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Some Remarks on the Statistical Analysis of
SVMs and Related Methods

Ingo Steinwart

1 Introduction

Given a data set D := ((x1,y1), . . . ,(xn,yn)) sampled from some unknown distribu-
tion P on X ×Y , the goal of supervised statistical learning is to find an fD : X → R
whose L-risk

RL,P( fD) :=
∫

X×Y
L
(
x,y, fD(x)

)
dP(x,y)

is small. Here, L : X×Y×R→ [0,∞) is a loss describing our learning goal. Probably
the two best-known examples of such losses are the binary classification loss and
the least squares loss. However, other choices, e.g. for quantile regression, weighted
classification, classification with reject option, are important, too. To formalize the
concept of “learning”, we also need the Bayes risk

R∗L,P := inf
{
RL,P( f )

∣∣ f : X → R
}
.

If this infimum is attained we denote a function that achieves R∗L,P by f ∗L,P.
Now, a learning method L assigns to every finite data set D a function fD. Such

an L learns in the sense of L-risk consistency for P, if

lim
n→∞

Pn
(

D ∈ (X×Y )n : RL,P( fD)≤R∗L,P + ε

)
= 1 (1)

for all ε > 0. Moreover, L is called universally L-risk consistent, if it is L-risk
consistent for all distributions P on X×Y .

Recall that the first results on universally consistent learning methods were
shown by Stone [34] in a seminal paper. Since then, various learning methods have
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2 Ingo Steinwart

been shown to be universally consistent. We refer to the books [10] and [16] for
binary classification and least squares regression, respectively.

Clearly, consistency does not specify the speed of convergence in (1). To address
this we fix a sequence (εn)⊂ (0,1] converging to 0. Then, we say that L learns with
rate (εn), if there exists a family (cτ)t∈(0,1] such that for all n≥ 1 and all τ ∈ (0,1],
we have

Pn
(

D ∈ (X×Y )n : RL,P( fD)≤R∗L,P + cτ εn

)
≥ 1− τ . (2)

In addition, we say that L learns with expected rate (εn) if ED∼PnRL,P( fD) � εn.
Here, an � bn means that there exists a constant c ≥ 0 with an ≤ cbn for all n ≥ 1.
Analogously, we sometimes write an ∼ bn if an � bn and bn � an.

Unlike consistency, learning rates usually require assumptions on P by the no-
free-lunch theorem of Devroye, see [11] and [10, Thm. 7.2]. In Section 4 we will
discuss such assumptions and the resulting rates for SVMs.

To recall the definition of SVMs and related methods, we fix a reproducing kernel
Hilbert space (RKHS) H, a loss L that is convex in its third argument, and a λ > 0.
Then, the optimization problem

fD,λ ∈ argmin
f∈H

λ‖ f‖2
H +RL,D( f ) , (3)

where RL,D( f ) is the empirical risk of f , that is RL,D( f ) = 1
n ∑

n
i=1 L

(
xi,yi, f (xi)

)
,

has a unique solution fD,λ ∈ H, see [29, Lem. 5.1 & Thm. 5.2].
Let us briefly make some historical remarks: In 1992 V. Vapnik and co-workers,

[6] presented the first SVM, namely the hard-margin SVM, which combined the
generalized portrait algorithm from [38] with a kernel embedding inspired by [1].
Only a few years later, C. Cortes and V. Vapnik [8] proposed the first soft-margin
SVMs, which are instances of (3) for which L is the (squared) hinge loss. Almost
at the same time, the ε-insensitive loss for regression was proposed in [37, 12, 36].
However, approaches of the form (3) are actually significantly older. In 1971, for
example, G. Kimeldorf and G. Wahba [17] showed a form of the representer theorem
for the Sobolev space case H =W m([0,1]d) with m > d/2 and the least squares loss
L. Until the end of the 1980’s a substantial amount of further research dealt with
this and similar cases, see e.g. [25, 39]. Inspired by this work, [24] presented an
approach called regularization network to the learning community in 1990, which
basically considers (3) for the least squares loss.

Ideally, a learning method is automatic, i.e. no parameters need to be set by the
user. In the SVM case, this means that λ and possible kernel parameters such as the
width γ > 0 of the Gaussian kernel

kγ(x,x′) := exp(−γ
−2‖x− x′‖) , x,x′ ∈ Rd ,

are set automatically. In practice, such parameters are usually determined by cross-
validation. Let us briefly describe a simplified version of this, see [29, Def. 6.28]. To
this end, we split D in two (almost) equally sized parts D1 and D2. In addition, let Λ

be a finite set of candidates for λ and, if necessary, Γ be a finite set of candidates for
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the kernel parameter. Then, for all combinations (λ ,γ) ∈ Λ ×Γ , the optimization
(3) is solved for the data set D1, and the resulting clipped SVM solution, see (5), is
validated on D2, i.e., its empirical D2-error is computed. Finally, the SVM solution
with the smallest D2-error is taken as the decision function fD.

In the following, we try to give a brief survey on what is known about consistency
and learning rates for SVMs. To this end, we first recall some key concepts related to
their analysis in Section 2. We then consider consistency and learning rates in Sec-
tions 3 and 4, respectively. Due to limited space, these discussions are restricted to
binary classification and least squares regression. However, most of the results we
discuss are actually derived from generic oracle inequalities and thus they can be
naturally extended to other losses. Here, differences usually only occur if assump-
tions on P are made to guarantee e.g. variance bounds or approximation properties.
For an example we refer to quantile regression with the pinball loss in [30, 13].

2 Mathematical Prerequisites

In the following, let (X ,A ) be a measurable space, Y ⊂ R be a closed subset, and
P be a distribution on X ×Y whose marginal distribution on X is denoted by PX . In
addition, we always assume that H is a separable reproducing kernel Hilbert space
(RKHS) of a bounded measurable kernel k on X with ‖k‖∞ ≤ 1. Finally, if not stated
otherwise, L denotes a loss that satisfies RL,P(0)< ∞.

The goal of this section is to recall some concepts that describe interactions be-
tween P, L, and H, which are relevant for the analysis of SVMs.

Let us begin by recalling that the “inclusion” operator Ik : H→ L2(PX ) that maps
an f ∈ H to its equivalence L2(PX )-class [ f ]∼ is a Hilbert-Schmidt operator, see
[29, Thm. 4.27]. Moreover, the usual integral operator Tk : L2(PX )→ L2(PX ) with
respect to k is well-defined and given by Tk = Ik ◦ I∗k , where I∗k denotes the adjoint
operator of Ik. In particular, Tk is self-adjoint, positive and nuclear, see again [29,
Thm. 4.27], and thus, the classical spectral theorem can be applied. This yields an
at most countable family (µi)i∈I ⊂ (0,∞) of non-zero eigenvalues (with geometric
multiplicities) of Tk, which, in case of infinite I, converges to zero. As usual, we
assume without loss of generality that I ⊂ N and µ1 ≥ µ2 ≥ ·· ·> 0.

Some of the results we will review later make explicit assumptions on the decay
of the eigenvalues, while other results make assumptions on the behavior of covering
numbers or entropy numbers. Since the latter two are essentially the same concepts,
let us only recall the latter. To this end, we first consider a compact metric space
(M,d). Then, for n≥ 1, the n-th entropy number of an A⊂M is defined by

εn(A,d) := inf
{

ε > 0 : ∃ t1, . . . , tn ∈M such that A⊂
n⋃

i=1

B(ti,ε)
}

where B(t,ε) denotes the closed ball with center t and radius ε . Moreover, if E and
F are Banach spaces and T : E → F is a bounded linear operator, then the n-th



4 Ingo Steinwart

(dyadic) entropy number of T is defined by en(T ) := ε2n−1(T BE ,‖ · ‖F), where BE
denotes the closed unit ball of E. In the Hilbert space case, eigenvalue and entropy
number decays are closely related. For example, [31, Thm. 15] shows that

µi(Tk)� i−1/p ⇐⇒ ei(Ik : H→ L2(PX ))� i−1/2p . (4)

Moreover, the latter is implied by ei(id : H→ `∞(X))� i−1/2p.
Assumptions on the eigenvalue or entropy number decay are used to estimate the

stochastic error of (3). To derive consistency and learning rates, however, we also
need to bound the approximation error. To recall concepts in this direction, we first
need the smallest possible L-risk in H, that is, R∗L,P,H := inf f∈H RL,P( f ). To achieve
consistency, we obviously need zero approximation error, that is R∗L,P,H = R∗L,P. If
H is universal, cf. [27] and [23], that is, X is a compact metric space and H is dense
in C(X), this equality can be guaranteed, see [29, Cor. 5.29]. For specific losses,
however, weaker assumptions on H are sufficient. E.g., if L is the least squares loss,
the equality R∗L,P,H = R∗L,P holds, if and only if H is dense in L2(PX ). For many
Lipschitz continuous losses including the hinge loss, the ε-insensitive loss, and the
pinball loss, an analogous characterization holds in terms of L1(PX )-denseness, see
[29, Cor. 5.37]. Finally, recall that for fixed γ > 0, the RKHS Hγ of the Gaussian ker-
nel kγ is dense in Lp(PX ) for all p ∈ [1,∞), see [29, Thm. 4.63]. Once we have fixed
an H with R∗L,P,H = R∗L,P, we need to consider the approximation error function
(AEF)

A(λ ) := inf
f∈H

λ‖ f‖2
H +RL,P( f )−R∗L,P , λ ≥ 0 .

It can be shown that limλ→0 A(λ ) = 0, see [29, Lem. 5.15]. In general, the speed of
convergence cannot be faster than O(λ ) and this rate is achieved, if and only if there
exists an f ∈ H with RL,P( f ) = R∗L,P, see [29, Cor. 5.18].

For the least squares loss, the behavior of the AEF can be described by inter-
polation spaces [E,F ]θ ,r of the real method, see [4, 5]. Namely, [26] shows that
f ∗L,P ∈ [L2(PX ),H]β ,∞, if and only if A(λ ) ∈ O(λ β ). Here we note that the latter
condition is often imposed to derive learning rates. Other authors, however, assume
f ∗L,P ∈ ranT β/2

k = [L2(PX ), [H]∼]β ,2, where ranT β/2
k denotes the image of the β/2-

fractional power of Tk and the equality of this image to the interpolation space has
been recently shown in [33, Thm. 4.6]. Finally, we always have the continuous em-
beddings [L2(ν), [H]∼]β−ε,∞ ↪→ [L2(ν), [H]∼]β ,2 ↪→ [L2(ν), [H]∼]β ,∞ for all ε > 0.

Finally, one often knows in advance, that it suffices to look for decision functions
of the form fD : X → [−M,M] for some M > 0. In particular, this is the case if the
loss is clippable at M, that is, for all x ∈ X ,y ∈ Y , and t ∈ R, we have

L(x,y,at )≤ L(x,y, t) , (5)

where at := max{−M,min{M, t}}. Note that for convex L this is satisfied if and
only if L(x,y, ·) : R→ [0,∞) has a global minimum that is contained in [−M,M] for
all (x,y) ∈ X ×Y , see [29, Lem. 2.23]. The latter is satisfied for many commonly
used losses, and for such losses it is beneficial to clip the SVM decision function.
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3 Universal Consistency

In this section we discuss several results concerning the universal consistency of
learning methods of the form (3) for binary classification and least squares regres-
sion. Due to space constraints we restrict our considerations to a-priori chosen pa-
rameters. However Theorems 1 and 2 below and the results discussed for regression
can also be formulated for data splitting approaches, cf. [29, Thm. 7.24 & 8.26].

Binary Classification

Let us first note that the binary classification loss, which defines the actual learning
goal, is not even continuous, and hence cannot be used in the SVM optimization
problem (3). This issue is resolved by using a surrogate loss L such as the (squared)
hinge loss or the least squares loss. For these losses, the first consistency results can
be found in [28] and [40]. To recall these results, we assume that X ⊂Rd is compact
and H is universal. Then [28] establishes universal classification consistency, if a)
we use the hinge loss, b) we have εi(X ,dk)� i−1/α for some α > 0, where dk is the
kernel metric in the sense of [29, Eq. (4.20)], and c) we use a sequence of regulariza-
tion parameters (λn) with λn→ 0 and nλ α

n →∞. In addition, for the Gaussian kernel
kγ with fixed but arbitrary width γ we can choose α := d. By completely different
methods, [40] shows universal classification consistency for a variety of losses in-
cluding the (squared) hinge and the least squares loss if λn→ 0 and nλn→∞. A key
idea in both articles is to compare the excess L-risk RL,P( f )−R∗L,P of arbitrary f
to the excess classification risk of f . Namely, in [28] an asymptotic relationship is
shown, while [40] goes one step further by establishing inequalities between these
excess risks. This idea was picked up in [2], who showed for convex margin-based
losses, i.e. for losses L of the form L(y, t) = ϕ(yt), that we have an asymptotic rela-
tionship or an inequality between these excess risks, if and only if ϕ is differentiable
at 0 with ϕ ′(0)< 0. For such losses we have the following consistency result:

Theorem 1. Let L be as above and ϕ(t) ∈ O(tq) for some q≥ 1 and t → ∞. More-
over, let H be dense in Lq(PX ) and (λn)⊂ (0,∞) with λn→ 0. Then the clipped SVM
is classification consistent for P, if one of these conditions is satisfied:

i) nλn/ lnn→ ∞ and nλ
q/2
n → ∞.

ii) nλ
q/2
n → ∞ and nλ

p
n → ∞ for some p ∈ (0,1) with µi(Tk)� i−1/p.

If X is compact and H is universal, then all assumptions involving q can be dropped.

Proof. The first assertion follows from [29, Lem. 5.15 & Thm. 5.31] together with
a simple generalization of [29, Thm. 7.22]. The second result can be shown analo-
gously by employing [29, Thm. 7.23] together with [29, Cor. 7.31] and (4). Now as-
sume that X is compact and H is universal. We fix an ε ∈ (0,2] and pick an f : X→R
with RL,P( f )≤R∗L,P+ε . Since L is clippable, say at M, we may assume that f maps
into [−M,M]. By [3, Thm. 29.14] we then find a g ∈C(X) with ‖ f −g‖L1(PX ) ≤ ε .
Again, we can assume that ‖g‖∞ ≤ M. Since H is universal, there also exists an
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hε ∈ H with ‖hε −g‖H ≤ ε . Here we note that we can additionally assume that the
resulting function ε 7→ ‖hε‖H is decreasing. Our construction yields ‖hε‖∞ ≤ 2+M
and ‖ f −hε‖L1(PX ) ≤ 2ε . Since L is locally Lipschitz, see [29, Lem. 2.25], we find
RL,P(hε)−RL,P( f ) ≤ 2cLε by [29, Lem. 2.19], where cL ≥ 1 is a constant only
depending on L. This gives RL,P(hε)−R∗L,P ≤ 3cLε . For λ ∈ (0,1] we now define
ελ := 2inf{ε ∈ (0,1] : ‖hε‖2

H ≤ λ−1/2}. We then obtain ‖hελ
‖∞ ≤ 2+M and

λ‖hε‖2
H +RL,P(hε)−R∗L,P ≤ λ

1/2 +3cLελ → 0 λ → 0.

Choosing f0 := hελ
in (the proof) of [29, Thm. 7.22 & 7.23] gives the assertions.

The result above yields universal classification consistency, if, e.g. X = Rd and
H = Hγ with fixed kernel width γ . For Gaussian kernels, it is, however, common
practice to vary γ with the sample size, too. The following result covers this case:

Theorem 2. Let L be convex, clippable, and margin-based with ϕ ′(0)< 0. Further-
more, let (λn) ⊂ (0,1] and γn ⊂ (0,1] satisfy λnγ−d

n → 0. Then the clipped SVM is
universally classification consistent if one of the following conditions holds:

i) X =Rd , ϕ(t) ∈O(tq) for some q≥ 1 and t→∞, nλn/ lnn→∞ and nλ
q/2
n →∞.

ii) X ⊂ Rd is compact and λ ε
n γd

n n→ ∞ for some ε > 0.

Proof. Using ‖ id : H1→ Hγ‖ ≤ γ−d/2, see [29, Prop. 4.46], it is easy to check that
the AEFs Aγ and A1 of the Gaussian RKHSs Hγ and H1 satisfy Aγ(λ )≤ A1(λγ−d).
Then the first assertion follows as for Theorem 1. The second assertion can be shown
using the arguments for compact X in the proof of Theorem 1.

Least Squares Regression

We already noted in the introduction that least squares regression methods of the
form (3) had already been around when SVMs were proposed. Despite their earlier
appearance, the first1 universal consistency results in our sense seems to be shown
relatively late by [18]. Under the moment condition RL,P(0) = E(x,y)∼Py2 < ∞, the
authors obtain consistency for H =W m([0,1]d) if λn→ 0, nλn→∞, and the decision
functions fD,λn are clipped at lnn. In [16, Theorem 20.4] the condition nλn→∞ was
relaxed to nλ

p
n /(lnn)7→∞ with p := d/(2m), and it seems plausible that their proof

allows to remove the logarithmic factor at least partially, if Y is bounded and a more
aggressive clipping is applied. In any case, for bounded Y the general theory tells
us that the logarithmic factors can be removed. Indeed, for bounded Y , it is easy
to check that the conditions ensuring consistency in Theorems 1 and 2 also ensure
consistency for least squares regression if we set q = 2. In the case of Theorem 1,
for example, we obtain consistency for generic H, if λn→ 0 and nλn/ lnn→∞, and
the latter can be replaced by nλ

p
n → ∞ for some p ∈ (0,1), if X is compact, H is

universal, and µi(Tk) � i−1/p. Note that this covers the case H = W m([0,1]d) for
p := d/(2m) by the well-known estimate ei(Ik : W m([0,1]d)→ `∞([0,1]d)) � i−

m
d ,

see e.g. [14, p. 118].

1 In [16] the authors actually give some credit to the 1987 paper [15] for the case d = 1.
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4 Learning Rates

In this section we discuss some known learning rates for SVMs for binary classifi-
cation and least squares regression.

Binary Classification

Probably the earliest established learning rates for SVMs with (squared) hinge loss
can be found in [27]. To formulate this result we define η(x) := P(Y = 1|x), x ∈ X ,
as well as X− := {η < 1/2} and X+ := {η > 1/2}. We say that P has zero noise, if
|2η − 1| = 1 PX -almost surely, and has strictly separated classes, if d(X−,X+) > 0
for a version of η and a metric d on X . Now assume that (X ,d) is compact, H is
universal and λn = n−1. Then [27] shows that Pn(D : RL,P( fD,λn) = 0) ≥ 1− e−cn

for all n≥ n0, where L is the classification loss and c and n0 depend on P and H.
In [20] exponentially fast expected rates under similar but weaker conditions

were shown. There the authors assume that (X ,d) is compact, η has a Lipschitz
continuous version and that P has Tsybokov’s noise exponent q = ∞, see below.
Note that together these assumptions imply that P has strictly separated classes. For
universal kernels and the logistic loss for classification, they then show that there
are constants c1,c2 > 0 with ED∼PnRL,P( fD,λn)−R∗L,P ≤ exp(−c1nλn) if λn ≤ c2

and nλ
1+p
n → ∞. Here, p ∈ (0,1) is a constant such that supν ei(Ik : H → L2(ν))≤

ci−1/(2p) for all i≥ 1, where the supremum is taken over all distributions ν on X .
For both results discussed so far, it seems fair to say that a) the assumptions on

P are very strong and that b) similar rates can also be achieved without much effort
for classical histogram rules. In the case of the hinge loss and Gaussian kernels
with varying widths, more realistic assumptions on P have been proposed in [32],
which, to some extent, generalize the assumptions above. To briefly describe them,
we define the distance to the decision boundary by ∆(x) := d(x,X+) if x ∈ X−,
∆(x) := d(x,X−) if x ∈ X+, and ∆(x) = 0 otherwise. Then P is said to have margin
noise exponent β ∈ (0,∞], if EPX 1{∆<t}|2η−1| ≤ (ct)β for a constant c≥ 1 and all
t ≥ 0. A detailed discussion of this assumption can be found in [29, Sec. 8.2], so we
only mention that β is large if there is not much mass and/or a lot of noise in the
area {∆ < t} around the decision boundary. In addition, we need Tsybakov’s noise
condition [35] that bounds the total amount of noise by PX (|2η−1|< t)≤ (ct)q for
constants c > 0 and q ∈ [0,∞], and all t ≥ 0. Then [29, Thm. 8.26] shows that the
data splitting approach with polynomially growing n−1-nets Λn and n−1/d-nets Γn

of (0,1] learns with rate n−
β (q+1)

β (q+2)+d(q+1)+ε for all ε > 0. Note that depending on β

and q the exponent in the rate varies between 0 and 1, in particular, rates up to n−1

are possible in all dimensions d provided that β and q are large enough.
Finally, let us briefly discuss some rates for generic H and the hinge loss (the

least squares case will be considered at the end of our discussions on least squares
regression). To this end, we assume that P satisfies Tsybakov’s noise condition for
some q∈ [0,∞], as well as µi(Tk)� i−1/p and A(λ )∈O(λ β ) for some p∈ (0,1) and
β ∈ (0,1]. Then we usually have to expect β < 1, since for β = 1 the Bayes decision
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function, which is a step function, must be contained in H and for commonly used H
this is impossible. In addition, Tsybakov’s noise condition gives a variance bound,
which in turn can be used, e.g., in [29, Thm. 7.24]. The resulting learning rate is

n−min{ 2β

β+1 ,
β (q+1)

β (q+2−p)+p(q+1) } for the data splitting approach if (Λn) is a sequence of
polynomially growing n−2-nets of (0,1].

Least Squares Regression

Similar to the case of consistency, the first learning rates were established for the
space H =W m([0,1]d). Indeed, based on some techniques from empirical processes
pioneered by S. van de Geer, [19] showed expected rates of the form (lnn)2n−

2s
2s+d

for a structural risk minimization procedure to choose the parameters m and λ . Here
s > d/2 describes the unknown smoothness of the regression function in the sense
of f ∗L,P ∈W s([0,1]d). The procedure is thus adaptive to the unknown smoothness s,
and in addition, no assumptions except suppPX ⊂ [0,1]d are necessary.

Let us now turn to the generic case. Here, beginning with [9], various investi-
gations have been made, so we only focus on the ones who established (nearly)
optimal rates. To the best of our knowledge, the first result in this direction was es-
tablished in [7] under the assumptions µi(Tk)∼ i−1/p and f ∗L,P ∈ ranT β/2 for some
p ∈ (0,1) and β ∈ [1,2]. Note that β ≥ 1 implies that f ∗L,P ∈H. Then, modulo some
logarithmic factor in the case β = 1, the authors establish the rate

n−
β

β+p , (6)

and they also show that this rate is optimal. Especially remarkable is the fact, that
the authors are able to deal with values β > 1, since for such values the classical
approach that splits the analysis into a stochastic part and the AEF fails due to the
fact that the AEF does not converge faster than linearly. To avoid this issue, the
authors split quite differently with the help of spectral methods.

From a practical point of view, however, the case β < 1 is the more realistic one.
For this case, the first essentially optimal rate was proved in [22] for a variant of (3)
in which the exponent 2 in the regularization term is replaced by the smaller expo-
nent 2p/(1+ p), where p ∈ (0,1) is chosen such that µi(Tk)� i−1/p. Provided that
the eigenvectors of Tk are uniformly bounded and f ∗L,P ∈ [L2(PX ),H]β ,∞ for some
β ∈ (0,1], [22] then establishes (6) modulo some logarithmic factors. A closer look
at this assumption on the eigenvectors shows that it is solely used to establish the
interpolation inequality ‖ f‖∞ ≤ c‖ f‖p

H ‖ f‖1−p
L2(PX )

for all f ∈H, where c > 0 is some
constant. Interestingly, this inequality is equivalent to the continuous embedding
[L2(PX ),H]p,1 ↪→ L∞(PX ). Now, [31] shows that combining the interpolation in-
equality with [29, Thm. 7.23], also the original algorithm (3) learns with rate (6)
and the additional logarithmic factors are superfluous. Moreover, if the eigenvalue
assumption is two-sided, i.e. µi(Tk)∼ i−1/p, then (6) is also optimal for all β ∈ (p,1].
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In the Sobolev space case H =W m([0,1]d) and f ∗L,P ∈W s([0,1]d) for some m >

d/2 and s ∈ (0,m] these generic results imply the above mentioned rates n−
2s

2s+d ,
if PX is (essentially) the uniform distribution, see [31]. Moreover, [13] has recently
shown that up to some arbitrarily small ε > 0 in the exponent, the rates can also be
achieved by Gaussian RKHSs Hγ , if γ varies with the sample size, too. Note that
the latter seems to be somewhat necessary, since for fixed γ and f ∗L,P 6∈C∞, the AEF
can only have logarithmic decay, see [26]. Finally, the rates of [31, 13] can also be
achieved by the data splitting approach.

Let us finally return to binary classification with the least squares loss. To this
end, we assume η ∈ [L2(PX ),H]β ,∞ and that Tsybakov’s noise assumption is satis-
fied for some q ∈ [0,∞]. Note that the latter implies a stronger calibration inequality
between the excess least squares and the excess classification risk, see [2] and [29,

Thm. 8.29]. Considering [31], we then obtain the rate n−
βq

(β+p)(q+1) , which at first
glance seems to be fine, since for large β and q the exponent reaches 1. However, it
may be the case that large values for β and q exclude each other. To illustrate this
(see [21] for a similar observation), let us consider the Sobolev case η ∈W s([0,1]d)

in which the rates in [31] become n−
2sq

(2s+d)(q+1) . To get rates close to n−1, we need
large s, say s > 1+ d/2. Then η ∈C1 by Sobolev’s embedding theorem, which in
turn excludes q > 1 by some geometric considerations, and hence rates arbitrarily
close to n−1 are impossible. Finally, the same observation can be made for [13].
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16. Györfi, L., Kohler, M., Krzyżak, A., Walk, H.: A Distribution-Free Theory of Nonparametric
Regression. Springer, New York (2002)

17. Kimeldorf, G.S., Wahba, G.: Some results on Tchebycheffian spline functions. J. Math. Anal.
Appl. 33, 82–95 (1971)
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19. Kohler, M., Krzyżak, A., Schäfer, D.: Application of structural risk minimization to multivari-
ate smoothing spline regression estimates. Bernoulli 4, 475–489 (2002)

20. Koltchinskii, V., Beznosova, O.: Exponential convergence rates in classification. In: Proceed-
ings of the 18th Annual Conference on Learning Theory, pp. 295–307 (2005)

21. Loustau, S.: Aggregation of SVM classifiers using Sobolev spaces. J. Mach. Learn. Res. 9,
1559–1582 (2008)

22. Mendelson, S., Neeman, J.: Regularization in kernel learning. Ann. Statist. 38, 526–565
(2010)

23. Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. J. Mach. Learn. Res. 7, 2651–2667
(2006)

24. Poggio, T., Girosi, F.: A theory of networks for approximation and learning. Proc. IEEE 78,
1481–1497 (1990)

25. Silverman, B.: Some aspects of the spline smoothing approach to nonparametric regression.
J. Royal Statist. Soc. Ser. B Stat. Methodol. 47, 1–52 (1985)

26. Smale, S., Zhou, D.X.: Estimating the approximation error in learning theory. Anal. Appl. 1,
17–41 (2003)

27. Steinwart, I.: On the influence of the kernel on the consistency of support vector machines. J.
Mach. Learn. Res. 2, 67–93 (2001)

28. Steinwart, I.: Support vector machines are universally consistent. J. Complexity 18, 768–791
(2002)

29. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)
30. Steinwart, I., Christmann, A.: Estimating conditional quantiles with the help of the pinball

loss. Bernoulli 17, 211–225 (2011)
31. Steinwart, I., Hush, D., Scovel, C.: Optimal rates for regularized least squares regression. In:

Proceedings of the 22nd Annual Conference on Learning Theory, pp. 79–93 (2009)
32. Steinwart, I., Scovel, C.: Fast rates for support vector machines using Gaussian kernels. Ann.

Statist. 35, 575–607 (2007)
33. Steinwart, I., Scovel, C.: Mercer’s theorem on general domains: on the interaction between

measures, kernels, and RKHSs. Constr. Approx. 35, 363–417 (2012)
34. Stone, C.: Consistent nonparametric regression. Ann. Statist. 5, 595–645 (1977)
35. Tsybakov, A.B.: Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32,

135–166 (2004)
36. Vapnik, V., Golowich, S., Smola, A.: Support vector method for function approximation, re-

gression estimation, and signal processing. In: Advances in Neural Information Processing
Systems 9, pp. 81–287 (1997)

37. Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag, New York (1995)
38. Vapnik, V.N., Lerner, A.: Pattern recognition using generalized portrait method. Autom. Re-

mote Control 24, 774–780 (1963)
39. Wahba, G.: Spline Models for Observational Data. Series in Applied Mathematics 59, SIAM,

Philadelphia (1990)
40. Zhang, T.: Statistical behaviour and consistency of classification methods based on convex

risk minimization. Ann. Statist. 32, 56–134 (2004)



Ingo Steinwart
Universität Stuttgart
Fachbereich Mathematik
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: Ingo.Steinwart@mathematik.uni-stuttgart.de

WWW: http://www.isa.uni-stuttgart.de/Steinwart

mailto:Ingo.Steinwart@mathematik.uni-stuttgart.de
http://www.isa.uni-stuttgart.de/Steinwart




Erschienene Preprints ab Nummer 2007/2007-001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2013-016 Steinwart, I.: Fully Adaptive Density-Based Clustering

2013-015 Steinwart, I.: Some Remarks on the Statistical Analysis of SVMs and Related
Methods

2013-014 Rohde, C.; Zeiler, C.: A Relaxation Riemann Solver for Compressible Two-Phase
Flow with Phase Transition and Surface Tension

2013-013 Moroianu, A.; Semmelmann, U.: Generalized Killling spinors on Einstein manifolds

2013-012 Moroianu, A.; Semmelmann, U.: Generalized Killing Spinors on Spheres
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2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations

2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces

2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park

2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian

2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group

2011-027 Griesemer, M.; Hantsch, F.; Wellig, D.: On the Magnetic Pekar Functional and the
Existence of Bipolarons

2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression

2011-025 Felber, T.; Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent static
forecasting of stationary and ergodic time series via local averaging and least
squares estimates

2011-024 Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of
stationary and ergodic time series

2011-023 Györfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional
independence

2011-022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local
variance based on first and second nearest neighbors

2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels

2011-020 Frank, R.L.; Geisinger, L.: Refined Semiclassical Asymptotics for Fractional Powers
of the Laplace Operator

2011-019 Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian
on a bounded domain

2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with
cracks

2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
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2008-005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed
problems in Banach spaces: convergence and applications to parameter
identification problems

2008-004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale
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