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GENERALIZED KILLING SPINORS ON SPHERES

ANDREI MOROIANU, UWE SEMMELMANN

Abstract. We study generalized Killing spinors on round spheres Sn. We show that on
the standard sphere S8 any generalized Killing spinor has to be an ordinary Killing spinor.
Moreover we classify generalized Killing spinors on Sn whose associated symmetric endomor-
phism has at most two eigenvalues and recover in particular Agricola–Friedrich’s canonical
spinor on 3-Sasakian manifolds of dimension 7. Finally we show that it is not possible to
deform Killing spinors on standard spheres into genuine generalized Killing spinors.

2010 Mathematics Subject Classification: Primary: 53C25, 53C27, 53C40

Keywords: generalized Killing spinors, parallel spinors.

1. Introduction

A generalized Killing spinor on a spin manifold (M, g) is a non-zero spinor Ψ ∈ Γ(ΣM)
satisfying for all vector fields X the equation ∇XΨ = A(X) ·Ψ, where A is some symmetric
endomorphism field. If A is a non-zero multiple of the identity, Ψ is called a Killing spinor
[3, 5]. We will call generalized Killing spinors with A 6= λid genuine generalized Killing
spinors.

Generalized Killing spinors arise naturally as the restrictions of parallel spinors on spin
manifolds M̂ to hypersurfaces M ⊂ M̂ (see [4, 11, 12, 16, 17]). In this case the endomorphism
A is half of the second fundamental form of M . The converse is true under certain conditions,
e.g. when both the manifold (M, g) and the spinor Ψ are real analytic [2].

In low dimensions any generalized Killing spinor Ψ defines a G-structure on M , where G
is the stabilizer of Ψ at some point. The intrinsic torsion of this G-structure is determined
by the endomorphism A, and since A is assumed to be symmetric, some part of the intrinsic
torsion has to vanish. This leads to interesting reformulations of the existence of generalized
Killing spinors, e.g. they correspond to half-flat SU(3)-structures [8, 13] in dimension 6 and
to co-calibrated G2-structures [9, 10] in dimension 7.
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In [17] we started an investigation of generalized Killing spinors on Einstein manifolds,
motivated by an analogue of the Goldberg conjecture. We showed that any generalized Killing
spinor on the standard spheres S2 and S5, as well as on any 4-dimensional Einstein manifolds
of positive scalar curvature has to be an ordinary Killing spinor and we have constructed
examples of genuine generalized Killing spinors on S3. Moreover, we gave an account of the
other examples of genuine generalized Killing spinors on Einstein manifolds which can be
found in the recent literature on S3 × S3 and CP3 (cf. [9, 15, 18]), and on 7-dimensional
3-Sasakian manifolds (cf. [1]).

In the present article we concentrate on the existence question for generalized Killing
spinors on standard spheres. It is a classical theorem that any Einstein hypersurface of
positive scalar curvature in the Euclidean space Rn+1 is locally isometric to Sn. Thus spheres
are the only hypersurfaces in Rn+1 admitting generalized Killing spinors. Our problem can
be rephrased into the question: Is it possible to realize standard spheres as hypersurfaces of
non-flat manifolds with reduced holonomy, e.g. Calabi-Yau or hyperkähler manifolds?

Even on such simple manifolds as the standard spheres, the problem of proving existence
or non existence of genuine generalized Killing spinors turns out to be extremely difficult.
In this article we obtain the following partial results: in Section 3 we show that on S8

any generalized Killing spinor has to be an ordinary Killing spinor. The same statement
is true for any 8k-dimensional standard sphere if a natural vector field associated to the
spinor does not vanish identically. In Section 4 we consider generalized Killing spinors for
which the symmetric endomorphism A has exactly two eigenvalues. We show that this is
possible only in dimension 3 and 7, where the generalized Killing spinors coincides with the
examples mentioned above. In the last section we investigate deformations of generalized
Killing spinors. Using the Weitzenböck formula for trace-free symmetric tensors we prove a
rigidity result for Killing spinors on spheres, similar in some sense with the rigidity of Einstein
metrics [6, Sect. 4.63].

2. Preliminaries

We refer to [5, 14] for basic definitions in spin geometry and list below some of the most
important facts which will be needed in the sequel. Let (Mn, g) be an n-dimensional Rie-
mannian spin manifold with real spinor bundle ΣM . The Levi-Civita connection ∇ induces
a connection on ΣM , also denoted by ∇. In addition the real spinor bundle ΣM is endowed
with a ∇-parallel Euclidean scalar product 〈., .〉.

Throughout this article we will identify 1-forms and bilinear forms with vectors and endo-
morphisms respectively, by the help of the Riemannian metric.

The Clifford multiplication with tangent vectors is parallel with respect to ∇ and skew-
symmetric with respect to 〈., .〉:

(1) 〈X ·Ψ,Φ〉 = −〈Ψ, X · Φ〉, ∀ X, Y ∈ TM, ∀ Ψ,Φ ∈ ΣM.
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In particular 〈X ·Ψ,Ψ〉 = 0 for any vector field X and spinor Ψ. The Clifford multiplication
with 2-forms is defined via the equation

(2) (X ∧ Y ) ·Ψ = X · Y ·Ψ + g(X, Y ) Ψ.

Using (1) and the basic Clifford formula X · Y ·+Y ·X ·+2g(X, Y )id = 0, we easily get

(3) 〈X · Y ·Ψ,Ψ〉 = −g(X, Y )〈Ψ,Ψ〉, ∀ X, Y ∈ TM, Ψ ∈ ΣM,

which together with (2) shows that Clifford product with 2-forms is also skew-symmetric.

The curvature RΣM of the spinor bundle and the Riemannian curvature are related by

(4) RΣM
X,Y Ψ = 1

2
R(X ∧ Y ) ·Ψ ∀ X, Y ∈ TM, Ψ ∈ ΣM,

where R : Λ2M → Λ2M denotes the curvature operator defined by

g(R(X ∧ Y ), U ∧ V ) := g(RX,YU, V ), RX,Y := [∇X ,∇Y ]−∇[X,Y ].

Note that with our convention the curvature operator on the standard sphere acts on 2-forms
as minus the identity.

A generalized Killing spinor [2, 4, 12, 17] on (M, g) is a spinor Ψ satisfying the equation

(5) ∇XΨ = A(X) ·Ψ, ∀ X ∈ TM,

where A ∈ Γ(End(TM)) is some symmetric endomorphism field, sometimes called the endo-
morphism associated to Ψ. Clearly a generalized Killing spinor Ψ has constant length and by
rescaling we may always assume that |Ψ|2 = 1.

After taking a further covariant derivative in Eq. (5) and skew-symmetrizing one obtains
the curvature equation (see [17, Eq. (9)]):

(6) (d∇A)(X, Y ) = [(∇XA)Y − (∇YA)X] ·Ψ = 2A(X) ∧ A(Y ) ·Ψ + 1
2
R(X ∧ Y ) ·Ψ.

Moreover, one has the following constraint equations ([17, Eqs. (11) and (12)]):

(7) 0 = δ∇A + dtrA,

(8) scal = 4(trA)2 − 4trA2,

where δ∇A := −
∑n

i=1(∇eiA)ei denotes the divergence of A.

It is well known that the standard sphere Sn admits the maximal possible number of real
Killing spinors trivializing the spinor bundle ΣM , cf. [3]. About the existence of generalized
Killing spinors much less is known. We quote the following previous results:

• There are no genuine generalized Killing spinors on S2,S4 and S5, cf. [17].
• There are examples of genuine generalized Killing spinors on S3 of the form Ψ = ξ ·Φ,

where ξ is a unit length left-invariant Killing vector field and Φ is a Killing spinor with
Killing constant 1

2
. In this example the symmetric endomorphism A has eigenvalue 1

2

of multiplicity 1, and eigenvalue −3
2

of multiplicity 2, cf. [17].
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• There is a genuine generalized Killing spinor on S7, which again is of the form Ψ = ξ·Φ,
where ξ is a unit length Killing vector field on S7 and Φ is a certain Killing spinor.
Like in dimension 3, the eigenvalues of A are 1

2
and −3

2
, this time with multiplicities

3 and 4, respectively, cf. [1].

3. Generalized Killing spinors on S8k

The aim of this section is to show that every generalized Killing spinor on S8 is a Killing
spinor, as well as a partial result in the same direction for all spheres S8k.

Recall that in dimension 8k the real spin representation splits as Σ8k = Σ+
8k⊕Σ−8k, where Σ±8k

are the ±1-eigenspaces of the multiplication with the volume element and are interchanged
by Clifford multiplication with vectors. Correspondingly, Ψ splits as Ψ = Ψ+ + Ψ−. Let η
be the vector field on S8k given by

(9) g(η,X) = 〈X ·Ψ+,Ψ−〉, ∀ X ∈ TS8k.

If the form η does not vanish identically, we have the following:

Theorem 3.1. Let Ψ be a generalized Killing spinor on S8k. If the one-form defined in (9)
is non-vanishing on a dense subset, then Ψ is a Killing spinor.

Proof. We assume that Ψ is scaled to have unit length. Denoting a := tr(A) and using the
fact that the scalar curvature of S8k equals 8k(8k− 1), Eq. (8) reads a2− trA2 = 2k(8k− 1).
From (5) we get:

(10) ∇XΨ± = A(X) ·Ψ∓.

Let S− denote the open set of points p ∈ S8k with Ψ−p 6= 0. It is easy to see that S− is

dense. Indeed, if U were a non-empty open subset of S8k \S−, then (10) yields A(X) ·Ψ+ = 0
for all X ∈ TU , so A|U = 0. By (10) again, Ψ+ is parallel (and non-zero) on U , so the Ricci
tensor of S8k vanishes on U , which is absurd. A similar argument shows that the set S+

where Ψ+ is non-vanishing is also dense, so the set S := S− ∩ S+ is dense in S8k.

We denote by h := |Ψ−|2 the length function of Ψ−. Since Ψ has unit length, |Ψ+|2 = 1−h.
From (10), the derivative of h in the direction of any tangent vector X reads

dh(X) = 2〈∇XΨ−,Ψ−〉 = 2〈A(X) ·Ψ+,Ψ−〉 = 2η(A(X)) = 2g(A(η), X),

whence

(11) dh = 2A(η).
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Taking the covariant derivative in the direction of Y in (9), assuming that X is parallel at
some point and using (10) yields

g(∇Y η,X) = 〈X · A(Y ) ·Ψ−,Ψ−〉 + 〈X ·Ψ+, A(Y ) ·Ψ+〉
= −g(X,A(Y )) |Ψ−|2 + g(X,A(Y )) |Ψ+|2

= (1− 2h)g(A(Y ), X),

so

(12) ∇Y η = (1− 2h)A(Y ), ∀ Y ∈ TS8k.

Taking the covariant derivative with respect to some vector field X in this equation, using
(11) and skew-symmetrizing, yields:

RY,Xη = (1− 2h)((∇YA)X − (∇XA)Y )− 4g(A(η), Y )A(X) + 4g(A(η), X)A(Y ),

and since the curvature of the round sphere satisfies RY,XZ = g(X,Z)Y − g(Y, Z)X for all
vectors X, Y, Z, we get

(1−2h)((∇YA)X−(∇XA)Y ) = 4g(A(η), Y )A(X)−4g(A(η), X)A(Y )+g(X, η)Y −g(Y, η)X.

Using this last equation in the curvature equation (6) we obtain that for every vectors X, Y
the following relation holds:

(2h− 1)
(
2A(X) · A(Y ) + 2g(A(X), A(Y ))− 1

2
X · Y − 1

2
g(X, Y )

)
·Ψ

= (4g(A(η), Y )A(X)− 4g(A(η), X)A(Y ) + g(X, η)Y − g(Y, η)X) ·Ψ
(13)

(we have used the well known formula X∧Y = X ·Y +g(X, Y ) and the fact that the curvature
endomorphism of the round sphere is minus the identity).

In (13) we take the Clifford product with X and sum over an orthonormal basis X = ei.
Using the standard formulas in Clifford calculus this yields

(2h− 1)
(
−2aA(Y ) + 2A2(Y ) + 8k−1

2
Y
)
·Ψ

= (−4ag(A(η), Y )− 4A(η) · A(Y ) + η · Y + 8kg(η, Y )) ·Ψ.

Taking the scalar product with Ψ in this formula gives

0 = −4ag(A(η), Y ) + 4g(A(η), A(Y )) + (8k − 1)g(η, Y ), ∀ Y ∈ TS8k,

whence

(14) A2(η) = aA(η)− 8k−1
4
η.

We now take the Clifford product with A(X) in (13) and sum over an orthonormal basis
X = ei to obtain

(2h− 1)
(
−2trA2A(Y ) + 2A3(Y ) + 1

2
aY − 1

2
A(Y )

)
·Ψ

=
(
−4trA2g(A(η), Y )− 4A2(η) · A(Y ) + A(η) · Y + ag(η, Y )

)
·Ψ.
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Taking again the scalar product with Ψ and using (8) yields

0 = (8k(8k−1)−4a2)g(A(η), Y )+4g(A2(η), A(Y ))−g(A(η), Y )+ag(η, Y ), ∀ Y ∈ TS8k,

whence

(15) A3(η) = (a2 − 2k(8k − 1) + 1
4
)A(η)− a

4
η.

Plugging (14) into this equation shows that A(η) = 1
8k
aη, so from (14) again we get

a2

64k2
η = a2

8k
η − 8k−1

4
η.

As η is non-vanishing on a dense subset, we obtain a2 = 16k2 on S8k. This, together with
(8), shows that the square norm of the trace-free symmetric tensor A− a

8k
id vanishes:

|A− a
8k

id|2 = tr(A− a
8k

id)2 = trA2 − a
4k

trA+ a2

8k
= trA2 − a2

8k
= 16k2 − 2k(8k − 1)− 2k = 0.

This implies that A = a
8k

id = ±1
2
id and thus finishes the proof. �

Corollary 3.2. Every generalized Killing spinor Ψ on S8 is a Killing spinor.

Proof. For every p ∈ S+ the injective map X ∈ TpS8 7→ X · Ψ+ ∈ (Σ−8 )p is bijective since
dim TpS8 = dim(Σ−8 )p = 8. Consequently, the vector field η is non-vanishing on S. �

4. Generalized Killing spinors with two eigenvalues

In this section we consider generalized Killing spinors Ψ on the sphere (M, g) := Sn (n ≥ 3)
and assume that the associated symmetric endomorphism A has at each point at most two
eigenvalues λ and µ. If these eigenvalues coincide at each point, then it is well known that
their common value is constant on M , so Ψ is a Killing spinor. We assume from now on that
λ 6= µ at least at some point of M , and thus on some non-empty open set S (it turns out
that they are actually constant on M , cf. Lemma 4.1). We will denote by Tλ ⊂ TM and
Tµ ⊂ TM the eigenspaces corresponding to λ and µ respectively. These two subspaces are
mutually orthogonal at each point and are well-defined distributions on S.

We start with calculating the derivative d∇A at points of S in three different cases. First,
let X, Y ∈ Tµ:

(∇XA)Y − (∇YA)X = X(µ)Y − (∇XA)Y + µ∇XY − Y (µ)X + A(∇YX)− µ∇Y X
= (µ− λ)(∇XY )λ − (µ− λ)(∇YX)λ +X(µ)Y − Y (µ)X

= [X, Y ]λ +X(µ)Y − Y (µ)X.

A similar calculation for a pair of vectors U, V ∈ Tλ leads to

(∇VA)U − (∇UA)V = (λ− µ)[U, V ]µ + V (λ)U − U(λ)V.

Finally, on a mixed pair of vectors X ∈ Tµ, V ∈ Tλ, we find

(∇XA)V − (∇VA)X = (λ− µ)(∇XV )µ − (µ− λ)(∇VX)λ − V (µ)X +X(λ)V.
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Substituting the equations above into the curvature equation (6), with R = −id for the
sphere, we obtain for every X, Y ∈ Tµ and U, V ∈ Tλ:

(2µ2 − 1
2
)X ∧ Y ·Ψ = (µ− λ)[X, Y ]λ ·Ψ + (X(µ)Y − Y (µ)X) ·Ψ,(16)

(2λ2 − 1
2
)V ∧ U ·Ψ = (λ− µ)[V, U ]µ ·Ψ + (V (λ)U − U(λ)V ) ·Ψ,(17)

(2λµ− 1
2
)X ∧ V ·Ψ = (λ− µ)((∇XV )µ + (∇VX)λ) + (X(λ)V − V (µ)X) ·Ψ.(18)

Lemma 4.1. The eigenvalues λ and µ are constant on Sn.

Proof. Since the sphere is connected, it is enough to show that λ and µ are constant on the
open set S. Taking the scalar product with X · Ψ in equation (16) for X ∈ Tµ implies that
µ is constant in Tµ-directions. Similarly the second equation gives that λ is constant in all
Tλ-directions.

Let p and q denote the dimensions of Tλ and Tµ respectively (which are constant on S).
Then (8) yields

(19) (pλ+ qµ)2 − (pλ2 + qµ2) = 1
4
n(n− 1);

Differentiating this relation with respect to some vector V ∈ Tλ gives V (µ)(µ(q−1)+qλ) = 0.
Assuming that V (µ) is different from zero on some open set S ′ ⊂ S, then

(20) µ(q − 1) + qλ = 0

on S ′. Differentiating again with respect to V and using the fact that λ is constant in Tλ-
directions, we get (q − 1)V (µ) = 0. The assumption that V (µ) is different from zero on S ′

implies that q = 1, so (20) implies λ = 0, which contradicts (19). Hence µ is constant on S
and a similar argument shows that λ is constant too. �

Lemma 4.2. One of the eigenvalues λ and µ has to be equal to ±1
2
.

Proof. Assume first that λµ = 1
4
. Then for any vector fields X, Y ∈ Tµ and U, V ∈ Tλ, taking

the scalar product in (18) with Y ·Ψ and U ·Ψ yields

g(∇XV, Y ) = 0 = g(∇VX,U),

i.e. (∇XV )µ = 0 = (∇VX)λ. Thus Tλ and Tµ are two non-trivial parallel distributions on
Sn, which is clearly a contradiction. This shows that λµ 6= 1

4
.

Since even-dimensional spheres do not have any non-trivial distributions, it follows that
n = 2k + 1 is odd. By changing the notations if necessary, we can assume that dim(Tµ) >
dim(Tλ). If µ2 = 1

4
we are done, so for the remaining part of the proof we assume that µ2 6= 1

4
.

From (16) it follows that for every x ∈ Sn and X, Y ∈ Tµ
x with X ⊥ Y , the vector [X, Y ]λ

is non-zero (note that this expression is tensorial in X and Y , so it only depends on their
values at x). Consequently, the map Y 7→ [X, Y ]λ from the orthogonal complement of X in
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Tµ
x to Tλ

x is injective. From the dimensional assumption it follows that dim(Tµ
x) = k + 1 and

dim(Tλ
x) = k, so in particular the above map is bijective. It follows that for every X ∈ Tµ

x

and V ∈ Tλ
x there exists a unique Y ∈ Tµ

x, Y ⊥ X, such that [X, Y ]λ = V . Applying (16)
and (18) to these vectors yields

(λ− µ)((∇XV )µ + (∇VX)λ) ·Ψ = (2λµ− 1
2
)X · V ·Ψ = (2λµ− 1

2
)X · [X, Y ]λ ·Ψ

= 1
µ−λ(2λµ− 1

2
)(2µ2 − 1

2
)X ·X · Y ·Ψ

= − |X|
2

µ−λ(2λµ− 1
2
)(2µ2 − 1

2
)Y ·Ψ.

This shows that for every X ∈ Tµ
x and V ∈ Tλ

x, the vector (∇VX)λ vanishes, thus Tλ is a
totally geodesic distribution. From (17) we deduce that λ2 = 1

4
unless k = 1. It remains to

rule out the case where n = 3.

In this case Tλ is one-dimensional, so we can consider a unit vector V which spans it at
each point. Then V is geodesic and taking the scalar product with X ·Ψ in (18) shows that
g(∇XV,X) = 0 for every X ∈ Tµ. Thus V is a unit Killing vector field on S3. It is well
known that every such vector satisfies |∇XV | = |X| for every X orthogonal to V . Comparing
the norms of the two spinors in (18) yields 2λµ − 1

2
= ±(λ − µ), which can be rewritten as

(2λ± 1)(2µ∓ 1) = 0. This proves the lemma. �

Up to a change of orientation we thus may from now on assume that λ = 1
2
.

Lemma 4.3. The distribution Tλ is totally geodesic. Moreover, the following equations hold
for any vectors X, Y ∈ Tµ and V ∈ Tλ:

(2µ+ 1)X ∧ Y ·Ψ = [X, Y ]λ ·Ψ,(21)

X · V ·Ψ = −(∇XV )µ ·Ψ.(22)

Proof. We have λ = 1
2

and µ 6= λ constant. Equation (21) thus follows directly from (16).

Next, taking in (18) the scalar product with V ·Ψ, gives 0 = g((∇VX)λ, V ) = −g(X,∇V V ),
and by polarization (∇VU +∇UV )µ vanishes for every vector fields U, V in Tλ. On the other
hand, (17) implies [V, U ]µ = 0, so adding these two relations we obtain that (∇UV )µ = 0, i.e.
Tλ is totally geodesic.

In particular this can also be expressed by the fact that (∇VX)λ vanishes for every X ∈ Tµ

and V ∈ Tλ, so (22) follows directly from (18). �

Remark 4.4. With a similar argument we get (∇XY +∇YX)λ = 0 for all vectors X, Y ∈ Tµ.
Thus the distribution Tµ would also be totally geodesic if integrable.

Corollary 4.5. For every x ∈ Sn there is a representation of the real Clifford algebra Cl(Tλ
x)

on Tµ
x.
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Proof. For V ∈ Tλ
x and X ∈ Tµ

x we define

ρV (X) := (∇XV )µ.

Then (22) can be re-written as ρV (X) ·Ψ = V ·X ·Ψ, whence

(ρV ◦ ρV (X)) ·Ψ = V · ρV (X) ·Ψ = V · V ·X ·Ψ = −|V |2X ·Ψ,

showing that ρV ◦ ρV = −|V |2id. This proves the lemma. �

Lemma 4.6. The second eigenvalue of A is µ = −3
2
.

Proof. Taking in (21) the scalar product with V ·Ψ and applying (22), gives

g([X, Y ], V ) = −(2µ+ 1)〈V ·X · Y ·Ψ,Ψ〉 = −(2µ+ 1)〈X · V ·Ψ, Y ·Ψ〉
= −(2µ+ 1)g(∇XY, V )

This equation can be rewritten as g((2µ + 2)∇XY −∇YX, V ) = 0. Interchanging X and Y
and subtracting the resulting equations we obtain (2µ+ 3)[X, Y ]λ = 0.

If µ 6= −3
2
, the distribution Tµ is totally geodesic (see Remark 4.4), and since Tµ is also

totally geodesic, both distributions would be parallel, which is of course impossible on Sn. �

Lemma 4.7. The multiplicities p and q of λ and µ are related by q = p+ 1.

Proof. Introducing the values λ = 1
2

and µ = −3
2

in (8) we obtain the equation

1
4
n(n− 1) = a2 − trA2 = (p

2
− 3q

2
)2 − p

4
− 9q

4
.

Substituting n = p+ q immediately leads to p = q − 1. �

Corollary 4.8. The pair (p, q) of multiplicities of λ and µ is one of (1, 2), (3, 4) or (7, 8).

Proof. By Corollary 4.5 and Lemma 4.7, there exists a Clp representation on Rp+1. From the
classification of real Clifford algebras (cf. [14]), this can only happen when p is 1, 3 or 7. �

We thus see that a generalized Killing spinor whose associated endomorphism has two
eigenvalues can only exist on Sn for n = 3, n = 7 or n = 15. We will now further investigate
the geometry determined by Ψ and at the end we will consider these three cases separately.

For every V ∈ Tλ consider the skew-symmetric endomorphism ρV of Tµ defined above by
ρV (X) := −(∇XV )µ. Equation (22) then reads

(23) X · V ·Ψ = ρV (X) ·Ψ, ∀ X ∈ Tµ, ∀ V ∈ Tλ.

For every U, V ∈ Tλ with g(U, V ) = 0 we pick some arbitrary vector X ∈ Tµ with |X| = 1
and write using (21) and (23):

U · V ·Ψ = (X · U) · (X · V ) ·Ψ = (X · U) · ρV (X) ·Ψ = ρV (X) · (X · U) ·Ψ
= ρV (X) · ρU(X) ·Ψ ∈ Tλ ·Ψ.
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This shows that Λ2Tλ · Ψ ⊂ Tλ · Ψ. Moreover, this also shows that for every X ∈ Tµ and
U, V ∈ Tλ

(24) 〈U · V ·Ψ, X ·Ψ〉 = 0.

Lemma 4.9. The sub-bundle Tλ ·Ψ of ΣSn is parallel with respect to the modified connection
∇̃X := ∇X − 1

2
X·.

Proof. For X ∈ Tµ and V ∈ Tλ we have

(∇X − 1
2
X·)(V ·Ψ) = (∇XV ) ·Ψ + V · A(X) ·Ψ− 1

2
X · V ·Ψ

= (∇XV ) ·Ψ− 3
2
V ·X ·Ψ− 1

2
X · V ·Ψ

= (∇XV ) ·Ψ− V ·X ·Ψ = (∇XV ) ·Ψ + ρV (X) ·Ψ
= (∇XV )λ ·Ψ ∈ Tλ ·Ψ,

and for U, V ∈ Tλ, keeping in mind that Tλ is totally geodesic and that Λ2Tλ ·Ψ ⊂ Tλ ·Ψ:

(∇U − 1
2
U ·)(V ·Ψ) = (∇UV ) ·Ψ + V · A(U) ·Ψ− 1

2
U · V ·Ψ

= (∇UV ) ·Ψ + 1
2
V · U ·Ψ− 1

2
U · V ·Ψ

= (∇UV ) ·Ψ + V ∧ U ·Ψ ∈ Tλ ·Ψ.
�

Since ∇̃ is flat on ΣSn, it follows that Tλ ·Ψ can be trivialized with ∇̃-parallel (i.e. Killing)
spinors. We denote by K the p-dimensional vector space of Killing spinors on Sn obtained
in this way. By definition, for every Φ ∈ K, there exists a vector field ξΦ ∈ Tλ satisfying
ξΦ · Ψ = Φ. Clearly 〈Ψ,Φ〉 = 0, and as Ψ has unit norm, |ξΦ|2 = |Φ|2. For every tangent
vector X we have g(ξΦ, X) = 〈X · Ψ,Φ〉. Using the obvious fact that A(X)λ = 1

2
Xλ and

A(X)µ = −3
2
Xµ, we compute using (24):

g(∇XξΦ, X) = 〈X · ∇XΨ,Φ〉+ 〈X ·Ψ,∇XΦ〉 = 〈X · A(X) ·Ψ,Φ〉+ 1
2
〈X ·Ψ, X · Φ〉

= 〈X · A(X) ·Ψ,Φ〉 = 〈(Xµ +Xλ) · (1
2
Xµ − 3

2
Xλ) ·Ψ, ξΦ ·Ψ〉

= −3
2
〈Xµ ·Xλ ·Ψ, ξΦ ·Ψ〉+ 1

2
〈Xλ ·Xµ ·Ψ, ξΦ ·Ψ〉 = 0.

This shows that ξΦ is a Killing vector field on Sn for every Killing spinor Φ ∈ K. There exists
thus a linear map F from K to Λ2Rn+1 which associates to each Φ ∈ K a skew-symmetric
matrix FΦ ∈ Λ2Rn+1 such that (ξΦ)x = FΦ(x) for every x ∈ Sn ⊂ Rn+1. In fact FΦ is related
to the covariant derivative of ξΦ by

(25) ∇XξΦ = FΦ(X), ∀ X ∈ TSn.
As |ξΦ|2 = |Φ|2, we obtain (FΦ)2 = −|Φ|2idRn+1 . If we choose now an orthonormal basis
Φ1, . . . ,Φp of K, and denote by Fi := FΦi

for simplicity, the previous relation becomes

(26) (Fi)
2 = −id, Fi ◦ Fj + Fj ◦ Fi = 0 for i 6= j.

We now consider the three cases above separately.
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The case n = 3. In this case the distribution Tλ is 1-dimensional, and the unit vector
field generating it (unique up to a sign) is Killing. The symmetric tensor A thus coincides
with the one defined in [17, Sect. 4.2]. Of course, the space of generalized Killing spinors
with respect to this tensor A is 4-dimensional, since the spin representation in dimension 3
has a quaternionic structure.

The case n = 7. We have seen that {ξ1, ξ2, ξ3} is an orthonormal basis of Tλ at each point
consisting of unit Killing vector fields. It is well known that every unit Killing vector field on
the round sphere is Sasakian. The relation (26) just tells that the triple {ξ1, ξ2, ξ3} defines a
3-Sasakian structure.

We remark that the spinor Ψ is exactly the canonical spinor constructed by Agricola and
Friedrich [1] on any 3-Sasakian manifold of dimension 7.

The case n = 15. It would have been interesting to obtain examples of generalized Killing
spinors with two eigenvalues on S15 similar to those constructed above in dimension 3 and 7.
Unfortunately this turns out to be impossible.

Assuming the existence of such a spinor Ψ, we would obtain from the construction above
an orthonormal set of Killing vector fields ξ1, . . . , ξ7 on S15 whose defining endomorphisms
Fi ∈ Λ2R16 satisfy (26). This shows that there exists a representation of the real Clifford
algebra Cl7 on R16 such that Fi(x) = ei · x for every x ∈ R16 and 1 ≤ i ≤ 7. By definition of
Fi we thus have (ξi)x = ei · x for every x ∈ S15 and 1 ≤ i ≤ 7. As Cl7 = R(8) ⊕ R(8), this
representation decomposes in a direct sum R16 = Σ1⊕Σ2 of two 8-dimensional representations
of Cl7. Each xi ∈ Σi (i ∈ {1, 2}) defines a vector cross product Pxi on R7 by the formula
(u ∧ v) · xi = Pxi(u, v) · xi.

Using (25) we can write for every x = (x1, x2) ∈ S15 and i 6= j ∈ {1, . . . , 7}:

(∇ξiξj)x = Fj(ξi)x = Fj(Fi(x)) = ej · ei · x = (ej ∧ ei · x1, ej ∧ ei · x2)

= (Px1(ej, ei) · x1, Px2(ej, ei) · x2).

Recall now that ξ1, . . . , ξ7 span a totally geodesic distribution on S15. This implies that there
exist functions f1, . . . , f7 on S15 such that

(∇ξiξj)x =
7∑

k=1

fk(x)(ξk)x =
7∑

k=1

fk(x)Fk(x) =
7∑

k=1

fk(x)ek · x =
7∑

k=1

fk(x)(ek · x1, ek · x2).

Comparing these last two equations yields Px1(ej, ei) = Px2(ej, ei) for every (x1, x2) ∈ S15 ⊂
R16 and for every i 6= j ∈ {1, . . . , 7} . This implies that the vector cross product Px is
independent of x, which is of course a contradiction. There are thus no solutions on the
sphere S15.

We have proved the following

Theorem 4.10. Let Ψ be a generalized Killing spinor on the sphere Sn whose associated
symmetric endomorphism A has at most two eigenvalues λ and µ at each point. Then λ and
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µ are both constant. If λ = µ, then A = ±1
2
id and Ψ is a Killing spinor. If λ 6= µ, then up

to a permutation of λ and µ and a change of orientation one has λ = 1
2
, µ = −3

2
and n = 3

or n = 7.

• If n = 3, the 1
2
-eigenspace of A is spanned by a unit left-invariant Killing vector field

ξ on S3 and Ψ = ξ · Φ for some Killing spinor Φ with constant 1
2
.

• If n = 7, the 1
2
-eigenspace of A is spanned by three Killing vector fields ξ1, ξ2, ξ3

defining a 3-Sasakian structure on S7 and Ψ is the canonical spinor of the 3-Sasakian
structure introduced in [1].

5. Deformations of generalized Killing spinors

In this section we study the deformation problem for generalized Killing spinors on spheres,
and show in particular that Killing spinors are rigid, in the sense that they cannot be deformed
into generalized Killing spinors.

For every spin manifold (M, g), the set GK(M, g) of generalized Killing spinors is a Fréchet
manifold. On the round sphere Sn, the (finite dimensional) vector spaces K 1

2
(Sn) and K− 1

2
(Sn)

consisting of Killing spinors with Killing constants ±1
2

respectively, are Fréchet submanifolds
of GK(Sn).

Theorem 5.1. The submanifolds K± 1
2
(Sn) are connected components of GK(Sn).

Proof. Let M be the connected component of GK(Sn) containing K 1
2
(Sn) and let Ψt be a

curve inM starting at some point of K 1
2
(Sn), i.e. a smooth 1-parameter family of spinors on

Sn satisfying

(27) ∇XΨt = At(X) ·Ψt,

where At ∈ Γ(End+(TSn)) is symmetric for all t and A0 = 1
2
id. Without any loss in generality

we can assume that Ψt has unit norm for every t. We will denote the derivative with respect to
t by a dot and drop the subscript whenever the objects are evaluated at t = 0. Differentiating
(27) with respect to t and evaluating at t = 0 yields

(28) ∇XΨ̇ = Ȧ(X) ·Ψ + 1
2
X · Ψ̇.

Taking the covariant derivative in this equation and skew-symmetrizing gives

RY,XΨ̇ = −[(∇XȦ)Y − (∇Y Ȧ)X] ·Ψ + [Ȧ(X) ∧ Y +X ∧ Ȧ(Y )] ·Ψ + 1
2
X ∧ Y · Ψ̇.

Using the fact that the spinorial curvature on the sphere satisfies RY,XΦ = 1
2
X ∧ Y · Φ for

every spinor Φ, the previous equation reads

(29) [(∇XȦ)Y − (∇Y Ȧ)X] ·Ψ = [Ȧ(X) ∧ Y +X ∧ Ȧ(Y )] ·Ψ.

On the other hand, differentiating at t = 0 the equation (8) satisfied by At yields

0 = 2(trA)(trȦ)− 2tr(AȦ) = (n− 1)trȦ,
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whence Ȧ is trace-free at t = 0. Moreover, from (7) we also get δ∇Ȧ = 0.

We now use the fact that |X · Φ|2 = |X|2 for every X ∈ TM and for every unit spinor Φ,
whereas |ω ·Φ|2 ≤ |ω|2 for ω ∈ Λ2M . From (29) we thus get (using a local orthonormal basis
ei of the tangent bundle):

|d∇Ȧ|2 = 1
2

n∑
i,j=1

|(∇eiȦ)ej − (∇ej Ȧ)ei|2 ≤ 1
2

n∑
i,j=1

|Ȧ(ei) ∧ ej + ei ∧ Ȧ(ej)|2

= (n− 1)|Ȧ|2 +
n∑

i,j=1

g(Ȧ(ei) ∧ ej, ei ∧ Ȧ(ej)) = (n− 2)|Ȧ|2.

Recall now the Weitzenböck formula for trace-free symmetric tensors h (cf. [7, Prop. 4.1]):

(30) (d∇δ∇ + δ∇d∇)h = ∇∗∇h+ h ◦ Ric− R̊(h),

where

R̊(h)(X) :=
n∑
i=1

RX,h(ei)ei

(note that there is a sign change between Bourguignon’s and our curvature convention). On

the round sphere Sn we have Ric = (n − 1)id and R̊(h)(X) = −h(X). Applying (30) to
h := Ȧ and using the relation above δ∇Ȧ = 0, we get

δ∇d∇Ȧ = ∇∗∇Ȧ+ nȦ.

Taking the scalar product with Ȧ and integrating over Sn (whose volume element is denoted
by vol) yields ∫

Sn
|d∇Ȧ|2vol =

∫
Sn

(
|∇Ȧ|2 + n|Ȧ|2

)
vol,

which together with the previous inequality |d∇Ȧ|2 ≤ (n− 2)|Ȧ|2 implies Ȧ = 0.

Going back to (28) we thus see that Ψ̇ is a Killing spinor. In other words, we have shown
that for every Ψ ∈ K 1

2
(Sn), the tangent space TΨM is contained in K 1

2
(Sn). This shows that

M = K 1
2
(Sn). The proof of the statement for K− 1

2
(Sn) is similar. �

6. Appendix. The canonical spinor on 3-Sasakian manifolds of dimension 7

We give here an alternative definition of the canonical spinor on 3-Sasakian 7-dimensional
manifolds discovered by Agricola and Friedrich [1]. This approach makes use of the Riemann-
ian cone construction which we now recall.

The Riemannian cone over (M, g) is the Riemannian manifold (M̄, ḡ) := (R+×M,dt2+t2g).
The radial vector ξ := t ∂

∂t
satisfies the equation

(31) ∇̄Xξ = X, ∀ X ∈ TM̄,
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where ∇̄ denotes the Levi-Civita covariant derivative of ḡ. Assume now that M is 3-Sasakian.
It is well known (and is nowadays the standard definition of 3-Sasakian structures) that M̄
has a hyperkähler structure J1, J2, J3, such that the vector fields ξi := Ji(ξ) on M̄ are Killing
and tangent to the hypersurfaces Mt := {t} ×M . When restricted to M = M1, ξi are unit
Killing vector fields satisfying the 3-Sasakian relations.

Suppose now that M has dimension 7. The real spin bundle of M is canonically identified
with the positive spin bundle Σ+M̄ restricted to M1 = M . With respect to this identification,
if ψ ∈ Γ(ΣM) is the restriction to M of a spinor Ψ ∈ Γ(Σ+M̄) and X is any vector field on
M identified with a vector field on M̄ along M1, then

(32) X · ψ = X · ξ ·Ψ

and

(33) ∇Xψ = ∇̄XΨ + 1
2
X · ξ ·Ψ.

Recall now that the restriction to Sp(2) of the half-spin representation Σ+
8 has a 3-dimensional

trivial summand. Correspondingly, on M̄ there exist three linearly independent ∇̄-parallel
spinor fields on which every 2-form from sp(2) (i.e. commuting with J1, J2, J3) acts trivially
by Clifford multiplication. Moreover, there exists exactly one such unit spinor Ψ1 (up to sign)
on which the Clifford action of Ω1 (the Kähler form of J1) is also trivial (cf. [19]).

Lemma 6.1. The spinor Ψ0 := 1
|ξ|2 ξ · ξ1 ·Ψ1 satisfies

(34) ∇̄XΨ0 = Ā(X) · ξ ·Ψ0,

where

Ā(X) :=

{
0 if X belongs to the distribution D := 〈ξ, ξ1, ξ2, ξ3〉

−2X if X ∈ D⊥.

Proof. Since Ji are ∇̄-parallel, (31) yields ∇̄Xξi = Ji(X) for all X ∈ TM̄ . We thus have

(35) ∇̄XΨ0 = 1
|ξ|2 (X · ξ1 ·Ψ1 + ξ · J1(X) ·Ψ1)− 2

|ξ|4 ḡ(ξ,X)ξ · ξ1 ·Ψ1.

This relation gives immediately ∇̄ξΨ0 = 0 and ∇̄ξ1Ψ0 = 0. Moreover, since the 2-form
ξ∧ ξ1− ξ2∧ ξ3 commutes with J1, J2, J3, it belongs to sp(2) and thus acts trivially by Clifford
multiplication on Ψ1. We then obtain ξ · ξ1 ·Ψ0 = ξ2 · ξ3 ·Ψ0, which together with (35) yields
∇̄ξ2Ψ0 = ∇̄ξ3Ψ0 = 0.

It remains to treat the case where X is orthogonal to 〈ξ, ξ1, ξ2, ξ3〉. Assume that X is
scaled to have unit norm. We consider the orthonormal basis of TM̄ at some point x ∈ M1

given by e1 = ξ, e2 = ξ1, e3 = ξ2, e4 = ξ3, e5 = X, e6 = J1(X), e7 = J2(X), e8 = J3(X). Since
Ω1 · Ψ1 = 0 where Ω1 = e1 · e2 + e3 · e4 + e5 · e6 + e7 · e8, we obtain Ω1 · Ψ0 = 0. Now, the
2-form e5 ∧ e6 − e7 ∧ e8 belongs to sp(2) and its Clifford action commutes with e1 · e2, thus



GENERALIZED KILLING SPINORS 15

e5 · e6 ·Ψ0 = e7 · e8 ·Ψ0. Together with the relation e1 · e2 ·Ψ0 = e3 · e4 ·Ψ0 proved above and
the fact that Ω1 ·Ψ0 = 0, we get

(36) (e1 · e2 + e5 · e6) ·Ψ0 = 0.

Using (35) we then compute at x:

∇̄XΨ0 = (X · ξ1 ·Ψ1 + ξ · J1(X) ·Ψ1) = (e5 · e2 + e1 · e6) · (−e1 · e2 ·Ψ0)

= (e1 · e5 + e2 · e6) ·Ψ0 = e5 · e2 · (e1 · e2 + e5 · e6) ·Ψ0 + 2e1 · e5 ·Ψ0

= 2e1 · e5 ·Ψ0 = −2X · ξ ·Ψ0,

thus proving the lemma. �

As a direct consequence of this result, together with (32)–(33), we obtain the following:

Corollary 6.2 ([1], Thm. 4.1). The spinor ψ0 := Ψ0|M is a generalized Killing spinor on M
satisfying

(37) ∇Xψ0 = A(X) · ψ0,

where

A(X) :=

{
1
2
X if X belongs to the distribution D := 〈ξ1, ξ2, ξ3〉

−3
2
X if X ∈ D⊥.
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2013-008 Bächle, A.; Margolis, L.: Rational conjugacy of torsion units in integral group rings
of non-solvable groups

2013-007 Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras

2013-006 Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes
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2008-006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on
Markovian data using nonparametric regression and a reduced number of nested
Monte Carlo steps
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