S∞)û∞‖22;Ω

≤ 1

2
‖(Sk − S∞)û∞‖22;Ω.

Combining the estimates we have shown

α‖Ûk − û∞‖22;Ω ≤
1

α
‖(S∗k − S∗∞)(ŷ∞ − yd)‖22;Ω + ‖(Sk − S∞)û∞‖22;Ω → 0

as k →∞ by Proposition 3.1. This finishes the proof. �

Convergence (Ûk, Ŷk, P̂k)→ (û∞, ŷ∞, p̂∞) is now a direct consequence of the
linear theory in Proposition 3.1.

Proposition 3.3 (Convergence of discrete solutions). The Galerkin approximations

{(Ûk, Ŷk, P̂k)}k≥0 converge strongly to the solution (û∞, ŷ∞, p̂∞) of (3.1), i. e.,

lim
k→∞

‖(Ûk, Ŷk, P̂k)− (û∞, ŷ∞, p̂∞)‖U×Y×Y = 0.
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Proof. We already know ‖Ûk − û∞‖U → 0 from Lemma 3.2. In combination with
Proposition 3.1 this yields for the discrete states

‖Ŷk − ŷ∞‖Y = ‖SkÛk − S∞û∞‖Y ≤ ‖Sk(Ûk − û∞)‖Y + ‖(Sk − S∞)û∞‖Y
≤ ‖Sk‖ ‖Ûk − û∞‖U + ‖(Sk − S∞)û∞‖Y → 0,

since ‖Sk‖ ≤ CF . Writing P̂k− p̂∞ = S∗k(Ŷk− ŷ∞)+(S∗k−S∞)(ŷ∞−yd) we finally

deduce with the same arguments ‖P̂k − p̂∞‖Y → 0. �

The convergence of the discrete solutions directly yields a uniform bound
on the estimators. The proof follows the ideas in [16, Lemma 3.3] accounting for
the situation at hand and using the following important property. Let G ∈ G be
given. The finite overlap of the patches #NG(E) . 1 allows us to deduce for any
g ∈ L2(Ω) the bound∑

E∈G
‖g‖22;Ω(NG(E)) =

∑
E∈G

∑
E′∈NG(E)

‖g‖22;E′ .
∑
E∈G
‖g‖22;E = ‖g‖22;Ω. (3.3)

The constant solely depends on shape-regularity of G and thus on G0.

Lemma 3.4 (Uniform estimator bound). For all k ≥ 0 we have

Ek((ÛG , ŶG , P̂G);Gk) . 1.

Proof. A scaled trace inequality in combination with an inverse estimate yields for
the error indicators related to the state equation

h2
E‖∆Ŷk + Ûk‖22;E + hE‖[[∇Ŷk]]‖22;∂Ek∩Ω . ‖∇Ŷk‖22;Ω(NG(E)) + ‖Ûk‖22;E .

This in turn implies by (3.3)∑
E∈Gk

h2
E‖∆Ŷk + Ûk‖22;E + hE‖[[∇Ŷk]]‖22;∂E∩Ω . ‖∇Ŷk‖22;Ω + ‖Ûk‖22;Ω . 1,

since {Ûk, Ŷk}k≥0 is bounded in L2(Ω) × H̊1(Ω). Similar arguments apply to the
estimator contribution related to the adjoint problem. �

A second limit. We next turn to the limit of the piecewise constant mesh-size

function hk : Ω → R of Gk defined by hk|E = |E|1/d, E ∈ G. The behavior of the
mesh-size function is directly related to the decomposition

G+
k :=

⋂
`≥k

G` = {E ∈ Gk | E ∈ G` ∀` ≥ k}, and G0
k := Gk \ G+

k .

The set G+
k contains all elements that are not refined after iteration k and we

observe that the sequence {G+
k }k≥0 is nested, i. e., G+

` ⊂ G
+
k for all k ≥ `. The

set G0
k contains all elements that are refined at least once more after iteration k;

in particular, Mk ⊂ G0
k. Decomposing Ω̄ = Ω+

k ∪ Ω0
k := Ω(G+

k ) ∪ Ω(G0
k) we have

the following connection to the behavior of the mesh-size function shown in [14,
Lemma 4.3 and Corollary 4.1].
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Lemma 3.5 (Convergence of the mesh-size functions). The mesh-size functions hk
converge uniformly to 0 in Ω0

k in the following sense

lim
k→∞

‖hk χ0
k‖∞;Ω = lim

k→∞
‖hk‖∞;Ω0

k
= 0,

where χ0
k ∈ L∞(Ω) the characteristic function of Ω0

k.

Combining convergence of the discrete solutions with the convergence of the
mesh-size functions we see that the adaptive algorithm can monitor progress in
the following sense.

Lemma 3.6 (Indicators of marked elements). All indicators of marked elements
vanish in the limit, this is,

lim
k→∞

max{EG((ÛG , ŶG , P̂G);E) | E ∈Mk} = 0.

Proof. For k ≥ 0 we pick up Ek ∈ arg max{EG((ÛG , ŶG , P̂G);E) | E ∈ Mk} 6= ∅.
We follow [16, Lemma 3.4] and show Ek((Ûk, Ŷk, P̂k);Ek)→ 0.

Arguing as in the proof to Lemma 3.4 we find for the indicator contribution
of the state equation

hE‖∆Ŷk + Ûk‖2;Ek
+ h

1/2
E ‖[[∇Ŷk]]‖2;∂Ek∩Ω . ‖∇Ŷk‖2;Ω(Nk(Ek)) + ‖Ûk‖2;Ek

≤ ‖∇ŷ∞‖2;Ω(Nk(Ek)) + ‖û∞‖2;Ek
+ ‖∇(Ŷk − ŷ∞)‖2;Ω + ‖Ûk − û∞‖2;Ω → 0

as k →∞ for the following reasons: By Assumption 1.1 (4) all elements inMk are
refined, which implies Ek ∈ G0

k. Local quasi-uniformity of Gk in combination with
Lemma 3.5 therefore yields |Ω(Nk(Ek))| . |Ek| ≤ ‖hk‖d∞;Ω0

k
→ 0. Consequently,

the first two terms of the right hand side vanish by continuity of ‖·‖2;Ω with respect
to the Lebesgue measure. The last two terms converge to 0 by Proposition 3.3.
The same arguments apply to the indicator contribution of the adjoint equation,
which in summary yields EG((Ûk, Ŷk, P̂k);Ek)→ 0 as k →∞. �

4. Convergence 2: Making the Right Decisions

In this section we verify the main result by showing (Ûk, Ŷk, P̂k) → (û, ŷ, p̂) and

Ek(Ûk, Ŷk, P̂k;Gk) → 0. Error convergence requires appropriate decisions in the
adaptive iteration, which we have summarized in Assumption 1.1. Estimator con-
vergence is then a consequence of local efficiency as stated in Theorem 2.2.

Convergence of the indicators. We first show that the maximal indicator of all
elements vanishes in the limit.

Lemma 4.1 (Convergence of the indicators). The maximal indicator vanishes in
the limit, this is,

lim
k→∞

max{EG((ÛG , ŶG , P̂G);E) | E ∈ Gk} = 0.
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Proof. Combining the assumption on marking in Assumption 1.1 (3) with the be-
havior of the indicators on marked elements, which we have analyzed in Lemma 3.6,
we find

max{EG((Ûk, Ŷk, P̂k);E) | E ∈ Gk} ≤ max{EG((Ûk, Ŷk, P̂k);E) | E ∈Mk} → 0

as k →∞. �

Convergence of the residuals. We next show that residuals of state and adjoint
equation in the limiting first order optimality system (3.2) vanish. The proof adapts
the techniques from [16, Proposition 3.1] to the situation at hand.

Proposition 4.2 (Convergence of the residual). For the residuals R of (2.1) and
R∗ of (2.2) We have

R(ŷ∞; û∞) = R∗(p̂∞; ŷ∞ − yd) = 0 in Y∗ = H−1(Ω).

Particularly, ŷ∞ = Sû∞ and p̂∞ = S∗(ŷ∞ − yd).

Proof. We prove the claim for R. The assertion for R∗ follows along the same
lines. Using a density argument we only have to show 〈R(ŷ∞; û∞), v〉 = 0 for all

v ∈ H2(Ω) ∩ H̊1(Ω).
Suppose any pair k ≥ `. Then we have the inclusion G+

` ⊂ G
+
k ⊂ Gk and the

sub-triangulation Gk \ G+
` of Gk covers the sub-domain Ω0

` = Ω(G0
` ), i. e., we can

write Ω0
` = Ω(Gk \ G+

` ). Moreover, ‖hk‖∞;Ω+
`
. 1 and ‖hk‖∞;Ω0

`
≤ ‖h`‖∞;Ω0

`
.

Pick up any v ∈ H2(Ω) ∩ H̊1(Ω) with |v|H2(Ω) = 1. We next utilize the

improved bound (2.8) for R, decompose Gk = G+
` ∪(Gk\G+

` ), and recall Lemma 3.4
to bound

〈R(Ŷk; Ûk), v〉2 .
∑
E∈G+

`

h2
E

(
h2
E‖∆Ŷk + Ûk‖22;E + hE‖[[∇Ŷk]]‖22;∂E∩Ω

)
+

∑
E∈Gk\G+

`

h2
E

(
h2
E‖∆Ŷk + Ûk‖22;E + hE‖[[∇Ŷk]]‖22;∂E∩Ω

)
. E2

k((Ûk, Ŷk, P̂k);G+
` ) + ‖h`‖2∞;Ω0

`
E2
k((Ûk, Ŷk, P̂k);Gk \ G+

` )

. E2
k((Ûk, Ŷk, P̂k);G+

` ) + ‖h`‖2∞;Ω0
`

!
≤ 2ε

for any ε > 0. This can be seen as follows: By Lemma 3.5 we may first choose
` large such that ‖h`‖2∞;Ω0

`
≤ ε. After fixing ` the “point-wise” convergence of

the indicators in Lemma 4.1 allows us then to choose a suitable k ≥ ` with
E2
k((Ûk, Ŷk, P̂k);G+

` ) ≤ ε. This yields for any fixed v ∈ H2(Ω) ∩ H̊1(Ω)

〈R(ŷ∞; û∞), v〉 = lim
k→∞

〈R(Ŷk; Ûk), v〉 = 0,

observing that R is continuous with respect to its arguments and recalling the
convergence (Ûk, Ŷk) → (û∞, ŷ∞) shown in Proposition 3.3. Since v is arbitrary
we have shown R(ŷ∞; û∞) = 0 in Y∗. This in turn implies ŷ∞ = Sû∞ and finishes
the proof. �
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Convergence of error and estimator. We are now in the position to prove the main
result, where we again use the abbreviation W = U× Y× Y.

Proof of Theorem 1.2. Combining Propositions 2.1, 3.3, and 4.2 we obtain

lim
k→∞

‖(Ûk, Ŷk, P̂k)− (û, p̂, ŷ)‖W ' lim
k→∞

‖(Ŷk, P̂k)− (SÛk, S
∗(Ŷk − yd))‖Y×Y

= ‖(ŷ∞, p̂∞)− (Sû∞, S
∗(ŷ∞ − yd)‖Y×Y = 0.

This shows convergence of the error.
To show convergence of the estimator we decompose for k ≥ ` as in the proof

to Proposition 4.2

E2
k((Ûk, Ŷk, P̂k);Gk) = E2

k((Ûk, Ŷk, P̂k);G+
` ) + E2

k((Ûk, Ŷk, P̂k);Gk \ G+
` ).

We first bound the second term on the right hand side. The local lower bound of
Theorem 2.2 in combination with the finite overlap of the patches Nk(E) allows
us to bound

E2
k((Ûk, Ŷk, P̂k);Gk \ G+

` ) . ‖(Ûk, Ŷk, P̂k)− (û, p̂, ŷ)‖2W +
∑

E∈Gk\G+
`

osc2
k(Ûk, yd;E)

. ‖(Ûk, Ŷk, P̂k)− (û, p̂, ŷ)‖2W + ‖h`‖2∞;Ω0
`

(
‖Ûk‖22;Ω + ‖yd‖22;Ω

)
,

using (3.3) and the rough estimate

osc2
k(Ûk, yd;E) = h2

E

(
‖Ûk − PGk Ûk‖22;Ω(NG(E)) + ‖yd − PGkyd‖22;Ω(NG(E))

)
≤ ‖h`‖2∞;Ω0

`

(
‖Ûk‖22;Ω(Nk(E)) + ‖yd‖22;Ω(Nk(E))

)
.

Since ‖Ûk‖22;Ω + ‖yd‖22;Ω . 1 we find

E2
k((Ûk, Ŷk, P̂k);Gk) . E2

k((Ûk, Ŷk, P̂k);G+
` )+‖(Ûk, Ŷk, P̂k)−(û, p̂, ŷ)‖2W+‖h`‖2∞;Ω0

`
.

By Lemma 3.5 the last term ‖h`‖2∞;Ω0
`

can be made small by choosing ` large.

After fixing ` we may choose as in the proof to Proposition 4.2 a k ≥ ` such that
E2
k((Ûk, Ŷk, P̂k);G+

` ) is small. Moreover, the error convergence established above

implies that the middle term ‖(Ûk, Ŷk, P̂k)− (û, p̂, ŷ)‖2W is small too, if we possibly
increase k further. In summary, for any ε > 0 we find a k such that

Ek((Ûk, Ŷk, P̂k);Gk) ≤ ε.

This yields Ek((Ûk, Ŷk, P̂k);Gk)→ 0 as k →∞ and finishes the proof. �

5. Extensions and Outlook

The presented theory has been extended into several directions in the PhD thesis
of the first author [6]. A detailed report is in preparation [7].

General linear-quadratic optimal control problem. The abstract framework can
be found in [8, §2.1] and may be summarized as follows. We can allow for contin-
uous, non-coercive bilinear forms B : Y×Y→ R that satisfy an inf-sup condition.
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This setting includes saddle point problems like the Stokes system and other mixed
formulations. More general objectives ψ(y) can replace the simple tracking type
functional ‖y − yd‖22;Ω. The functional ψ has to be quadratic and strictly convex.

Its Fréchet-derivative ψ′ has to satisfy a Lipschitz-condition. We may also consider
any type of control space such that Y ↪→ U ↪→ Y∗ is a Gelfand triple. This then
covers more general cases of distributed control as well as Neumann-boundary
control. We are currently working on an extension for Dirichlet-boundary control
[3].

Admitting a general class of PDE constraints requires appropriate assump-
tions on the estimators for the linear problems (2.1) and (2.2). Quite weak assump-
tion are summarized in [16, §2.2.3] comprising other estimators like the hierarchical
estimator, an estimator based on local problems on stars, an equilibrated resid-
ual estimator, and the ZZ-estimator; compare for instance with [10] for a detailed
description of the diverse estimators. We may also weaken the assumption on
marking to include marking strategies that adaptively focus on specific estimator
contributions, like the indicators for the error in the state or adjoint equation.
Such strategies are used in a comparison of adaptive strategies for optimal control
problems in [8, §6]. We refer to [16, §2.2.4 and §5] for a sufficient and essentially
necessary assumption on marking.

Most of the changes in the presented analysis are then concentrated in the
proof to Lemma 3.2. This proof gets inevitably more involved due to the gen-
eral structure of ψ, where one has to appropriately use convexity of ψ. All other
statements can be proven using similar arguments with minor adjustments.

Discretized control. Up to now we have concentrated on the variational discretiza-
tion of Hinze [5]. Here, the precise structure of the set of admissible controls Uad

is not of importance. The actual computation of a discrete solution yet requires
the exact computation of Π(P ) for a discrete function P ∈ Y(G). This typically
gives restrictions on Uad, like box-constraints with piecewise constant obstacles.

Very often the control space U is discretized by a conforming finite element
space U(G). Upon setting Uad(G) := Uad∩U(G) and assuming that Uad(G) is non-
empty we can define a discrete projection operator ΠG : U → Uad(G) for p ∈ U
by

ΠG(p) ∈ Uad(G) : 〈αΠG(p) + p, ΠG(p)− U〉 ≤ 0 ∀U ∈ Uad(G).

An efficient computation of ΠG benefits from a simple structure of Uad and a
suitable discrete control space U(G).

We can still consider the general setting of the previous paragraph. However,
the analysis of adaptive finite elements for discretized controls gets painstakingly
more laborious at several instances that we shortly list.

(1) The right hand side in the basic error equivalence in Proposition 2.1 has to

be extended by the term ‖ÛG −Π(ÛG)‖U resulting in

‖(ÛG , ŶG , P̂G)− (û, p̂, ŷ)‖W ' ‖(ÛG , ŶG , P̂G)− (Π(P̂G), S(ÛG), S∗ψ′(ŶG))‖W;

compare with [8, Theorem 2.2]
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(2) As a consequence, the element indicators of the estimator in Theorem 2.2

have to be enriched by a term ‖ÛG − Π(P̂G)‖2U(E) = ‖ΠG(P̂G) − Π(P̂G)‖2U(E)

to grant reliability of the estimator [8, Theorem 3.2]. Frequently this term
is estimated further in order to completely avoid the computation of the
continuous projection operator Π(P̂G) [4, 12]. This typically results in a non-
efficient estimator; compare with [8, Remark 6.1].

(3) Nesting of spaces Yk ⊂ Yk+1 is essential to verify with current techniques
the point-wise convergence of the solution operators Sk → S∞, S∗k → S∗∞ in
Proposition 3.1.

Likewise, for establishing the convergence Πk(P̂k)→ û∞ = Π∞(p̂∞) in
Lemma 3.2 nesting Uad

k ⊂ Uad
k+1 of the sets of discrete admissible controls

is instrumental. This nesting poses restrictions on data describing the set
of admissible controls Uad. Typically, such data has to be discrete over G0.
In the proof to Lemma 3.2 we additionally have to account for the typical
situation û∞ 6∈ Uad

k . This increases substantially the complexity of the proof.
(4) The finite element spaces {Yk}k≥0 are “locally dense” in “Ω0

∞ := limk→∞Ω0
k”

in that minV ∈Yk
‖v−V ‖Y(Ω0

k) → 0 as k →∞; compare with [16, Remark 3.4].

Philosophically speaking, the improved bounds (2.8) and (2.9) for the residu-
als allow us to access this local density for showing that the limiting residuals
R(ŷ∞; û∞), R∗(p̂∞;ψ′(ŷ∞)) ∈ Y∗ are not supported in Ω0

∞.
The additional contribution for the control error requires to establish

the convergence

lim
k→∞

‖Ûk −Π(P̂k)‖U(Ω0
k) = lim

k→∞
‖Πk(P̂k)−Π(P̂k)‖U(Ω0

k) → 0. (5.1)

For U = L2 and piece-wise constant box-constraints in combination with a
discontinuous or a continuous, piecewise linear control discretization one can
verify (5.1) employing local density of {Uk}k≥0 and point-wise properties of
Π; compare with [6, §8.4.2 and §8.4.3]. A characterization of properties of
Π and U(G) that ensure (5.1) is a challenging question and topic of future
research.

(5) The proof of the estimator convergence in Theorem 1.2 strongly relies on
local efficiency of the indicators as stated in Theorem 2.2. For discretized
control this requires ‖ÛG − Π(P̂G)‖U(E) to be locally efficient, which can be
shown if Π and ΠG are locally Lipschitz continuous with uniformly bounded
Lipschitz constants. This is typically true in case of distributed control.

In case of Neumann boundary control Lipschitz continuity of Π and ΠG
involves the trace operator T : H1(Ω) → L2(∂Ω). We may therefore show

global efficiency for ‖ÛG −Π(P̂G)‖L2(∂Ω) using the trace inequality on Ω. An

estimate of ‖ÛG −Π(P̂G)‖L2(∂E∩∂Ω) needs a local trace inequality on E. The
typical scaling arguments yield negative powers of the local mesh-size and
thereby ruling out local efficiency. As a consequence, we still can verify the
error convergence of Theorem 1.2 but a proof of estimator convergence may
require new techniques in that case.
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2011-003 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part I —
Robust Control



2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G2-structures

2011-001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume

2010-018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings

2010-017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on
quaternion-Kähler manifolds and inner symmetric spaces

2010-016 Moroianu, A.; Semmelmann,U.: Clifford structures on Riemannian manifolds

2010-015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group SO(3)

2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond

2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries

2010-012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds

2010-011 Györfi, L.; Walk, H.: Empirical portfolio selection strategies with proportional
transaction costs
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2010-006 Höllig, K.; Hörner, J.; Hoffacker, A.: Finite Element Analysis with B-Splines:
Weighted and Isogeometric Methods

2010-005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function
estimates for the regularization of inverse problems

2010-004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary

2010-003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for
stationary and ergodic data

2010-002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein
Quadric, and Automorphisms of Heisenberg Algebras

2010-001 Leitner, F.: Examples of almost Einstein structures on products and in
cohomogeneity one

2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED

2009-007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant
n-polaron systems

2009-006 Demirel, S.; Harrell II, E.M.: On semiclassical and universal inequalities for
eigenvalues of quantum graphs
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2008-002 Hertweck, M.; Höfert, C.R.; Kimmerle, W.: Finite groups of units and their
composition factors in the integral group rings of the groups PSL(2, q)

2008-001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with
a correction term

2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term

2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya’s conjecture in the presence of a constant
magnetic field

2007-004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger
operators on metric trees

2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides

2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry

2007-001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and
smoothness restrictions


