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Abstract
The dynamics of two-phase flows depend crucially on interfacial effects like surface tension

and phase transition. A numerical method for compressible inviscid flows is proposed that
accounts in particular for these two effects. The approach relies on the solution of Riemann-
like problems across the interface that separates the liquid and the vapour phase. Since the
analytical solutions of the Riemann problems are only known in particular cases an approxi-
mative Riemann solver for arbitrary settings is constructed. The approximative solutions rely
on the relaxation technique.
The local well-posedness of the approximative solver is proven. Finally we present numerical
experiments for radially symmetric configurations that underline the reliability and efficiency
of the numerical scheme.

Keywords: Compressible Two-Phase Flow, Conservation Laws, Riemann Solvers, Bubble and
Droplet Dynamics

1 Introduction
We consider the direct numerical simulation of a homogeneous compressible fluid that can appear
in a liquid and in a vapour state. In particular we are interested in inviscid two-phase flows that
account for surface tension as well as for mass exchange by evaporation and condensation.
The compressible hydrodynamics in the bulk phases is governed for the inviscid case by the Euler
equations. The two-phase modelling is much more challenging because possible curvature and
phase transition effects induce a complex transfer of momentum and energy through the interface.
We follow here a sharp interface approach such that the spatial domain is partioned into two bulk
regions by a free boundary. The flow equations in each bulk region are coupled by appropriate
trace conditions. The sharp interface approach is classical in multiphase fluid dynamics, and many
numerical methods have been suggested. We consider here a heterogeneous multiscale method
(HMM) in the spirit of e.g. [20]. The dynamics in the bulk phases is given by a macroscale model
and the local evolution of the interface is determined from a microscale model. The notion of
scales in this case should not be mixed up with different spatial or temporal scales. Rather the
HMM provides a versatile tool to treat the liquid-vapour free boundary value problem because
the complex models for the dynamics of the phase boundary can be realized in the microscale
model. Preliminary work in this direction can be found in [9, 12], and for a comparable situation
in porous media flow in [13].
Let us give an outline of this paper’s content. In Section 2 we present the full mathematical model
as a free boundary value problem in arbitrary spatial dimension. We consider the physically most
relevant case of slow subsonic phase boundaries such that a Gibbs-Thomson like relation has to be
added to the classical coupling conditions (conservation of mass, dynamical Young-Laplace law).
Two choices for these conditions that determine the evolution of the interface are proposed.
As a microscale model we obtain a planar Riemann problem, independent of the original spatial
dimension. The initial states for the Riemann problem are in different phases. Such Riemann
problems have been intensively studied in the last twenty years (see [14] for the general theory
and [10] for a recent contribution). However, there are no explicit results for arbitrary pressure
relations, kinetic relations and curvature dependent flow. Therefore we will follow [3] and construct
in Section 3 an approximative Riemann solver which belongs to the class of relaxation solvers. This
approximate Riemann solver is the major new contribution of this paper. With Theorems 3.1 and
3.2 we give basic well-posedness statements for the two kinetic relations under consideration.
We believe however that the relaxation approach remains effective for even more general kinetic
relations.
In Section 4 we discuss the complete heterogeneous multiscale method for radially symmetric
domains. The extension to arbitrary configurations in multiple space dimensions will be presented
elsewhere. The overall method is summarised in Algorithm 4.2. Most notably the algorithm
guarentees the conservation of mass. Finally in Section 5 we show numerical results. Convergence
studies and long term simulations demonstrate the reliability of the overall method. In particular
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we show that the numerical method dissipates the associated physical entropy. Furthermore we
present a detailed study on curvature effects, and we compare the mass transfer across the interface
for different mobilities in the kinetic relations.

2 The mathematical model
2.1 A free boundary value problem for compressible liquid-vapour flow
As the basic modelling approach we consider a sharp interface ansatz. To introduce the precise
setting let Ω ⊂ Rd with d ∈ N be an open bounded set. For any t ∈ [0, T ], T > 0, we assume that
Ω is partioned into the union of two open sets Ωvap(t), Ωliq(t), which contain the two bulk phases,
and a hypersurface Γ(t) – the sharp interface–, that separates the two spatial bulk sets. We restrict
ourselves to isothermal motion at constant temperature θ > 0, and let the fluid be inviscid. In the
spatial-temporal bulk sets { (x, t) ∈ Ω× (0, T ) | x ∈ Ωvap(t) ∪ Ωliq(t) } the dynamics of the fluid
is then governed by the hydromechanical system

%t + div(%v) = 0,

(%v)t + div (%v ⊗ v + p̃(%) I) = 0.
(1)

Here % = %(x, t) > 0 denotes the unknown density field and v = v(x, t) = (v1(x, t), · · · , vd(x, t))t ∈
Rd the unknown velocity field. The pressure p̃ = p̃(%) is a given scalar function and I ∈ Rd×d the
d-dimensional unit matrix.
Before we proceed with the thermodynamical set-up for (1) let us add initial and boundary condi-
tions. We fix the initial position of the interface Γ(0) and assume for initial density %0 und velocity
field v0

%(x, 0) = %0(x), v(x, 0) = v0(x) for x ∈ Ωvap(0) ∪ Ωliq(0). (2)

For the sake of simplicity we exclude flow across the boundary ∂Ω, i.e.

v · n = 0 on ∂Ω, (3)

where n is the outer normal to ∂Ω.

We denote the specific volume by τ = 1/% and remark that the pressure p(τ) = p̃(1/τ) is
related to the Helmholtz free energy ψ = ψ(τ) and the chemical potential µ = µ(τ) by

p(τ) = −ψ′(τ) and µ(τ) = ψ(τ) + p(τ) τ. (4)

As a prototype example we consider here the van der Waals pressure

p̃(%) = Rθ%

1− b% − a%
2 for % ∈ (0, b−1),

with the specific choices

θ = 0.85, a = 3, b = 1/3 and R = 8/3. (5)

From the graph in Figure 1 we observe that p̃ is increasing in the intervals Ãvap := (0, %spinodvap ) and
Ãliq := (%spinodliq , b−1) which define the vapor and the liquid phase. For later use we introduce also
Avap := (1/%spinodvap ,∞) and Aliq := (b, 1/%spinodliq ).
The system (1) can be written for U = (%, % v1, . . . , % vd)t in the conservation form

U t + F 1(U)x1
+ · · ·+ F d(U)xd = 0,
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Figure 1: Van der Waals pressure function p̃ = p̃(%).

with appropriately defined fluxes F 1, . . . ,F d. For µ ∈ Sd−1 and U ∈ (0, b−1)×Rd the eigenvalues
of the Jacobian of the directional flux µ1F

1(U) + . . .+ µdF
d(U) are then given by

λ1(U ;µ) = v · µ− τc(τ),

λ2(U ;µ) = · · · = λd+1(U ;µ) = v · µ,

λd+2(U ;µ) = v · µ+ τc(τ).

Here c(τ) :=
√
p′(τ) is the speed of sound. As a consequence U ∈ (Ãliq ∪ Ãvap) × Rd is a

necessary (and in fact sufficient) criterion for (1) to be hyperbolic. For hyperbolic systems the
notion of weak entropy solutions is widely believed to be the correct solution concept. Thus we
search for functions U = U(x, t) which are weak solutions with %(x, t) ∈ Ãliq/vap for almost all
(x, t) ∈ Ωliq/vap(t)× [0, T ] and satisfy the entropy condition

E(%,m)t + div ((E(%,m) + p̃(%))v) ≤ 0

in the distributional sense in the single bulk regions (not in the complete domain Ω where we have
to take into account the surface energy, see (14) below). Here we used E(%,m) = %ψ

(
%−1) +

|m|2
2% , m = %v. It is straightforward to check that E is convex for states in the bulk sets and thus

an entropy for (1).
To close the model (1) it remains to provide coupling conditions at the free boundary Γ(t).

For ξ ∈ Γ(t) let us denote the speed of Γ(t) in the normal direction ν = ν(ξ, t) ∈ Sd−1 by
s = s(ξ, t) ∈ R. The normal vector is always chosen as pointing into the vapor domain Ωvap(t).
Across the interface the following d+ 1 trace conditions which represent the conservation of mass
and the balance of momentum in presence of capillary surface forces are posed.

J% (v · ν − s)K = 0, (6)
J% (v · ν − s)v · ν + p̃(%)K = (d− 1) ζ κ, (7)

q
v · tl

y
= 0 (l = 1, . . . , d− 1). (8)

Thereby JaK := avap − aliq and avap/liq := limε→0,ε>0 a(ξ ± εν) for some quantity a defined in
Ωvap(t) ∪ Ωliq(t). In (7) by κ = κ(ξ, t) ∈ R we denote the mean curvature of Γ(t) associated with
orientation given through the choice of the normal ν. The constant surface tension coefficient is
ζ ≥ 0, and t1, . . . , td−1 ∈ Sd−1 are a complete set of tangential vectors.
In this work we are interested in non-characteristic phase boundaries, which are subsonic. For
a subsonic phase boundary the adjecent states Uvap/liq are such that the undercompressivity
condition

|%liq(vliq · ν − s)| = |%vap(vvap · ν − s)| < min{c(τliq), c(τvap)} (9)
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holds. It is known (see e.g. [1, 19]) that well-posedness of the free boundary value problem for (1)
requires an additional condition. One possible choice is yet another algebraic coupling condition
of the general form

K(τliq, τvap, j) = 0. (10)

In (10) we used the relative mass flux

j = %liq(vliq · ν − s) = %vap(vvap · ν − s).

Functions K : Aliq × Avap × R → R are usually called kinetic relations. We refer for more
mathematical background to [14]. In Section 2.2 below we discuss possible kinetic relations.

2.2 Kinetic Relations
In the literature kinetic relations have been suggested (see [1, 19]), which control the entropy
dissipation explicitly. In terms of the general form (10) these are given by

K(τliq, τvap, j) :=
s
µ(τ) + 1

2τ
2 j2

{
+ k(j) = 0. (11)

In (11) the driving force k : R→ R is a smooth function, that satisfies

k(j)j ≥ 0. (12)

Later on we use the simple choice

k(j) = c j, c ≥ 0. (13)

The relation of (11) to entropy consistency can be seen as follows. Multiplying (11) by the mass
flux j and applying (6), (7) one obtains

−s (JE(%,m)K + (d− 1) ζ κ) + J(E(%,m) + p̃(%))v · νK = −k(j) j. (14)

This is nothing but the standard entropy jump conditions with an additional term for the interfacial
energy. Condition (12) ensures that the entropy is dissipated.

We emphasize that the conditions (6), (7) and (11) agree with standard conditions for static
two-phase equilibria.

Remark 2.1. Consider a spherical bubble or droplet at rest. For a bubble radius r > 0 the mean
curvature is κ = 1/r (κ = −1/r for a droplet). The standard theory then requires [2] that the
Young-Laplace law holds and the chemical potential is continuous across the interface, respectively
given by

p(τvap)− p(τliq) = (d− 1)ζ/r and µ(τvap) = µ(τliq). (15)

Our choice of the kinetic relation (11) includes such situations as stationary solutions, i.e., for
j = 0.

For vanishing surface tension the conditions are known as the Maxwell equal-area rule. Then we
have p∗ := p(τliq) = p(τvap) and in view of (4) 0 = µ(τliq)−µ(τvap) = p∗(τliq−τvap)−

∫ τvap
τliq

p(τ) dτ .
It is important to note that the choice (5) puts some restrictions to subsonic phase boundaries (see
(9)). For a subsonic phase boundary the graph of the line connecting τliq and τvap must intersect
the graph of p in the interval (τ spinodliq , τ spinodvap ). Thus the absolute pressure difference is bounded.
For r << 1 this is obviously not possible and we do not have stationary solutions with j = 0.
However, there are still admissible (dynamical) solutions with j 6= 0.
The observed non-existence of such stationary solutions is important for the relaxation approach
in Section 3.
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We consider in this paper a second kinetic relation which is often used in the literature (see
e.g. [15, 18]). This kinetic relation does not depend on the relative flux j and without further
conditions it is not clear whether an entropy statement like (14) holds. However its simpler
structure makes it accessible for rigorous analysis. This kinetic relation K : Aliq × Avap → R is
given by

K(τliq, τvap) := τvap − ϕ(τliq). (16)

The function ϕ : Aliq → Avap is only assumed to be smooth and strictly monotone decreasing.

3 A Two-Phase Relaxation Riemann Solver
In this section we will introduce a relaxation approach for two-phase Riemann problems which
is needed as microscale solver in the overall HMM in Section 4 below. The approach relies on
[3, 4]. We will first describe the structure of the relaxation approximation and will then discuss
the wellposedness of the approximative solution depending on the selected kinetic relation.

3.1 The Basic Structure of the Relaxation Approximation
As we will see in Section 4 the HMM provides for any point of the discrete interface states as
input data for the microscale solver states ULiq ∈ Uliq := Ãliq×Rd, UVap ∈ Uvap := Ãvap×Rd, an
orthonormal system ν, t1, . . . , td−1 ∈ Sd−1, and an associated (constant) curvature value κ ∈ R.
With the Riemann solver we compute then interfacial bulk states which result from the local
interaction of the input data based on a chosen kinetic relation K. From the technical point of
view the output of this section will be mappings of type

MK :
{

Uliq × Uvap × (Sd−1)d × R → Uliq × Uvap × R
(ULiq,UVap,ν, t

1, . . . , td−1, κ) 7→ (U liq,Uvap, s).
(17)

The Riemann problem under consideration is now %
% v
%u


t

+

 % v
% v2 + p̃(%)

% vu


x

=

0
0
0

 , (18)

for x := x · ν, v := v · ν and u :=
(
v · t1, . . . ,v · td−1)t. It is subject to the initial condition%v

u

 (x, 0) =
{

(%Liq,vLiq · ν,vLiq · t1, . . . ,vLiq · td−1)t :x < 0,
(%Vap,vVap · ν,vVap · t1, . . . ,vVap · td−1)t :x > 0.

(19)

We expect that the solution of this two-phase Riemann problem consists of d+ 2 waves, one wave
being an undercompressive phase boundary with adjecent states U liq,Uvap, see Figure 2 for some
illustration. Exact Riemann solvers of this type can be found in [12, 15]. Note however that they
do not cover the general kinetic relation (11) and surface tension.
For the reasons outlined in the introduction we approximate now the exact solution of (19) by
the solution of the Riemann problem for a larger but more simple system. Precisely we solve the
relaxation Riemann problem

V t +G(V )x = 0⇔


%
% v
%u
%π


t

+


% v

% v2 + π
% vu

(% π + a2)v


x

=


0
0
0
0

 , (20)

subject to the initial datum

V (x, 0) =
{
V Liq :x < 0,
V Vap :x > 0, (21)

5



x

phase
boundary

ULiq

Uliq
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Figure 2: Typical wave structure for the exact
two-phase Riemann problem.

x

v − τ a

v
s = v − τ j

relaxation
phase boundary

v + τ a

VLiq

V#

Vliq
Vvap

VVap

Figure 3: Typical wave fan of the approxi-
mated two-phase Riemann solution.

with

V Liq = %Liq
(
1, vLiq · ν, vLiq · t1, . . . , vLiq · td−1, p(τLiq)

)t
,

V Vap = %Vap
(
1,vVap · ν,vVap · t1, . . . ,vVap · td−1, p(τVap)

)t
.

The parameter a > 0 will be defined below. It is straightforward to see that (20) is hyperbolic in
the convex state space (0, b−1)× Rd+1. The eigenvalues of the Jacobian of G are

λR1 (V ) = v − τa, λR2 (V ) = · · · = λRd+1(V ) = v, λRd+2(V ) = v + τa.

It is also readily checked that all characteristic fields of (20) are linear degenerate. Therefore
the weak solution of (20), (21) with a > 0 is uniquely determined and made up of d + 2 contact
discontinuities. This procedure would only provide a good approximation for one-phase problems.
Because we want to solve a two-phase problem for some given kinetic relationK : Aliq×Avap×R→
R, we will rely the approximation on a different wave fan (, which in general is not a weak solution
of (20)). We propose to approximate the two-phase Riemann problem by adding an additional
phase boundary (see Figure 3). This artificial phase boundary is a discontinuous wave that is
supposed to satisfy the jump conditions

̊ JτK + JvK = 0, ̊ JvK + JπK = C := (d− 1) ζ κ,
JuK = 0, K(τliq, τvap, ̊) = 0.

(22)

In this way we ensure that later on the jump conditions (6), (7), (8) and the kinetic relation
(10) are preserved for the approximation (at least for fixed surface tension C ∈ R). The number
̊ = ̊(V Liq,V Vap) is a function of the states V Liq,V Vap, and a-priori not known exactly. We
assume that this mapping satisfies

̊ = ̊(V Liq,V Vap) ∈ C
(
Ãliq×Rd+1 × Ãvap×Rd+1) . (23)

All other waves are kept satisfying the standard Rankine-Hugoniot conditions. Such an approach
was introduced in [3] for the p-system.

Let now some ̊ be given and assume that ̊ does not vanish. W.l.o.g. we consider ̊ < 0. This
implies for any V ∈ (0, b−1)× Rd+1

λR2 (V ) = · · · = λRd+1(V ) = v < v − τ ̊.

The case ̊ > 0 can be treated in an analogous way, for ̊ = 0 see Remark 3.4.
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Now we let a > −̊ and search for a function V : R× (0, T )→ (Ãliq ∪ Ãvap)× Rd+1 given by

V (x, t) =


%
% v
%u
% π

 =



VLiq for x ≤ t σ1,

V# for t σ1 > x ≤ t σ2,

Vliq for t σ2 > x ≤ t σ3,

Vvap for t σ3 > x ≤ t σ4,

VVap for t σ4 > x

(24)

with propagation speeds

σ1 = λR1 (V l) = λR1 (V #), σ2 = λR2 (V #) = λR2 (V liq),
σ3 = s, σ4 = λd+2(V R

vap) = λRd+2(V r).

The states Vliq and Vvap are connected by a discontinuity which we call relaxation phase boundary.
From a > −̊ > 0 we see immediately that the ordering of the waves in (24) is consistent. For
the case ̊ > 0 the relaxation phase boundary would move slower than the contact wave and the
construction (24) has to changed accordingly.

We summarize the conditions for the three unknown intermediate states V#, Vliq and Vvap in
(24) in Table 1. The obviously redundant relations are already skipped. Altogether we obtain
11 linear equations and one nonlinear equation for twelve unknowns. Note that we use the J·K-
notation not only for the (relaxation) phase boundary but for all discontinuities. We call a function
V of form (24) relaxation approximation for the kinetic relation K if all conditions from Table 1
are satisfied. The solution of this algebraic problem depends on the choice of the kinetic relation
and will be investigated in the next section.

JV K := V# − VLiq
JV K:=
Vliq-V#

JV K := Vvap − Vliq JV K := VVap − Vvap

σ1 = v − τ a σ2 = v σ3 = v − τ ̊ σ4 = v + τ a

−a JτK+JvK= 0
a JvK+JπK= 0

JuK= 0

JvK= 0
JπK= 0

−̊ JτK+ JvK = 0
̊ JvK+ JπK =C

JuK = 0
K(τliq, τvap, ̊)= 0

a JτK+JvK= 0
−a JvK+JπK= 0

JuK= 0

Table 1: Jump conditions for the two-phase relaxation Riemann problem. Each column stands
for one wave in the representation formula (24).

3.2 Wellposednes of the Two-Phase Relaxation Riemann Solver
The main results of this section are Theorems 3.1 and 3.2 which give existence, uniqueness, and
continuous dependence statements for the kinetic relations K from (16) and K from (11), respec-
tively.

Theorem 3.1. Consider the kinetic relation K from (16) and let (ULiq,UVap,ν, t
1, . . . , td−1, κ) ∈

Uliq × Uvap × (Sd−1)d × R of function MK from (17) be given such that ̊ < 0 holds.
Then there exists a positive number ā such that for all a > ā there is a unique relaxation approxi-
mation V for K. In particular V satisfies %#, %liq ∈ Ãliq and %vap ∈ Ãvap.
The mapping MK is continuous.

Proof. The proof is given for the case ̊(VLiq,VVap) < 0, the positive case is similar. First we
show that the system of 12 equations from Table 1 is uniquely solvable. Choose ā such that
̊ ∈ (−ā, 0) holds which is possible due to (23). Using all jump conditions except the kinetic
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relation a straightforward computation shows that all unknowns can be expressed in terms of
τ := τliq. In particular we have for a > ā the relation τvap = Aaτ +Ba with

Aa = Aa(VLiq,VVap) = a ̊− ̊2

2 a2 + a ̊− ̊2
,

Ba=Ba(VLiq,VVap) = πVap − πLiq + a(vVap − vLiq) + 2 a2 τVap − C
2 a2 + a ̊− ̊2

.

(25)

To conclude we define the mapping Fa : Aliq → R by Fa(τ) = ϕ−1(Aaτ + Ba). Recall that ϕ is
strictly decreasing and ϕ−1 : Avap → Aliq exists. Furthermore we have Aa → 0 and Ba → τVap ∈
Avap for a → ∞. Thus Aaτ + Ba ∈ Avap for all τ in the bounded set Aliq for a > ā, possibly
increasing once more ā. Again using Aa → 0 we observe that F a is contracting since ϕ is smooth.
Thus there exists a unique solution of the equations from Table 1, the corresponding mapping MK
is continuous.
There is a continuous function g = g(VLiq,VVap, a) with g(VLiq,VVap, a) → 0 for a → ∞ such
that τ# = τLiq + g(VLiq,VVap, a) holds. Then we find τ# ∈ Aliq for sufficiently large ā.

Theorem 3.1 gives a global existence result. For the more realistic kinetic relation K from (11)
we are only able to show a result for initial datum close to states which produce a single phase
boundary as traveling wave solution.

Precisely consider (ÛLiq, ÛVap, ν̂, t̂
1
, . . . , t̂

d−1
, κ̂) ∈ Ãliq × Rd × Ãvap × Rd × (Sd−1)d × R and

a number ̂ < 0 that satisfy

−̂(τ̂Vap − τ̂Liq) + (v̂Vap − v̂Liq) = 0,
̂(v̂Vap − v̂Liq) + p(τ̂Vap)− p(τ̂Liq) = (d− 1) ζ κ̂,
ûLiq − ûVap = 0, K(τ̂Liq, τ̂Vap, ̂) = 0.

(26)

Then
Û(x, t) = ÛLiq for x− ŝ t < 0 and Û(x, t) = ÛVap for x− ŝ t > 0 (27)

is a single phase boundary that is a solution of (18), (19) with speed ŝ = v̂Liq − τ̂Liq ̂ > 0.
Due to (22) the single relaxation phase boundary

V̂ (x, t) = V̂ Liq for x− ŝ t < 0 and V̂ (x, t) = V̂ Vap for x− ŝ t > 0 (28)

is also a relaxation approximation when ̊ = ̂ holds.

Theorem 3.2. For a kinetic relation K let ÛLiq, ÛVap, ν̂, t̂
1
, . . . , t̂

d−1
, κ̂, ̂ from (27) be given such

that ̊(V̂ Liq, V̂ Vap) 6= 0 and the conditions

|̂| < max { c(τ̂Liq), c(τ̂Vap) } and ̊(V̂ Liq, V̂ Vap) = ̂ (29)

hold.
Then there exists a number ā > 0 and an open set W ⊂ Uliq×Uvap×(Sd−1)d×R with (ÛLiq, ÛVap,

ν̂, t̂
1
, . . . , t̂

d−1
, κ̂) ∈ W such that there is for all (ULiq,UVap,ν, t

1, . . . , td−1, κ) ∈ W and all
a > ā a unique relaxation approximation V for K. In particular V satisfies %#, %liq ∈ Ãliq and
%vap ∈ Ãvap.
The mapping MK from (17) is continuous.

Remark 3.3. The first condition in (29) renders the single phase boundary (27) to be a subsonic
wave. It is included in the defining relation (9).

Proof of Theorem 3.2. We present the proof for the case ̊(V̂ Liq, V̂ Vap) < 0. As in the proof of
Theorem 3.1 we condense the conditions in Table 1 to a scalar equation for τvap in terms of τ = τliq.
One finds for Ta(τ) = Ta(τ ;VLiq,VVap) := Aa(VLiq,VVap)τ +Ba(VLiq,VVap) again the relation

τvap = Ta(τliq;VLiq,VVap),

8



where Aa and Ba are defined as in (25). Applying the kinetic relation (11) we can eliminate τvap
and obtain the scalar equation

Fa(τ) = Fa(τ ;VLiq,VVap) := K (τ, Ta(τ ;VLiq,VVap), ̊(VLiq,VVap)) = 0,

or writing out K

µ (Ta(τ ;VLiq,VVap))− µ(τ) + ̊2

2
(
Ta(τ ;VLiq,VVap)2 − τ2)+ k(̊) = 0.

As in the proof of Theorem 3.1 we see that Fa : Aliq → R is well-defined for a sufficiently large.
We know from (26) that Ta(τ̂Liq; V̂ Liq, V̂ Vap) = τ̂Vap and thus

Fa(τ̂Liq; V̂ Liq, V̂ Vap) = 0 (30)

holds with (29).
Now, recall from (4) that the chemical potential satisfies µ′(τ) = τ p′(τ). Then the derivative of
Fa with respect to τ is

F ′a(τ) = Ta(τ) p′(Ta(τ))T ′a(τ)− τ p′(τ) + ̊2 (Ta(τ)T ′a(τ)− τ)
= τ

(
−p′(τ)− ̊2

)
− Ta(τ)T ′a(τ)

(
−p′(Ta(τ))− ̊2

)
.

From (29) we conclude p′(τ̂Liq/Vap) + ̂2 = −c2(τ̂Liq/Vap) + ̂2 < 0. Moreover we can choose ā such
that the relation Ta(τ̂Liq; V̂ Liq, V̂ Vap)Aa(V̂ Liq, V̂ Vap) < 0 holds for all a > ā, such that we get

F ′a(τ̂Liq; V̂ Liq, V̂ Vap) > 0.

Then we can deduce from (30) that there exists at least locally a unique relaxation approximation
V for K such that moreover MK is continuous.

Remark 3.4. Theorem 3.2 is proven for the case that ̊(VLiq,VVap) does not vanish. The existence
of a relaxation approximation can also be proven for the zero case provided the condition

̊(VLiq,VVap)=0⇔ V̂ from (28) with VLiq/Vap = V̂Liq/Vap, ̂ = 0 solves (26)

holds. Then (24) remains well-defined since then V # = V liq holds.

4 A Heterogeneous Multiscale Method for Radially Sym-
metric Solutions

In this section we present our numerical approach to solve the free boundary value problem (1),
(2), (3) with a phase boundary that obeys (6), (7), (8) and (10). For other numerical methods for
undercompressive waves in systems of conservation laws for two-phase flow we refer to [6, 7, 18, 21].
We will restrict ourselves to the onedimensional case d = 1 and radially symmetric solutions in Rd
for d > 1. In this way it is possible to take into account curvature effects without being in need
for a complex computation of the curvature.

Let us introduce first the transformed setting [16]. For Rmax > Rmin > 0 let U = U(x, t) =
(%(x, t),m(x, t)t)t be a radially symmetric solution of the system (1) in Ω × [0, T ) with Ω ={
x ∈ Rd

∣∣ Rmin < |x| < Rmax
}
. We assume that there is a single interface of form Γ(t) =

γ(t)Sd−1 with γ(t) ∈ (Rmin, Rmax) for t ∈ [0, T ). Then there is (accepting a double use of
notations for the density) a function W = W (r, t) = (%(r, t),m(r, t))t with

%(x, t) = %(r, t), m(x, t) = x

r
m(r, t), |x| = r. (31)
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r

t

tn R(inγ , γn)

tn+1 R(inγ , γn+1)
tn+1 R(in+1

γ , γn+1)

tn+2 R(in+1
γ , γn+2)

xinγ−1 xinγ xinγ+1 xinγ+2

γn

γn+1

γn+1

γn+2

Figure 4: Possible mesh modification: moving mesh strategy for tn → tn+1 resp. tn+1 → tn+2 and
local remeshing when in+1

γ = inγ + 1. The dots denote the actual partition obtained by applying
R and the grey boxes indicate the cells.

W :
(
(Rmin, Rmax) \ γ(t)

)
× [0, T )→ (Ãliq ∪ Ãvap)× R satisfies

W t + 1
rd−1

(
rd−1 F (W )

)
r

= d− 1
rd−1 Q(W ) (32)

in { (r, t) ∈ (Rmin, Rmax)× (0, T ) | r 6= γ(t) }. In view of (2), (3) the system (32) is completed
with the initial condition

W (r, 0) = W 0(r) := %0(x) (1,v0(x) · x)t , |x| = r,

andm(Rmin, t) = m(Rmax, t) = 0 for t ∈ [0, T ). In (32) the functions F ,Q : (Ãliq∪Ãvap)×R→ R2

are given by

F (W ) =
(

m
m2

% + p̃(%)

)
, Q(W ) =

(
0
p̃(%)

)
.

The macrosolver of the numerical scheme can be classified as a moving mesh finite volume scheme
with explicit time stepping. For two successive time levels tn < tn+1, n ∈ N, the associated time
step is defined by ∆tn = tn+1 − tn.

For the introduction to the moving mesh strategy let us introduce first the points Rmin =
x0 < x1 < · · · < xI+1 = Rmax. The numerical algorithm will determine for any n ∈ N a number
γn ∈ (Rmin, Rmax) which stands for the position of the discrete phase boundary at time tn. Let

inγ =
{
k if |γn − xk| < |γn − xi| for all i = 1, . . . , I, i 6= k,

i if |γn − xi| = |γn − xi+1| .
(33)

the index of the closest point to γn. For the spatial discretization we introduce a time-dependent
partition through the function R : N× R→ P(R),

R(inγ , γn) =
{
r0, . . . , rI+1 ∈ [Rmin, Rmax]

∣∣∣ ri = xi for i 6= inγ and rinγ = γn
}
.

Figure 4 shows possible realizations of R.
In order to preserve the original multidimensional conservation we consider (32) not as a one-

dimensional system, but approximate cell averages for the original spherically symmetric situation,
see e.g. [17]. We follow then the classical finite volume strategy in Rd instead and introduce
multidimensional grid cells

Kn
i =

{
x ∈ Rd

∣∣ rni ≤ |x| ≤ rni+1
}

for rni ∈ R(inγ , γn), i = 0, . . . , I,
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with cell volume |Kn
i | = Ad(rni+1)−Ad(rni ) and surface measure |∂Kn

i | = A′d(rni+1)−A′d(rni ). Here
Ad(r) is the volume of a d-dimensional sphere with radius r > 0.

We consider now iterates

W n
i ≈

1
|Kn

i |

∫ rni+1

rn
i

A′d(r)W (r, tn) dr.

The family {W n
i | n ∈ N, 0 ≤ i ≤ I } is computed for i = 0, . . . , I by∣∣Kn+1

i

∣∣ W n+1
i = |Kn

i | W n
i −∆tn

(
A′d(rni+1)F ni+1,– −A′d(rni )F ni,+ −

(
A′d(rni+1)−A′d(rni )

)
Q(W n

i )
)

(34)

for n > 0, Kn+1
i with respect to R(inγ , γn+1), and

W 0
i = 1
|K0

i |

∫ r0
i+1

r0
i

A′d(r)W 0(r) dr.

It remains to fix the fluxes F ni,–/+ in (34). Let F num : ((Ãliq ∪ Ãvap)× R)2 → R2 be an arbitrary
numerical flux that is consistent with F from (32). In the numerical experiments we use the local
Lax-Friedrichs flux. Furthermore we assume that we have for a given kinetic relation K a mapping
MK as in (17). We applyMK (see (35) below) and get two states denoted byW n

–/+ and the speed
denoted by sn. The fluxes for (34) are then given by

F ni,–/+ =
{
F num(W n

i−1,W
n
i ) for i 6= inγ ,

F (W n
–/+)− snW n

–/+ for i = inγ .

For given iterates {W n
i | n ∈ N, 0 ≤ i ≤ I } we define the piecewise constant approximation

W h(r, t) = W n
i for (r, t) ∈ [rni , rni )× [tn, tn+1).

Remark 4.1. We stress that the scheme (34) can be understood as a moving mesh method or
alternatively as a classical finite volume method on a space-time mesh. In Figure 4 we display the
underlying mesh structure. For a scalar model problem we refer to [5] and for the case d = 1 to
[8]. The moving mesh ansatz allows to define a mass conservative discretization.

We summarize the overall model in the subsequent algorithm which takes the form of a multi-
scale method. To ease the notation assume that the initial data is in the liquid (vapour) state for
r < γ0(r > γ0) (droplet configuration).

Algorithm 4.2 (Heterogeneous multiscale method). Let a kinetic relation K, an associated map-
ping MK , W 0

0, . . . ,W
0
I and γ0 be given. Find i0γ via (33), construct R(i0γ , γ0), and set n = 0,

s0 = 0.

While tn < T Do

Step 1: Microscale. Compute with ULiq =
(
(W n

inγ−1)t,0
)t,

UVap =
(
(W n

inγ
)t,0

)t and 0 ∈ Rd−1

(U liq,Uvap, s
n) = MK

(
ULiq,UVap, e

1, . . . , ed,
1
γn

)
, (35)

where ei ∈ Rd is the ith unit vector. Define W n
–/+ =

(
U liq/vap

)
1,2.

Step 2: Time Step. The time step ∆tn is chosen according to a standard CFL condition in the
bulk regions, and such that 2sn ∆tn < (rinγ+1 − γn) for sn > 0 and 2sn ∆tn < (rinγ−1 − γn)
for sn < 0 holds. Put tn+1 = tn + ∆tn, γn+1 = γn + sn ∆tn.
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Step 3: Macroscale. Construct the new mesh R(inγ , γn+1), compute
∣∣Kn+1

i

∣∣ and apply the up-
date formula (34) for i = 0, . . . , I to obtain W h(·, tn+1).

Step 4: Projection to New Mesh. Find in+1
γ according to (33). If in+1

γ 6= inγ the function
W h(·, tn+1) is substituted by the L2-projection of itself onto the set of piecewise constant
functions defined on R(in+1

γ , γn+1).

Step 4: n 7→ n+ 1

Figure 4 illustrates the conservative projection step from R(inγ , γn+1) to R(in+1
γ , γn+1).

The proposed Algorithm 4.2 has the following properties:

Lemma 4.3. (i) The HMM 4.2 with (11) or (16) is mass conservative for d ∈ N and conserves
momentum for d = 1.

(ii) Consider a single phase boundary (27) for K and let Ŵ Liq and ŴVap be the rotationally
transformed states computed from (31).

• For d = 1 there holds

W n
i =

{
Ŵ Liq : i < inγ ,

ŴVap : i ≥ inγ .
(36)

• If d ≥ 1 and v̂Liq = v̂Vap = ŝ = 0 the initial configuration is preserved, i.e. (36) is valid
with inγ = i0γ for all n > 1 (static phase boundary).

Up to our knowledge there is no simple fully conservative finite volume scheme for (32) with
d > 1. Furthermore we can not expect (36) in the dynamic case. Constant functions are not
maintained due to the intrinsic geometry change.

Proof. (i) For d = 1 the source term in (32) vanishes and F ninγ ,– = F ninγ ,+ holds. The volume
integral over (34) gives∑

i

∣∣Kn+1
i

∣∣ Wn+1
i =

∑
i

|Kn
i | W

n
i −∆tn

∑
i

(
A′

d(rn
i+1)Fn

i+1,– −A
′
d(rn

i )Fn
i,+
)

︸ ︷︷ ︸
=0

.

With d > 1, the same argument holds for the first component of W .

(ii) For d = 1 the source term vanishes and F ni+1,– = F ni,+ holds for i 6= inγ . With (34) we obtain
in the cell with index inγ

(xinγ+1 − γn+1)Wn+1
inγ

= (xinγ+1 − γn)ŴVap −∆tn
(
F (ŴVap)− F (ŴVap) + ŝ ŴVap

)
.

Since γn+1 = γn + sn ∆tn we find W n+1
inγ

= ŴVap and analogously W n+1
inγ−1 = Ŵ Liq.

Let us now consider the case d > 1 where mn
i = sn = 0 holds. It is enough to consider the

second component of (34). We have for i = 0, . . . , I∣∣Kn+1
i

∣∣ mn+1
i = |Kn

i | m
n
i −∆tn

(
A′

d(rn
i+1) p̃(%n

i+1)−A′
d(rn

i ) p̃(%n
i )−

(
A′

d(rn
i+1)−A′

d(rn
i )
)
p̃(%n

i )
)
.

The pressure cancels out such that by Kn+1 = Kn due to sn = 0 in all cells mn+1
i = mn

i is
satisfied.
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γ0 %l %r vl vr ζ c d

(a) 1 1.7 0.4 −0.2 −0.2 0 1 1
(b) 1 1.9 0.3 0 −0.2 0.1 1 2
(c) 1 1.9 0.3 −1 −1 0.1 1 2
(d) 1 0.3 1.8 0.2 0.4 0.1 1 3
(e) 1 1.8238 0.4 0 0 0.05 0.3, 1, 5 2
(e∞) 1.3105 1.82 0.3289 0 0 0.05 0.3, 1, 5 2
(f) 1 1.8 0.3 0 0 0.01, 0.1, 0.2 0.5, 1, 2 2

Table 2: Initial data and stationary configurations.
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Figure 5: Experimental order of convergence.

5 Numerical Examples
In this section we test the proposed relaxation two-phase Riemann solver of section 3 as microsolver
within the HMM framework of Algorithm 4.2. Two major issues are addressed: impacts of surface
tension and kinetic relations on the dynamics of two-phase flows and the validation of the overall
HMM.

We applied kinetic relation (11) with (13). For the mass flux estimation

̊(V liq,V vap) := 0.8 vvap − vliq
τvap − τliq

+ 0.2 f(τliq, τvap)
−c

(37)

was used, where f(τliq, τvap) = Jψ(τ)K+p(τliq)+p(τvap)
2 JτK+ τliq+τvap

2 (d−1) ζ κ. Note that f(τliq, τvap)+
k(j) = 0 is equivalent to (11) when (7) holds. The convex combination (37) ensures (29) and was
chosen in view of Remark 3.4. For the flux computation in the bulk phases we apply a local
Lax–Friedrichs method [16].

5.1 Experimental Order of Convergence
The first test is devoted to the validation of the HMM. We demonstrate grid convergence of optimal
order. For Ω =

{
x ∈ Rd

∣∣ 0.95 < |x| < 1.05
}
, Riemann initial data (a)-(d) of Table 2 are used.

Since exact solutions are not available a reference solution W̃ was computed with I = 500 cells.
We calculate the error

eh =
∫ T

0

∫ Rmax

Rmin

Ad(r)
∣∣Wh(r, t)− W̃ (r, t)

∣∣ dr dt

for the numerical solution Wh on 50, 100, 150, 200, 250 and 350 cells, respectively. The end time
T = 0.01 was reached after around 700 time steps for the finest grid.

Figure 5 shows the first order of convergence for several initial conditions and spatial dimen-
sions. This is the optimal order that can be expected in view of the first-order scheme (34).
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Figure 6: Evolution of the droplet radius (left) and the energy decay (right) in time.

5.2 Global Energy Release and Steady State Solutions
A transient solution should reach its steady state at T = ∞ and at the same time should be the
minimizer of the associated energy/entropy. The total energy at time t in d-dimensional setting
is given by (cf. [11])

E(%(·, t),m(·, t)) =
∫

Ωliq(t)∪Ωvap(t)

%(x, t)ψ
(

1
%(x, t)

)
+ |m(x, t)|2

2 %(x, t) dx+ ζ |Γ(t)| .

We have seen in Remark 2.1 that stationary two-phase solutions are determined by (15) such that
the energy reaches its minimum with Estat := min

{
E(%,0)

∣∣ ∫
Ω % dx =

∫
Ω %0 dx

}
.

With Ω =
{
x ∈ Rd

∣∣ 0 < |x| < 4
}
and initial conditions (e) the states in (e∞), Table 2, provide

a stationary solution.
Figure 6 left shows that the evolution of the approximate solution with 100 cells towards a

configuration with the stationary droplet diameter. This observations holds for different mobility
parameters in (13). Moreover, increasing entropy dissipation via the mobility parameter seems to
have a damping effect. Figure 6 right shows the global energy decay t 7→
E(%(·, t),m)(·, t) − Estat. One observes the method is capable to converge to the stationary solu-
tion. The highest energy release was obtained for c = 1, for c = 0.3 the solution oscillates around
the stationary solution and for c = 5 the final state is approached very slowly.

5.3 Evaporating Droplet
Finally we consider the dynamics for an evaporating droplet with slightly different boundary
conditions. At the inner boundary (3) is still used. At the outer boundary Rmax we apply the
outflow condition F nI+1,– = F (W n

I ) to mimic an unbounded container.
Figure 7 displays the solution for c = 1, ζ = 0.1 and initial states (f) in Table 2 with 5000 cells.

As expected the droplet vanishes for this setting. Note that plateau values do not form due to the
intrinsic geometry change in r. The evolution of the droplet radius for different values of mobility
c and surface tension ζ are shown in Figure 8. For lower dissipation rates, the droplet evaporates
faster. The same holds for higher surface tension.
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2013-001 Kohls, K.; Rösch, A.; Siebert, K.G.: A Posteriori Error Analysis of Optimal Control
Problems with Control Constraints

2012-018 Kimmerle, W.; Konovalov, A.: On the Prime Graph of the Unit Group of Integral
Group Rings of Finite Groups II

2012-017 Stroppel, B.; Stroppel, M.: Desargues, Doily, Dualities, and Exceptional
Isomorphisms

2012-016 Moroianu, A.; Pilca, M.; Semmelmann, U.: Homogeneous almost
quaternion-Hermitian manifolds

2012-015 Steinke, G.F.; Stroppel, M.J.: Simple groups acting two-transitively on the set of
generators of a finite elation Laguerre plane

2012-014 Steinke, G.F.; Stroppel, M.J.: Finite elation Laguerre planes admitting a
two-transitive group on their set of generators

2012-013 Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.: Polar actions on complex
hyperbolic spaces

2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces

2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs

2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces

2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations

2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces

2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors
under censoring

2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily



2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
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2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups

2009-004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator

2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation

2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
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