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Abstract

Based on the work of Hartigan, the clusters of a distribution are often defined to be the
connected components of a density level set. Unfortunately, this definition drastically depends
on the user-specified level, and in general finding a reasonable level is a difficult task. In addition,
the definition is not rigorous for discontinuous densities, since the topological structure of a
density level set may be dramatically changed by modifying the density on a set of measure
zero. In this work, we address these issues by first modifying the notion of density level sets
in a way that makes the level sets independent of the actual choice of the density. We then
propose a simple algorithm for estimating the smallest level at which the modified level sets have
more than one connected component. For this algorithm we provide a finite sample analysis,
which is then used to show that the algorithm consistently estimates both the smallest level
and the corresponding connected components. We further establish rates of convergence for the
two estimation problems, and last but not least, we present a simple strategy for determining
the width-parameter of the involved density estimator in a data-depending way. The resulting
algorithm turns out to be adaptive, that is, it achieves the optimal rates achievable by our
analysis without knowing characteristics of the underlying distribution.

1 Introduction

A central and widely studied task in statistical learning theory or machine learning is cluster analysis,
where the goal is to find clusters in unlabeled data. Unlike in supervised learning tasks such as
classification or regression, a key problem in cluster analysis is already the definition of a learning
goal that describes a conceptionally and mathematically convincing definition of clusters. A widely,
but by no means generally accepted, definition of clusters has its roots in a paper by Carmichael
et al. (1968), who define clusters to be densely populated areas in the input space that are separated
by less populated areas. The non-parametric mathematical translation of this idea, which goes back
to Hartigan (1975), usually assumes that the data D = (x1, . . . , xn) ∈ Xn is generated by some
unknown probability measure P on a topological space X that has a density h with respect to some
known reference measure µ on X. Given a threshold ρ ≥ 0, the clusters are then defined to be the
connected components of the density level set {h ≥ ρ} := {x ∈ X : h(x) ≥ ρ}. Here, one typically
considers the case, where X ⊂ Rd and µ is the Lebesgue measure on X. In addition, it is often
explicitly or implicitly assumed that the density h is continuous, since this avoids various pathologies
regarding the topological notion of connectedness that are caused by changes of h on µ-zero sets,
see Rigollet (2007) for some illustrations.

Some approaches were made in the past to address these topological pathologies. For Example,
Cuevas and Fraiman (1997) introduced a thickness assumption for sets C, that rules out cases, in
which neighborhoods of x ∈ C have not sufficient mass. This thickness assumption excludes some
topological pathologies such as topologically connected bridges of zero mass, see e.g. Rigollet (2007),
while others such as cuts of measure zero are not addressed. Moreover, Rinaldo and Wasserman
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(2010) entirely avoid these issues by considering level sets of convolutions k ∗ P of the underlying
distribution P with a continuous kernel k on Rd having a compact support. Since such convolutions
are always continuous, these authors can not only deal with discontinuous densities but also with
distributions that do not have a Lebesgue density at all. However, different kernels (or kernel widths)
may lead to different clusters, and consequently, their approach introduces another parameter that
is in general hard to control by the user.

Defining clusters by the connected components of a level set clearly requires us to estimate the
level set in one form or the other. Level set estimation itself is a classical non-parametric problem,
which has been considered by various authors such as Devroye and Wise (1980), Hartigan (1987),
Müller and Sawitzki (1991), Polonik (1995), Ben-David and Lindenbaum (1997), Tsybakov (1997),
Báıllo et al. (2001, 2000), Steinwart et al. (2005), Rigollet and Vert (2009), Singh et al. (2009).
In these articles, two different performance measures are considered for assessing the quality of a
density level estimate, namely the mass of the symmetric difference between the estimate and the
true level set, and the Hausdorff distance between these two sets. Estimators that are consistent
with respect to the Hausdorff metric clearly capture all topological structures eventually, so that
these estimators form an almost canonical choice for density-based clustering. In contrast, level set
estimators that are only consistent with respect to the first performance measure are, in general,
not suitable for the cluster problem, since even sets that are equal up to measure zero may have
completely different topological properties.

Historically, two distinct questions have been investigated for density-based clustering. The first
one is the so-called single level approach, which tries to estimate the connected components of
{h ≥ ρ} for a single and fixed level ρ ≥ 0. The single level approach has been studied by several
authors, see, e.g., Hartigan (1975), Cuevas and Fraiman (1997), Rigollet (2007), Maier et al. (2009),
Rinaldo and Wasserman (2010) and the references therein. Moreover, we have mentioned above
that level set estimators that are consistent with respect to the Hausdorff metric can be easily
used for this version of density-based clustering, and thus it seems fair to say that this clustering
problem enjoys a good statistical understanding. Unfortunately, however, it suffers from a serious
conceptional issue, namely that of determining a good value of ρ. Indeed, it is not hard to see that
different values of ρ may lead to different numbers of clusters, see e.g. the illustrations by Chaudhuri
and Dasgupta (2010), Rinaldo et al. (2012). On the other hand, it is almost impossible for the user
to guess a suitable value for ρ, and using a couple of different candidate values creates the problem of
deciding which of the resulting clusterings is best. For this reason, Rinaldo and Wasserman (2010)
note that research on data-dependent, automatic methods for choosing ρ (and the width parameter
of the involved density estimator) “would be very useful”.

The second approach, which is known as the cluster tree approach, tries to address the issue of
finding a good value of ρ by considering all levels simultaneously. In this approach, the focus lies
on the identification of the hierarchical structure of the connected components for different levels.
To be more precise, let h be a fixed density, which, for the sake of simplicity, is assumed to be
continuous, and A be a connected component of {h ≥ ρ}. Then, for every ρ′ ∈ [0, ρ], there exists
exactly one connected component B of {h ≥ ρ′} with A ⊂ B, see e.g. Lemma 2.9. Under some
additional assumptions on µ and h, this leads to a finite tree, in which each node B is a connected
component of some level set {h ≥ ρ′} and all children of a node B are the connected components
of {h ≥ ρ} for some ρ > ρ′ that are contained in B. Results, further definitions, and methods
for estimating the structure of this tree can be found in the work by Hartigan (1975), Stuetzle
(2003), Chaudhuri and Dasgupta (2010), Stuetzle and Nugent (2010). In particular, Chaudhuri and
Dasgupta (2010) show that in a weak sense of Hartigan (1981), a modified single linkage algorithm
converges to this tree under some assumptions on the density h. To be more precise, let A and
A′ be two different connected components of some level set of h, and D ∈ Xn be a data set from
which the tree estimate is constructed. Furthermore, let AD and A′D be the smallest clusters in
this tree estimate that satisfy A ∩ D ⊂ AD and A′ ∩ D ⊂ A′D, respectively. Then the result by
Chaudhuri and Dasgupta (2010) shows that we have AD ∩ A′D = ∅ with probability Pn converging
to 1 for n→∞. Roughly speaking, this means that all parent/child relations of the cluster tree are
eventually contained in the tree estimate, and Chaudhuri and Dasgupta (2010), actually show the
latter by finite sample guarantees. More recently, Kpotufe and von Luxburg (2011) extended this
analysis to a wider range of parameters for the underling k-NN density estimator. In addition, they
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also proposed a simple pruning strategy, that removes connected components that only artificially
occur because of finite sample variability. Unfortunately, however, neither of these results tell us a)
how to find these smallest sets AD and A′D in the estimating tree without knowing h, and b) how
well AD and A′D approximate A and A′, respectively. Consequently, it seems fair to say that this
notion of consistency reveals more about the cluster structure and less about the actual clusters.

Unlike the papers mentioned above, we neither consider the single level approach nor the cluster
tree approach. Instead, we are interested in estimating the infimum ρ∗ of all levels at which the
density level set consists of more than one connected component. In addition, we wish to estimate
the corresponding clusters.

To make these goals mathematically rigorous for discontinuous densities, we first introduce a
notion of density level sets that is independent of the actual choice of the density, see (2). Since
the above mentioned topological pathologies are all caused by the ambivalence of densities on zero
sets, this new notion is immune against such pathologies. In general, our new notion of level sets
leads to sets Mρ that are larger than the classical level sets {h ≥ ρ}, though it will turn out that
we always have Mρ M {h ≥ ρ} ⊂ ∂{h ≥ ρ}, see (3) for details. Consequently, both sets are equal up
to measure zero, whenever we have µ(∂{h ≥ ρ}) = 0 for some density h, and Lemma 2.4 presents
another sufficient condition.

With the help of the level sets Mρ we can then consider the infimum ρ∗ over all levels ρ for
which Mρ contains more than connected component. For simplicity, we assume in this paper that
there exists some ρ∗∗ > ρ∗ such that, for all ρ ∈ (ρ∗, ρ∗∗], the level sets Mρ contain exactly two
connected components. Note that the persistence of the cluster structure over a small range of
levels ρ ∈ (ρ∗, ρ∗∗] is assumed either explicitly or implicitly in basically all density-based clustering
approaches that deal with several levels ρ, see e.g. Chaudhuri and Dasgupta (2010), Kpotufe and von
Luxburg (2011). Intuitively, this restriction is somewhat natural, since without such a persistence it
seems impossible to identify the topological structure of a level set with the help of an estimate that is
vertically uncertain due to finite sample effects. On the other hand, the restriction to two components
seems to be quite restrictive at first glance. Surprisingly, however, the opposite is true. To illustrate
this, assume for simplicity that X = [0, 1] and h : X → (0,∞) is a continuous density with exactly
two distinct strict local minima at say x1 and x2. Now, if, e.g., h(x1) < h(x2), then ρ∗ = h(x1) and,
for ρ∗∗, we can choose any value with h(x1) < ρ∗∗ ≤ h(x2), since for ρ ∈ (ρ∗, h(x2)], the density level
set actually contains exactly two connected components. Consequently, our assumption of having
two connected components for a small range above ρ∗ would only be violated if h(x1) = h(x2).
Compared to the case h(x1) 6= h(x2), the latter seems to be rather singular, in particular, if one
considers higher-dimensional analogs.

Besides the assumptions discussed so far, we need to make an additional assumption on the level
sets that excludes bridges and cusps that are too thin and long. While this is certainly unpleasant,
it seems to be rather necessary, since such an assumption occurs in one form or the other in most
articles dealing with density-based clustering and Hausdorff estimation of level sets. Moreover, for
Hölder continuous densities it is easy to show that such an assumption essentially holds for all levels
and this fact is implicitly used, e.g. by Kpotufe and von Luxburg (2011).

In this work we present an algorithm that consistently estimates the level ρ∗ and the correspond-
ing clusters with the help of a histogram-based level set estimator. Using finite sample guarantees,
we further establish rates of convergence for estimating ρ∗ under a rather natural assumption on P
that describes how fast the connected components of Mρ move apart for increasing ρ ∈ (ρ∗, ρ∗∗].
Note that this assumption does not incorporate any sort of continuity, or even smoothness, of h.
In particular, it is easy to construct examples of discontinuous densities satisfying this assumption,
while we show that it is automatically satisfied for Hölder-continuous densities. We further establish
rates of convergence for the problem of estimating the corresponding clusters. Here we addition-
ally need to consider the well-known flatness condition by Polonik (1995) and an assumption that
describes the mass of δ-tubes around the boundary of the level sets. Unlike in previous articles
however, we do not need to restrict our considerations to (essentially) rectifiable boundaries. Unfor-
tunately, however, all these rates can only be achieved, if the histogram width is chosen in a suitable,
distribution dependent way, and therefore we finally propose a simple data-driven parameter selec-
tion strategy. For this strategy we show that, in many cases, it achieves the above mentioned rates
without knowing characteristics of the underlying distribution.
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Since this work strongly builds upon the papers by Steinwart (2011), Sriperumbudur and Stein-
wart (2012), let us briefly describe our main new contributions. Firstly, Steinwart (2011) only
establishes consistency of the algorithm considered in this work, that is, no rate of convergence is
presented. While Sriperumbudur and Steinwart (2012) do establish such rates, the situation con-
sidered by Sriperumbudur and Steinwart (2012) is different. Indeed, Sriperumbudur and Steinwart
(2012) considers a different algorithm that uses a Parzen window density estimator to estimate the
level sets. However, this algorithm requires the density to be α-Hölder continuous, and in fact, it
requires the user to know α. Secondly, neither of the two papers consider a data-dependent way of
choosing the width parameter of the involved density estimator. Besides these new contributions,
this paper also adds a substantial amount of extra information regarding the imposed assumptions
and last but not least polishes many of the results from Steinwart (2011).

The rest of this paper is organized as follows. In Section 2 we introduce our topologically
robust notion of density level sets and establish some simple properties of these sets. We further
consider maps that relate connected components of different level sets. These maps will be our
fundamental tool for comparing the cluster structure of the true density level sets and their empirical
estimates. We further make the above notion of clusters rigorous and establish some results about
the persistence of the cluster structure under horizontal and vertical uncertainty. Section 3 contains
three parts. In the first part we determine the vertical and horizontal uncertainty when estimating
density level sets with the help of a standard plug-in histogram approach. We then propose a
simple and generic algorithm that receives a family of level set estimates with known uncertainty
and that returns both an estimate of the smallest level ρ∗ and the resulting clusters. Finally, we
present a finite sample analysis for this generic algorithm. In Section 4 we then apply this finite
sample analysis to the case in which the algorithm receives the level set estimates of a histogram
approach. Here we show the consistency of our algorithm and present learning rates. Section 5
contains the description and the analysis of the data-driven width selection strategy. All proofs
as well as many auxiliary results can be found in Section 6. Finally, the appendix contains, as
supplemental material, an example of a large class of distributions on R2 with continuous densities,
that satisfy all the assumptions made in this paper.

2 Preliminaries: Level Sets, Connectivity, and Clusters

In this section we introduce all notions related to the definition and analysis of clusters. We further
present various technical result needed throughout the paper.

2.1 Density-Independent Density Level Sets

Unlike to the rest of the paper, where we mostly consider compact metric spaces, we assume through-
out this subsection that (X, d) denotes a complete separable metric space. Recall that compact
metric spaces are both complete and separable, and hence everything developed in this subsection
can actually be used in the remainder of the paper, too. Now, let B(X) be the Borel σ-algebra on X,
µ be a known σ-finite measure on B(X), and P be an unknown µ-absolutely continuous probability
measure on B(X). Recall that by Radon-Nykodym’s theorem, P has a µ-density h : X → [0,∞),
but this density is only µ-almost surely determined and therefore, for ρ ∈ [0,∞), the density level
set {h ≥ ρ} is also only µ-almost surely determined. In particular, if we consider a measurable set
A ⊂ X with

µ(A M {h ≥ ρ}) = 0 ,

then there exists another µ-density h′ : X → [0,∞) of P such that A = {h′ ≥ ρ}. Now observe that
the topological properties such as closedness or connectivity of {h′ ≥ ρ} may be quite different from
those of {h ≥ ρ}, since in general these properties may be changed by µ-zero sets. Unfortunately,
however, these topological properties play a crucial role in the definition of clusters, and hence we
need a notion of “density level sets” that is independent of the particular choice of the density. To
achieve this, recall that the support supp ν of a measure ν on (X,B(X)) is the complement of the
largest open ν-zero set, that is, supp ν is the smallest closed subset B of X that satisfies ν(X\B) = 0.
Moreover, recall that, for every measure on a complete, separable metric space, the support actually
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exists. Now observe that, for every fixed ρ ∈ R,

µρ(A) := µ(A ∩ {h ≥ ρ}) , A ∈ B(X),

defines a σ-finite measure µρ on (X,B(X)) that is independent of the particular choice of the µ-
density h of P . Consequently, the set

Mρ := suppµρ ,

is independent of this choice, too. In the following, we call Mρ the density level set to the level ρ.
For any given µ-density h of P , these definitions yield

µ
(
{h ≥ ρ} \Mρ

)
= µ

(
{h ≥ ρ} ∩ (X \Mρ)

)
= µρ(X \Mρ) = 0 , (1)

that is, up to µ-zero sets, no density level set {h ≥ ρ} is larger than Mρ. Moreover, Mρ is actually
the smallest closed set satisfying this equation. In addition, it is easy to check that we have

Mρ =
{
x ∈ X : µρ(U) > 0 for all open neighborhoods U of x

}
. (2)

Note that if suppµ = X, we actually have Mρ = X for all ρ ≤ 0, but typically we are, of course,
interested in the case ρ > 0, only. To state our first technical result, which provides a lower and
an upper bound for the set Mρ, we write Å for the interior and A for the closure of a set A ⊂ X.

Moreover, ∂A := A \ Å denotes the boundary of a A ⊂ X.

Lemma 2.1. Let (X, d) be a complete separable metric space, µ be a σ-finite measure on X with
suppµ = X, and P be a µ-absolutely continuous probability measure on X. Then, for all µ-densities
h of P and all ρ ∈ R, we have

˚{h ≥ ρ} ⊂Mρ ⊂ {h ≥ ρ} .

Moreover, if h is continuous, we have {h > ρ} ⊂Mρ ⊂ {h ≥ ρ} and ∂Mρ ⊂ {h = ρ}.

An immediate consequence of Lemma 2.1 is that the symmetric difference between the sets Mρ

and {h ≥ ρ} is contained in the boundary of {h ≥ ρ}, that is

Mρ M {h ≥ ρ} ⊂ ∂{h ≥ ρ} . (3)

The next lemma shows that the sets Mρ are ordered the way one would expect density level sets
to be ordered.

Lemma 2.2. Let (X, d) be a complete separable metric space, µ be a σ-finite measure on X, and P
be a µ-absolutely continuous probability measure on X. Then, for all ρ1 ≤ ρ2, we have

Mρ2
⊂Mρ1

.

In turns out that we will not only need the equality µ({h ≥ ρ} \Mρ) = 0 established in (1), but
also the “converse” equality µ(Mρ \ {h ≥ ρ}) = 0. This is ensured by the following definition.

Definition 2.3. Let (X, d) be a complete separable metric space, µ be a σ-finite measure on X, and
P be a µ-absolutely continuous probability measure on X. For ρ ∈ R, we say that P is

i) upper normal at level ρ ∈ R, if, for some µ-density (and thus all µ-densities) h of P , we have

µ(Mρ \ {h ≥ ρ}) = 0 .

ii) lower normal at level ρ ∈ R, if, for some µ-density (and thus all µ-densities) h of P , we have

µ({h > ρ} \ M̊ρ) = 0 .

Moreover, we say that P is normal at level ρ if it is both upper and lower normal at level ρ. Finally,
P is normal, if it is normal at every level.
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The following lemma provides some simple sufficient conditions for normality.

Lemma 2.4. Let (X, d) be a complete separable metric space, µ be a σ-finite measure on X with
suppµ = X, and P be a µ-absolutely continuous probability measure on X. Then the following
statements hold:

i) If P has a upper semi-continuous µ-density, then it is upper normal at every level.

ii) If P has a lower semi-continuous µ-density, then it is lower normal at every level.

iii) If P has a µ-density h such that µ(∂{h ≥ ρ}) = 0 for some ρ ≥ 0, then P is normal at level ρ.

Let us now assume that P is upper normal at some level ρ. By (1) we then immediately see that

µ(Mρ M {h ≥ ρ}) = 0 (4)

for all µ-densities h of P . In other words, up to µ-zero measures, Mρ equals the ρ-level set of all
µ-densities h of P . Moreover, if for some ρ∗ > 0 and ρ∗∗ > ρ∗, the distribution P is upper normal
at every level ρ ∈ (ρ∗, ρ∗∗], then using the monotonicity of the sets Mρ and {h ≥ ρ} in ρ as well as
(∪i∈IAi) M (∪i∈IBi) ⊂ ∪i∈I(Ai M Bi), we find

µ

(
{h > ρ∗} M

⋃
ρ>ρ∗

Mρ

)
≤ µ

(⋃
n∈N

(
{h ≥ ρ∗ + 1/n} MMρ∗+1/n

))
= 0 (5)

for all µ-densities h of P , and if P has a continuous density h, we even have
⋃
ρ>ρ∗Mρ = {h > ρ∗}

by an easy consequence of Lemma 2.1. Similarly, if P is lower normal at every level ρ ∈ (ρ∗, ρ∗∗],
we find

µ

(
{h > ρ∗} \

⋃
ρ>ρ∗

M̊ρ

)
≤ µ

(⋃
n∈N

(
{h > ρ∗ + 1/n} \ M̊ρ∗+1/n

))
= 0 , (6)

and if in addition, (5) holds, we obtain µ(
⋃
ρ>ρ∗Mρ M

⋃
ρ>ρ∗ M̊ρ) = 0.

2.2 Some Notions of Connectivity

We have already mentioned in the introduction that we will follow the idea of defining clusters by
connected components. In this subsection, we introduce the necessary topological tools for this
approach. Furthermore, we consider another, more quantitative notion of connectivity that is used
in our algorithm.

Since in general we cannot expect to estimate the levels set exactly, we need a tool to compare
the clusters, i.e. the connected components, of our estimate to the true clusters. Now, connected
components form a partition of the (estimated) level set, and thus it seems natural to compare these
partitions. It turns out that this idea is so fruitful that it will also help us in other situations. We
thus begin by introducing a general approach for comparing partitions.

Definition 2.5. Let A ⊂ B be two arbitrary non-empty sets and P(A) and P(B) be two partitions
of A and B, respectively. We say that P(A) is comparable to P(B), if for all A′ ∈ P(A) there exists
a B′ ∈ P(B) such that A′ ⊂ B′.

Informally speaking, P(A) is comparable to P(B) if no cell A′ ∈ P(A) is broken into pieces
in P(B). Moreover, since P(B) is a partition, it is clear that we cannot have two distinct cells
B′, B′′ ∈ P(B) such that A′ ⊂ B′ and A′ ⊂ B′′. This simple observation immediately leads to the
following crucial lemma.

Lemma 2.6. Let A ⊂ B be two non-empty sets with partitions P(A) and P(B), respectively. Then
the following statements are equivalent:

i) P(A) is comparable to P(B).

ii) There exists a map ζ : P(A)→ P(B) such that for all A′ ∈ P(A) we have

A′ ⊂ ζ(A′) . (7)
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Moreover, if one the statements above are true, ζ is uniquely determined by (7). In the following we
call ζ the cell relating map (CRM) between A and B, and when we want to emphasize the involved
pair (A,B) and the partitions are known from the context we write ζA,B := ζ.

Note that a CRM ζ : P(A) → P(B) is injective if and only if no two distinct cells of P(A) are
contained in the same cell of P(B). Conversely, ζ is surjective, if and only if every cell in P(B)
contains a cell of P(A). As a consequence, ζ is bijective, if and only if there is a one-to-one relation
between the cells of the two partitions. The latter situation is usually the one we seek, which justifies
the following definition.

Definition 2.7. Let A ⊂ B be two non-empty sets with partitions P(A) and P(B), respectively.
Then we say that P(A) is persistent in P(B), if P(A) is comparable to P(B) and the corresponding
CRM ζ : P(A)→ P(B) is bijective.

As we will see later, the bijectivity of a CRM is often proved with the help of intermediate
CRMs. The key to this approach is provided by the following lemma that establishes transitivity
for comparable partitions and a composition formula for the involved CRMs.

Lemma 2.8. Let A ⊂ B ⊂ C be three non-empty sets with partitions P(A), P(B), and P(C).
Assume that P(A) is comparable to P(B) and that P(B) is comparable to P(C). Then P(A) is
comparable to P(C) and the corresponding CRMs satisfy

ζA,C = ζB,C ◦ ζA,B .

The lemma above shows, for example, that if P(A) is persistent in P(B) and P(B) is persistent
in P(C), then P(A) is also persistent in P(C). Conversely, if P(A) is persistent in P(C), then ζA,B
must be injective and ζB,C must be surjective. Such arguments will be frequently used in our proofs.

Let us now relate the rather abstract notion of CRMs to the topological notion of connectivity
that will be used in the definition of clusters. To this end, we fix a metric space (X, d). Now recall
from topology that an A ⊂ X is connected, if, for every pair A′, A′′ ⊂ A of relatively closed disjoint
subsets of A with A′ ∪ A′′ = A, we have A′ = ∅ or A′′ = ∅. Moreover, the maximal connected
subsets of A are called the connected components of the space, see e.g. (Kelley, 1955, p. 54f). It
is well-known that these components form a partition of A and that every component is relatively
closed in A. In particular, if A is closed, all connected components of A are closed. In the following,
we denote the set of (topologically) connected components of A by C(A). Clearly, C(A) is a partition
of A and the next lemma shows that for different sets these partitions are comparable.

Lemma 2.9. Let (X, d) be a metric space and A ⊂ B be two closed non-empty subsets of X with
|C(B)| <∞. Then C(A) is comparable to C(B).

For path-connected components it is straightforward to see that a statement analogous to Lemma
2.9 holds. In the following we will consider a discrete version of path-connectivity introduced in the
following definition.

Definition 2.10. Let (X, d) be a metric space, A ⊂ X be a non-empty subset, and τ > 0. We say
that x, x′ ∈ A are τ -connected in A, if there exist x1, . . . , xn ∈ A such that x1 = x, xn = x′ and
d(xi, xi+1) < τ for all i = 1, . . . , n− 1. Moreover, we say that A is τ -connected, if all x, x′ ∈ A are
τ -connected in A.

It is easy to check that the property of being τ -connected in A gives an equivalence relation for
elements in A. We call the resulting equivalence classes the τ -connected components of A and denote
the set of all τ -connected components of A by Cτ (A). Obviously, the τ -connected components of
A ⊂ X are τ -connected. To formulate some more properties of τ -connected components, we write

d(x,A) := inf
x′∈A

d(x, x′)

for the distance between some x ∈ X and A ⊂ X, and d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B} for the
distance between A and another set B ⊂ X.

With these preparations we can now collect some useful facts about Cτ (A) in the following lemma.
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Lemma 2.11. Let (X, d) be a metric space, A ⊂ X be a non-empty subset and τ > 0. Then we
have d(A′, A′′) ≥ τ for all A′, A′′ ∈ Cτ (A) with A′ 6= A′′. Moreover, if A is closed, all A′ ∈ Cτ (A)
are closed, and if X is compact we have |Cτ (A)| <∞.

The next lemma shows that a statement analogous to Lemma 2.9 also holds for τ -connectivity.

Lemma 2.12. Let (X, d) be a metric space, A ⊂ B be two non-empty subsets of X and τ > 0.
Then Cτ (A) is comparable to Cτ (B).

It can be easily shown, see Lemma 6.4, that, for compact metric spaces (X, d), a closed A ⊂ X
is topologically connected, if and only if it is τ -connected for all τ > 0. The following lemma
investigates the relation between Cτ (A) and C(A) in more detail.

Lemma 2.13. Let (X, d) be a compact metric space and A ⊂ X be a non-empty closed subset. Then
the following statements hold:

i) For all τ > 0, C(A) is comparable to Cτ (A) and the CRM ζ : C(A)→ Cτ (A) is surjective.

ii) If |C(A)| <∞, we have

τ∗A := min
{
d(A′, A′′) : A′, A′′ ∈ C(A) with A′ 6= A′′

}
> 0 , (8)

where min ∅ :=∞. Moreover, for all τ ∈ (0, τ∗A]∩ (0,∞), we have C(A) = Cτ (A) and, for such
τ , the CRM ζ : C(A)→ Cτ (A) is bijective. Finally, if τ∗A <∞, that is, |C(A)| > 1, we have

τ∗A = max{τ > 0 : C(A) = Cτ (A)} .

Note that, in general, a closed subset of A may have infinitely many topologically connected
components as, e.g., the Cantor set shows. In this case, the second assertion of the lemma above is,
in general, no longer true.

Given two closed subsets A ⊂ B and a τ > 0, we can consider both the CRM ζ : C(A) → C(B)
and the CRM ζτ : Cτ (A)→ Cτ (B). To distinguish between them, we sometimes call ζ the top-CRM
and the ζτ the τ -CRM. The following lemma, which is a direct consequence of Lemma 2.13, and
whose proof is therefore omitted, shows that for sufficiently small τ both coincide.

Lemma 2.14. Let (X, d) be a compact metric space, A ⊂ B be two non-empty closed subsets of
X with |C(A)| < ∞ and |C(B)| < ∞. Let ζ : C(A) → C(B) be the top-CRM. Then, for τ∗ :=
min{τ∗A, τ∗B} and all τ ∈ (0, τ∗], we have ζ = ζτ , where ζτ : Cτ (A)→ Cτ (B) is the τ -CRM.

We will see later that clusters will be defined with the help of connected components, while our
clustering algorithm needs to work with τ -connected components to recognize small bridges. The
lemma above shows that for sufficiently small τ , both concepts coincide. This already suggests that
the quantity τ∗A will be key to our analysis.

The following lemma establishes monotonicity of τ∗A in A under a natural regularity assumption.

Lemma 2.15. Let (X, d) be a compact metric space and A ⊂ B be two non-empty closed subsets of
X with |C(A)| < ∞ and |C(B)| < ∞. If the top-CRM ζ : C(A) → C(B) is injective, then we have
τ∗A ≥ τ∗B.

2.3 Clusters

Using the concepts developed in the previous subsections we can now introduce our notion of clusters
in this subsection.

We begin with the following definition that describes distributions that have clusters.

Definition 2.16. Let (X, d) be a compact metric space, µ be a finite Borel measure on X, and P
be a µ-absolutely continuous and normal Borel probability measure on X. We say that P can be
topologically clustered between the critical levels ρ∗ ≥ 0 and ρ∗∗ > ρ∗, if, for all ρ ∈ [0, ρ∗∗], the
following conditions are satisfied:
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i) We have either |C(Mρ)| = 1 or |C(Mρ)| = 2.

ii) If we have |C(Mρ)| = 1, then ρ ≤ ρ∗.

iii) If we have |C(Mρ)| = 2, then ρ ≥ ρ∗ and the top-CRM ζ : C(Mρ∗∗)→ C(Mρ) is bijective.

Definition 2.16 ensures that up to the level ρ∗ we only have one connected component, and thus
C(M ′ρ) is persistent in C(Mρ) for all 0 ≤ ρ ≤ ρ′ < ρ∗. Similarly, Condition iii) guarantees that for
some, possibly rather small, vertical range (ρ∗, ρ∗∗], C(M ′ρ) is persistent in C(Mρ). We will see later
that our algorithm, probably like any other algorithm, needs to deal with some vertical uncertainty
caused by finite sample effects. The persistence described above will be crucial for our algorithm to
work well under the presence of this uncertainty.

Note that the definition above does not exclude the case |C(Mρ∗)| = 1, and hence the elements of
C(Mρ∗) cannot be used to define the clusters of P . On the other hand, for ρ > ρ∗, each A ∈ C(Mρ)
should be a subset of a cluster of P . This idea is used in the following definition, which defines the
clusters of P by a limit for ρ↘ ρ∗.

Definition 2.17. Let (X, d) be a compact metric space, µ be a finite Borel measure on X, and P be
a µ-absolutely continuous Borel probability measure on X that can be topologically clustered between
the critical levels ρ∗ and ρ∗∗. For ρ ∈ (ρ∗, ρ∗∗], we write ζρ : C(Mρ∗∗) → C(Mρ) for the top-CRM.
Moreover, let A1 and A2 be the topologically connected components of Mρ∗∗ . Then the sets

A∗i :=
⋃

ρ∈(ρ∗,ρ∗∗]

ζρ(Ai) , i ∈ {1, 2},

are called the topological clusters of P .

By the bijectivity of the maps ζρ, it is straightforward to show that A∗1 ∩ A∗2 = ∅. In general,
however, the clusters may touch each other, that is, we may have d(A∗1, A

∗
2) = 0. For example, if P

is a mixture of two Gaussians with different centers but same variance, then it is easy to check that
the two clusters are only separated by a hyperplane, and therefore they do touch each other.

2.4 Cluster Persistence under Horizontal Uncertainty

Using finitely many samples, we can only expect estimates of the level sets Mρ that are both
vertically and horizontally uncertain. While to some extent the vertical uncertainty has already
been addressed by the persistence assumed in our cluster definition, the horizontal uncertainty has
not been addressed, so far. Therefore, the goal of this subsection is to investigate under which
conditions a controlled horizontal uncertainty does not affect the persistence.

To begin with, let us recall some notions that will help us to describe what we mean by horizontal
uncertainty. To this end, let us fix a metric space (X, d) and some A ⊂ X. For δ > 0, the δ-tube
around A is then defined by

A+δ := {x ∈ X : d(x,A) ≤ δ} .
Conceptionally similar is the operation of cutting off a δ-tube from A, namely

A−δ := X \ (X \A)+δ .

Clearly, we have A−δ ⊂ A ⊂ A+δ, and both (X \A)+δ = X \A−δ and (X \A)−δ = X \A+δ. Despite
the notation, however, both operations are anything than inverse to each other in the exponent.
Namely, in general we have (A+δ)−δ 6= A and (A−δ)+δ 6= A. Nonetheless, for ε > 0, we have at least
A ⊂ (A+δ+ε)−δ and (A−δ−ε)+δ ⊂ A, see Lemma 6.5, which also collects some other useful inclusions
related to these operations.

Remark 2.18. In the literature there is another, closely related concept for adding and cutting off
δ-tubes, which based on the Minkowski addition and difference of sets. Namely, in generic metric
spaces (X, d), we can define

A⊕δ := {x ∈ X : ∃y ∈ A with d(x, y) ≤ δ}
A	δ := {x ∈ X : B(x, δ) ⊂ A}
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for A ⊂ X and δ > 0, where B(x, δ) := {y ∈ X : d(x, y) ≤ δ} denotes the closed ball with radius
δ and center x. Some simple considerations then show A	(δ+ε) ⊂ A−δ ⊂ A	δ and A⊕δ ⊂ A+δ ⊂
A⊕(δ+ε) for all ε, δ > 0, that is, the operations of both concepts almost coincide. In addition, it is
straightforward to check that A	δ = X \ (X \A)⊕δ.

Usually, the operations ⊕δ and 	δ are considered for the special case X := Rd equipped with the
Euclidean norm. In this case, we immediately obtain the more common expressions

A⊕δ = {x+ y : x ∈ A and y ∈ δB`d2}

A	δ = {x ∈ Rd : x+ δB`d2 ⊂ A} ,

where B`d2 denotes the closed unit Euclidean ball at the origin. Note that the latter formulas remain

true for sufficiently small δ > 0, if we consider the “relative case” X ⊂ Rd and subsets A ⊂ X
satisfying d(A,Rd \X) ∈ (0,∞).

In general, it is quite cumbersome to determine the exact forms of A+δ and A−δ, respectively
A⊕δ and A	δ for a given A. For a particular class of sets A ⊂ R2, Example 7.1 illustrates this by
providing both A⊕δ and A	δ.

Let us now assume that we have an algorithm that can only estimate the true level sets Mρ up
to some δ-tube, that is

M−δρ ⊂ M̂ρ ⊂M+δ
ρ ,

where M̂ρ is the estimate generated by the algorithm. To use M̂ρ for identifying the connected

components of Mρ, it then seems natural to relate the connected components of M̂ρ to those of
M−δρ and M+δ

ρ . Clearly, this approach can only be successful, if the connected components of

M−δρ and M+δ
ρ can in turn be related to those of Mρ. While for sufficiently small δ it can be

shown similarly to Lemma 2.13 that C(M+δ
ρ ) is persistent in C(Mρ), this is no longer true for M−δρ .

Indeed, in the presence of thin bridges the cutting operation may split a connected component into
two. Consequently, we need a method to carefully glue connected components together. As we will
see later, considering τ -connected components instead of connected components, is such a method
provided that τ and δ satisfy certain constraints. Keeping this motivation in mind, our goal of this
section is thus to investigate under which conditions Cτ (M−δρ ) and Cτ (M+δ

ρ ) are persistent to C(Mρ).
Let us begin with the following lemma that establishes properties for the τ -CRM between a set

A and A+δ. Roughly speaking, it states, that Cτ (A) is persistent in Cτ (A+δ), if τ > 0 and δ > 0 are
sufficiently small.

Lemma 2.19. Let (X, d) be a compact metric space, and A ⊂ X be a non-empty subset of X. Then,
for all δ > 0 and τ > δ, the following statements hold:

i) The set (A′)+δ is τ -connected for all A′ ∈ Cτ (A).

ii) The τ -CRM ζ : Cτ (A)→ Cτ (A+δ) is surjective.

iii) If A is closed, |C(A)| < ∞, and τ ≤ τ∗A/3, then the τ -CRM ζ : Cτ (A) → Cτ (A+δ) is bijective
and satisfies

ζ(A′) = (A′)+δ , A′ ∈ Cτ (A). (9)

With the help of the preceding lemma we can now establish our first persistence result, which
compares the τ -connected components of Mρ with those of M+δ

ρ .

Theorem 2.20. Let (X, d) be a compact metric space, µ be a finite Borel measure on X and P be
a µ-absolutely continuous Borel probability measure on X that can be topologically clustered between
the critical levels ρ∗ and ρ∗∗. We define the function τ∗ : (0, ρ∗∗ − ρ∗]→ (0,∞) by

τ∗(ε) :=
1

3
τ∗Mρ∗+ε

. (10)

Then τ∗ is monotonically increasing. Moreover, for all ε∗ ∈ (0, ρ∗∗ − ρ∗], δ > 0, τ ∈ (δ, τ∗(ε∗)], and
all ρ ∈ [0, ρ∗∗], the following statements hold:
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i) We have 1 ≤ |Cτ (M+δ
ρ )| ≤ 2.

ii) If ρ ≥ ρ∗ + ε∗, then |Cτ (M+δ
ρ )| = 2 and the CRM ζ : C(Mρ)→ Cτ (M+δ

ρ ) is bijective.

iii) If |Cτ (M+δ
ρ )| = 2, then ρ ≥ ρ∗ and the τ -CRM ζ : Cτ (M+δ

ρ∗∗)→ Cτ (M+δ
ρ ) is bijective.

iv) If the τ -CRM ζ∗∗ : Cτ (M−δρ∗∗)→ Cτ (M+δ
ρ∗∗) is bijective and |Cτ (M−δρ )| = 1, then ρ < ρ∗ + ε∗.

The first three statements of Theorem 2.20 basically show that for sufficiently small δ and τ the
τ -connected component structure of Mρ is not changed when δ-tubes are added. Not surprisingly,
however, the meaning of “sufficiently small”, which is expressed by the function τ∗, changes when
we approach the critical level ρ∗ from above. Moreover, even for 0 < δ < τ ≤ τ∗(ε∗), Theorem 2.20
does not specify the component structure of Cτ (M+δ

ρ ) for levels close to ρ∗, that is ρ ∈ [ρ∗, ρ∗ + ε∗).
We will see later, that these two facts will complicate our analysis significantly.

The assumed bijectivity of ζ∗∗ : Cτ (M−δρ∗∗) → Cτ (M+δ
ρ∗∗) in iv) means that the τ -connected com-

ponent structure of Mρ∗∗ is not changed by cutting off δ-tubes, and the corresponding conclusion
essentially states that this is actually true for all levels ρ ∈ [ρ∗+ ε∗, ρ∗∗]. Our next goal is to further
investigate persistence under the cutting operation. We begin with the following lemma, which
investigates situations in which Cτ (A−δ) is persistent in C(A).

Lemma 2.21. Let (X, d) be a compact metric space, and A ⊂ X be a non-empty closed subset of
X with |C(A)| <∞. We define the function ψ∗A : (0,∞)→ [0,∞] by

ψ∗A(δ) := sup
x∈A

d(x,A−δ) , δ > 0.

Then, for all δ > 0 and all τ > 2ψ∗A(δ), the following statements hold:

i) For all B′ ∈ C(A), there exists at most one A′ ∈ Cτ (A−δ) such that A′ ∩B′ 6= ∅.

ii) We have |Cτ (A−δ)| ≤ |C(A)|.

iii) If |Cτ (A−δ)| = |C(A)|, then Cτ (A−δ) is persistent in C(A). Moreover, for all B′, B′′ ∈ C(A)
with B′ 6= B′′ we have

d(B′, B′′) ≥ τ − 2ψ∗A(δ) . (11)

Part iii) of Lemma 2.21 states that if τ is sufficiently large compared to δ and |Cτ (A−δ)| = |C(A)|,
then we obtain persistence. Informally speaking this means that gluing δ-cuts by τ -connectivity may
preserve the component structure in some situations.

The lemma above suggests that like τ∗A, the function ψ∗A will play a central role in our analysis.
Let us therefore consider ψ∗A in some more detail. To this end, we first note that the function ψ∗A
can actually be defined for arbitrary non-empty sets A in arbitrary metric spaces (X, d). In the
following discussion we always consider this general case.

Our first observation is that the definition of ψ∗A immediately yields A ⊂ (A−δ)+ψ∗A(δ) for all
δ > 0 with ψ∗A(δ) < ∞, and it is also straightforward to see that ψ∗A(δ) is the smallest ψ > 0, for
which this inclusion holds, that is

ψ∗A(δ) = min
{
ψ ≥ 0 : A ⊂ (A−δ)+ψ

}
for all δ > 0. In other words, ψ∗A(δ) gives the size of the smallest tube needed to recover a superset
of A from A−δ. In particular, if δ is too large, that is A−δ = ∅, we obviously have ψ∗A(δ) = ∞ and
no recovery is possible.

Intuitively it is not surprising that ψ∗A grows at least linearly, that is

ψ∗A(δ) ≥ δ (12)

for all δ > 0 provided that d(A,X \ A) = 0. Indeed, ψ∗A(δ) < δ for some δ > 0 gives us an ε > 0
such that d(x,A−δ) < δ − ε for all x ∈ A. Since d(A,X \ A) = 0 there then exists an x ∈ A with
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d(x,X \A) < ε, and for this x there exists an x′ ∈ A−δ with d(x, x′) < δ − ε. Now the definition of
A−δ gives d(x′, X \A) > δ, and hence we find a contradiction by

δ < d(x′, X \A) ≤ d(x′, x) + d(x,X \A) < δ .

For generic sets A, the function ψ∗A is usually hard to bound, but for some classes of sets, ψ∗A can
actually computed precisely. For example, if I ⊂ R is a bounded and closed interval, say I = [a, b],
then ψ∗I (δ) = δ for all δ ∈ (0, (b − a)/2], and ψ∗I (δ) = ∞, otherwise. Clearly, this example can be
extended to finite unions of such intervals and for intervals that are not closed, the only difference
occurs at δ = (b− a)/2. In higher dimensions, an interesting class of sets A with linear behavior of
ψ∗A is described by Serra’s model, see (Serra, 1982, p. 144), that consist of all compact sets A ⊂ Rd
for which there is a δ0 > 0 with

A = (A	δ0)⊕δ0 = (A⊕δ0)	δ0 .

If, in addition, A is path-connected, then (Walther, 1999, Thm. 1) shows that this relation also holds
for all δ ∈ (0, δ0]. In this case, we then obtain by Remark 2.18

A = (A	(δ+ε))⊕(δ+ε) ⊂ (A	(δ+ε))+δ+ε ⊂ (A−δ)+δ+ε

for all δ ∈ (0, δ0) and 0 < ε ≤ δ0 − δ. In other words, we have ψ∗A(δ) ≤ δ + ε, and letting ε→ 0, we
thus conclude ψ∗A(δ) = δ for all δ ∈ (0, δ0). In addition, with the help of Lemma 6.5, it is not hard to
see that this result generalizes to finite unions of compact, path-connected sets, which has already
been observed in Walther (1999). Finally, note that (Walther, 1999, Thm. 1) also provides some
useful characterizations of (path-connected) compact sets belonging to Serra’s model. In a nutshell,
these are the sets whose boundary is a (d−1)-dimensional sub-manifold of Rd with outward pointing
unit normal vectors satisfying a Lipschitz condition.

Our analysis does not require the exact form of ψ∗A, but only its asymptotic behavior for δ → 0.
Therefore it is interesting to note that ψ∗A is also asymptotically invariant against bi-Lipschitz
transformations. To be more precise, let (X, d) and (Y, e) be two metric spaces and I : X → Y be
a bijective map for which there exists a constant C > 0 such that

C−1e(I(x), I(x′)) ≤ d(x, x′) ≤ Ce(I(x), I(x′))

for all x, x′ ∈ X. For A ⊂ X and δ > 0, we then we have I(A+δ/C) ⊂ (I(A))+δ ⊂ I(A+Cδ), which
in turn implies

C−1ψ∗A(δ/C) ≤ ψ∗I(A)(δ) ≤ Cψ
∗
A(Cδ)

for all δ > 0. In particular, we have ψ∗A(δ) � δγ for some γ ∈ (0, 1] if and only if ψ∗I(A)(δ) � δ
γ .

Last but not least we like to mention that based on the sets A ⊂ R2 considered in Example 7.1,
Example 7.2 estimates ψ∗A. In particular, this example provides various sets A with ψ∗A(δ) ∼ δ that
do not belong to Serra’s model, and this class of sets can be further expanded by using bi-Lipschitz
transformations as discussed above.

Let us now return to the persistence of level sets under the cutting operation. To this end, we
need the following definition.

Definition 2.22. Let (X, d) be a compact metric space, µ be a σ-finite Borel measure on X and P be
a µ-absolutely continuous Borel probability measure on X. Then we say that, up to the level ρ∗∗ > 0,
the distribution P has thick levels of order γ ∈ (0, 1], if there exist cthick ≥ 1 and δthick ∈ (0, 1] such
that, for all δ ∈ (0, δthick], ρ ∈ [0, ρ∗∗], we have

ψ∗Mρ
(δ) ≤ cthick δ

γ . (13)

In this case, we call ψ : (0,∞)→ (0,∞), defined by ψ(δ) := 3cthickδ
γ , the thickness function.

With the help of the discussion following Lemma 2.21 it is easy to see that we have Mρ ⊂
(M−δ)+ψ(δ)/2 for all δ ∈ (0, δthick] and all ρ ∈ (0, ρ∗∗]. In addition, it becomes clear that exponents
γ > 1 are impossible as soon as d(Mρ, X \Mρ) = 0 for some ρ ∈ (0, ρ∗∗].
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Intuitively, Definition 2.22 excludes thin cusps and bridges, where the thinness and length of both
is controlled by γ. Such assumptions have been widely used in the literature on level set estimation
and density-based clustering. For example, a basically identical assumption has been made in Singh
et al. (2009) for the exponent γ = 1, which can be taken, if, e.g., the level sets belong to Serra’s
model. Moreover, level sets belonging to Serra’s model have been investigated in Walther (1997).
In particular, (Walther, 1997, Thm. 2) shows that most level sets of a C1-density with Lipschitz
continuous gradient belong to Serra’s model. Unfortunately, however, levels at which the density
has a saddle point are excluded in this theorem, and some other elementary sets such as cubes in Rd
do not belong to Serra’s model, either. For this reason, we allow constants cthick > 1 and exponents
γ < 1. Finally, a less geometric assumption excluding thin features, known as standardness, has
been used by various authors, see e.g. Cuevas and Fraiman (1997), Cuevas et al. (2000), Rigollet
(2007) and the references therein, and an overview of these and similar assumptions can be found
in Cuevas (2009).

Understanding (13) in the one-dimensional case is very simple. Indeed, if X ⊂ R is an interval
and P can be topologically clustered between the critical levels ρ∗ and ρ∗∗, then every level set Mρ

consists of either one or two closed intervals, since intervals are the only topologically connected sets
in R. Using this, the discussion following Lemma 2.21 shows that P actually has thick levels of order
γ = 1 up to the level ρ∗∗. Moreover, a possible thickness function is ψ(δ) = 3δ for all δ ∈ (0, δthick],
where δthick equals the smaller radius of the two intervals at level ρ∗∗.

Using the discussion following Lemma 2.21 it is not hard to construct distributions with discon-
tinuous densities that have thick levels of order, e.g. γ = 1. For continuous densities, however, this
task is significantly harder due to saddle point effects at the critical level ρ∗. Nonetheless, Example
7.4 provides a large class of such densities in the case X ⊂ R2.

Let us now summarize the assumptions that will be used in the following.

Assumption C. We have a compact metric space (X, d), a finite Borel measure µ on X with
suppµ = X, and a µ-absolutely continuous probability measure P that can be topologically clustered
between the critical levels ρ∗ and ρ∗∗. In addition, we assume that up to the level ρ∗∗ > 0, the
distribution P has thick levels of order γ ∈ (0, 1]. We denote the corresponding thickness function
by ψ and write τ∗ for the function defined in (10).

Our last result of this subsection, which is the counterpart of Theorem 2.20, shows that, for thick
clusters, the connected component structure of Mρ is not changed when cutting off δ-tubes.

Theorem 2.23. Let Assumption C be satisfied. Then, for all ε∗ ∈ (0, ρ∗∗ − ρ∗], δ ∈ (0, δthick],
τ ∈ (ψ(δ), τ∗(ε∗)], and all ρ ∈ [0, ρ∗∗], the following statements hold:

i) We have 1 ≤ |Cτ (M−δρ )| ≤ 2.

ii) The τ -CRM ζ∗∗ : Cτ (M−δρ∗∗)→ Cτ (M+δ
ρ∗∗) is bijective.

iii) If |Cτ (M−δρ )| = 2, then ρ ≥ ρ∗ and the τ -CRM ζ : Cτ (M−δρ∗∗)→ Cτ (M−δρ ) is bijective.

Intuitively, considering Cτ (M−δρ ) rather than C(M−δρ ) means that we add a τ -tube around M−δρ .

By Theorem 2.23, the thickness of the level sets then ensure that Cτ (M−δρ ) and Mρ have the same
component structure, or to say it in simple words, considering τ -connected components glues together
what has been accidentally cut by removing δ-tubes.

3 The Algorithm and its Finite Sample Behaviour

In this section, we introduce our clustering algorithm and present first results on its clustering
ability. In a nutshell, this algorithm first estimates density level sets with the help of a standard
histogram-based density estimator. It then identifies τ -connected components of the estimating level
sets and prunes certain components. The smallest level, at which we have more than one remaining
τ -connected component is then our estimate of the critical level ρ∗.

While the algorithm is conceptionally simple, its analysis turns out to be laborious, mostly
because we have to ensure that, at least for most of the considered levels, the estimated τ -connected
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component structure is closely related to the connected component structure of the true level set.
A key step towards this relation will be presented in Lemma 3.4, which specifies the vertical and
horizontal uncertainty of the estimating level set. Theorem 3.5 then gives a simple criterion for
the pruning operation, and Theorems 3.6 and 3.8 provide a detailed finite-sample analysis of the
clustering algorithm.

Let us begin by recalling that histograms are based on partitions of the input space X. In the
following, we need to ensure that the partitions we use are geometrically well-behaved. To this end,
we need the diameter of a subset A ⊂ X, that is,

diamA := sup
x,x′∈A

d(x, x′) .

Now, the following definition describes partitions that are controlled in size, measure, and shape.

Definition 3.1. Let (X, d) be a compact metric space and µ be a finite Borel measure on X with
suppµ = X. Moreover, for each δ ∈ (0, 1], let Aδ = (A1, . . . , Amδ) be a finite partition of X. Then
(Aδ)δ∈(0,1] is called a uniform family of d-dimensional partitions of X, where d > 0, if there exists
a constant cpart ≥ 1 such that, for all δ ∈ (0, 1] and all i = 1, . . . ,mδ, we have

diamAi ≤ δ ,
mδ ≤ cpartδ

−d ,

µ(Ai) ≥ c−1
partδ

d .

The easiest yet most important examples of uniform families of partitions are hypercube parti-
tions in combination with the Lebesgue measure. The following example presents the details.

Example 3.2. Let X := [0, 1]d be equipped with the metric defined by the supremum norm ‖ · ‖`d∞ ,

and λd be the d-dimensional Lebesgue measure. For δ ∈ (0, 1], there then exists a unique ` ∈ N with
1
`+1 < δ ≤ 1

` . We define h := 1
1+` and write Aδ for the usual partition of [0, 1]d into hypercubes

of side-length h. Then, for each Ai ∈ Aδ, we have diamAi = h ≤ δ and λd(Ai) = hd ≥ 2−dδd.
Moreover, we obviously have |Aδ| = h−d ≤ 2dδ−d. Consequently, (Aδ)δ∈(0,1] is a uniform family of

d-dimensional partitions of X with cpart := 2d.

In the following, we will mainly deal with situations in which Assumption A is satisfied and we
have a uniform family of partitions. For convenience, the following assumption summarizes this.

Assumption A. Assumption C is satisfied and we have a uniform family (Aδ)δ∈(0,1] of d-dimensional
partitions of X.

Let us now assume that (X, d) is a compact metric space and µ is a finite Borel measure with
suppµ = X, such that we have a uniform family of d-dimensional partitions (Aδ)δ∈(0,1] of X. For a
fixed δ > 0, we write Aδ = (A1, . . . , Am). Given a probability measure P on X, we then define the
corresponding histogram by

hP,δ(x) :=

m∑
j=1

P (Aj)

µ(Aj)
· 1Aj (x) , x ∈ X,

where 1A denotes the indicator function of a set A. Let us now assume that we have a data set
D = (x1, . . . , xn) ∈ Xn. In a slight abuse of notation, we denote the corresponding empirical
measure by D, that is D := 1

n

∑n
i=1 δxi , where δx is the Dirac measure at the point x. For A ⊂ X

this gives

D(A) =
1

n

n∑
i=1

1A(xi) ,

and the corresponding (empirical) histogram is

hD,δ(x) =

m∑
j=1

D(Aj)

µ(Aj)
· 1Aj (x) , x ∈ X. (14)

Our first result in this section shows, that, for i.i.d. observations D, the empirical histogram hD,Aδ
uniformly approximates the infinite-sample histogram hP,δ with high probability.
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Theorem 3.3. Let (X, d) be a compact metric space, µ be a finite Borel measure on X with suppµ =
X, and (Aδ)δ∈(0,1] be a uniform family of d-dimensional partitions of X. Moreover, let P be a
probability measure on X. Then, for all n ≥ 1, ε > 0, and δ > 0, we have

Pn
({
D ∈ Xn : ‖hD,δ − hP,δ‖∞ < ε

})
≥ 1− 2cpart exp

(
−d ln δ − 2nε2δ2d

c2part

)
.

In addition, if P is µ-absolutely continuous and there exists a bounded µ-density h of P , then we
have

Pn
({
D ∈ Xn : ‖hD,δ − hP,δ‖∞ < ε

})
≥ 1− 2cpart exp

(
−d ln δ − 3nε2δd

cpart(6‖h‖∞ + 2ε)

)
.

As already indicated above, our clustering algorithm will use the set {hD,δ ≥ ρ} to estimate the
true level set Mρ. The following key lemma specifies the accuracy of this approach.

Lemma 3.4. Let (X, d) be a compact metric space, µ be a finite Borel measure on X with suppµ =
X, and (Aδ)δ∈(0,1] be a uniform family of d-dimensional partitions of X. Moreover, let P be a µ-

absolutely continuous probability measure on X and ĥ : X → R be a function with ‖ĥ− hP,δ‖∞ ≤ ε
for some ε ≥ 0. Then, for all ρ ≥ 0, the following statements hold:

i) If P is upper normal at the level ρ+ ε, then we have M−δρ+ε ⊂ {ĥ ≥ ρ}.

ii) If P is upper normal at the level ρ− ε, then we have {ĥ ≥ ρ} ⊂M+δ
ρ−ε.

Note that, for ε = 0, the lemma above shows M−δρ ⊂ {hP,δ ≥ ρ} ⊂M+δ
ρ , that is, the horizontal

inaccuracy of approximating Mρ by {hP,δ ≥ ρ} can be described by adding and cutting-off δ-tubes

to and from Mρ. The additional error of using an ε-approximate ĥ of hP,δ, for example hD,δ, directly
translates into the levels ρ+ ε and ρ− ε of the enclosing sets M−δρ+ε and M+δ

ρ−ε. In other words, our
statistical uncertainty causes vertical uncertainty, while the geometric inaccuracy of our partition is
responsible for the horizontal uncertainty.

Motivated by Lemma 3.4, our next goal is to relate the τ -connected components of our estimate
{ĥ ≥ ρ} to the τ -connected components of M−δρ+ε. To make the corresponding results reusable for
possible future clustering algorithms, we formulate the following theorems for generic estimators.
These generic results are then applied to our histogram-based algorithm in Theorem 3.8.

Theorem 3.5. Let Assumption C be satisfied. Furthermore, let ε∗ ∈ (0, ρ∗∗ − ρ∗], δ ∈ (0, δthick],
τ ∈ (ψ(δ), τ∗(ε∗)], and ε ∈ (0, ε∗]. In addition, let (Lρ)ρ≥0 be a decreasing family of sets Lρ ⊂ X
such that

M−δρ+ε ⊂ Lρ ⊂M+δ
ρ−ε (15)

for all ρ ≥ 0. Then for all ρ ∈ [0, ρ∗∗ − 3ε], the following disjoint union holds

Cτ (Lρ) = ζ
(
Cτ (M−δρ+ε)

)
∪
{
B′ ∈ Cτ (Lρ) : B′ ∩ Lρ+2ε = ∅

}
, (16)

where ζ : Cτ (M−δρ+ε) → Cτ (Lρ) is the τ -CRM, whose existence is guaranteed by (15) and Lemma
2.12.

Theorem 3.5 shows that, for suitably chosen δ, ε, and τ , all τ -connected components B′ of our
estimate Lρ of Mρ are either contained in ζ(Cτ (M−δρ+ε)) or satisfy B′ ∩Lρ+2ε = ∅. Now, if the latter
components are easy to find and remove, we have a device that allows us to identify exactly the
τ -connected components B′ that are contained in ζ(Cτ (M−δρ+ε)). This suggests that, starting with
ρ = 0, we only need to scan through the values of ρ. Algorithm 3.1 formalizes this idea.

Obviously, the described heuristic of Algorithm 3.1 only makes sense if we can relate the τ -
connected component structure of M−δρ+ε to the topologically connected component structure of Mρ

for “most” ρ. The following result shows that this is indeed the case. It further shows that the level
ρ∗D returned by Algorithm 3.1 estimates ρ∗.
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Algorithm 3.1 Clustering with the help of a generic level set estimator

Require: Some τ > 0 and ε > 0.
An algorithm that produces, for all data sets D ∈ Xn, a decreasing family (LD,ρ)ρ≥0 of
subsets of X.

Ensure: An estimate of ρ∗ and the topological clusters A∗1 and A∗2.
1: ρ← 0
2: repeat
3: Identify the τ -connected components B′1, . . . , B

′
M of LD,ρ satisfying

B′i ∩ LD,ρ+2ε 6= ∅.

4: ρ← ρ+ ε
5: until M 6= 1
6: ρ← ρ+ 2ε
7: Identify the τ -connected components B′1, . . . , B

′
M of LD,ρ satisfying

B′i ∩ LD,ρ+2ε 6= ∅.

8: return ρ∗D := ρ and the sets Bi(D) := B′i for i = 1, . . . ,M .

Theorem 3.6. Let Assumption C be satisfied. Furthermore, let ε∗ ≤ (ρ∗∗ − ρ∗)/9 , δ ∈ (0, δthick],
τ ∈ (ψ(δ), τ∗(ε∗)], and ε ∈ (0, ε∗]. In addition, let D be a data sets and (LD,ρ)ρ≥0 be a decreasing
family satisfying

M−δρ+ε ⊂ LD,ρ ⊂M+δ
ρ−ε

for all ρ ≥ 0. Furthermore, assume that Algorithm 3.1 receives the parameters τ , ε, and (LD,ρ)ρ≥0.
Then, the following statements are true:

i) The returned level ρ∗D satisfies ρ∗D ∈ [ρ∗ + 2ε, ρ∗ + ε∗ + 5ε].

ii) We have |Cτ (M−δρ∗D+ε)| = 2 and the τ -CRM ζ : Cτ (M−δρ∗D+ε)→ Cτ (LD,ρ∗D ) is injective.

iii) Algorithm 3.1 returns the two τ -connected components of ζ(Cτ (M−δρ∗D+ε)).

iv) There exist CRMs ζρ∗∗ : Cτ (M−δρ∗∗)→ C(Mρ∗∗) and ζρ∗D+ε : Cτ (M−δρ∗D+ε)→ C(Mρ∗D+ε) such that

the following diagram

Cτ (M−δρ∗∗) C(Mρ∗∗)

Cτ (M−δρ∗D+ε) C(Mρ∗D+ε)

-

? ?
-

ζρ∗∗

ζρ∗∗,ρ∗D+ε ζ̃

ζρ∗D+ε

commutes, where ζρ∗∗,ρ∗D+ε is the τ -CRM and ζ̃ is the top-CRM. Moreover, every map in the
diagram is bijective.

v) The returned level ρ∗D satisfies τ − ψ(δ) < 3τ∗(ρ∗D − ρ∗ + ε).

To illustrate the meaning of part iv) of Theorem 3.6 let us assume that we are in the situation
of this theorem. Moreover, let A1 and A2 be the two topologically connected components of Mρ∗∗ ,
and

V iρ∗D+ε := ζρ∗∗,ρ∗D+ε

(
ζ−1
ρ∗∗(Ai)

)
, i = 1, 2, (17)

be the two τ -connected components of M−δρ∗D+ε. Note part iv) ensures that we can actually make this

definition, and, in addition, it shows V 1
ρ∗D+ε 6= V 2

ρ∗D+ε. Moreover, by part ii) and iii) we may assume

that the sets returned by Algorithm 3.1 are ordered in the sense of Bi(D) = ζ(V iρ∗D+ε), that is

Bi(D) = ζ ◦ ζρ∗∗,ρ∗D+ε

(
ζ−1
ρ∗∗(Ai)

)
, i = 1, 2. (18)
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Now, this definition ensures V iρ∗D+ε ⊂ Bi(D), while the diagram gives V iρ∗D+ε ⊂ ζ̃(Ai) ⊂ A∗i . For

i = 1, 2, we consequently have
V iρ∗D+ε ⊂ Bi(D) ∩A∗i ,

i.e. each returned component Bi(D) contains a chunk of the desired cluster A∗i . The following result
refines this analysis.

Theorem 3.7. Suppose that the assumptions of Theorem 3.6 are satisfied, and that the two sets
returned by Algorithm 3.1 are ordered in the sense of (18). For i = 1, 2, we write Aiρ∗D+ε := ζ̃(Ai).

Then we have

µ
(
B1(D) M A∗1

)
+ µ

(
B2(D) M A∗2

)
≤ 2µ

(
A∗1 \ (A1

ρ∗D+ε)
−δ)+ 2µ

(
A∗2 \ (A2

ρ∗D+ε)
−δ)

+ µ
(
M+δ
ρ∗D−ε

\ {h > ρ∗}
)
. (19)

Let us assume for a moment that we wish to estimate how well the clusters Bi(D) returned by
Algorithm 3.1 estimate the true clusters. By part i) of Theorem 3.6 we then know ρ∗D ∈ [ρ∗+2ε, ρ∗+
ε∗ + 5ε], and hence the estimate of Theorem 3.7 yields

µ
(
B1(D) M A∗1

)
+ µ

(
B2(D) M A∗2

)
≤ 2µ

(
A∗1 \ (A1

ρ∗+ε∗+6ε)
−δ)+ 2µ

(
A∗2 \ (A2

ρ∗+ε∗+6ε)
−δ)

+ µ
(
M+δ
ρ∗+ε \ {h > ρ∗}

)
,

where Aiρ∗+ε∗+6ε are the connected components at level ρ∗ + ε∗ + 6ε. Consequently, it suffices to
understand how the mass of the three sets on the left-hand side of this estimate behave for δ → 0
and ε∗ → 0.

Having understood the generic clustering Algorithm 3.1 in detail, let us now return to the concrete
example of clustering with the help of histogram-based density level set estimators. The following
theorem provides a finite sample bound for this approach.

Theorem 3.8. Let Assumption A be satisfied. For some fixed δ ∈ (0, δthick], ς ≥ 1, n ≥ 1, and
τ > ψ(δ), we fix an ε > 0 satisfying the bound

ε ≥ cpart

√
ς + ln(2cpart)− d ln δ

2δ2dn
, (20)

or, if P has a bounded µ-density h, the bound

ε ≥
√

2cpart(1 + ‖h‖∞)(ς + ln(2cpart)− d ln δ)

δdn
+

2cpart(ς + ln(2cpart)− d ln δ)

3δdn
. (21)

We further pick an ε∗ > 0 satisfying

ε∗ ≥ ε+ inf
{
ε′ ∈ (0, ρ∗∗ − ρ∗] : τ∗(ε′) ≥ τ

}
. (22)

For each data sets D ∈ Xn, we then feed Algorithm 3.1 with the parameters τ and ε, and with the
family (LD,ρ)ρ≥0 given by

LD,ρ := {hD,δ ≥ ρ} , ρ ≥ 0.

If ε∗ ≤ (ρ∗∗ − ρ∗)/9, then the probability Pn of having a data set D ∈ Xn satisfying both the
assertions i) - v) of Theorem 3.6 and (19) is not less than 1− e−ς .

At this point we like to emphasize that a finite sample bound of the form of Theorem 3.8 can
be derived from our analysis whenever Algorithm 3.1 uses density level set estimator guaranteeing
the inclusions M−δρ+ε ⊂ LD,ρ ⊂ M+δ

ρ−ε. A possible example of such an alternative level set estimator
seems to be a plug-in approach based on a moving window density estimator, since for the latter it
is possible to establish a uniform convergence result similar to Theorem 3.3, see e.g. Sriperumbudur
and Steinwart (2012), Giné and Guillou (2002). Unfortunately, however, the resulting level sets
become computationally infeasible, and hence we have not included this approach, here. In general it
remains an open question, whether sets LD,ρ that are constructed differently from the moving window
estimator can address this issue. So far, the only known result in this direction is by Sriperumbudur
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and Steinwart (2012) who have constructed such sets for α-Hölder-continuous densities with known
α.

If the assumption of Theorem 3.8 are satisfied, then Algorithm 3.1 clearly terminates after a
finite number of iterations. To show that it actually always terminates after finitely many iterations,
we first observe that

‖hD,δ‖∞ ≤ cpartδ
−d

m∑
i=1

D(Ai) = cpartδ
−d

for all δ ∈ (0, 1]. After at most dcpartδ
−dε−1e + 1 iterations we thus have LD,ρ = {hD,δ ≥ ρ} = ∅

in the loop of Algorithm 3.1, so that the loop is terminated at this stage with M = 0, if it has not
been terminated earlier.

4 Consistency and Rates

At the end of the previous section we established a finite sample bound for Algorithm 3.1 when it
receives a histogram-based plug-in level set estimator. The first goal of this section is to use this
finite sample bound to show that this clustering algorithm estimates both ρ∗ and the clusters A∗i in
a consistent manner. In a second step we then introduce a couple of additional assumptions on P
that make it possible to establish convergence rates for both estimation problems.

Let us begin with the following result that establishes consistency.

Theorem 4.1. Let Assumption A be satisfied, and let (εn), (δn), and (τn) be strictly positive
sequences converging to zero such that ψ(δn) < τn for all sufficiently large n and

ln δ−1
n

nδ2d
n ε

2
n

→ 0 . (23)

For n ≥ 1, consider Algorithm 3.1 with the input parameters εn, τn, and the family (LD,ρ)ρ≥0 given
by LD,ρ := {hD,δn ≥ ρ}. Then, for all ε > 0, we have

lim
n→∞

Pn
({
D ∈ Xn : 0 < ρ∗D − ρ∗ ≤ ε

})
= 1

and, if µ(A∗i ∪A∗2 \ (A∗1 ∪A∗2)) = 0, we also have

lim
n→∞

Pn
({
D ∈ Xn : µ(B1(D) M A∗1) + µ(B2(D) M A∗2) ≤ ε

})
= 1 ,

where, for B1(D) and B2(D), we use the numbering described in Theorem 3.7.

Before we discuss the consequences of Theorem 4.1, let us briefly illustrate the additional as-
sumption µ(A∗i ∪A∗2 \ (A∗1 ∪A∗2)) = 0. To this end, we fix a µ-density h of P . Then Lemma 2.1 tells
us that

A∗i ∪A∗2 =
⋃
ρ>ρ∗

Mρ ⊂
⋃
ρ>ρ∗

{h ≥ ρ} ⊂
⋃
ρ>ρ∗

{h ≥ ρ} = {h > ρ∗} .

Using (5), which is ensured by the assumed normality in Assumption A, we then obtain

µ
(
A∗i ∪A∗2 \ (A∗1 ∪A∗2)

)
≤ µ

(
{h > ρ∗} \ {h > ρ∗}

)
≤ µ(∂{h > ρ∗}) = µ(∂{h ≤ ρ∗}) .

Consequently, the additional assumption is satisfied, if there exists a µ-density h of P such that
µ(∂{h ≤ ρ∗}) = 0. In this respect recall, that Lemma 2.4 showed that P is normal, if, for all ρ ∈ R,
we have a µ-density h of P with µ(∂{h ≥ ρ}) = 0. In other words, the additional assumption is
somewhat similar to the already assumed normality.

Theorem 4.1 shows that for suitably chosen parameters Algorithm 3.1 asymptotically recovers
both ρ∗ and the clusters A∗1 and A∗2, whenever the distribution P has levels that are thicker than
a pre-described order γ. In other words, as soon as we assume a minimal thickness, we are able
to recover the clusters. To be more precise, suppose that we choose δn ∼ n−α and εn ∼ n−β for
some α, β > 0. Then it is easy to check that (23) is satisfied if and only if 2(αd + β) < 1. For
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τn ∼ n−αγ lnn, we then have ψ(δn) < τn for all sufficiently large n, and therefore, Algorithm 3.1
recovers the clusters for all distributions P that have thick levels of order γ. Similarly, the choice
τn ∼ (lnn)−1 leads to consistency for all distributions P that have thick levels of some order γ > 0.
Finally note that (23) can be replaced by

ln δ−1
n

nδd
nε

2
n

→ 0 ,

if we restrict our consideration to distributions with bounded µ-densities. The proof of this is a
straight forward modification of the proof of Theorem 4.1 , and hence omitted.

Let us now give two simple though concrete examples. For the first one, recall that for the one-
dimensional case in which X ⊂ R is a compact interval, we automatically have thickness of order
γ = 1 with ψ(δ) = 3δ for all δ ∈ (0, δthick]. Consequently, Algorithm 3.1 asymptotically recovers the
clusters for all distributions P on X that can be topologically clustered, if, for example, we choose
δn ∼ n−α, εn ∼ n−β , and τn = 4δn for α, β > 0 satisfying 2(α + β) < 1. Note that it is easy
to construct distributions in this class that either do or do not have a continuous density. In the
two dimensional case, as well as in any higher dimension, it is also straight forward to construct
distributions with thick levels of order γ = 1 and discontinuous densities. The construction of a
corresponding rich family of continuous densities is, however, significantly more complicated due to
possible saddle points at the level ρ∗. For d = 2, we have thus included the construction of such a
family in the appendix. Note that in this case, sequences δn ∼ n−α, εn ∼ n−β , and τn ∼ n−α lnn
with α, β > 0 and 4α + 2β < 1 guarantee consistency, and for bounded densities the latter can be
weakened to 2α+ 2β < 1.

Our next goal is to establish rates of convergence for both ρ∗D → ρ∗ and µ(Bi(D) M A∗i ) → 0.
As usual in nonparametric statistics, such rates require some assumptions on P . Let us begin by
introducing an assumption that leads to rates for the estimation of ρ∗.

Definition 4.2. Let (X, d) be a compact metric space, µ be a finite Borel measure on X, and P be
a µ-absolutely continuous probability measure on X that can be clustered between the critical levels
ρ∗ and ρ∗∗. We say that the clusters of P have separation exponent κ ∈ (0,∞], if there exists a
constant csep > 0 such that, for all ε ∈ (0, ρ∗∗ − ρ∗], we have

τ∗(ε) ≥ csepε
1/κ .

Moreover, we say that the separation exponent κ is exact, if there exists another constant csep > 0
such that, for all ε ∈ (0, ρ∗∗ − ρ∗], we have

τ∗(ε) ≤ csepε
1/κ .

Roughly speaking, the separation exponent describes how fast the connected components of the
level sets Mρ move apart for increasing ρ > ρ∗. It is easy to check that the separation exponent is
monotone in the sense that a distribution having separation exponent κ also has separation exponent
κ′ for all κ′ < κ. In particular, the “best” separation exponent is κ =∞ and this exponent describes
distributions, for which we have d(A∗1, A

∗
2) ≥ csep, i.e. the clusters A∗1 and A∗2 do not touch each

other.
Because of our horizontal uncertainty described by M−δρ+ε ⊂ LD,ρ ⊂ M+δ

ρ−ε and our gluing with
the help of τ -connected components, it seems quite natural that the separation exponent has an
influence on how well ρ∗ can be estimated by our algorithm. Before we present a finite-sample result
in this direction, let us first provide a concrete class of distributions having a separation exponent.

Lemma 4.3. Let X ⊂ Rd be a compact and convex subset, ‖ · ‖ some norm on Rd, and P be a
Lebesgue absolutely continuous distribution on X that can be clustered between the critical levels
ρ∗ and ρ∗∗. Assume that P has a continuous density h and that there exists constants c > 0 and
θ ∈ (0,∞) such that ∣∣h(x)− h(x′)| ≤ c ‖x− x′‖θ (24)

for all x ∈ {h ≤ ρ∗}, ρ ∈ (ρ∗, ρ∗∗], and x′ ∈ ∂XMρ, where ∂XMρ denotes the boundary of Mρ in X.
Then the clusters of P have at least the separation exponent θ.
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Note that (24) holds, if the density h in Lemma 4.3 is actually θ-Hölder-continuous, and it is
easy to see that the converse is, in general, not true. Moreover, using the inclusion ∂XMρ ⊂ {h = ρ}
established in Lemma 2.1, it is easy to check that (24) is equivalent to∣∣h(x)− ρ| ≤ c d(x, ∂XMρ)

θ (25)

for all x ∈ {h ≤ ρ∗} and ρ ∈ (ρ∗, ρ∗∗]. A localized but two-sided version of this condition has been
used by Singh et al. (2009) for a level set estimator that is adaptive with respect to the Hausdorff
metric.

The exponent given in Lemma 4.3 may or may not be exact. To illustrate this, consider X :=
−[3, 3] and, for θ, β ∈ (0,∞] and ρ∗ ≥ 0, the symmetric density

hθ,β(x) := cθ,β
(
ρ∗ + 1[0,1](|x|)|x|θ + 1[1,2](|x|) + 1[2,3](|x|)(3− |x|)β

)
, x ∈ X (26)

where cθ,β is a constant ensuring that hθ,β is a probability density with respect to the Lebesgue
measure on X. Obviously, ρ∗ is the first critical level and hθ,β is min{1, θ, β}-Hölder-continuous
if θ < ∞ and β < ∞. In addition, it is not hard to check, that hθ,β always has exact separation
exponent θ. The reason for this mismatch is that the separation exponent only describes the steepness
of h in the “valley” between the “peaks” of the clusters, while the Hölder-continuity, or (24), describes
the steepness globally.

To some extend, the distributions of the form (26) are archetypal for smooth densities on R since
they provide simple examples of arbitrary polynomial behaviour in the upper vicinity of the critical
level ρ∗. In particular, for C2-densities h whose first derivative h′ has exactly one zero x0 in the
set {h = ρ∗} and whose second derivative satisfies h′′(x0) > 0, one can easily show with the help
of Taylor’s theorem that their behaviour in the upper vicinity of the critical level ρ∗ is, in terms
of exponents, identical to that of (26) for θ = 2 and β = 1. Moreover, larger values for θ can be
achieved by assuming that higher derivatives of h vanish at x0. Last but not least note that the
class of continuous densities on R2 that are considered in the appendix have separation exponent
κ = 2, see Example 7.4 for details, and similarly to the 1-dimensional case, the construction can be
modified to achieve other exponents, too.

Let us now return to our investigations on the speed of ρ∗D → ρ∗. The following theorem, which
forms the base of the rates we will establish, provides finite-sample guarantees that bound the error
ρ∗D − ρ∗ from above and below.

Theorem 4.4. Let Assumption A be satisfied and assume additionally that P has a bounded µ-
density h and its clusters have separation exponent κ ∈ (0,∞]. For some fixed δ ∈ (0, δthick], ς ≥ 1,
n ≥ 1, and τ ≥ 2ψ(δ), we pick an ε > 0 satisfying (21), that is

ε ≥
√

2cpart(1 + ‖h‖∞)(ς + ln(2cpart)− d ln δ)

δdn
+

2cpart(ς + ln(2cpart)− d ln δ)

3δdn
.

Let us assume that ε∗ := ε + (τ/csep)κ satisfies ε∗ ≤ (ρ∗∗ − ρ∗)/9. Then, if Algorithm 3.1 receives
the input parameters ε, τ , and the family (LD,ρ)ρ≥0 given by LD,ρ := {hD,δ ≥ ρ}, the probability Pn

of having a data set D ∈ Xn satisfying

ε < ρ∗D − ρ∗ (27)

ρ∗D − ρ∗ ≤ (τ/csep)κ + 6ε , (28)

is not less than 1 − e−ς . Moreover, if the separation exponent κ is exact and κ < ∞, then we can
replace (27) by

1

4

( τ

6csep

)κ
+ ε < ρ∗D − ρ∗ . (29)

The finite sample guarantees of Theorem 4.4 can be easily used to derive (exact) rates for
ρ∗D → ρ∗. The following corollary illustrates this.

Corollary 4.5. Let Assumption A be satisfied and assume that P has bounded µ-density and its
clusters have separation exponent κ ∈ (0,∞). Furthermore, let (εn), (δn), and (τn) be sequences
with

εn ∼
( lnn · ln lnn

n

) γκ
2γκ+d

, δn ∼
( lnn

n

) 1
2γκ+d

, and τn ∼
( lnn · ln lnn

n

) γ
2γκ+d

,
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and assume that, for n ≥ 1, Algorithm 3.1 receives the input parameters εn, τn, and the family
(LD,ρ)ρ≥0 given by LD,ρ := {hD,δn ≥ ρ}. Then there exists a constant K ≥ 1 such that for all
sufficiently large n we have

Pn
({

D ∈ Xn : ρ∗D − ρ∗ ≤ K
( lnn · ln lnn

n

) γκ
2γκ+d

})
≥ 1− 1

n
. (30)

Moreover, if the separation exponent κ is exact, there exists another constant K ≥ 1 such that for
all sufficiently large n we have

Pn
({

D ∈ Xn : K
( lnn · ln lnn

n

) γκ
2γκ+d ≤ ρ∗D − ρ∗ ≤ K

( lnn · ln lnn

n

) γκ
2γκ+d

})
≥ 1− 1

n
. (31)

Finally, if κ =∞, then, for

εn ∼
( lnn · ln lnn

n

) 1
2

, δn ∼
(
ln lnn

)− 1
2d , and τn ∼

(
ln lnn

)− γ
3d

the estimates (30) and (31) hold for all n ≥ 3, respectively all sufficiently large n.

Note that Theorem 4.4 also makes it possible to consider alternative choices of (εn), (δn), and
(τn), which lead to other rates of convergence for ρ∗D → ρ∗. The choice in Corollary 4.5 ensures that
modulo the (double) logarithmic factors the rates are the best ones we can derive from Theorem
4.4. So far, we don’t know whether these rates are (essentially) minmax optimal, or at least (essen-
tially) optimal for our algorithm, but we conjecture that they are, since both the statistical analysis
from Theorem 3.3 as well as the subsequent analysis of Algorithm 3.1 do not seem to allow much
improvement. However, a detailed analysis of this question is clearly out of the scope of this work.

To illustrate the rates above, let us recall that for the one-dimensional distributions of the form
(26) we can set γ = 1 and κ = θ, so that the exponent in the rates becomes θ

2θ+1 . In particular,

for the C2-case discussed there, we had θ = 2 and thus we get a rate with exponent 2/5, while for
θ → ∞ the exponent converges to 1/2. Similarly, for the two-dimensional distributions considered
in the appendix, we have γ = 1, κ = 2, and d = 2, and hence the exponent in the rate becomes 1/3.

Our next goal is to establish rates for µ(Bi(D) M A∗i ) → 0. Since this is a modified level set
estimation problem, let us recall some assumptions on P , which have been used in the context of level
set estimation. The first assumption in this direction is the following flatness-assumption, which in
its two-sided variant goes back to Polonik (1995).

Definition 4.6. Let µ be a finite measure on X and P be a distribution on X that has a µ-density
h. For a given level ρ ≥ 0, we say that P has flatness exponent ϑ ∈ (0,∞], if there exists a constant
cflat > 0 such that

µ
(
{0 < h− ρ < s}

)
≤ (cflats)

ϑ , s > 0. (32)

Obviously, (32) is independent of the actual choice of h. Moreover, note the larger ϑ is, the less
h is concentrated in the upper vicinity of the level ρ, and hence the steeper h must behave above
the level ρ. In particular, for ϑ = ∞, the density h is allowed to take the value ρ but is otherwise
bounded away from ρ.

To provide an illustrative example on how the steepness of h influences the flatness exponent,
consider the density in (26). Some simple calculations then show that the corresponding distribution
has flatness exponent ϑ = min{1/θ, 1/β} if θ < ∞ and β < ∞ and flatness exponent ϑ = ∞ if
θ = β = ∞. Finally, for the two-dimensional examples considered in the appendix, the flatness
exponent is not fully determined because of the variability in this class of distributions, but some
simple calculations show that we always have ϑ ∈ [0, 1].

Our second assumption describes in some sense the roughness of the boundary of the clusters.

Definition 4.7. Let Assumption C be satisfied. Given some α ∈ (0, 1], we say that the clusters
have an α-smooth boundary, if there exists a constant cbound > 0 such that, for all ρ ∈ (ρ∗, ρ∗∗],
δ ∈ (0, δthick], and i = 1, 2, we have

µ
(
(Aiρ)

+δ \ (Aiρ)
−δ) ≤ cboundδ

α , (33)

where A1
ρ and A2

ρ denote the two connected components of the level set Mρ.
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In the Euclidean case, the following lemma shows that assuming α > 1 does not make sense. In
addition it shows that, for each level set with rectifiable boundaries in the sense of (Federer, 1969,
3.2.14), the bound (33) holds with α = 1. Therefore, the α-smoothness of the boundary enforces a
uniform version of this.

Lemma 4.8. Let λd be the d-dimensional Lebesgue measure, Hd−1 the (d−1)-dimensional Hausdorff
measure on Rd, and σd be the volume of the d-dimensional unit Euclidean ball in Rd. Then, for
every non-empty, bounded, and measurable subset A ⊂ Rd the following statements hold:

i) There exists a δA > 0, such that for cA := dσ
1/d
d λd(A)1−1/d/2 and all δ ∈ (0, δA], we have

λd(A+δ \A−δ) ≥ cA · δ .

ii) If ∂A is (d − 1)-rectifiable and Hd−1(∂A) > 0, then there exists a δA > 0, such that, for all
δ ∈ (0, δA], we have

λd
(
A+δ \A−δ

)
≤ 4Hd−1(∂A) · δ .

Before we proceed, let us finally mention that the clusters of the distributions in Example (26)
have an α-smooth boundary with α = 1 and cbound = 4. Furthermore, the two-dimensional dis-
tributions discussed in the appendix also have smoothness boundary α = 1, see Example 7.5 for
details.

The following simple lemma shows that a bound of the form (33) together with a regular behavior
of h around the level of interest ensures a non-trivial flatness exponent.

Lemma 4.9. Let (X, d) be a complete, separable metric space, µ be a finite Borel measure on X
with suppµ = X, and P be a µ-absolutely continuous distribution on X. Furthermore, let ρ ≥ 0 be
a level and h be a µ-density of P for which exist constants c > 0, α ∈ (0, 1], δ0 > 0, and θ ∈ (0,∞)
such that

µ(M+δ
ρ \M−δρ ) ≤ cδα (34)

for all δ ∈ (0, δ0] and
d(x, ∂Mρ)

θ ≤ c
∣∣h(x)− ρ| (35)

for all x ∈ {h > ρ}. Then P has flatness exponent α/θ at level ρ.

Recall that a two-sided version of condition (35) has been used in the above mentioned paper by
Singh et al. (2009). We will come back to this after we have established our rates.

The following assumption collects all conditions we need to impose on P to get rates for estimating
the clusters.

Assumption R. Assumption A is satisfied and P has a bounded µ-density h. Moreover, P has
flatness exponent ϑ ∈ (0,∞] at level ρ∗, its clusters have an α-smooth boundary for some α ∈ (0, 1],
and its clusters have separation exponent κ ∈ (0,∞].

With these preparations we can now investigate how well our algorithm estimates the clusters
A∗1 and A∗2. As usual, we begin with a finite-sample estimate, which will then lead to rates of
convergence.

Theorem 4.10. Let Assumption R be satisfied and assume that δ, ε, τ , ε∗, ς, n, and (LD,ρ)ρ≥0 are
as in Theorem 4.4. Then the probability Pn of having a data set D ∈ Xn satisfying (27), (28), and

µ
(
B1(D) M A∗1

)
+ µ

(
B2(D) M A∗2

)
≤ 6cboundδ

α +
(
cflat(τ/csep)κ + 7cflatε

)ϑ
(36)

is not less than 1− e−ς , where the sets B1(D) and B2(D) are ordered according to (18). Moreover,
if the separation exponent κ is exact and satisfies κ <∞, then (29) also holds for these data sets D.

Note that, for finite values of ϑ and κ, the right-hand side of (36) behaves like δα+τϑκ+εϑ, and
in this case it is thus easy to derive the best convergence rates our analysis yields. The following
corollary presents corresponding results and also provides rates for the cases ϑ =∞ or κ =∞.

22



Corollary 4.11. Assume that Assumption R be is satisfied and write % := min{α, ϑγκ}. Further-
more, let (εn), (δn), and (τn) be sequences with

εn ∼
( lnn

n

) %
2%+ϑd

(ln lnn)−
ϑd

8%+4ϑd , δn ∼
( lnn · ln lnn

n

) ϑ
2%+ϑd

, and τn ∼
( lnn · (ln lnn)2

n

) ϑγ
2%+ϑd

.

Assume that, for n ≥ 1, Algorithm 3.1 receives the input parameters εn, τn, and the family (LD,ρ)ρ≥0

given by LD,ρ := {hD,δn ≥ ρ}. Then there exists a constant K ≥ 1 such that for all n ≥ 1 we have

Pn
({

D ∈ Xn : µ
(
B1(D) M A∗1

)
+ µ

(
B2(D) M A∗2

)
≤ K

( lnn · (ln lnn)2

n

) ϑ%
2%+ϑd

})
≥ 1− 1

n
,

where the sets B1(D) and B2(D) are ordered according to (18).

Let us now compare the established rates for estimating the level ρ∗ and the clusters. To this
end, we restrict ourselves to the most important case α = 1. Then, if ϑγκ ≤ 1, we obtain % = ϑγκ
in Corollary 4.11, and the exponent in the asymptotic behavior of the optimal (δn) becomes 1

2γκ+d .
Since this equals the exponent in Corollary 4.5, and, modulo the extra ln lnn terms, we also have
the same behavior for (εn) and (τn) in both corollaries, we conclude that we obtain the rates in
Corollaries 4.5 and 4.11 with (essentially) the same controlling sequences (εn), (δn), and (τn) of
Algorithm 3.1. In the case ϑγκ ≤ 1 we can thus achieve the best rates for estimating ρ∗ and the
clusters simultaneously. Unfortunately, this changes if ϑγκ > 1. Indeed, while the exponent for (δn)
in Corollary 4.5 remains the same, it changes from 1

2γκ+d to ϑ
2+ϑd in Corollary 4.11, and a similar

effect takes place for the sequences (εn) and (τn). Roughly speaking, the reason for this difference
is that in the case ϑγκ > 1 the estimation of ρ∗ is easier than the estimation of the level set Mρ∗ ,
and since for estimating the clusters we need to do both, the level set estimation rate determines
the rate for estimating the clusters.

To illustrate the difference between the estimation of ρ∗ and the clusters in more detail, let us
consider the case θ = β = ∞ in the toy model (26), that is κ = ∞. Then the clusters are stumps
and the corresponding levels sets Mρ do not change between the levels ρ∗ and ρ∗∗. Intuitively, the
best choice for estimating ρ∗ are then sufficiently small but fixed values for δn and τn, so that εn
converges to 0 as fast as possible. In Corollary 4.5 this is mimicked by choosing very slowly decaying
sequences (δn) and (τn). Let us now consider the estimation of the clusters. Since the connected
components of Mρ do not change for ρ ∈ (ρ∗, ρ∗∗], it clearly suffices to find an arbitrary ρ ∈ (ρ∗, ρ∗∗]
and to estimate the connected components for this ρ. The best way to achieve this is to use a
sufficiently small but fixed value for εn and sequences (δn) and (τn) that converge to zero as fast as
possible. In Corollary 4.11 this is mimicked by choosing a very slowly decaying sequence (εn) and
fast decaying sequences (δn) and (τn).

Interestingly, the case ϑγκ > 1 seems to be rather rare for one-dimensional data. To illustrate
this, let us have another look at our toy model (26). We have already seen that γ = 1, κ = θ and
ϑ = min{1/θ, 1/β}. Consequently, if θ < β ≤ ∞, we find ϑγκ = θ/β < 1, while β ≤ θ <∞ implies
ϑγκ = θ/θ = 1. In other words, the only case, in which we have ϑγκ > 1, is the one with θ = ∞,
that is, in the case in which the two clusters do not touch each other. Finally note that in higher
dimensions, the situation becomes more interesting. Indeed, for the two-dimensional distributions
considered in the appendix, both cases ϑγκ > α and ϑγκ ≤ α are possible depending on the value of
the flatness exponent ϑ, and it is straightforward to modify these distributions so that other values
for γ and κ occur, too. On the other hand, the toy model (26) can be easily made two-dimensional
by letting the density to be constant in the second dimension. It is easy to check, that in this case
the phenomena of the one-dimensional model, which we observed above, are preserved.

As for estimating the critical level ρ∗, we do not know so far, whether our rates for estimating the
clusters are minmax optimal. Again, our conjecture is that they are optimal modulo the logarithmic
terms. To motivate our conjecture, let us consider the case α = γ = 1. Moreover, assume that two-
sided versions of (25) and (35) hold for all ρ ∈ (ρ∗, ρ∗∗], respectively ρ = ρ∗. Then we have κ = θ
and ϑ = 1/θ by Lemmas 4.3 and 4.9, and thus we find % = 1. Consequently, the rates in Corollary
4.11 have the exponent 1

2θ+d . This is exactly the same exponent as the one obtained by Singh et al.
(2009) for minmax optimal and adaptive Hausdorff estimation of a fixed level set. In addition, it
seems that their lower bound, which is based on Tsybakov (1997), is, modulo logarithmic factors, the
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same for assessing the estimator in the way we have done it in Corollary 4.11. While this coincidence
indicates that our rates may be (essentially) optimal, it is, of course, not a rigorous argument. A
detailed analysis is, however, out of the scope of this paper. Another interesting question, which
is also out of the scope, is, whether the estimates Bi(D) approximate the true clusters A∗i in the
Hausdorff metric, too, and if so, whether we can achieve the rates reported by Singh et al. (2009).

5 Data-Dependent Parameter Selection

In the last section we derived rates of convergence for both the estimation of ρ∗ and the clusters.
In both cases, the best rates we could achieve required parameters εn, δn, and τn that do depend
on some properties of the unknown distribution P , namely κ, ϑ, and strictly speaking, also α. Of
course, these parameters are not available to us in practice, and therefore the obtained rates are of
little practical value. The goal of this final section is to address this issue by proposing a simple data-
dependent parameter selection strategy, that is able to recover the rates of Corollary 4.5 without the
above mentioned knowledge about P . We further show that this parameter selection strategy also
recovers the rates of Corollary 4.11 in the case of ϑγκ ≤ α, i.e. in the case in which the estimation
of the level is harder than the estimation of the level set.

Let us begin by presenting the parameter selection strategy. To this end, let ∆ ⊂ (0, 1] be a
finite set and n ≥ 1, ς ≥ 1. For δ ∈ ∆, we fix some τδ,n > 0 and define

εδ,n := C

√
cpart

(
ς + ln(2cpart|∆|)− d ln δ

)
ln lnn

δdn
+

2cpart

(
ς + ln(2cpart|∆|)− d ln δ

)
3δdn

, (37)

where C ≥ 1 is some user-specified constant. Now assume that, for each δ ∈ ∆, we run Algorithm
3.1 with the parameters εδ,n and τδ,n, and the family (LD,ρ)ρ≥0 given by LD,ρ := {hD,δ ≥ ρ}.

We write ρ∗D,δ for the corresponding level returned by Algorithm 3.1. Let us consider a width
δ∗D,∆ ∈ ∆ that achieves the smallest returned level, that is

δ∗D,∆ ∈ arg min
δ∈∆

ρ∗D,δ . (38)

Note that in general, this width may not be uniquely determined, so that in the following we need
to additionally assume that we have a well-defined choice, e.g. the smallest δ ∈ ∆ satisfying (38),
whenever there is some ambiguity. Moreover, we write

ρ∗D,∆ := ρ∗D,δ∗D,∆ = min
δ∈∆

ρ∗D,δ (39)

for the smallest returned level. Note that unlike δ∗D,∆, the level ρ∗D,∆ is always unique. Finally, we
define εD,∆ := εδ∗D,∆,n and τD,∆ := τδ∗D,∆,n.

Our first goal is to show that ρ∗D,∆ achieves the rates of Corollary 4.5 provided that ∆ and τδ,n
are suitably chosen. We begin with a finite sample guarantee.

Theorem 5.1. Assume that Assumption A is satisfied, that P has a bounded µ-density h, and that
the two clusters of P have separation exponent κ ∈ (0,∞]. For a fixed finite subset ∆ ⊂ (0, δthick],
and n ≥ 1, ς ≥ 1, and C ≥ 1, we define εδ,n by (37) and assume that we have chosen τδ,n
such that τδ,n ≥ 2ψ(δ) for all δ ∈ ∆. Furthermore, assume that C2 ln lnn ≥ 2(1 + ‖h‖∞) and
ε∗δ := εδ,n + (τδ,n/csep)κ ≤ (ρ∗∗ − ρ∗)/9 for all δ ∈ ∆. Then we have

Pn
({
D ∈ Xn : εD,∆ < ρ∗D,∆ − ρ∗ ≤ min

δ∈∆

(
(τδ,n/csep)κ + 6εδ,n

)})
≥ 1− e−ς .

Moreover, if the separation exponent κ is exact and κ < ∞, then the assumptions above actually
guarantee

Pn
({
D ∈ Xn : min

δ∈∆

(
c1τ

κ
δ,n + εδ,n

)
< ρ∗D,∆ − ρ∗ ≤ min

δ∈∆

(
c2τ

κ
δ,n + 6εδ,n

)})
≥ 1− e−ς ,

where c1 := 1
4 (6csep)−κ and c2 := c−κsep, and similarly

Pn
({
D ∈ Xn : c1τ

κ
D,∆ + εD,∆ < ρ∗D,∆ − ρ∗ ≤ c2τ

κ
D,∆ + 6εD,∆

})
≥ 1− e−ς .
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Roughly speaking, Theorem 5.1 establishes the same finite sample guarantees for the estimator
ρ∗D,∆ as Theorem 4.4 did for the simpler estimator ρ∗D. Therefore, it is not surprising that for
suitable choices of ∆, the rates of Corollary 4.5 can be recovered, too. The following corollary shows
that this can actually be achieved for candidate sets ∆ that are completely independent of P .

Corollary 5.2. Assume that Assumption A is satisfied, that P has a bounded µ-density h, and that
the two clusters of P have separation exponent κ ∈ (0,∞]. For n ≥ 16, we consider the interval

In :=

[( lnn · (ln lnn)2

n

) 1
d

,
( 1

ln lnn

) 1
d

]
and fix some n−1/d-net ∆n ⊂ In of In with |∆n| ≤ n. Furthermore, for some fixed C ≥ 1, we define
τδ,n := δγ ln ln lnn and

εδ,n := C

√
cpart

(
ln(2cpart|∆n|n)− d ln δ

)
ln lnn

δdn
+

2cpart

(
ln(2cpart|∆n|n)− d ln δ

)
3δdn

,

for all δ ∈ ∆n and all n ≥ 16. Then there exists a constant K such that, for all sufficiently large n,
we have

Pn
({

D ∈ Xn : εD,∆n
< ρ∗D,∆n

− ρ∗ ≤ K
( lnn · (ln lnn)2

n

) γκ
2γκ+d

})
≥ 1− 1

n
. (40)

Moreover, if the separation exponent κ is exact and κ < ∞, then the assumptions above actually
guarantee the existence of another constant K such that for all sufficiently large n we have

Pn
({

D ∈ Xn : K
( lnn · ln lnn

n

) γκ
2γκ+d ≤ ρ∗D,∆n

−ρ∗ ≤ K
( lnn · (ln lnn)2

n

) γκ
2γκ+d

})
≥ 1− 1

n
. (41)

Finally, we show that the parameter selection strategy (38) in the set-up of Corollary 5.2 also
partially recover the rates for estimating the clusters A∗i obtained in Corollary 4.11.

Corollary 5.3. Assume that Assumption R be is satisfied with α ≥ ϑγκ and that separation exponent
κ is exact. Then, for the procedure considered in Lemma 5.2, there exists a constant K ≥ 1 such
that, for all sufficiently large n, we have

Pn
({

D ∈ Xn : µ(B1(D) M A∗1) + µ(B2(D) M A∗2) ≤ K
( lnn · (ln lnn)2

n

) ϑγκ
2γκ+ϑd

})
≥ 1− 1

n
,

where the sets B1(D) and B2(D) are ordered according to (18).

Unfortunately, the simple parameter selection strategy (38) is not adaptive in the case α < ϑγκ,
i.e. in the case in which the estimation of ρ∗ is easier than the estimation of the corresponding
clusters. It is unclear to us, whether in this case a two-stage procedure that first estimates ρ∗ by
ρ∗D,∆n

as above, and then uses a different strategy to estimate the connected components at the
level ρ∗D,∆n

can be made adaptive.

6 Proofs

6.1 Proofs Related to the Definition of Level Sets

Proof of Lemma 2.1: By definition, Mρ is the smallest closed set A satisfying µ({h ≥ ρ}\A) = 0.
Moreover, we obviously have

µ
(
{h ≥ ρ} \ {h ≥ ρ}

)
= 0 ,

and hence we obtain Mρ ⊂ {h ≥ ρ}. To show the other inclusion, we fix an x ∈ ˚{h ≥ ρ} and an open

set U ⊂ X with x ∈ U . Then ˚{h ≥ ρ} ∩ U is open and non-empty, and hence suppµ = X yields

µρ(U) = µ
(
{h ≥ ρ} ∩ U

)
≥ µ

( ˚{h ≥ ρ} ∩ U
)
> 0 .
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By (2) we conclude that x ∈Mρ, that is, we have shown ˚{h ≥ ρ} ⊂Mρ.
Let us now assume that h is continuous. Clearly, we have {h > ρ} ⊂ {h ≥ ρ} and since {h > ρ}

is open, we conclude that {h > ρ} ⊂ ˚{h ≥ ρ} ⊂ Mρ by the previously shown inclusion. Moreover,

since {h ≥ ρ} is closed, we find Mρ ⊂ {h ≥ ρ} = {h ≥ ρ}. Recalling that Mρ is closed by definition,
we further find ∂Mρ ⊂Mρ ⊂ {h ≥ ρ}, and thus it remains to show ∂Mρ ⊂ {h ≤ ρ}. Let us assume
the converse, that is, that there exists an x ∈ ∂Mρ such that h(x) > ρ. By the continuity we then
find an open neighbourhood U of x such that U ⊂ {h > ρ}. Since x ∈ ∂Mρ, we further find an
y ∈ U \Mρ, while our construction together with the previously shown {h > ρ} ⊂ Mρ yields the
contradicting statement U \Mρ ⊂ {h > ρ} \Mρ = ∅.

Proof of Lemma 2.2: We fix an x ∈Mρ2
and an open set U ⊂ X with x ∈ U . Moreover, we fix a

µ-density h of P . Then we obtain

µρ1(U) = µ
(
{h ≥ ρ1} ∩ U

)
≥ µ

(
{h ≥ ρ2} ∩ U

)
= µρ2(U) > 0 ,

and hence we obtain x ∈Mρ1
by (2).

Proof of Lemma 2.4: i). Let h be an upper semi-continuous µ-density of P . Then {h ≥ ρ} is
closed, and hence Lemma 2.1 shows Mρ ⊂ {h ≥ ρ} = {h ≥ ρ}. Thus, P is upper normal at level ρ.

ii). Let h be a lower semi-continuous µ-density of P . By Lemma 2.1 we then know {h > ρ} =
˚{h > ρ} ⊂ ˚{h ≥ ρ} ⊂ M̊ρ. This yields the assertion.
iii). The upper normality follows from (3). To see that P is lower normal, we use the inclusion

{h > ρ} \ M̊ρ ⊂ {h ≥ ρ} \ ˚{h ≥ ρ} = ∂{h ≥ ρ} which follows from Lemma 2.1.

6.2 Proofs Related to Basic Properties of Connected Components

Proof of Lemma 2.6: ii) ⇒ i). Trivial.
i) ⇒ ii). For A′ ∈ P(A) we find a B′ ∈ P(B) such that A′ ⊂ B′. Defining ζ(A′) := B′ then

gives the desired Property (7).
Finally, assume that ii) is true. To show that ζ is unique, assume the converse. Then there exist

A′ ∈ P(A) and B′, B′′ ∈ P(B) with B′ 6= B′′ and both A′ ⊂ B′ and A′ ⊂ B′′. Since A′ 6= ∅, this
yields B′ ∩ B′′ 6= ∅, which in turn implies B′ = B′′ as P(B) is a partition, i.e. we have found a
contradiction.

Proof of Lemma 2.8: Clearly, ζ := ζB,C ◦ζA,B maps from P(A) to P(C). Moreover, for A′ ∈ P(A)
we have A′ ⊂ ζA,B(A′) and for B′ := ζA,B(A′) ∈ P(B) we have B′ ⊂ ζB,C(B′). Combining these
inclusions we find

A′ ⊂ ζA,B(A′) ⊂ ζB,C(ζA,B(A′)) = ζB,C ◦ ζA,B(A′) = ζ(A′)

for all A′ ∈ P(A). Consequently, P(A) is comparable to P(C) and by Lemma 2.6 we see that ζ is
the CRM ζA,C , that is ζA,C = ζ = ζB,C ◦ ζA,B .

Proof of Lemma 2.9: Let us fix an A′ ∈ C(A). Since A ⊂ B and |C(B)| <∞ there then exist an
m ≥ 1 and mutually distinct B1, . . . , Bm ∈ C(B) with A′ ⊂ B1 ∪ · · · ∪ Bm and A′ ∩ Bi 6= ∅ for all
i = 1, . . . ,m. Since A and B are closed, A′ and the sets A′ ∩ Bi are also closed. Consequently, the
sets A′∩Bi are also closed in A′ with respect to the relative topology of A′. Let us now assume that
m > 1. Then A′ ∩ B1 and (A′ ∩ B2) ∪ · · · ∪ (A′ ∩ Bm) are two disjoint relatively closed non-empty
subsets of A′ whose union equals A′. Consequently A′ is not connected, which contradicts A′ ∈ C(A).
In other words, we have m = 1, that is, C(A) is comparable to C(B).

Proof of Lemma 2.11: Let A′ 6= A′′ be two τ -connected components of A. Then we have
d(x′, x′′) ≥ τ for all x′ ∈ A′ and x′′ ∈ A′′, since otherwise x′ and x′′ would be τ -connected in A.
Consequently, we have d(A′, A′′) ≥ τ , and from the latter and the compactness of X, it is straight-
forward to conclude that |Cτ (A)| < ∞. Finally, let (xi) ⊂ A′ be a sequence in some component
A′ ∈ Cτ (A) such that xi → x for some x ∈ X. Since A is closed, we have x ∈ A, and hence x ∈ A′′
for some A′′ ∈ Cτ (A). By construction we find d(A′, A′′) = 0, and hence we obtain A′ = A′′ by the
assertion that has been shown first.
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Lemma 6.1. Let (X, d) be a metric space, A ⊂ X be a non-empty subset and τ > 0. Then the
following statements are equivalent:

i) A is τ -connected.

ii) For all non-empty subsets A+ and A− of A with A+ ∪ A− = A and A+ ∩ A− = ∅ we have
d(A+, A−) < τ .

Proof of Lemma 6.1: i)⇒ ii). Let us fix two non-empty subsetsA+ andA− ofA withA+∪A− = A
and A+∩A− = ∅. Let us further fix two points x+ ∈ A+ and x− ∈ A−. Since A is τ -connected, there
then exist x1, . . . , xn ∈ A such that x1 = x−, xn = x+ and d(xi, xi+1) < τ for all i = 1, . . . , n − 1.
Then, x+ ∈ A+ and x− ∈ A− imply the existence of an i ∈ {1, . . . , n − 1} with xi ∈ A− and
xi+1 ∈ A+. This yields d(A+, A−) ≤ d(xi, xi+1) < τ .

ii)⇒ i). Assume that A is not τ -connected, that is |Cτ (A)| > 1. We pick an A+ ∈ Cτ (A) and write
A− := A \ A+. Since |Cτ (A)| > 1, both sets are non-empty, and our construction ensures that they
are also disjoint and satisfy A+ ∪ A− = A. Moreover, for every A′ ∈ Cτ (A) with A′ 6= A+ we know
d(A+, A′) ≥ τ by Lemma 2.11 and since A− is the union of such A′, we conclude d(A+, A−) ≥ τ .

Corollary 6.2. Let (X, d) be a metric space, A ⊂ B ⊂ X be non-empty subsets and τ > 0. If
A is τ -connected, then there exists exactly one τ -connected component B′ of B with A ∩ B′ 6= ∅.
Moreover, B′ is the only τ -connected component B′′ of B that satisfies A ⊂ B′′.

Proof of Corollary 6.2: The second assertion is a direct consequence of the first, and hence it
suffice to show the first assertion. Let us assume the first is not true. Since A ⊂ B there then
exist B′, B′′ ∈ Cτ (B) with B′ 6= B′′, A ∩ B′ 6= ∅, and A ∩ B′′ 6= ∅. We write A− := A ∩ B′ and
A+ := A ∩ (B \ B′). Since B′′ ⊂ B \ B′, we obtain A+ 6= ∅, and therefore, Lemma 6.1 shows
d(A−, A+) < τ . Consequently, there exist x− ∈ A− and x+ ∈ A+ with d(x+, x−) < τ . Now we
obviously have x− ∈ B′, and by construction, we also find a B′′′ ∈ Cτ (B) with x+ ∈ B′′′. Our
previous inequality then yields d(B′, B′′′) < τ , while Lemma 2.11 shows d(B′, B′′′) ≥ τ , that is, we
have found a contradiction.

Proof of Lemma 2.12: For A′ ∈ Cτ (A), Corollary 6.2 shows that there exists exactly B′ ∈ Cτ (B)
with A′ ⊂ B′. Consequently, Cτ (A) is comparable to Cτ (B).

Lemma 6.3. Let (X, d) be a metric space, A ⊂ X be a non-empty subset and τ > 0. Then, for a
partition A1, . . . , Am of A, the following statements are equivalent:

i) Cτ (A) = {A1, . . . , Am}.

ii) For all i = 1, . . . ,m, the set Ai is τ -connected and d(Ai, Aj) ≥ τ for all i 6= j.

Proof of Lemma 6.3: i) ⇒ ii). Follows from Lemma 2.11.
ii) ⇒ i). Let us fix an A′ ∈ Cτ (A) and an Ai with Ai ∩ A′ 6= ∅. Since Ai is τ -connected and

A′ ∈ Cτ (A), Corollary 6.2 applied to the sets Ai ⊂ A ⊂ X yields Ai ⊂ A′. Moreover, A1, . . . , Am is
a partition of A, and thus we conclude that

A′ =
⋃
i∈I

Ai ,

where I := {i : Ai ∩ A′ 6= ∅}. Now let us assume that |I| ≥ 2. We fix an i0 ∈ I and write
A+ := Ai0 and A− :=

⋃
i∈I\{i0}Ai. Since |I| ≥ 2, we obtain A− 6= ∅, and hence Lemma 6.1 shows

d(A+, A−) < τ . On the other hand, our assumption ensures d(A+, A−) ≥ τ , and hence |I| ≥ 2
cannot be true. Consequently, there exists a unique index i with A′ = Ai, that is, we have shown
the assertion.

Lemma 6.4. Let (X, d) be a compact metric space and A ⊂ X be a non-empty closed subset. Then
the following statements are equivalent:

i) A is connected.
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ii) A is τ -connected for all τ > 0.

Proof of Lemma 6.4: i) ⇒ ii). Let us assume that A is not τ -connected for some τ > 0. Then,
by Lemma 2.11, there are finitely many τ -connected components A1, . . . , Am of A with m > 1. We
write A′ := A1 and A′′ := A2 ∪ · · · ∪Am. Then A′ and A′′ are non-empty, disjoint and A′ ∪A′′ = A
by construction. Moreover, Lemma 2.11 shows that A′ and A′′ are closed since A is closed, and
hence A cannot be connected.

ii) ⇒ i). Let us assume that A is not connected. Then there exist two non-empty closed disjoint
subsets of A with A′ ∪ A′′ = A. Since X is compact, A′ and A′′ are also compact, and hence
A′ ∩A′′ = ∅ implies τ := d(A′, A′′) > 0. Lemma 6.1 then shows that A is not τ -connected.

Proof of Lemma 2.13: i). Let A′ ∈ C(A) and τ > 0. Since A is closed, so is A′, and hence A′

is τ -connected by Lemma 6.4. Consequently, Corollary 6.2 shows that there exists an A′′ ∈ Cτ (A)
with A′ ⊂ A′′, i.e. C(A) is comparable to Cτ (A). Now we fix an A′′ ∈ Cτ (A). Then there exists an
x ∈ A′′, and to this x, there exists an A′ ∈ C(A) with x ∈ A′. This yields A′ ∩ A′′ 6= ∅, and since
A′ is τ -connected by Lemma 6.4, Corollary 6.2 shows A′ ⊂ A′′, i.e. we obtain ζ(A′) = A′′. In other
words, ζ is surjective.

ii). Let A1, . . . , Am be the topologically connected components of A. Then the components
are closed, and since A is a closed and thus compact subset of X, the components are compact,
too. This shows d(Ai, Aj) > 0 for all i 6= j, and consequently we obtain τ∗A > 0. Let us fix a
τ ∈ (0, τ∗A]∩ (0,∞). Then, Lemma 6.4 shows that each Ai is τ -connected, and therefore Lemma 6.3
together with d(Ai, Aj) ≥ τ∗A ≥ τ for all i 6= j yields Cτ (A) = {A1, . . . , Am}. Consequently, we have
proved C(A) = Cτ (A). The bijectivity of ζ now follows from its surjectivity. For the proof of the
last equation, we define τ∗ := sup{τ > 0 : C(A) = Cτ (A)}. Then we have already seen that τ∗A ≤ τ∗.
Now suppose that τ∗A < τ∗. Then there exists a τ ∈ (τ∗A, τ

∗) with C(A) = Cτ (A). On the one hand,
we then find d(Ai, Aj) ≥ τ for all i 6= j by Lemma 2.11, while on the other hand τ > τ∗A shows
that there exist i0 6= j0 with d(Ai0 , Aj0) < τ . In other words, the assumption τ∗A < τ∗ leads to a
contradiction, and hence we have τ∗A = τ∗.

Proof of Lemma 2.15: Let us fix some A′, A′′ ∈ C(A) with A′ 6= A′′. Since ζ is injective, we then
obtain ζ(A′) 6= ζ(A′′). Combining this with A′ ⊂ ζ(A′) and A′′ ⊂ ζ(A′′), we find

d(A′, A′′) ≥ d(ζ(A′), ζ(A′′)) ≥ τ∗B ,

where the last inequality follows from the definition of τ∗B in Lemma 2.13. Taking the infimum over
all A′ and A′′ with A′ 6= A′′ yields the assertion.

6.3 Proofs Related to Cluster Persistence

Lemma 6.5. Let (X, d) be a metric space and A,B ⊂ X be two subsets. Then the following
statements hold:

i) If A is compact, then A+δ = A⊕δ.

ii) We have d(A,B) ≤ d(A+δ, B+δ) + 2δ.

iii) We have ⋂
δ>0

A+δ = A . (42)

iv) We have (A ∪B)+δ = A+δ ∪B+δ and (A ∩B)+δ ⊂ A+δ ∩B+δ.

v) We have A−δ∪B−δ ⊂ (A∪B)−δ and, if d(A,B) > δ, we actually have A−δ∪B−δ = (A∪B)−δ.

vi) For A1, A2 ⊂ X with A1 ∩A2 = ∅ and Bi ⊂ Ai with d(B1, B2) > δ, we have

(A−δ1 \B
−δ
1 ) ∪ (A−δ2 \B

−δ
2 ) ⊂ (A1 ∪A2)−δ \ (B1 ∪B2)−δ ,

and equality holds, if d(A1, A2) > δ.
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vii) For all δ > 0 and ε > 0, we have A ⊂ (A+δ+ε)−δ and (A−δ−ε)+δ ⊂ A.

viii) For all δ > 0 and ε > 0, we have (∂A)+δ ⊂ A+δ+ε \A−δ−ε.

Proof of Lemma 6.5: i). Clearly, it suffices to prove A+δ ⊂ A⊕δ. To prove this inclusion, we fix
an x ∈ A+δ. Then there exists a sequence (xn) ⊂ A with d(x, xn) ≤ δ + 1/n for all n ≥ 1. Since A
is compact, we may assume without loss of generality that (xn) converges to some x′ ∈ A. Now we
easily obtain the assertion from d(x, x′) ≤ d(x, xn) + d(xn, x

′).
ii). Let us fix an x ∈ A+δ and an y ∈ B+δ. Then there exist two sequences (xn) ⊂ A and

(yn) ⊂ B such that d(x, xn) ≤ δ + 1/n and d(y, yn) ≤ δ + 1/n for all n ≥ 1. Now this construction
yields

d(A,B) ≤ d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn) ≤ d(x, y) + 2δ + 2/n n ≥ 1,

and by first letting n → ∞ and then taking the infimum over all x ∈ A+δ and y ∈ B+δ, we obtain
the assertion.

iii). To show the inclusion ⊃, we fix an x ∈ A. Then there exists a sequence (xn) ⊂ A with
xn → x for n → ∞. For δ > 0 there then exists an nδ such that d(x, xn) ≤ δ for all n ≥ nδ. This
shows d(x,A) ≤ δ, i.e. x ∈ A+δ. To show the converse inclusion ⊂, we fix an x ∈ X that satisfies
x ∈ A+1/n for all n ≥ 1. Then there exists a sequence (xn) ⊂ A with d(x, xn) ≤ 1/n, and hence we
find xn → x for n→∞. This shows x ∈ A.

iv). If x ∈ (A ∪ B)+δ, there exists a sequence (xn) ⊂ A ∪ B with d(x, xn) ≤ δ + 1/n. Without
loss of generality we may assume that (xn) ⊂ A, which immediately yields x ∈ A+δ. The converse
inclusion A+δ ∪B+δ ⊂ (A ∪B)+δ and the inclusion (A ∩B)+δ ⊂ A+δ ∩B+δ are trivial.

v). The first inclusion follows from part iv) and simple set algebra, namely

A−δ ∪B−δ = X \
(
(X \A)+δ ∩ (X \B)+δ

)
⊂ X \

(
(X \A) ∩ (X \B)

)+δ
= X \

(
X \ (A ∪B)

)+δ
= (A ∪B)−δ .

To show the converse inclusion, we fix an x ∈ (A∪B)−δ. Since (A∪B)−δ ⊂ A∪B, we may assume
without loss of generality that x ∈ A. It then remains to show that x ∈ A−δ, that is d(x,X \A) > δ.
Obviously, A ∩B = ∅, which follows from d(A,B) > δ, implies

X \A = ((X \A) ∩ (X \B)) ∪ ((X \A) ∩B) = (X \ (A ∪B)) ∪B ,

and hence we obtain

d(x,X \A) = d(x,X \ (A ∪B)) ∧ d(x,B) > δ ∧ δ = δ ,

where we used both x ∈ (A ∪B)−δ and d(A,B) > δ.
vi). Using the formula (A1 ∪A2) \ (B1 ∪B2) = (A1 \B1) ∪ (A2 \B2), which easily follows from

Ai \Bj = Ai for i 6= j, we obtain

(A−δ1 \B
−δ
1 ) ∪ (A−δ2 \B

−δ
2 ) = (A−δ1 ∪A

−δ
2 ) \ (B−δ1 ∪B−δ2 ) ⊂ (A1 ∪A2)−δ \ (B1 ∪B2)−δ ,

where in the last step we used v). The second assertion also follows from v).
vii). Obviously, A ⊂ (A+δ+ε)−δ is equivalent to (X \A+δ+ε)+δ ⊂ X \A. To prove the latter, we

fix an x ∈ (X \A+δ+ε)+δ. Then there exists a sequence (xn) ⊂ X \A+δ+ε with d(x, xn) ≤ δ+1/n for
all n ≥ 1. Moreover, (xn) ⊂ X\A+δ+ε implies d(xn, x

′) > δ+ε for all n ≥ 1 and x′ ∈ A. Now assume
that we had x ∈ A. For an index n with 1/n ≤ ε, we would then obtain δ + ε < d(xn, x) ≤ δ + ε,
and hence x ∈ A cannot be true.

To show the second inclusion we fix an x ∈ (A−δ−ε)+δ. Then there exists a sequence (xn) ⊂
A−δ−ε such that d(x, xn) ≤ δ+ 1/n for all n ≥ 1. This time, xn ∈ A−δ−ε implies xn 6∈ (X \A)+δ+ε,
that is d(xn, x

′) > δ + ε for all n ≥ 1 and x′ ∈ X \ A. Again, choosing an n with 1/n ≤ ε, we then
find x ∈ A.

viii). Let us fix an x ∈ (∂A)⊕δ. By definition, there then exists an x′ ∈ ∂A with d(x, x′) ≤ δ.
Moreover, by the definition of the boundary, there exists an x′′ ∈ A with d(x′, x′′) ≤ ε, and hence
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we conclude that d(x, x′′) ≤ δ + ε, that is x ∈ A+δ+ε. Since ∂A = ∂(X \ A), the same argument
yields x ∈ (X \A)+δ+ε, that is x 6∈ A−δ−ε. Consequently, we have shown (∂A)⊕δ ⊂ A+δ+ε \A−δ−ε.
Using (∂A)+δ ⊂ (∂A)⊕(δ+ε) and a simple change of variables then yields the assertion.

Proof of Lemma 2.19: i). Since τ > δ, there exist an ε > 0 with δ + ε < τ . For x ∈ (A′)+δ,
there thus exists an x′ ∈ A′ with d(x, x′) ≤ δ + ε < τ , i.e. x and x′ are τ -connected. Since A′ is
τ -connected, it is then easy to show that every pair x, x′′ ∈ (A′)+δ is τ -connected.

ii). Let us fix an A′ ∈ Cτ (A+δ) and an x ∈ A′. For n ≥ 1 there then exists an xn ∈ A with
d(x, xn) ≤ δ+ 1/n and since by Lemma 2.11 there only exist finitely many τ -connected components
of A, we may assume without loss of generality that there exists an A′′ ∈ Cτ (A) with xn ∈ A′′ for
all n ≥ 1. This yields d(x,A′′) ≤ δ + 1/n for all n ≥ 1, and hence d(x,A′′) ≤ δ. Consequently,
we obtain x ∈ (A′′)+δ, i.e. we have (A′′)+δ ∩ A′ 6= ∅. Since (A′′)+δ ⊂ A+δ, we then conclude that
(A′′)+δ ⊂ A′ by Corollary 6.2 and part i). Furthermore, we clearly have A′′ ⊂ (A′′)+δ, and hence
ζ(A′′) = A′.

iii). Let us first consider the case |C(A)| = 1. In this case, part i) of Lemma 2.13 shows
|Cτ (A)| = 1, and thus |Cτ (A+δ)| = 1 by the already established part ii). This makes the assertion
obvious.

In the case |C(A)| > 1 we write A1, . . . , Am for the τ -connected components of A. By part iv) of
Lemma 6.5 we then obtain

A+δ =

m⋃
i=1

A+δ
i . (43)

Since |C(A)| > 1, we further have τ∗A <∞, and hence part ii) of Lemma 2.13 yields C(A) = Cτ (A).
The definition of τ∗A thus gives d(Ai, Aj) ≥ τ∗A ≥ 3τ for all i 6= j. Our first goal is to show that

d(A+δ
i , A+δ

j ) ≥ τ , i 6= j . (44)

To this end, we fix i 6= j and both an xi ∈ A+δ
i and an xj ∈ A+δ

j . Now, the compactness of X yields
the compactness of Ai and Aj by Lemma 2.11, and hence part i) of Lemma 6.5 shows that there
exist x′i ∈ Ai and x′j ∈ Aj with d(xi, x

′
i) ≤ δ and d(xj , x

′
j) ≤ δ. This yields

3τ ≤ d(x′i, x
′
j) ≤ d(x′i, xi) + d(xi, xj) + d(xj , x

′
j) ≤ 2δ + d(xi, xj) ,

and the latter together with δ < τ implies (44).
Now part i) showed that each A+δ

i , i = 1, . . . ,m, is τ -connected. Combining this with (43),
(44), and Lemma 6.3, we thus see that A+δ

1 , . . . , A+δ
m are the τ -connected components of A+δ. The

bijectivity of ζ then follows from the surjectivity and a simple cardinality argument, and (9) becomes
obvious.

Proof of Theorem 2.20: Let us first show the assertions related to the function τ∗. To this end,
we first observe that for ε ∈ (0, ρ∗∗ − ρ∗] we have |C(Mρ∗+ε)| = |C(Mρ∗∗)| = 2 by Definition 2.16.
This shows τ∗(ε) <∞.

Let us now fix ε1, ε2 ∈ (0, ρ∗∗ − ρ∗] with ε1 ≤ ε2. Then Definition 2.16 guarantees that
both Mρ∗+ε1 and Mρ∗+ε2 have two topologically connected components and that the top-CRM
ζ : C(Mρ∗+ε2)→ C(Mρ∗+ε1) is bijective. From Lemma 2.15 we thus obtain

τ∗(ε2) =
1

3
τ∗Mρ∗+ε2

≥ 1

3
τ∗Mρ∗+ε1

= τ∗(ε1) .

i). Since ∅ 6= Mρ ⊂ M+δ
ρ , we find |Cτ (M+δ

ρ )| ≥ 1. On the other hand, since τ > δ, part ii) of
Lemma 2.19 and part i) of Lemma 2.13 yield

|Cτ (M+δ
ρ )| ≤ |Cτ (Mρ)| ≤ |C(Mρ)| ≤ 2 . (45)

ii). Let us fix a ρ ∈ [ρ∗+ε∗, ρ∗∗]. For ε := ρ−ρ∗, the monotonicity of τ∗ then gives τ∗(ε∗) ≤ τ∗(ε),
and hence we obtain

τ ≤ 1

3
τ∗Mρ∗+ε∗

≤ 1

3
τ∗Mρ

<∞ .

Part ii) of Lemma 2.13 thus shows that the CRM ζρ : C(Mρ) → Cτ (Mρ) is bijective. Furthermore,
δ < τ ≤ τ∗Mρ

/3 together with part iii) of Lemma 2.19 shows that the τ -CRM ζδ : Cτ (Mρ)→ Cτ (M+δ
ρ )
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is bijective. Consequently, the CRM ζ = ζδ ◦ ζρ : C(Mρ)→ Cτ (M+δ
ρ ) is bijective, and from the latter

we conclude that |Cτ (M+δ
ρ )| = |C(Mρ)| = 2.

iii). Since |Cτ (M+δ
ρ )| = 2, the already established (45) implies |C(Mρ)| = 2, and hence Definition

2.16 yields both ρ ≥ ρ∗ and the bijectivity of the top-CRM ζ∗∗ : C(Mρ∗∗) → C(Mρ). Moreover,
for ρ∗∗, the already established part ii) shows that the τ -CRM ζM : Cτ (Mρ∗∗) → Cτ (M+δ

ρ∗∗) is
bijective, and the proof of ii) further showed C(Mρ∗∗) = Cτ (Mρ∗∗). Consequently, ζM equals the
CRM C(Mρ∗∗)→ Cτ (M+δ

ρ∗∗). In addition, δ < τ together with part ii) of Lemma 2.19 and part i) of

Lemma 2.13 shows that the CRM ζρ : C(Mρ) → Cτ (M+δ
ρ ) is surjective. Now, by Lemma 2.8 these

maps commute in the sense of the following diagram

C(Mρ∗∗) C(Mρ)

Cτ (M+δ
ρ∗∗) Cτ (M+δ

ρ )

-

? ?
-

ζ∗∗

ζM ζρ

ζ

and consequently, ζ is surjective. Since |Cτ (M+δ
ρ∗∗)| = |C(Mρ∗∗)| = 2 and |Cτ (M+δ

ρ )| = 2, we then
conclude that ζ is bijective.

iv). We proceed by contraposition. To this end, we fix an ρ ∈ [ρ∗ + ε∗, ρ∗∗]. By the already
established part ii) we then find |Cτ (M+δ

ρ )| = 2, and part iii) thus shows that the τ -CRM ζM :

Cτ (M+δ
ρ∗∗)→ Cτ (M+δ

ρ ) is bijective. Moreover, Lemma 2.8 yields the following diagram

Cτ (M−δρ∗∗) Cτ (M+δ
ρ∗∗)

Cτ (M−δρ ) Cτ (M+δ
ρ )

-

? ?
-

ζ∗∗

ζV ζM

ζV,M

where ζV and ζV,M are the corresponding τ -CRMs. Now our assumption guarantees that ζ∗∗ is
bijective, and hence the diagram shows that ζV,M ◦ ζV is bijective. Consequently, ζV is injective,
and from the latter we obtain 2 = |Cτ (M+δ

ρ )| = |Cτ (M−δρ∗∗)| ≤ |Cτ (M−δρ )|.
Proof of Lemma 2.21: i). Let us fix a ψ > 2ψ∗A(δ) with ψ < τ and a τ ′ ∈ (0, τ∗A) such that
ψ + τ ′ < τ , where τ∗A is the constant defined in Lemma 2.13. Moreover, we fix a B′ ∈ C(A). By
Lemma 2.13 we then see that C(A) = Cτ ′(A), and hence B′ is τ ′-connected. Now let A1, . . . , Am
be the τ -connected components of A−δ. Clearly, Lemma 2.11 yields d(Ai, Aj) ≥ τ for all i 6= j.
Assume that i) is not true, that is, there exist indices i0, j0 with i0 6= j0 such that Ai0 ∩ B′ 6= ∅
and Aj0 ∩ B′ 6= ∅. Consequently, there exist x′ ∈ Ai0 ∩ B′ and x′′ ∈ Aj0 ∩ B′, and since B′ is τ ′-
connected, there further exist x0, . . . , xn+1 ∈ B′ ⊂ A with x0 = x′, xn+1 = x′′ and d(xi, xi+1) < τ ′

for all i = 0, . . . , n. Moreover, our assumptions guarantee d(xi, A
−δ) < ψ/2 for all i = 0, . . . , n+ 1.

For all i = 0, . . . , n+ 1, there thus exists an index `i such that

d(xi, A`i) < ψ/2 .

In addition, we have x0 ∈ Ai0 and xn+1 ∈ Aj0 by construction, and hence we may actually choose
`0 = i0 and `n+1 = j0. Since we assumed `0 6= `n+1, there then exists an i ∈ {0, . . . , n} with
`i 6= `i+1. For this index, our construction now yields

d(A`i , A`i+1) ≤ d(xi, A`i) + d(xi, xi+1) + d(xi+1, A`i+1) < ψ + τ ′ < τ ,

which contradicts the earlier established d(A`i , A`i+1) ≥ τ .
ii). Since A−δ ⊂ A, there exists, for every A′ ∈ Cτ (A−δ), a B′ ∈ C(A) with A′ ∩B′ 6= ∅. We pick

one such B′ and define ζ(A′) := B′. Now part i) shows that ζ : Cτ (A−δ) → C(A) is injective, and
hence we conclude |Cτ (A−δ)| ≤ |C(A)|.

iii). As mentioned in part ii), we have an injective map ζ : Cτ (A−δ)→ C(A) that satisfies

A′ ∩ ζ(A′) 6= ∅ , A′ ∈ Cτ (A−δ) . (46)
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Now, |Cτ (A−δ)| = |C(A)| together with the assumed |C(A)| <∞ implies that ζ is actually bijective.
Let us first show that ζ is the only map that satisfies (46). To this end, assume the converse, that
is, for some A′ ∈ Cτ (A−δ), there exists an B′ ∈ C(A) with B′ 6= ζ(A′) and A′ ∩ B′ 6= ∅. Since ζ
is bijective, there then exists an A′′ ∈ Cτ (A−δ) with ζ(A′′) = B′, and hence we have A′′ ∩ B′ 6= ∅
by (46). By part i), we conclude that A′ = A′′, which in turn yields ζ(A′) = ζ(A′′) = B′. In other
words, we have found a contradiction, and hence ζ is indeed the only map that satisfies (46).

Let us now show that Cτ (A−δ) is persistent in C(A). Since we assumed |Cτ (A−δ)| = |C(A)|, it
suffices to prove that the injective map ζ : Cτ (A−δ)→ C(A) defined by (46) is a CRM, i.e. it satisfies

A′ ⊂ ζ(A′) , A′ ∈ Cτ (A−δ) . (47)

To show (47), we pick an A′ ∈ Cτ (A−δ) and write B1, . . . , Bm for the topologically connected
components of A. Since A−δ ⊂ A, we then have A′ ⊂ B1 ∪ · · · ∪ Bm, where the latter union
is disjoint. Now, we have just seen that ζ(A′) ∈ {B1, . . . , Bm} is the only component satisfying
A′ ∩ ζ(A′) 6= ∅, and therefore we can conclude A′ ⊂ ζ(A′).

Finally, let us show (11). To this end, we first prove that, for all A′ ∈ Cτ (A−δ) and x ∈ ζ(A′) we
have

d(x,A′) ≤ ψ∗A(δ) , (48)

where ζ : Cτ (A−δ) → C(A) is the bijective CRM considered above. Let us assume that (48) is not
true, that is, there exist an A′ ∈ Cτ (A−δ) and an x ∈ ζ(A′) such that d(x,A′) > ψ∗A(δ). Since
d(x,A−δ) ≤ ψ∗A(δ), there further exists an A′′ ∈ Cτ (A−δ) with d(x,A′′) ≤ ψ∗A(δ). Obviously, this
yields A′ 6= A′′. Let us fix a τ ′ ∈ (0, τ∗A) such that 2ψ∗A(δ) + τ ′ < τ , and an x′ ∈ A′. For B′ := ζ(A′),
we then have x′ ∈ B′ by (47), and our construction guarantees x ∈ B′. Now, the rest of the
proof is similar to that of i). Namely, since B′ is τ ′-connected, there exist x0, . . . , xn+1 ∈ B′ with
x0 = x, xn+1 = x′ and d(xi, xi+1) < τ ′ for all i = 0, . . . , n. Now let A1, . . . , Am be the τ -connected
components of A−δ. Then, for all i = 0, . . . , n+ 1, there further exists an index `i such that

d(xi, A`i) ≤ ψ∗A(δ) ,

where again we may choose A`0 = A′′ and A`n+1
= A′. Since `0 6= `n+1, there then exists an

i ∈ {0, . . . , n} with `i 6= `i+1. For this index, our construction now yields

τ ≤ d(A`i , A`i+1
) ≤ d(xi, A`i) + d(xi, xi+1) + d(xi+1, A`i+1

) < 2ψ∗A(δ) + τ ′ < τ ,

and hence we have found a contradiction.
To prove (11), we again assume the converse, that is, that there exist B′, B′′ ∈ C(A) with B′ 6= B′′

and d(B′, B′′) < τ−2ψ∗A(δ). Then there exist x′ ∈ B′ and x′′ ∈ B′′ such that d(x′, x′′) < τ−2ψ∗A(δ).
Now, since ζ is bijective, there exists A′, A′′ ∈ Cτ (A−δ) with A′ 6= A′′, B′ = ζ(A′), and B′′ = ζ(A′′).
Using (48), we then obtain

τ ≤ d(A′, A′′) ≤ d(x′, A′) + d(x′, x′′) + d(x′′, A′′) < 2ψ∗A(δ) + τ − 2ψ∗A(δ) = τ ,

i.e. we again have found a contradiction.

Proof of Theorem 2.23: i). To show that |Cτ (M−δρ )| ≥ 1, we first observe that δ ≤ δthick implies

sup
x∈Mρ

d(x,M−δρ ) = ψ∗Mρ
(δ) ≤ cthickδ

γ <∞ ,

and thus M−δρ 6= ∅. This yields |Cτ (M−δρ )| ≥ 1. Conversely, we have |Cτ (M−δρ )| ≤ |C(Mρ)| ≤ 2,
where the first inequality was established in part ii) of Lemma 2.21 and the second is ensured by
Definition 2.16.

ii). The monotonicity of τ∗ established in Theorem 2.20 yields δ < ψ(δ) < τ ≤ τ∗(ε∗) ≤ τ∗Mρ∗∗
/3.

By part iii) of Lemma 2.19 we then conclude that the τ -CRM Cτ (Mρ∗∗) → Cτ (M+δ
ρ∗∗) is bijective,

and part ii) of Theorem 2.20 shows |Cτ (Mρ∗∗)| = |Cτ (M+δ
ρ∗∗)| = 2. By Lemma 2.8 it thus suffices to

show that the τ -CRM Cτ (M−δρ∗∗)→ Cτ (Mρ∗∗) is bijective. Furthermore, if |Cτ (M−δρ∗∗)| = 1, this map

is automatically injective, and if |Cτ (M−δρ∗∗)| = 2, the injectivity follows from the surjectivity and the
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above proven |Cτ (Mρ∗∗)| = 2. Consequently, it actually suffices to show that ζ is surjective. To this
end, we fix a B′ ∈ Cτ (Mρ∗∗) and an x ∈ B′. Then our assumption ensures d(x,M−δρ∗∗) < ψ(δ), and

hence there exists an A′ ∈ Cτ (M−δρ∗∗) with d(x,A′) < ψ(δ). Therefore, ψ(δ) < τ implies that x and
A′ are τ -connected, which yields x ∈ A′. In other words, we have shown A′ ∩ B′ 6= ∅. By Lemma
6.2 and the definition of ζ, we conclude that ζ(A′) = B′.

iii). We have 2 = |Cτ (M−δρ )| ≤ |C(Mρ)| ≤ 2, where the first inequality was shown in part ii)
of Lemma 2.21 and the second is guaranteed by Definition 2.16. We conclude that |C(Mρ)| = 2,
and hence the definition of topological clustering ensures both ρ ≥ ρ∗ and the bijectivity of the top-
CRM ζtop : C(Mρ∗∗) → C(Mρ). Furthermore, |Cτ (M−δρ )| = |C(Mρ)|, which has been shown above,

together with part iii) of Lemma 2.21 yields a bijective CRM ζρ : Cτ (M−δρ ) → C(Mρ). Moreover,

part ii) of Theorem 2.20 shows |Cτ (M+δ
ρ∗∗)| = 2, and hence the already established bijectivity of

ζ∗∗ : Cτ (M−δρ∗∗) → Cτ (M+δ
ρ∗∗) gives |Cτ (M−δρ∗∗)| = |Cτ (M+δ

ρ∗∗)| = 2 = |C(Mρ∗∗)|. Consequently, part iii)

of Lemma 2.21 yields a bijective CRM ζρ∗∗ : Cτ (M−δρ∗∗)→ C(Mρ∗∗). Then the τ -CRM ζ : Cτ (M−δρ∗∗)→
Cτ (M−δρ ) enjoys the following diagram

Cτ (M−δρ∗∗) C(Mρ∗∗)

Cτ (M−δρ ) C(Mρ)

-

? ?
-

ζρ∗∗

ζ ζtop

ζρ

whose commutativity follows from Lemma 2.8. Then the bijectivity of ζρ∗∗ , ζtop, and ζρ yields the
bijectivity of ζ, which completes the proof.

6.4 Proofs Related to Basic Properties of Histograms

Proof of Theorem 3.3: We fix an A ∈ Aδ and write f := µ(A)−11A. Then f is non-negative,
bounded, and our assumptions ensure ‖f‖∞ ≤ cpartδ

−d. Consequently, Hoeffding’s inequality, see
e.g. (Devroye et al., 1996, Theorem 8.1), yields

Pn
({

D ∈ Xn :
∣∣∣ 1
n

n∑
i=1

f(xi)− EP f
∣∣∣ < ε

})
≥ 1− 2 exp

(
−2nε2δ2d

c2part

)
for all n ≥ 1 and ε > 0, where we assumed D = (x1, . . . , xn). Furthermore, we have 1

n

∑n
i=1 f(xi) =

µ(A)−1D(A) and EP f = µ(A)−1P (A). By a union bound argument and |Aδ| ≤ cpartδ
−d, we thus

obtain

Pn
({

D ∈ Xn : sup
A∈Aδ

∣∣∣D(A)

µ(A)
− P (A)

µ(A)

∣∣∣ < ε
})
≥ 1− 2cpartδ

−d exp
(
−2nε2δ2d

c2part

)
.

Since, for x ∈ X and A ∈ Aδ with x ∈ A, we have hD,δ(x) = µ(A)−1D(A) and hP,δ(x) =
µ(A)−1P (A), we then find the first assertion.

To show the second inequality, we fix an A ∈ Aδ and write f := µ(A)−1(1A−P (A)). This yields
EP f = 0, ‖f‖∞ ≤ cpartδ

−d, and

EP f2 ≤ µ(A)−2P (A) ≤ µ(A)−1‖h‖∞ ≤ cpartδ
−d‖h‖∞ .

Consequently, Bernstein’s inequality, see e.g. (Devroye et al., 1996, Theorem 8.2), yields

Pn
({

D ∈ Xn :
∣∣∣ 1
n

n∑
i=1

f(xi)
∣∣∣ < ε

})
≥ 1− 2 exp

(
− 3nε2δd

cpart(6‖h‖∞ + 2ε)

)
.

Using 1
n

∑n
i=1 f(xi) = (D(A)− P (A))µ(A)−1, the rest of the proof follows the lines of the proof of

the first inequality.
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Proof of Lemma 3.4: i). We will show the equivalent inclusion {ĥ < ρ} ⊂ (X \Mρ+ε)
+δ. To this

end, we fix an x ∈ X with ĥ(x) < ρ. If x ∈ X \Mρ+ε, we immediately obtain x ∈ (X \Mρ+ε)
+δ,

and hence we may restrict our considerations to the case x ∈ Mρ+ε. Then, ĥ(x) < ρ together with

‖ĥ− hP,δ‖∞ ≤ ε implies hP,δ(x) ≤ ĥ(x) + ε < ρ + ε. Now let A be the unique cell of the partition
Aδ satisfying x ∈ A. The definition of hP,δ together with the assumed 0 < µ(A) <∞ then yields∫

A

h dµ = P (A) = hP,δ(x)µ(A) < (ρ+ ε)µ(A) , (49)

where h : X → [0,∞) is an arbitrary µ-density of P . Our next goal is to show that there exists an
x′ ∈ (X \Mρ+ε) ∩ A. Suppose the converse, that is A ⊂ Mρ+ε. Then the upper normality of P at
the level ρ+ ε yields µ(A \ {h ≥ ρ+ ε}) ≤ µ(Mρ+ε \ {h ≥ ρ+ ε}) = 0, and hence we conclude that
µ(A ∩ {h ≥ ρ+ ε}) = µ(A). This leads to∫

A

h dµ =

∫
A∩{h≥ρ+ε}

h dµ+

∫
A\{h≥ρ+ε}

h dµ =

∫
A∩{h≥ρ+ε}

h dµ ≥ (ρ+ ε)µ(A) .

However, this inequality contradicts (49), and hence there does exist an x′ ∈ (X \Mρ+ε) ∩A. This
implies

d(x,X \Mρ+ε) ≤ d(x, x′) ≤ diamA ≤ δ ,

i.e. we have shown x ∈ (X \Mρ+ε)
+δ.

ii). Let us fix an x ∈ X with ĥ(x) ≥ ρ. If x ∈ Mρ−ε, we immediately obtain x ∈ M+δ
ρ−ε, and

hence it remains to consider the case x ∈ X \Mρ−ε. Clearly, if ρ − ε ≤ 0, this case is impossible,

and hence we may additionally assume ρ − ε > 0. Then, ĥ(x) ≥ ρ together with ‖ĥ − hP,δ‖∞ ≤ ε

yields hP,δ(x) ≥ ĥ(x)− ε ≥ ρ− ε. Now let A be the unique cell of the partition Aδ satisfying x ∈ A.
By the definition of hP,δ and µ(A) > 0 we then obtain∫

A

h dµ = P (A) = hP,δ(x)µ(A) ≥ (ρ− ε)µ(A) , (50)

where, again, h : X → [0,∞) is an arbitrary µ-density of P . Our next goal is to show that there
exists an x′ ∈ Mρ−ε ∩ A. Suppose the converse holds, that is A ⊂ X \Mρ−ε. Then the assumed
upper normality of P at the level ρ− ε yields

µ(Mρ−ε M {h ≥ ρ− ε}) = 0 ,

and using A M B = (X \A) M (X \B), we thus find µ((X \Mρ−ε) M {h < ρ− ε}) = 0. Combining
the latter with the assumed A ⊂ X \Mρ−ε we obtain

µ
(
A \ {h < ρ− ε}

)
≤ µ

(
(X \Mρ−ε) \ {h < ρ− ε}

)
= 0 ,

and this implies∫
A

h dµ =

∫
A∩{h<ρ−ε}

h dµ+

∫
A\{h<ρ−ε}

h dµ =

∫
A∩{h<ρ−ε}

h dµ < (ρ− ε)µ(A) .

However, this inequality contradicts (50), and hence there does exist an x′ ∈Mρ−ε ∩A. This yields

d(x,Mρ−ε) ≤ d(x, x′) ≤ diamA ≤ δ ,

i.e. we have shown x ∈M+δ
ρ−ε.

Lemma 6.6. Let (X, d) be a compact metric space and µ be a finite Borel measure on X with
suppµ = X. Moreover, let P be a µ-absolutely continuous probability measure on X, and (Lρ)ρ≥0

be a decreasing family of sets Lρ ⊂ X such that

M−δρ+ε ⊂ Lρ ⊂M+δ
ρ−ε

for some fixed δ > 0, ε ≥ 0, and all ρ ≥ 0. For some fixed ρ ≥ 0 and τ > 0, let ζ : Cτ (M−δρ+ε) →
Cτ (Lρ) be the τ -CRM. Then the following statements hold:
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i) For all A′ ∈ Cτ (M−δρ+ε) with A′ ∩M−δρ+3ε 6= ∅ we have ζ(A′) ∩ Lρ+2ε 6= ∅.

ii) For all B′ ∈ Cτ (Lρ) with B′ 6∈ ζ(Cτ (M−δρ+ε)), we have

B′ ⊂ (X \Mρ+ε)
+δ ∩M+δ

ρ−ε (51)

B′ ∩ Lρ+2ε ⊂ (X \Mρ+ε)
+δ ∩M+δ

ρ+ε . (52)

Proof of Lemma 6.6: i). This assertion follows

∅ 6= A′ ∩M−δρ+3ε ⊂ ξ(A′) ∩ Lρ+2ε ,

where we used the τ -CRM property A′ ⊂ ζ(A′) and the inclusion M−δρ+3ε ⊂ Lρ+2ε.

ii). Let fix a B′ ∈ Cτ (Lρ) with B′ 6∈ ζ(Cτ (M−δρ+ε)). For x ∈ B′ we then have

x 6∈
⋃

A′∈Cτ (M−δρ+ε)

ζ(A′) ,

and hence the τ -CRM property yields

x 6∈
⋃

A′∈Cτ (M−δρ+ε)

A′ = M−δρ+ε .

This shows x ∈ (X \Mρ+ε)
+δ, i.e. we have proved B′ ⊂ (X \Mρ+ε)

+δ. Now, (51) follows from
B′ ⊂ Lρ ⊂M+δ

ρ−ε, and (52) follows from B′ ∩ Lρ+2ε ⊂ Lρ+2ε ⊂M+δ
ρ+ε.

Proof of Theorem 3.5: Our first goal is to establish the following disjoint union:

Cτ (Lρ) = ζ(Cτ (M−δρ+ε))

∪
{
B′ ∈ Cτ (Lρ) \ ζ(Cτ (M−δρ+ε)) : B′ ∩ Lρ+2ε 6= ∅

}
∪
{
B′ ∈ Cτ (Lρ) : B′ ∩ Lρ+2ε = ∅

}
. (53)

We begin by showing the auxiliary result

A′ ∩M−δρ+3ε 6= ∅ , A′ ∈ Cτ (M−δρ+ε). (54)

To this end, we observe that parts i) and ii) of Theorem 2.20 yield |Cτ (M+δ
ρ∗∗)| = 2, and hence part

ii) of Theorem 2.23 implies |Cτ (M−δρ∗∗)| = 2. Let W ′ and W ′′ be the two τ -connected components

of M−δρ∗∗ . We first assume that M−δρ+ε has exactly one τ -connected component A′, i.e. A′ = M−δρ+ε.
Then ρ+ 3ε ≤ ρ∗∗ and ρ+ ε ≤ ρ+ 3ε imply

∅ 6= M−δρ∗∗ ⊂M−δρ+3ε = M−δρ+ε ∩M−δρ+3ε = A′ ∩M−δρ+3ε ,

i.e. we have shown (54). Let us now assume that M−δρ+ε has more than one τ -component. Then it has
exactly two such components A′ and A′′ by ρ+ ε < ρ∗∗ and part i) of Theorem 2.23. By part iii) of
Theorem 2.23 we may then assume without loss of generality that we have W ′ ⊂ A′ and W ′′ ⊂ A′′.
Since ρ+ 3ε ≤ ρ∗∗ implies M−δρ∗∗ ⊂M−δρ+3ε, these inclusions yield ∅ 6= W ′ = W ′ ∩M−δρ∗∗ ⊂ A′ ∩M−δρ+3ε

and ∅ 6= W ′′ = W ′′ ∩M−δρ∗∗ ⊂ A′′ ∩M−δρ+3ε. Consequently, we have proved (54) in this case, too.

Now, from (54) we conclude by part i) of Lemma 6.6 that B′∩Lρ+2ε 6= ∅ for all B′ ∈ ζ(Cτ (M−δρ+ε)).
This yields{

B′ ∈ Cτ (Lρ) \ ζ(Cτ (M−δρ+ε)) : B′ ∩ Lρ+2ε = ∅
}

=
{
B′ ∈ Cτ (Lρ) : B′ ∩ Lρ+2ε = ∅

}
,

which in turn implies (53).
Let us now show (16). Using (53) we first observe that it remains to show

B′ ∩ Lρ+2ε = ∅ ,
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for all B′ ∈ Cτ (Lρ)\ζ(Cτ (M−δρ+ε)). Let us assume the converse, that is, there exists some B′ ∈ Cτ (Lρ)

with B′ 6∈ ζ(Cτ (M−δρ+ε)) and B′∩Lρ+2ε 6= ∅. Since Lρ+2ε ⊂M+δ
ρ+ε, there then exists an x ∈ B′∩M+δ

ρ+ε.
By part i) of Lemma 6.5 the latter yields an x′ ∈ Mρ+ε with d(x, x′) ≤ δ, and since P has thick
clusters we obtain

d(x′,M−δρ+ε) ≤ ψ∗Mρ+ε
(δ) ≤ cthickδ

γ < 2cthickδ
γ .

From this inequality we conclude that there exists an x′′ ∈ M−δρ+ε satisfying d(x′, x′′) < 2cthickδ
γ .

Let A′′ ∈ Cτ (M−δρ+ε) be the unique τ -connected component satisfying x′′ ∈ A′′. The τ -CRM property
then yields x′′ ∈ A′′ ⊂ ζ(A′′) =: B′′, and hence, using c ≥ 1, we find

d(B′, B′′) ≤ d(x, x′′) ≤ d(x, x′) + d(x′, x′′) < δ + 2cthickδ
γ ≤ 3cthickδ

γ < τ .

However, since B′ 6∈ ζ(Cτ (M−δρ+ε)) and B′′ ∈ ζ(Cτ (M−δρ+ε)) we obtain B′ 6= B′′, and therefore, Lemma
2.11 yields d(B′, B′′) ≥ τ , i.e. we have found a contradiction.

Proof of Theorem 3.6: We begin with some general observations. To this end, let ρ ∈ [0, ρ∗∗−4ε]
be the level that is currently considered in Line 3 of Algorithm 3.1. Then, Theorem 3.5 shows
that Algorithm 3.1 identifies exactly the τ -connected components of LD,ρ that belong to the set
ζ(Cτ (M−δρ+ε)), where ζ : Cτ (M−δρ+ε)→ Cτ (LD,ρ) is the τ -CRM. In the following, we thus consider the

set ζ(Cτ (M−δρ+ε)). Moreover, we note that the returned level ρ∗D always satisfies ρ∗D ≥ ρ+ 3ε by Line

4 and Line 6, and equality holds if and only if |ζ(Cτ (M−δρ+ε))| 6= 1.

i). Let us first consider the case ρ ∈ [0, ρ∗− ε). Then ρ+ ε < ρ∗ together with part i) and iii) of
Theorem 2.23 shows |Cτ (M−δρ+ε)| = 1, and hence |ζ(Cτ (M−δρ+ε))| = 1. Our initial consideration then
show, that Algorithm 3.1 does not leave its loop, and thus ρ∗D ≥ ρ∗ + 2ε.

Let us now consider the case ρ ∈ [ρ∗ + ε∗ + ε, ρ∗ + ε∗ + 2ε]. Then we first note that Algorithm
3.1 actually inspects such an ρ, since it iteratively inspects all ρ = iε, i = 0, 1, . . . , and the width of
the interval above is ε. Moreover, our assumptions on ε∗ and ε guarantee ρ∗ + ε∗ + 2ε ≤ ρ∗∗ − 4ε
and hence we have ρ ∈ [ρ∗ + ε∗ + ε, ρ∗∗ − 4ε], that is, we are in the situation described at the
beginning of the proof. Let us write ζV : Cτ (M−δρ∗∗) → Cτ (M−δρ+ε), ζM : Cτ (M+δ

ρ∗∗) → Cτ (M+δ
ρ−ε), and

ζV,M : Cτ (M−δρ+ε) → Cτ (M+δ
ρ−ε) for the τ -CRMs between the involved sets. Using Lemma 2.8 twice,

we then obtain the following diagram:

Cτ (M−δρ+ε) Cτ (M+δ
ρ−ε)

Cτ (M−δρ∗∗) Cτ (M+δ
ρ∗∗)

-

6 6

-

ζV,M

ζV ζM

ζ∗∗

where the τ -CRM ζ∗∗ is bijective by part ii) of Theorem 2.23. Moreover, ρ− ε ≥ ρ∗ + ε∗ together
with part ii) of Theorem 2.20 shows |Cτ (M+δ

ρ−ε)| = 2, and by iii) of Theorem 2.20 we conclude that
ζM is bijective. Similarly, ρ + ε ≥ ρ∗ + ε∗ and the bijectivity of ζ∗∗ show by iv) of Theorem 2.20
that |Cτ (M−δρ+ε)| = 2, and thus ζV is bijective by part iii) of Theorem 2.23. Consequently, ζV,M is

bijective. Let us further consider the τ -CRM ζ ′ : Cτ (LD,ρ) → Cτ (M+δ
ρ−ε). Then Lemma 2.8 yields

another diagram:

Cτ (M−δρ+ε) Cτ (M+δ
ρ−ε)

Cτ (LD,ρ)

-

@
@
@
@R �

�
�
��

ζV,M

ζ ζ ′

Since ζV,M is bijective, we then find that ζ is injective, and since we have already seen that M−δρ+ε has

two τ -connected components, we conclude that ζ(Cτ (M−δρ+ε)) contains two elements. Consequently,
the stopping criterion of Algorithm 3.1 is satisfied, that is, ρ∗D = ρ+ 3ε ≤ ρ∗ + ε∗ + 5ε.
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ii). Theorem 3.5 shows that in its last run through the loop Algorithm 3.1 identifies exactly the
τ -connected components of LD,ρ that belong to the set ζ−3ε(Cτ (M−δρ+ε), where ρ := ρ∗D − 3ε and

ζ−3ε : Cτ (M−δρ+ε)→ Cτ (LD,ρ) is the τ -CRM. Moreover, since Algorithm 3.1 stops at ρ∗D−3ε, we have

|ζ−3ε(Cτ (M−δρ+ε))| 6= 1 by our remarks at the beginning of the proof, and thus |Cτ (M−δρ+ε)| 6= 1. From
the already proven part i) we further know that ρ+ ε = ρ∗D − 2ε ≤ ρ∗ + ε∗ + 3ε ≤ ρ∗ + 4ε∗ ≤ ρ∗∗,
and part i) of Theorem 2.23 hence gives |Cτ (M−δρ+ε)| = 2. For later purposes, note that the latter

together with |ζ−3ε(Cτ (M−δρ+ε))| 6= 1 implies the injectivity of ζ−3ε. Now, part iii) of Theorem 2.23

shows that the τ -CRM ζρ∗∗,ρ+ε : Cτ (M−δρ∗∗) → Cτ (M−δρ+ε) is bijective. Let us consider the following
commutative diagram:

Cτ (M−δρ∗∗) Cτ (M−δρ+ε)

Cτ (M−δρ∗D+ε)

-

@
@
@
@R �

�
�
��

ζρ∗∗,ρ+ε

ζρ∗∗,ρ∗D+ε ζ̃

where the remaining two maps are the corresponding τ -CRMs, whose existence is guaranteed by
ρ∗D + ε ≤ ρ∗D + 7ε∗ ≤ ρ∗∗ and ρ+ ε ≤ ρ∗D + ε, respectively. Now the bijectivity of ζρ∗∗,ρ+ε shows that
ζρ∗∗,ρ∗D+ε is injective. Moreover, ρ∗D + ε ≤ ρ∗∗ implies |Cτ (M−δρ∗D+ε)| ≤ 2 by part i) of Theorem 2.23,

while ρ∗∗ ≥ ρ∗ + ε∗ implies |Cτ (M−δρ∗∗)| = 2 by part iv) of Theorem 2.20 and part ii) of Theorem

2.23. Therefore, ζρ∗∗,ρ∗D+ε is actually bijective. This yields both |Cτ (M−δρ∗D+ε)| = 2, which is the first

assertion, and the bijectivity of ζ̃. Let us consider yet another commutative diagram

Cτ (M−δρ∗D+ε) Cτ (M−δρ+ε)

Cτ ((LD,ρ∗D ) Cτ (LD,ρ)

-

? ?
-

ζ̃

ζ ζ−3ε

ζ ′

where again, all occurring maps are the τ -CRMs between the respective sets. Now we have already
shown that ζ−3ε is injective and that ζ̃ is bijective. Consequently, ζ is injective.

iii). This assertions follows from Theorem 3.5 and the inequality ρ∗D ≤ ρ∗∗ − 3ε, which follows
from part i).

iv). We have already seen in the proof of part ii) that |Cτ (M−δρ∗∗)| = 2, and consequently part

iii) of Lemma 2.21 shows that there exists a bijective CRM ζρ∗∗ : Cτ (M−δρ∗∗)→ C(Mρ∗∗). Moreover,

part ii) shows |Cτ (M−δρ∗D+ε)| = 2, thus part iii) of Lemma 2.21 yields another bijective CRM ζρ∗D+ε :

Cτ (M−δρ∗D+ε) → C(Mρ∗D+ε). Furthermore, in the proof of part ii) we have already seen that τ -CRM

ζρ∗∗,ρ∗D+ε is bijective. This gives the diagram.

v). By parts iii) and iv) we know 2 = |Cτ (M−δρ∗D+ε)| = |C(Mρ∗D+ε)|. Let us thus write B1 and

B2 for the two topologically connected components of Mρ∗D+ε. Furthermore, part i) together with
ε∗ ≤ (ρ∗∗ − ρ∗)/9 ensures ρ∗D + ε ≤ ρ∗∗. Therefore, part iii) of Lemma 2.21, namely (11) shows

d(B1, B2) ≥ τ − 2ψ∗Mρ∗
D

+ε
(δ) ≥ τ − 2cthickδ

γ > τ − ψ(δ) .

On the other hand, the definition of τ∗Mρ∗
D

+ε
in Lemma 2.13 together with the definition of τ∗ in (10)

gives
3τ∗(ρ∗D − ρ∗ + ε) = τ∗Mρ∗

D
+ε

= d(B1, B2) .

Combining both we find the assertion.

Proof of Theorem 3.7: To simplify notation in the following calculations, we write Bi := Bi(D)
for i ∈ {1, 2} and ρ := ρ∗D. Consequently, A1

ρ+ε and A2
ρ+ε are the two connected components of

Mρ+ε = Mρ∗D+ε, Moreover, we define V 1
ρ+ε and V 2

ρ+ε by (17), so that V 1
ρ+ε and V 2

ρ+ε become the two
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τ -connected components of M−δρ+ε = M−δρ∗D+ε. As discussed in front of Theorem 3.7, we then have

Aiρ+ε ⊂ A∗i , and the assumed (18) ensures V iρ+ε ⊂ Bi for i = 1, 2. For i ∈ {1, 2}, we further write

W i
ρ+ε := (Aiρ+ε)

−δ. Our first goal is to show that

W i
ρ+ε ⊂ V iρ+ε , i ∈ {1, 2}. (55)

To this end, we fix an x ∈ W 1
ρ+ε. Since W 1

ρ+ε ⊂ A1
ρ+ε and W 1

ρ+ε ⊂ M−δρ+ε, where the latter follows
from A1

ρ+ε ⊂Mρ+ε, we then have x ∈ A1
ρ+ε and x ∈ V 1

ρ+ε∪V 2
ρ+ε. Let us assume that x ∈ V 2

ρ+ε. Then

we have V 2
ρ+ε∩A1

ρ+ε 6= ∅. Now, the diagram of Theorem 3.6 shows that ζρ+ε : Cτ (M−δρ+ε)→ C(Mρ+ε)
satisfies ζρ+εn(V 2

ρ+ε) = A2
ρ+ε, and hence we have V 2

ρ+ε ⊂ A2
ρ+ε. Consequently, V 2

ρ+ε ∩ A1
ρ+ε 6= ∅

implies A1
ρ+ε ∩ A1

ρ+ε 6= ∅, which is a contradiction. Therefore, we have x ∈ V 1
ρ+ε, that is, we have

shown (55) for i = 1. The case i = 2 can be shown analogously.
With the help of (55) we now find W i

ρ+ε ⊂ V iρ+ε ⊂ Bi, and thus µ(A∗i \Bi) ≤ µ(A∗i \W i
ρ+ε) for

i = 1, 2. Conversely, using the equation µ(B \A) = µ(B)− µ(A ∩B) twice, we obtain

µ
(
B1 \ (A∗1 ∪A∗2)

)
= µ(B1)− µ

(
B1 ∩ (A∗1 ∪A∗2)

)
≥ µ(B1)− µ(B1 ∩A∗1)− µ(B1 ∩A∗2)

= µ(B1 \A∗1)− µ(B1 ∩A∗2) .

Since B1 ∩B2 = ∅ implies B1 ∩A∗2 ⊂ A∗2 \B2, we thus find

µ(B1 M A∗1) = µ(B1 \A∗1) + µ(A∗1 \B1)

≤ µ
(
B1 \ (A∗1 ∪A∗2)

)
+ µ(A∗2 \B2) + µ(A∗1 \B1)

≤ µ
(
B1 \ {h > ρ∗}

)
+ µ(A∗1 \W 1

ρ+ε) + µ(A∗2 \W 2
ρ+ε) ,

where in the last estimate we also used (5). Repeating this estimate for µ(B2 M A∗2) and using both
B1 ∪B2 ⊂ LD,ρ ⊂M+δ

ρ−ε then yields the assertion.

Proof of Theorem 3.8: Let D ∈ Xn be a dataset that satisfies ‖hD,δ − hP,δ‖∞ < ε. By the
first estimate of Theorem 3.3 we easily check that the probability Pn of such a D is not smaller
than 1 − e−ς . In the case of a bounded density and (21) the same holds by the second estimate of
Theorem 3.3 and√

6cpart‖h‖∞ς + ln(2cpart)− d ln δ

3δdn
+

(
2cpartς

3δdn

)2

+
cpartς

3δdn

≤
√

6cpart‖h‖∞ς + ln(2cpart)− d ln δ

3δdn
+

2cpartς

3δdn

≤
√

2cpart(1 + ‖h‖∞)(ς + ln(2cpart)− d ln δ)

δdn
+

2cpart(ς + ln(2cpart)− d ln δ)

3δdn
,

where in the last step we utilized ln(2cpart) ≥ d ln δ. Now, Lemma 3.4 shows

M−δρ+ε ⊂ LD,ρ ⊂M+δ
ρ−ε

for all ρ ≥ 0. Let us check that the remaining assumptions of Theorem 3.6 are also satisfied, if
ε∗ ≤ (ρ∗∗ − ρ∗)/9. Clearly, we have δ ∈ (0, δthick], ε ∈ (0, ε∗], and ψ(δ) < τ . To show the remaining
τ ≤ τ∗(ε∗) we write E := {ε′ ∈ (0, ρ∗∗−ρ∗] : τ∗(ε′) ≥ τ}. Since ε∗ <∞, we first observe that E 6= ∅
by the definition of ε∗. Consequently, there exists an ε′ ∈ E with ε′ ≤ inf E + ε = ε∗. Using the
monotonicity of τ∗ established in Theorem 2.20 we then conclude that τ ≤ τ∗(ε′) ≤ τ∗(ε∗).

6.5 Proofs Related to Consistency and Rates

Lemma 6.7. Let (X, d) be a metric space, µ be a finite Borel measure on X, and (Aρ)ρ∈R be a
decreasing family of closed subsets of X. For ρ∗ ∈ R, we write

Ȧρ∗ :=
⋃
ρ>ρ∗

Åρ and Âρ∗ :=
⋃
ρ>ρ∗

Aρ .
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Then we have

Ȧρ∗ =
⋃
ρ>ρ∗

⋃
ε>0

⋃
δ>0

A−δρ+ε .

Moreover, the following statements are equivalent:

i) µ(Âρ∗ \ Ȧρ∗) = 0.

ii) For all ε > 0, there exists a ρε > ρ∗ such that, for all ρ ∈ (ρ∗, ρε], we have µ(Aρ \ Åρ) ≤ ε.

Proof of Lemma 6.7: To show the first equality, we observe that (42) implies⋂
ρ>ρ∗

⋂
ε>0

⋂
δ>0

(X \Aρ+ε)+δ =
⋂
ε>0

⋂
ρ>ρ∗

X \Aρ+ε =
⋂
ρ>ρ∗

X \Aρ .

Moreover, every set A ⊂ X satisfies X \A = X \ Å, and hence we obtain⋂
ρ>ρ∗

⋂
ε>0

⋂
δ>0

(X \Aρ+ε)+δ =
⋂
ρ>ρ∗

X \Aρ =
⋂
ρ>ρ∗

(X \ Åρ) = X \
⋃
ρ>ρ∗

Åρ .

Therefore, by taking the complement we find⋃
ρ>ρ∗

Åρ = X \
( ⋂
ρ>ρ∗

⋂
ε>0

⋂
δ>0

(X \Aρ+ε)+δ

)
=
⋃
ρ>ρ∗

⋃
ε>0

⋃
δ>0

(
X \ (X \Aρ+ε)+δ

)
=
⋃
ρ>ρ∗

⋃
ε>0

⋃
δ>0

A−δρ+ε .

i) ⇒ ii). Let us fix an ε > 0. Since Åρ =
⋃
ρ′≥ρ Åρ′ ↗ Ȧρ∗ for ρ↘ ρ∗, the σ-continuity of finite

measures yields a ρε > ρ∗ such that µ(Âρ∗ \ Åρ) ≤ ε for all ρ ∈ (ρ∗, ρε]. Using Aρ ⊂ Âρ∗ for ρ > ρ∗,

we then obtain the assertion µ(Aρ \ Åρ) ≤ µ(Âρ∗ \ Åρ) ≤ ε.
ii) ⇒ i). Let us fix an ε > 0. For ρ ∈ (ρ∗, ρε], we then have Åρ ⊂ Ȧρ∗ , and hence our assumption

yields µ(Aρ \ Ȧρ∗) ≤ ε. In other words, we have limρ↘ρ∗ µ(Aρ \ Ȧρ∗) = 0. Moreover, we have

Aρ ↗ Âρ∗ for ρ↘ ρ∗, and hence the σ-continuity of µ yields limρ↘ρ∗ µ(Aρ\Ȧρ∗) = µ(Âρ∗ \Ȧρ∗).

Lemma 6.8. Let f : (0, 1]→ (0,∞) be a monotonously increasing function and g : (0, f(1)]→ [0, 1]
be its generalized inverse, that is

g(y) := inf
{
x ∈ (0, 1] : f(x) ≥ y

}
, y ∈ (0, 1].

Then we have limy→0+g(y) = 0.

Proof of Lemma 6.8: Let (yn) ⊂ (0, f(1)] be a sequence with yn → 0. For n ≥ 1, we write
En := {x ∈ (0, 1] : f(x) ≥ yn}. Let us fix an ε ∈ (0, 1]. Since f is strictly positive, we then find
f(ε) > 0, and hence there exists an n0 ≥ 1 such that f(ε) ≥ yn for all n ≥ n0. Consequently, we
have ε ∈ En for all n ≥ n0, and from the latter we conclude that g(yn) = inf En ≤ ε for such n.

Proof of Theorem 4.1: Let us fix an ε > 0. For given n ≥ 1 and τ := τn, ε := εn we define ε∗n by
the right hand-side of (22). Then, Lemma 6.8 shows 0 < ε∗n ≤ ε∧(ρ∗∗−ρ∗)/9 for all sufficiently large
n. In addition, δn and εn satisfy (20) for sufficiently large n by (23), and we also have δn ≤ δthick

for sufficiently large n. Consequently, there exists an n0 ≥ 1 such that, for all n ≥ n0, the values εn,
δn, τn and ε∗n satisfy the assumptions of Theorem 3.8 as well as ε∗n ≤ ε.

Let us now consider an n ≥ n0 and a data set D ∈ Xn satisfying both the assertions i) - v)
of Theorem 3.6 and (19). By Theorem 3.8 and our previous considerations we then know that the
probability Pn of D is not less than 1− e−ς . Now, part i) of Theorem 3.6 yields ρ∗D − ρ∗ ≥ 2εn > 0
and

ρ∗D − ρ∗ ≤ ε∗n + 5εn ≤ 6ε∗n ≤ 6ε ,

i.e. we have shown the first convergence.
In oder to prove the second convergence, we write Ai, i = 1, 2, for the two topologically connected

components of Mρ∗∗ . Moreover, for ρ ∈ (ρ∗, ρ∗∗], we define Aiρ := ζρ(Ai), where ζρ : C(Mρ∗∗) →

39



C(Mρ) is the top-CRM. In addition, we write Aiρ := ∅ for ρ > ρ∗∗ and Aiρ := X for ρ ≤ ρ∗. Our first
goal is to show that

µ(Âiρ∗ \ Ȧiρ∗) = 0 (56)

for i = 1, 2, where we used the notation of Lemma 6.7. To this end, we fix an ε > 0. Since P is
lower and upper normal at every level ρ ∈ [ρ∗, ρ∗∗] we find, for an arbitrary µ-density h of P ,

µ(M̂ρ∗ \ Ṁρ∗) = µ
(
{h > ρ∗} \ Ṁρ∗

)
= 0 ,

where we used (5), (6), and the notation of Lemma 6.7. Lemma 6.7 then shows that there exists a
ρε > ρ∗ such that

µ(Mρ \ M̊ρ) ≤ ε (57)

for all ρ ∈ (ρ∗, ρε], where we may assume without loss of generality that ρε ≤ ρ∗∗. Let us now fix
a ρ ∈ (ρ∗, ρε]. Then we obviously have Å1

ρ ∪ Å2
ρ ⊂ M̊ρ. To prove that the converse inclusion also

holds, we pick an x ∈ M̊ρ. Without loss of generality we may assume that x ∈ A1
ρ. Since A2

ρ is

closed and thus compact, we then have ε := d(x,A2
ρ) > 0. Moreover, since M̊ρ is open, there exists a

δ ∈ (0, ε) such that B(x, δ) ⊂ M̊ρ. This yields B(x, δ) ⊂ A1
ρ ∪A2

ρ, and by d(x,A2
ρ) > δ, we conclude

that B(x, δ) ⊂ A1
ρ. This shows x ∈ Å1

ρ, and hence we indeed have M̊ρ = Å1
ρ ∪ Å2

ρ. Now we use this
equality to obtain

Mρ \ M̊ρ =
(
A1
ρ \ (Å1

ρ ∪ Å2
ρ)
)
∪
(
A2
ρ \ (Å1

ρ ∪ Å2
ρ)
)

= (A1
ρ \ Å1

ρ) ∪ (A2
ρ \ Å2

ρ) .

Using (57), this implies µ(Aiρ \ Åiρ) ≤ ε, and therefore Lemma 6.7 shows (56).
Let us now fix an ε > 0 and a ς ≥ 1. By the equality of Lemma 6.7 and the σ-continuity of finite

measures there then exist δε > 0, εε > 0, and ρε ∈ (ρ∗, ρ∗∗] such that, for all ε ∈ (0, εε], δ ∈ (0, δε],
ρ ∈ (ρ∗, ρε], and i = 1, 2, we have µ(Ȧiρ∗ \ (Aiρ+ε)

−δ) ≤ ε. Combining this with A∗i = Âiρ∗ , which
holds by the definition of the clusters A∗i , and Equation (56) we then obtain

µ
(
A∗i \ (Aiρ+ε)

−δ) = µ
(
Âiρ∗ \ (Aiρ+ε)

−δ) = µ
(
Ȧiρ∗ \ (Aiρ+ε)

−δ) ≤ ε . (58)

Moreover, our assumption µ(A∗i ∪A∗2 \ (A∗1 ∪ A∗2)) = 0 means µ(M̂ρ∗ \ M̂ρ∗) = 0, and since by part
iii) of Lemma 6.5 we know that

⋂
δ>0

( ⋃
ρ>ρ∗

Mρ

)+δ

=
⋃
ρ>ρ∗

Mρ = M̂ρ∗

we find

µ

(( ⋃
ρ>ρ∗

Mρ

)+δ

\ M̂ρ∗

)
≤ ε

for all sufficiently small δ > 0. From this it is easy to conclude that

µ(M+δ
ρ−ε \ M̂ρ∗) ≤ ε (59)

for all sufficiently small ε > 0, δ > 0 and all ρ > ρ∗ + ε. Without loss of generality, we may thus
assume that (59) also holds for all ε ∈ (0, εε], δ ∈ (0, δε] and all ρ > ρ∗ + ε.

For given τ := τn and ε := εn we now define ε∗n by the right hand-side of (22). Then, Lemma 6.8

shows ε∗n → 0, and hence we obtain ε∗n ≤ min{ρε−ρ
∗

9 , ε, εε} for all sufficiently large n. In addition, δn
and εn satisfy (20) for sufficiently large n by (23), and we also have εn ≤ ε ∧ εε and δn ≤ δε ∧ δthick

for sufficiently large n. Consequently, there exists an n0 ≥ 1 such that, for all n ≥ n0, the values εn,
δn, τn and ε∗n satisfy the assumptions of Theorem 3.8 as well as εn ≤ ε ∧ εε and δn ≤ δε.

Let us now consider an n ≥ n0 and a data set D ∈ Xn satisfying both the assertions i) - v)
of Theorem 3.6 and (19). By Theorem 3.8 and our previous considerations we then know that the
probability Pn of D is not less than 1−e−ς . Now, part i) of Theorem 3.6 gives both ρ∗D ≥ ρ∗+2εn >
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ρ∗ + εn and ρ∗D ≤ ρ∗ + ε∗n + 5εn ≤ ρ∗ + 6ε∗n ≤ ρε, and hence (58) and (59) hold for ε := εn, δ := δn,
and ρ := ρ∗D. Consequently, (19) shows

µ(B1(D) M A∗1) + µ(B2(D) M A∗2) ≤ 2µ
(
A∗1 \ (A1

ρ+ε)
−δ)+ 2µ

(
A∗2 \ (A2

ρ+ε)
−δ)

+ µ
(
M+δ
ρ−ε \ {h > ρ∗}

)
.

≤ 4ε+ µ
(
M+δ
ρ−ε \ M̂ρ∗

)
≤ 5ε ,

where in the second to last step we also used (6).

Proof of Lemma 4.3: Let ε ∈ (0, ρ∗∗−ρ∗] and A1 and A2 be the connected components of Mρ∗+ε.
Since A1 and A2 are closed, they are compact, and hence there exist x1 ∈ A1 and x2 ∈ A2 with

a := ‖x1 − x2‖ = d(A1, A2) , (60)

where we note that A1 ∩A2 = ∅ implies a > 0. For t ∈ [0, 1], we now consider

x(t) := tx1 + (1− t)x2 .

Since X is convex, we note that x(t) ∈ X for all t ∈ [0, 1]. Our first goal is to show that xi ∈ ∂XMρ∗+ε

for i = 1, 2. To this end, we assume the converse, e.g. x2 ∈ M̊ρ∗+ε. Then there exists an ε ∈ (0, a)

with BX(x2, ε) ⊂ Å2, where BX(x2, ε) := {x ∈ X : ‖x−x2‖ ≤ ε} denotes the closed ball with center
x2 and radius ε in X. Now ‖x(ε/a) − x2‖ = ε implies x(ε/a) ∈ A2, while ‖x(ε/a) − x1‖ = a − ε
shows ‖x(ε/a)− x1‖ < d(A1, A2). Together this contradicts (60).

For what follows, let us now observe that t 7→ x(t) is a continuous map on [0, 1], and since h is
continuous, there exists a t∗ ∈ [0, 1] with h(x(t∗)) = mint∈[0,1] h(x(t)). Our next goal is to show that

h(x(t∗)) ≤ ρ∗ . (61)

To this end, we assume the converse, that is h(x(t∗)) > ρ∗. Then there exists a δ ∈ (0, ε] such that
h(x(t)) > ρ∗ + δ for all t ∈ [0, 1], and therefore an application of Lemma 2.1 using the continuity of
h yields x(t) ∈Mρ∗+δ for all t ∈ [0, 1]. In other words, x1 and x2 are path-connected in Mρ∗+δ, and
since the connecting path is a straight line, it is easy to see that x1 and x2 are τ -connected for all
τ > 0. Let us pick a τ ≤ 3τ∗(δ) = τ∗Mρ∗+δ

. Since |C(Mρ∗+δ)| = 2, part ii) of Lemma 2.13 then shows

C(Mρ∗+δ) = Cτ (Mρ∗+δ). Let Ã1 and Ã2 be the two topologically connected components of Mρ∗+δ.

Our previous considerations then showed that Ã1 and Ã2 are also the two τ -connected components
of Mρ∗+δ. Now, δ ≤ ε gives a top-CRM ζ : C(Mρ∗+ε) → C(Mρ∗+δ), which is bijective, since P can

be clustered between ρ∗ and ρ∗∗. Without loss of generality we may thus assume that ζ(Ai) = Ãi for
i = 1, 2. This yields xi ∈ Ai ⊂ Ãi, i.e. x1 and x2 do not belong to the same τ -connected component
of Mρ∗+δ. Clearly, this contradicts our observation that x1 and x2 are τ -connected, and hence (61)
is proven.

Let us now assume without loss of generality that t∗ ∈ [1/2, 1). Since we have already seen that
x1 ∈ ∂XMρ∗+ε, our assumption (24) together with (61) yields∣∣h(x(t∗))− h(x1)

∣∣ ≤ c ‖x(t∗)− x1‖θ .

In addition, Lemma 2.1 together with the continuity of h shows x1 ∈ Mρ∗+ε ⊂ {h ≥ ρ∗ + ε}.
Combining these estimates with (60) and d(A1, A2) = τ∗Mρ∗+ε

= 3τ∗(ε), we find

ρ∗ + ε ≤ h(x1)

≤ h(x(t∗)) + c ‖x(t∗)− x1‖θ

≤ ρ∗ + c ‖x(t∗)− x1‖θ

= ρ∗ + c (1− t∗)θ‖x1 − x2‖θ

≤ ρ∗ + c 2−θdθ(A1, A2)

= ρ∗ + c (3/2)−θτ∗(ε)θ ,
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and from the latter the assertion easily follows.

Proof of Theorem 4.4: Let us begin by checking the conditions of Theorem 3.8. Obviously, ε is
chosen this way, and the definition of ε∗ together with the assumption ε∗ ≤ (ρ∗∗ − ρ∗)/9 yields

(τ/csep)κ ≤ ε∗ < ρ∗∗ − ρ∗ . (62)

Since the clusters have separation exponent κ, we find in the case κ <∞ that

ε+ inf
{
ε̃ ∈ (0, ρ∗∗ − ρ∗] : τ∗(ε̃) ≥ τ

}
≤ ε+ inf

{
ε̃ ∈ (0, ρ∗∗ − ρ∗] : csepε̃

1/κ ≥ τ
}

= ε+ (τ/csep)κ .

Consequently, (22) holds in the case κ < ∞. Moreover, in the case κ = ∞, (62) together with
ρ∗∗ < ∞ implies τ ≤ csep. In addition, the separation exponent κ = ∞ ensures τ∗(ε̃) ≥ csep for all
ε̃ > 0, and hence we obtain

ε+ inf
{
ε̃ ∈ (0, ρ∗∗ − ρ∗] : τ∗(ε̃) ≥ τ

}
= ε ≤ ε∗ ,

that is, (22) is also established in the case κ = ∞. Now, applying Theorem 3.8, we see that
ρ∗D ∈ [ρ∗ + 2ε, ρ∗ + ε∗ + 5ε] with probability Pn not less than 1 − e−ς , that is, (27) is proved. In
addition, the definition of ε∗ yield

ρ∗D − ρ∗ ≤ ε∗ + 5ε ≤ (τ/csep)κ + 6ε ,

and therefore, we also obtain (28). Let us finally show (29). To this end, we first observe that
Theorem 3.8, or more precisely, part v) of Theorem 3.6 further ensures

τ/2 ≤ τ − ψ(δ) < 3τ∗(ρ∗D − ρ∗ + ε) ≤ 3csep(ρ∗D − ρ∗ + ε)1/κ < 3csep21/κ(ρ∗D − ρ∗)1/κ ,

where in the last step we used the already established (27). By some elementary transformations
we conclude

1

2

( τ

6csep

)κ
< ρ∗D − ρ∗ .

and combining this 2ε ≤ ρ∗D − ρ∗ we obtain the assertion.

Proof of Corollary 4.5: Our first goal is to show (31) for κ <∞ and sufficiently large n with the
help of Theorem 4.4. To this end, we define ε∗n := εn+(τn/csep)κ for n ≥ 1. Since the sequences (εn),
(δn), and (τn) converge to 0, we then have δn ∈ (0, δthick] and ε∗n ≤ (ρ∗∗ − ρ∗)/9 for all sufficiently
large n. Furthermore, our definitions ensure τn/δ

γ
n →∞, and thus we have τn ≥ 6cthickδ

γ
n = 2ψ(δn)

for all sufficiently large n, too. Before we can apply Theorem 4.4, it thus remains to sow (21) for
sufficiently large n. To this end, we observe that, for ςn := lnn, we have

ε′n :=

√
2cpart(1 + ‖h‖∞)(ςn + ln(2cpart)− d ln δn)

δd
nn

+
2cpart(ςn + ln(2cpart)− d ln δn)

3δd
nn

�
( lnn

n

) γκ
2γκ+d

.

Using εn · ( lnn
n )−

γκ
2γκ+d → ∞, we then see that εn ≥ ε′n for all sufficiently large n. Now, applying

Theorem 4.4, namely (28), we obtain an n0 ≥ 1 and a constant K such that (30) holds for all n ≥ n0.
Moreover, if κ is exact, (29) yields a constant K such that (31) holds for all n ≥ n0.

Let us now consider the case κ = ∞. In this case, we first observe that ε∗n := εn + (τn/csep)κ

satisfies ε∗n = εn for all n with τn < csep, that is, for all sufficiently large n. Moreover, we have
τn/δ

γ
n → ∞, and, like in the case κ < ∞, it thus suffices to show (21) for sufficiently large n. To

this end, we observe that, for ςn := lnn and ε′n as above, we find that, for all sufficiently large n,

ε′n ≤ c2
( lnn ·

√
ln lnn

n

) 1
2 ≤ εn ,

where c2 is a suitable constant independent of n. Consequently, (27) and (28) yield (31) for all
sufficiently large n.
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Lemma 6.9. Let X ⊂ Rd be compact and convex and d be a metric on X that is defined by a norm
on Rd. Then, for all A ⊂ X and x ∈ A, we have

d(x, ∂XA) ≤ d(x,X \A) ,

where ∂XA denotes the boundary of A in X.

Proof of Lemma 6.9: Before we begin with the proof let us recall that the B
X

= B
Rd

for all
B ⊂ X by the closedness of X, that is, taking the closure with respect to X or Rd is the same.
Like in the statement of the lemma, we thus omit the superscript in the following. Let us now write
δ := d(x,X \ A). Then there exists a sequence (xn) ⊂ X \ A such that d(x, xn) → δ. Since X is
assumed to be compact, so is X \A, and thus there exists an x∞ ∈ X \A such that d(x, x∞) ≤ δ.
Obviously, it suffices to show x∞ ∈ ∂XA. Let us assume the converse. Since ∂XA = A ∩ X \A,
we then have x∞ 6∈ A, that is x∞ ∈ X \ A. Now, the latter set is open in X, and hence there
exists an ε > 0 such that BX(x∞, ε) ⊂ X \ A, where BX(x∞, ε) denotes the closed ball in X
that has center x∞ and radius ε. This ε must satisfy ε < δ, since otherwise we would find a
contradiction to x ∈ A by x ∈ BX(x∞, δ) ⊂ BX(x∞, ε) ⊂ X \A. For t := ε/δ ∈ (0, 1) we now define
x′ := tx+ (1− t)x∞. The convexity of X implies x′ ∈ X, and since d is defined by a norm, we have
d(x∞, x

′) = td(x, x∞) ≤ ε. Together, this yields x′ ∈ BX(x∞, ε) ⊂ X \ A ⊂ X \ A. Consequently,
d(x, x′) = (1− t)d(x, x∞) ≤ (1− t)δ < δ implies d(x,X \A) < δ, which contradicts the definition of
δ.

Lemma 6.10. Let X ⊂ Rd be compact and convex and d be a metric on X that is defined by a
norm on Rd. Then, for all A ⊂ X and δ > 0, we have

A+δ \A−δ ⊂ (∂XA)+δ ,

where the operations A+δ and A−δ as well as the boundary ∂XA are with respect to the metric space
(X, d).

Proof of Lemma 6.10: Let us fix an x ∈ A+δ \ A−δ = A+δ ∩ (X \ A)+δ. If x ∈ A, then
Lemma 6.9 immediately yields d(x, ∂XA) ≤ d(x,X \ A) ≤ δ, that is x ∈ (∂XA)+δ. It thus suffices
to consider the case x 6∈ A. Then we find x ∈ X \ A ⊂ X \ A ⊂ X \A, and hence another
application of Lemma 6.9 yields d(x, ∂X(X \ A)) ≤ d(x,A) ≤ δ. Now the assertion easily follows
from ∂X(X \A) = X \A ∩X \ (X \A) = X \A ∩A = ∂XA.

Proof of Lemma 4.8: Before we begin the actual proof let us recall that for an integer 0 ≤ m ≤ d
the upper and lower Minkowski content of a set B ⊂ Rd is defined by

M∗m(B) := lim sup
ε→0+

λd(B+δ)

σd−mδd−m

Mm
∗ (B) := lim inf

ε→0+

λd(B+δ)

σd−mδd−m
,

where σd−m denotes the λd−m-volume of the unit Euclidean ball in Rd−m. It is straightforward to
check that these definitions coincide with those in (Federer, 1969, 3.2.37).

i). Since in the case λd(A) = 0 there is nothing to prove, we restrict our considerations to the case
λd(A) > 0. Now, A is assumed to be bounded, and hence we have λd(A) < ∞. The isoperimetric
inequality in the form of (Federer, 1969, 3.2.43) thus yields

dσ
1/d
d λd(A)1−1/d ≤Md−1

∗ (∂A) ,

and consequently, there exists a δA > 0, such that, for all δ ∈ (0, δA], we have

dσ
1/d
d λd(A)1−1/d

2
≤
λd
(
(∂A)+δ

)
σ1δ

≤
λd
(
A+2δ \A−2δ

)
2δ

,

where in the last estimate we used part viii) of Lemma 6.5 and σ1 = 2.
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ii). Since ∂A is closed and (d− 1)-rectifiable in the sense of (Federer, 1969, 3.2.14), we find

M∗(d−1)(∂A) = Hd−1(∂A)

by (Federer, 1969, 3.2.39). Moreover, since ∂A is bounded, the boundary is contained in a compact
set X ⊂ Rd such that the relative boundary ∂XA of A in X equals ∂A and the sets A+δ and A−δ

considered in X equal the sets A+δ and A−δ when considered in Rd for all δ ∈ (0, 1]. By Lemma
6.10 there thus exists a δA > 0 such that

λd
(
A+δ \A−δ

)
2δ

≤
λd
(
(∂A)+δ

)
σ1δ

≤ 2Hd−1(∂A)

for all δ ∈ (0, δA].

Lemma 6.11. Let the assumptions of Theorem 3.7 be satisfied. Then we have

µ(B1(D) M A∗1) + µ(B2(D) M A∗2) ≤ µ
(
M+δ
ρ∗D−ε

\Mρ∗D−ε
)

+ µ
(
{ρ∗ < h < ρ∗D + ε}

)
+ 2µ

(
A1
ρ∗D+ε \ (A1

ρ∗D+ε)
−δ)+ 2µ

(
A2
ρ∗D+ε \ (A2

ρ∗D+ε)
−δ) .

Proof of Lemma 6.11: We will use Inequality (19) established in Theorem 3.7. To this end, we
first observe that (5) implies

µ
(
M+δ
ρ−ε \ {h > ρ∗}

)
= µ

(
M+δ
ρ−ε \

⋃
ρ′>ρ∗

Mρ′

)
≤ µ

(
M+δ
ρ−ε \Mρ−ε

)
.

To bound the remaining terms on the right-hand side of (19), we further observe that the disjoint
relation A ∩B+δ = (A ∩ (B+δ \B)) ∪ (A ∩B) applied to B := X \Aiρ+ε yields

µ
(
A∗i \ (Aiρ+ε)

−δ) = µ
(
A∗i ∩ (X \Aiρ+ε)+δ

)
= µ

(
A∗i ∩ (X \Aiρ+ε)+δ ∩Aiρ+ε

)
+ µ(A∗i \Aiρ+ε)

= µ
(
Aiρ+ε ∩ (X \Aiρ+ε)+δ

)
+ µ(A∗i \Aiρ+ε)

= µ
(
Aiρ+ε \ (Aiρ+ε)

−δ)+ µ(A∗i \Aiρ+ε) .

Moreover, Aiρ+ε ⊂ A∗i and A∗1 ∩A∗2 = ∅ together with (4) and (5) imply

µ(A∗1 \A1
ρ+ε) + µ(A∗2 \A2

ρ+ε) = µ
(
(A∗1 ∪A∗2) \ (A1

ρ+ε ∪A2
ρ+ε)

)
= µ

(
{ρ∗ < h < ρ+ ε}

)
.

Combining all estimates with (19), we obtain the assertion.

Proof of Lemma 4.9: Let us fix an s > 0. For x ∈ {0 < h− ρ < s} we then find d(x, ∂Mρ)
θ ≤ cs

by (35), that is x ∈ (∂Mρ)
+δ for δ := (cs)1/θ. Using part viii) of Lemma 6.5, we conclude that

x ∈M+2δ
ρ \M−2δ

ρ . In the case 2δ ≤ δ0, we thus obtain

µ
(
{0 < h− ρ < s}

)
≤ µ

(
M+2δ
ρ \M−2δ

ρ

)
≤ 2αc δα = 2αc1+α/θsα/θ ,

and since µ is a finite measure, it is then easy to see that we can increase the constant on the
right-hand side of this estimate so that it holds for all s > 0.

Proof of Theorem 4.10: Since Assumption R includes the assumptions made in Theorem 4.4, it
suffices to prove (36). Furthermore, recall that the proofs of Theorems 4.4 and 3.8 showed that the
probability Pn of having a dataset D ∈ Xn satisfying the assumptions of Theorem 3.6 is not less
than 1− e−ς . For such D, Lemma 6.11 is applicable, and hence we obtain

µ(B1(D) M A∗1) + µ(B2(D) M A∗2) ≤ µ
(
M+δ
ρ∗D−ε

\Mρ∗D−ε
)

+ µ
(
{ρ∗ < h < ρ∗D + ε}

)
+ 2µ

(
A1
ρ∗D+ε \ (A1

ρ∗D+ε)
−δ)+ 2µ

(
A2
ρ∗D+ε \ (A2

ρ∗D+ε)
−δ)

≤ µ
(
M+δ
ρ∗D−ε

\Mρ∗D−ε
)

+ µ
(
{0 < h− ρ∗ < ρ∗D − ρ∗ + ε}

)
+ 4cboundδ

α ,
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where in the second estimate we used that the clusters have an α-smooth boundary by Assumption
R. Moreover, the α-smooth boundaries also yield

µ
(
M+δ
ρ∗D−ε

\Mρ∗D−ε
)
≤ µ

(
(A1

ρ∗D−ε
)+δ \Mρ∗D−ε

)
+ µ

(
(A2

ρ∗D−ε
)+δ \Mρ∗D−ε

)
≤ µ

(
(A1

ρ∗D−ε
)+δ \A1

ρ∗D−ε
)

+ µ
(
(A2

ρ∗D−ε
)+δ \A2

ρ∗D−ε
)

≤ 2cboundδ
α .

Finally, by (28) and the flatness exponent ϑ from Assumption R we find

µ
(
{0 < h− ρ∗ < ρ∗D − ρ∗ + ε}

)
≤
(
cflat(ρ

∗
D − ρ∗ + ε)

)ϑ ≤ ((τ/csep)κ + 7ε)ϑ .

Combining these three estimates, we then obtain (36).

Proof of Corollary 4.11: Clearly, our goal is to apply Theorem 4.10 for sufficiently large n. To
this end, it suffices to check that the εn, δn, and τn satisfy the assumptions of Theorem 4.4 for
ςn := lnn and all sufficiently large n. To this end, we observe that, for ςn := lnn, we have

ε′n :=

√
2cpart(1 + ‖h‖∞)(ςn + ln(2cpart)− d ln δn)

δd
nn

+
2cpart(ςn + ln(2cpart)− d ln δn)

3δd
nn

�
( lnn

n

) %
2%+ϑd (

ln lnn
)− ϑd

4%+2ϑd .

Using εn · ( lnn
n )−

%
2%+ϑd (ln lnn)

ϑd
4%+2ϑd → ∞, we then see that εn ≥ ε′n for all sufficiently large n.

Moreover, the remaining conditions on εn, δn, and τn from Theorem 4.4 are clearly satisfied for all
sufficiently large n, and hence we can apply Theorem 4.10 for such n. This yields

µ
(
B1(D) M A∗1

)
+ µ

(
B2(D) M A∗2

)
≤ 6cboundδ

α
n +

(
cflat(τn/csep)κ + 7cflatεn

)ϑ
with probability Pn not smaller than 1−1/n for all sufficiently large n. Some elementary calculations
then show that

Pn
({

D ∈ Xn : µ
(
B1(D) M A∗1

)
+ µ

(
B2(D) M A∗2

)
≤ K

( lnn · (ln lnn)2

n

) ϑ%
2%+ϑd

})
≥ 1− 1

n

holds for a suitable constant K and all sufficiently large n. Moreover, since we always have

µ(B1(D) M A∗1) + µ(B2(D) M A∗2) ≤ 2µ(X) <∞

it is an easy exercise to suitably increase K such that the desired inequality actually holds for all
n ≥ 1.

6.6 Proofs Related to Adaptivity

Proof of Theorem 5.1: We first observe that C2 ln(lnn) ≥ 2(1 + ‖h‖∞) guarantees that all εδ,n
satisfy (21) for ς ′ := ς + ln |∆|. Consequently, Theorem 4.4, namely (27) and (28), yields

Pn
({
D ∈ Xn : εδ,n < ρ∗D,δ − ρ∗ ≤ (τγδ,n/csep)κ + 6εδ,n

})
≥ 1− e−ς−ln |∆| .

for all δ ∈ ∆. Applying the union bound, we thus find

Pn
({
D ∈ Xn : εδ,n < ρ∗D,δ − ρ∗ ≤ (τγδ,n/csep)κ + 6εδ,n for all δ ∈ ∆

})
≥ 1− e−ς .

Let us now consider a data set D ∈ Xn such that εδ,n < ρ∗D,δ − ρ∗ ≤ (τγδ,n/csep)κ + 6εδ,n for all
δ ∈ ∆. Then, the definitions of ρ∗D,∆ and εD,∆, see (39), imply

ρ∗D,∆ − ρ∗ = min
δ∈∆

ρ∗D,δ − ρ∗ ∈
(

min
δ∈∆

εδ,n, min
δ∈∆

(
(τγδ,n/csep)κ + 6εδ,n

)]
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and εD,∆ = εδ∗D,∆,n < ρ∗D,δ∗D,∆
− ρ∗ = ρ∗D,∆ − ρ∗, that is, we have shown the first assertion. To show

the remaining assertions, we first observe that a literal repetition of the argument above, in which
we only replace the use of (27) by that of (29), yields

Pn
({
D ∈ Xn : c1τ

κ
δ,n + εδ,n < ρ∗D,δ − ρ∗ ≤ c2τκδ,n + 6εδ,n for all δ ∈ ∆

})
≥ 1− e−ς .

Using (39) we then immediately obtain the second assertion, while considering δ = δ∗D,∆ gives the
third assertion.

Proof of Corollary 5.2: Let us fix an n ≥ 16. For later use we note that this choice implies
In ⊂ (0, 1]. For ς := lnn, we further see that the definition of εδ,n is consistent with (37). Our first
goal is to show that we can apply Theorem 5.1 for sufficiently large n. To this end, we first observe
that max ∆n = (ln lnn)−d → 0 for n → ∞, and hence we obtain ∆n ⊂ (0, δthick] for all sufficiently
large n. Analogously, max ∆n ln ln lnn → 0 implies maxδ∈∆n(τδ,n/csep)κ ≤ (ρ∗∗ − ρ∗)/18 for all
sufficiently large n, and the definition of τδ,n ensures minδ∈∆n τδ,n ≥ 2ψ(δ) for all sufficiently large
n. Let us now show that eventually we also have maxδ∈∆n

εδ,n ≤ (ρ∗∗ − ρ∗)/18. To this end, note
that the derivative of the function gn : (0,∞)→ R defined by

gn(δ) :=
ln(2cpart|∆n|n)− d ln δ

δdn

is given by

g′n(δ) = −d (1 + ln(2cpart|∆n|n)− d ln δ)

δ1+dn
,

and using cpart ≥ 1, we thus find that gn is monotonically decreasing on (0, 1] for all n ≥ 1. In
addition, using |∆n| ≤ n we obtain

gn(min In) = gn

(( lnn · (ln lnn)2

n

) 1
d

)
=

ln(2cpart|∆n|n) + lnn− ln lnn− 2 ln ln lnn

lnn · (ln lnn)2

≤ 4 lnn− ln lnn− 2 ln ln lnn

lnn · (ln lnn)2

≤ 4

(ln lnn)2

for all n ≥ max{16, 2cpart}, and hence gn(min In) ln lnn→ 0 for n→∞. Since the definition of εδ,n
gives εδ,n = C

√
cpartgn(δ) ln lnn+ 2

3cpartgn(δ), we can thus conclude that

max
δ∈∆n

εδ,n ≤ max
δ∈∆n

C
√
cpartgn(δ) ln lnn+ max

δ∈∆n

cpartgn(δ)

≤ C
√
cpartgn(min In) ln lnn+ cpartgn(min In)

→ 0

for n → ∞. This ensures the desired maxδ∈∆n
εδ,n ≤ (ρ∗∗ − ρ∗)/18 for all sufficiently large n.

Combining this with our previous estimate, we find

max
δ∈∆n

(
(τδ,n/csep)κ + εδ,n

)
≤ (ρ∗∗ − ρ∗)/9

for all sufficiently large n, and therefore we can indeed apply Theorem 5.1 for such n.
Before we proceed, let us now fix an n ≥ 16 and assume that without loss of generality that ∆n

is of the form ∆ = {δ1, . . . , δm} with δi−1 < δi for all i = 2, . . . ,m. We write δ0 := min In and
δm+1 := max In. Our intermediate goal is to show that

δi − δi−1 ≤ 2n−1/d , i = 1, . . . ,m+ 1. (63)

To this end, we fix an i ∈ {1, . . . ,m} and write δ̄ := (δi + δi−1)/2 ∈ In. Since ∆n is an n−1/d-net
of In, we then have δi − δ̄ ≤ n−1/d or δ̄ − δi−1 ≤ n−1/d, and from both (63) follows. Moreover, to
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show (63) in the case i = m+ 1, we first observe that there exists an δi ∈ ∆n with δi − δm ≤ n−1/d

since ∆n is an n−1/d-net of In. Using our ordering of ∆n, we can assume without loss of generality
that i = m, which immediately implies (63).

Let us now prove the first assertion in the case κ <∞. To this end, we write

δ∗n :=
( lnn · ln lnn

n

) 1
2γκ+d

,

where we note that for sufficiently large n we have δ∗n ∈ In. In the following we thus restrict our
considerations to such n. Then there exists an index i ∈ {1, . . . ,m + 1} such that δi−1 ≤ δ∗n ≤ δi,
and by (63) we conclude that δ∗n ≤ δi ≤ δ∗n + 2n−1/d. Clearly, this yields

min
δ∈∆n

(
c2τ

κ
δ,n + 6εδ,n

)
= min
δ∈∆n

(
c2δ

γκ(ln ln lnn)κ + 6εδ,n
)

≤ c2δγκi (ln ln lnn)κ + 6εδi,n

≤ c2(δ∗n + 2n−1/d)γκ(ln ln lnn)κ + 6εδi,n

≤ 6c2

( lnn · (ln lnn)2

n

) 1
2γκ+d

+ 6εδi,n (64)

for all sufficiently large n, where c2 := c−κsep is the constant from Theorem 5.1. Moreover, using
|∆n| ≤ n and the monotonicity of gn, we further find

gn(δi) ≤ gn(δ∗n) =
ln(2cpart|∆n|n)− d ln δ∗n

(δ∗n)dn
≤ ln(2cpart) + 2 lnn− d ln δ∗n

(δ∗n)dn
(65)

≤ 4 lnn

(δ∗n)dn

≤ 4

(ln lnn)
d

2γκ+d

·
( lnn

n

) 2γκ
2γκ+d

for all sufficiently large n. By the relation between εδ,n and gn(δ) we then find

εδi,n ≤ 2C
√
cpart

( lnn · ln lnn

n

) γκ
2γκ+d

+ 3cpart

( lnn

n

) 2γκ
2γκ+d

,

and combining this estimate with (64) and Theorem 5.1, we obtain the first assertion in the case
κ <∞.

Let us now consider the case κ =∞ for sufficiently large n. To this end, we fix a sample size n
such that

δ∗n :=
( 1

ln lnn

) 1
d

satisfies (δ∗n + 2n−1/d)γ ln ln lnn < csep, and thus ((δ∗n + 2n−1/d)γ ln ln lnn/csep)κ = 0. Since δ∗n ∈ In
there also exists an index i ∈ {1, . . . ,m+1} such that δi−1 ≤ δ∗ ≤ δi, and by (63) we again conclude
δ∗ ≤ δi ≤ δ∗ + 2n−1/d. Clearly, the latter implies

min
δ∈∆n

(
(τδ,n/csep)κ + 6εδ,n

)
≤ (δγi ln ln lnn/csep)κ + 6εδi,n ≤

(
(δ∗n + 2n−1/d)γ ln ln lnn/csep

)κ
+ 6εδi,n

= 6εδi,n

by our assumptions on n. Analogously to (65) we further find, for sufficiently large n, that

gn(δi) ≤ gn(δ∗n) ≤ 3 lnn− d ln δ∗n
(δ∗n)dn

=
3 lnn+ ln ln lnn

n(ln lnn)−1
≤ 4

lnn · ln lnn

n
,

and by the relation between εδ,n and g(δ) we then find the assertion with the help of Theorem 5.1.
Let us finally prove (41). To this end we first recall that we have already seen that, for sufficiently

large n, we can apply Theorem 5.1. Consequently, it suffices to find a lower bound for the right-
hand-side of

min
δ∈∆n

(
c1τ

κ
δ,n + εδ,n

)
≥ min{1, c1} · min

δ∈∆n

(
τκδ,n + εδ,n

)
, (66)
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where c1 is the constant appearing in Theorem 5.1. Now, for n ≥ 16, we have In ⊂ (0, 1], and thus
we find δ ∈ (0, 1] for all δ ∈ ∆n. For sufficiently large n this yields

min
δ∈∆n

(
τκδ,n + εδ,n

)
= min

δ∈∆n

(
δγκ(ln ln lnn)κ + C

√
cpartgn(δ) ln lnn+

2

3
cpartgn(δ)

)
≥ min

δ∈∆n

(
δγκ + C

√
cpartgn(δ) ln lnn

)
≥ min

δ∈∆n

(
δγκ + C

√
cpart lnn · ln lnn

δdn

)
≥ min

δ∈(0,1]

(
δγκ + C

√
cpart lnn · ln lnn

δdn

)
.

An elementary application of calculus then yields the assertion.

Proof of Corollary 5.3: We have seen in the proof of Corollary 5.2 that for sufficiently large n
Inequality (40) follows from the fact that the procedure satisfies the assumptions of Theorem 5.1 for
such n and ς := lnn. Consequently, for sufficiently large n, the probability Pn of having a data set
D ∈ Xn satisfying both (40) and the third inequality of Theorem 5.1 is not less than 1− 1/n. Let
us fix such a data set D. Then we have

c1τ
κ
D,∆ + εD,∆ ≤ ρ∗D,∆n

− ρ∗ ≤ K
( lnn · (ln lnn)2

n

) γκ
2γκ+d

. (67)

Moreover, an elementary estimate yields

c1τ
κ
D,∆ + εD,∆ ≥ min{1/7, c1cκsep} ·

(
(τD,∆/csep)κ + 7εD,∆

)
,

and setting c := min{1/7, c1cκsep}, we hence obtain

(τD,∆/csep)κ + 7εD,∆ ≤ c−1K
( lnn · (ln lnn)2

n

) γκ
2γκ+d

. (68)

In addition, for sufficiently large n, Inequality (67) implies

δ∗D,∆ ≤ τ
1/γ
D,∆ ≤ (4K)

1
γκ
(
6csep

) 1
γ

( lnn · (ln lnn)2

n

) 1
2γκ+d

. (69)

Now we have already seen in the proof of Theorem 5.1 and Corollary 5.2 that, for sufficiently large
n, the assumptions on δ, εδ,n, ε∗δ,n, τn, ςn := lnn, and n of Theorem 4.4 are satisfied for all δ ∈ ∆n

simultaneously. Consequently, we can combine (68) and (69) with Theorem 4.10 to obtain the
assertion.
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7 Appendix: Continuous Densities in two Dimensions

In this appendix we present a couple of two-dimensional examples that show that the assumptions
imposed in this paper are not only met by many discontinuous densities, but also by many continuous
densities.

We begin with an example of a set A ⊂ R2, for which we can compute A⊕δ and A	δ explicitly.
This example will be the base of all further examples.

Example 7.1. Let X := [−1, 1]×[−2, 2] be equipped with the metric defined by the supremums norm.
Furthermore, for x±− ∈ (−0.6,−0.4) and x±+ ∈ (0.4, 0.6) we fix two continuous functions f−, f+ :
[−1, 1]→ [−1, 1] such that f+ is increasing on [−1, x+

−] ∪ [0, x+
+] and decreasing on [x+

−, 0] ∪ [x+
+, 1],

while f− is decreasing on [−1, x−−] ∪ [0, x−+] and increasing on [x−−, 0] ∪ [x−+, 1]. In addition, assume
that {f− < 0} = {f+ > 0} and {f− = 0} = {f+ = 0} as well as f−(±0.5) < 0 and f+(±0.5) > 0.
Now consider the (non-empty) set A enveloped by f±, that is

A :=
{

(x, y) ∈ X : x ∈ [−1, 1] and f−(x) ≤ y ≤ f+(x)
}
.

To describe A	δ for δ ∈ (0, 0.1], we define functions f±−δ : [−1, 1]→ [−1, 1] by

f±−δ(x) :=


f±(−1) if x ∈ [−1,−1 + δ]

f±(0) if x ∈ [−δ,+δ]
f±(1) if x ∈ [1− δ, 1]

and f−−δ(x) := f−(x− δ)∨ f−(x+ δ), respectively f+
−δ(x) := f+(x− δ)∧ f+(x+ δ) for the remaining

x ∈ [−1, 1]. Then we have

A	δ =
{

(x, y) ∈ X : x ∈ [−1, 1] and f−−δ(x) + δ ≤ y ≤ f+
−δ(x)− δ

}
.

Moreover, to describe A⊕δ, we define the

x0,−1 := min
{
x ∈ [−1,−0.5] : f+(x)− f−(x) ≥ 0

}
x0,−0 := max

{
x ∈ [−0.5, 0] : f+(x)− f−(x) ≥ 0

}
x0,+0 := min

{
x ∈ [0, 0.5] : f+(x)− f−(x) ≥ 0

}
x0,+1 := max

{
x ∈ [0.5, 1] : f+(x)− f−(x) ≥ 0

}
,

where we note that the minima are actually attained by the continuity of f± and the fact that all
sets are non-empty. Furthermore, we define two functions f±+δ : [−1, 1]→ [−1, 1] by

f±+δ(x) :=


f±(x+ δ) if x ∈ [−1 ∨ (x0,−1 − δ), x±− − δ]
f±(x±−) if x ∈ [x±− − δ, x±− + δ]

f±(x±+) if x ∈ [x±+ − δ, x±+ + δ]

f±(x− δ) if x ∈ [x±+ + δ, (x0,+1 + δ) ∧ 1]

as well as

f−+δ(x) := f−(x− δ) ∧ f−(x+ δ)

f+
+δ(x) := f+(x− δ) ∨ f+(x+ δ)

for x ∈ [x±− + δ, x±+ − δ] \ (x0,−0 + δ, x0,+0 − δ) and f±+δ(x) := −2δ for the remaining x ∈ [−1, 1].
Then we have

A⊕δ =
{

(x, y) ∈ X : x ∈ [−1, 1] and f−+δ(x)− δ ≤ y ≤ f+
+δ(x) + δ

}
.

Finally, we have |C(A)| ≤ 2 with |C(A)| = 2 if and only if x0,−0 < x0,+0, and in the latter case we
further have τ∗A = x0,+0 − x0,−0.
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Proof of Example 7.1: Let us fix a δ ∈ (0, 1/10]. To simplify notations, we further write g− :=
f−−δ + δ and g+ := f+

−δ − δ.
Proof of “A	δ ⊂ . . . ”. By the relation A	δ = X \ (X \A)⊕δ it suffices to show that{

(x, y) ∈ X : x ∈ [−1, 1] and
(
y < g−(x) or y > g+(x)

)}
⊂ (X \A)⊕δ .

By symmetry, it further suffices to consider the case x ≥ 0 and y > g+(x). Moreover, to show the
inclusion above, it finally suffices to find x′ ∈ [−1, 1] and y′ ∈ [−2, 2] with |x− x′| ≤ δ, |y − y′| ≤ δ
and y′ > f+(x′). However, this task is straightforward. Indeed, we can always set y′ := (y + δ) ∧ 2,
and if x ∈ [0, δ] then x′ := 0 works, since y′ = (y + δ) ∧ 2 > g+(x) + δ = f+(0) = f+(x′), while for
x ∈ [1 − δ, 1], the choice x′ := 1 does by an analogous argument. Finally, if x ∈ (δ, 1 − δ), we set
x′ := x− δ if g+(x) = f+(x− δ)− δ and x′ := x+ δ if g+(x) = f+(x+ δ)− δ.

Proof of “A	δ ⊃ . . . ”. Again, it suffices to consider x ≥ 0 due to symmetry. Let us fix an y with
g−(x) ≤ y ≤ g+(x). Then, our goal is to show that (x, y) 6∈ (X \A)⊕δ, that is,

‖(x, y)− (x′, y′)‖∞ > δ (70)

for all (x′, y′) ∈ X \A. In the following, we thus fix a pair (x′, y′) ∈ X \A for which (70) is not true
and show that this leads to a contradiction. We begin by considering the case x ∈ [0, δ]. Since (70)
is not true, we find |x− x′| ≤ δ, and hence x±− ≤ x′ ≤ x±+. Then, if y′ > f+(x′), this leads to

y ≤ g+(x) = f+(0)− δ ≤ f+(x′)− δ < y′ − δ ,

which contradicts the assumed |y−y′| ≤ δ. The case y′ < f−(x′) analogously leads to a contradiction.
Let us now consider the case x ∈ [1 − δ, 1]. Then |x − x′| ≤ δ implies x′ ≥ x±+. Consequently,
y′ > f+(x′) leads to another contradiction by

y ≤ g+(x) = f+(1)− δ ≤ f+(x′)− δ < y′ − δ ,

and the case y′ < f−(x′) can be treated analogously. It thus remains to consider the case x ∈ [δ, 1−δ].
Then |x− x′| ≤ δ implies x− δ ≤ x′ ≤ x + δ. For x′ ≤ x+

+ we thus find f+(x− δ) ≤ f+(x′), while
for x′ ≥ x+

+ we find f+(x+ δ) ≤ f+(x′). Consequently, for y′ > f+(x′) we obtain a contradiction by

y ≤ g+(x) = (f+(x− δ) ∧ f+(x+ δ))− δ ≤ f+(x′)− δ < y′ − δ ,

and, again, the case y′ < f−(x′) can be shown similarly.
Proof of “A⊕δ ⊂ . . . ”. Let us fix a pair (x, y) ∈ A⊕δ. Without loss of generality we restrict our

considerations to the case y ≥ 0 and x ∈ [−1, 0]. To show that y ≤ f+
+δ(x)+δ we assume the converse,

that is y > f+
+δ(x) + δ. Since (x, y) ∈ A⊕δ we then find (x′, y′) ∈ A with ‖(x, y) − (x′, y′)‖∞ ≤ δ.

From the latter we infer that both x− δ ≤ x′ ≤ x+ δ and

y′ ≥ y − δ > f+
+δ(x) . (71)

Now suppose that x ∈ [−1,−1 ∨ (x0,−1 − δ)). Then we obtain a contradiction since (x′, y′) ∈ A
implies x ≥ x′ − δ ≥ x0,−1 − δ. Moreover, for x ∈ [−1 ∨ (x0,−1 − δ), x+

− − δ], we obtain

f+
+δ(x) = f+(x+ δ) ≥ f+(x′) ≥ y′ ,

which contradicts (71). Analogously, in the case x ∈ [x+
−− δ, x+

−+ δ] we obtain a contradiction from

f+
+δ(x) = f+(x+

−) ≥ f+(x′) ≥ y′ .

Moreover, for x ∈ [x+
− + δ, 0 ∧ (x0,−0 + δ)] we have

f+
+δ(x) = f+(x− δ) ∨ f+(x+ δ) ≥ f+(x− δ) ≥ f+(x′) ≥ y′

which again contradicts (71). Finally, if x ∈ (0 ∧ x0,−0 + δ, 0] we obtain a contradiction from
x > x0,−0 + δ ≥ x′ + δ.
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Proof of “A⊕δ ⊃ . . . ”. Let us fix a pair (x, y) ∈ X with f−+δ(x) − δ ≤ y ≤ f+
+δ(x) + δ. Without

loss of generality we again consider the case y ≥ 0 and x ∈ [−1, 0], only. To show (x, y) ∈ A⊕δ we
need to find a pair (x′, y′) ∈ A with ‖(x, y)− (x′, y′)‖∞ ≤ δ. Let us assume that we have found an
x′ with |x− x′| ≤ δ and f(x′) ≥ y − δ. For y′ defined by

y′ := f(x′) ∧ (y + δ)

we then immediately obtain y′ ≤ y + δ. Moreover, if we actually have y′ = y + δ, then we clearly
obtain |y − y′| ≤ δ, while in the case y′ < y + δ we find y′ = f(x′) ≥ y − δ, that is again
|y − y′| ≤ δ. Consequently, it suffices to find an x′ with the properties above. To this end, we
first observe that we can exclude the case x ∈ [−1,−1 ∨ (x0,−1 − δ)), since for such x we have
0 ≤ y ≤ f+

+δ(x) + δ = −δ. Analogously, we can exclude the case x ∈ (0 ∧ (x0,−0 + δ), 0]. Let us now

consider the case x ∈ [−1 ∨ (x0,−1 − δ), x+
− − δ]. For x′ := x+ δ we then have

f(x′) = f(x+ δ) = f+
+δ(x) ≥ y − δ ,

and hence x′ satisfies the desired properties. Moreover, for x ∈ [x+
− − δ, x+

− + δ] we define x′ := x+
−,

which clearly gives |x− x′| ≤ δ. In addition, we again have

f(x′) = f(x+
−) = f+

+δ(x) ≥ y − δ .

Finally, let us consider the case x ∈ [x+
−+δ, 0∧(x0,−0+δ)]. Let us fist assume that f(x−δ) ≥ f(x+δ).

For x′ := x− δ we then obtain

f(x′) = f(x− δ) = f+
+δ(x) ≥ y − δ.

Analogously, if f(x− δ) ≤ f(x+ δ), then x′ := x+ δ has the desired properties.
Finally, |C(A)| ≤ 2 is obvious, and so is the equivalence between |C(A)| = 2 and x0,−0 < x0,+0.

In the latter case, A1 := {(x, y) ∈ A : x ≤ x0,−0} and A2 := {(x, y) ∈ A : x ≥ x0,+0} are the two
components of A, and from this it is easy to conclude that τ∗A = x0,+0 − x0,−0.

Our next example shows how to estimate the function ψ∗A for the sets considered in Example 7.1

Example 7.2. Let us consider the situation of Example 7.1. To simplify the presentation, let us
additionally assume that the monotonicity of f+ and f− is actually strict and that A has sufficiently
thick parts on both sides of the y-axis in the sense of

[−0.8,−0.2] ∪ [0.2, 0.8] ⊂ {f− ≤ −0.2} ∩ {f+ ≥ 0.2} . (72)

Note that, for all δ ∈ (0, 0.1], this condition in particular ensures that A	δ contains open neighbor-
hoods around the points (−0.5, 0) and (0, 0.5). Moreover, for δ ∈ [0, 0.1] we define

xδ,−1 := min
{
x ∈ [−1,−0.8] : f+(x)− f−(x) ≥ 2δ

}
xδ,−0 := max

{
x ∈ [−0.2, 0] : f+(x)− f−(x) ≥ 2δ

}
xδ,+0 := min

{
x ∈ [0, 0.2] : f+(x)− f−(x) ≥ 2δ

}
xδ,+1 := max

{
x ∈ [0.8, 1] : f+(x)− f−(x) ≥ 2δ

}
,

where we note that the minima and maxima are actually attained by (72) and the assumed continuity
of f±, and for the same reason we further have xδ,−1 < −0.8, xδ,−0 > −0.2, xδ,+0 < 0.2, and
xδ,+1 > 0.8. Then, the function f+

−δ has exactly two local maxima x+
δ,− and x+

δ,+, satisfying x+
δ,− ∈

[−1, 0] and x+
δ,+ ∈ [0, 1], and the function f−−δ has exactly two local minima x−δ,− and x−δ,+, satisfying

x−δ,− ∈ [−1, 0] and x−δ,+ ∈ [0, 1]. Moreover, for all δ ∈ (0, 0.1] we have

ψ∗A(δ) ≤ δ+
(

max
{
|xδ,i− x0,i| : i ∈ {−1,−0,+0,+1}

}
∨max

{
|f i(xij)− f i−δ(xiδ,j)| : i, j ∈ {−,+}

})
.

Finally, the right hand-side of this inequality can be further estimated under some regularity assump-
tions on f±. Indeed, if there exists constants c > 0 and γ ∈ (0, 1] such that

|f±(x±±)− f±(x)| ≤ c|x±± − x|γ , x ∈ [x±± − 0.1, x±± + 0.1] , (73)

53



then, for all δ ∈ (0, 0.1], we can bound the second maximum by

max
{
|f i(xij)− f i−δ(xiδ,j)| : i, j ∈ {−,+}

}
≤ cδγ .

In addition, if, for some i ∈ {−1,−0,+0,+1}, we write 2δ0 := f+(x0,i)−f−(x0,i), then |xδ,i−x0,i| =
0 for all δ ∈ (0, δ0], i.e. the corresponding term in the first maximum disappears for these δ. If
δ0 < 0.1, and we additionally assume, for example, that

|f±(x)| ≥ c−1/γ |x0,−1 − x|1/γ (74)

for all x ∈ [x0,−1,−0.8], then we have |xδ,−1 − x0,−1| ≤ cδγ for all δ ∈ (δ0, 0.1]. Combining these
assumptions we easily obtain a variety of sets A satisfying ψ∗A(δ) ≤ (c+ 1)δγ for all δ ∈ (0, 0.1], and
these examples of sets can be even further extended by considering bi-Lipschitz transformations of
X.

Before we can prove the assertions made in the example above, we need to establish the following
technical lemma.

Lemma 7.3. Let x∗ ∈ [2/5, 3/5] and f : [0, 1] :→ R be a continuous function that is strictly
increasing on [0, x∗] and strictly decreasing on [x∗, 1]. For δ ∈ (0, 1/8] we define f−δ : [0, 1]→ R by

f−δ(x) :=


f(0) if x ∈ [0, δ]

f(x− δ) ∧ f(x+ δ) if x ∈ [δ, 1− δ]
f(1) if x ∈ [1− δ, 1] .

Then there exists exactly one x∗δ ∈ [0, 1] such that f−δ(x
∗
δ) ≥ f−δ(x) for all x ∈ [0, 1]. Moreover, we

have x∗δ ∈ (x∗− δ, x∗+ δ) and x∗δ is the only element x ∈ [δ, 1− δ] that satisfies f(x− δ) = f(x+ δ).
Finally, we have

f−δ(x) =

{
f(x− δ) if x ∈ [δ, x∗δ ]

f(x+ δ) if x ∈ [x∗δ , 1− δ] .

Proof of Lemma 7.3: Let us first show that there exists an x0 ∈ (x∗ − δ, x∗ + δ) such that
f(x0−δ) = f(x0+δ). To this end, we observe g : [x∗−δ, x∗+δ]→ R defined by g := f( · −δ)−f( ·+δ)
is continuous, and since g(x∗− δ) = f(x∗− 2δ)− f(x∗) < 0 and g(x∗+ δ) = f(x∗)− f(x∗+ 2δ) > 0,
we find an x0 ∈ (x∗ − δ, x∗ + δ) such that g(x0) = 0 by the intermediate value theorem.

Let us now show that f(x − δ) < f(x + δ) for all x ∈ [δ, x0] and f(x − δ) > f(x + δ) for all
x ∈ [x0, 1 − δ]. Clearly, for x ∈ [δ, x∗ − δ], the strict monotonicity of f on [0, x∗] yields f(x − δ) <
f(x + δ). Moreover, for x ∈ (x∗ − δ, x0), we have f(x − δ) < f(x0 − δ) = f(x0 + δ) < f(x + δ)
since f( · − δ) : [x∗ − δ, x∗ + δ] → R is strictly increasing, while f( · + δ) : [x∗ − δ, x∗ + δ] → R is
strictly decreasing. This shows the assertion for x ∈ [δ, x0], and the assertion for x ∈ [x0, 1− δ] can
be shown analogously.

Combining the two results above, we find that there exists exactly one x0 ∈ [δ, 1 − δ] satisfying
f(x0 − δ) = f(x0 + δ), and for this x0 we further know x0 ∈ (x∗ − δ, x∗ + δ). In addition, these
results show

f−δ(x) =

{
f(x− δ) if x ∈ [δ, x0]

f(x+ δ) if x ∈ [x0, 1− δ] .

Let us now return to global maximizers of f−δ. To this end, we first observe that the existence
of a global maximum of f−δ follows from the continuity of f−δ and the compactness of [0, 1]. Let
us now fix an xδ ∈ [0, 1] at which this global maximum is attained by f−δ. We first observe that
xδ ∈ (δ, 1− δ). Indeed, if, e.g., we had xδ ≥ 1− δ, we would obtain f(1) = f−δ(xδ) ≥ f−δ(1− 2δ) =
f(1 − 3δ) ∧ f(1 − δ) = f(1 − δ) > f(1) using 1 − 3δ > x∗, and xδ ≤ δ would similarly lead to a
contradiction. We next show that we actually have xδ ∈ [x∗ − δ, x∗ + δ]. To this end, we observe
that it suffices to show

xδ ≥ x∗ − δ ⇐⇒ xδ ≤ x∗ + δ . (75)
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To show the latter, assume that xδ ≥ x∗ − δ. Since f−δ attains its maximum at xδ, we then obtain

f(xδ + δ) ≥ f(xδ − δ) ∧ f(xδ + δ) = f−δ(xδ) ≥ f−δ(x∗ + δ) = f(x∗) ∧ f(x∗ + 2δ) = f(x∗ + 2δ) .

Now xδ + δ ≤ x∗ + 2δ follows from the assumed xδ + δ ≥ x∗ and the strict monotonicity of f on
[x∗, 1]. Analogously, xδ ≤ x∗ + δ ⇒ xδ ≥ x∗ − δ can be shown, and hence (75) is indeed true.

Finally, we can prove the remaining assertion. To this end, we pick again an xδ at which f−δ
attains its maximum. Then we have already seen that xδ ∈ [x∗−δ, x∗+δ]. Now observe that assuming
xδ < x0 leads to f(xδ − δ) < f(x0− δ) = f(x0 + δ) < f(xδ + δ) using x0, xδ ∈ [x∗− δ, x∗+ δ], which
in turn yields the contradiction

f−δ(xδ) = f(xδ − δ) ∧ f(xδ + δ) = f(xδ − δ) < f(x0 − δ) = f(x0 − δ) ∧ f(x0 + δ) = f−δ(x0) .

Analogously, we find a contradiction assuming xδ > x0, and hence we have xδ = x0. Consequently,
xδ is unique and solves f(x− δ) = f(x+ δ).

Proof of Example 7.2: Let us first note that the existence and uniqueness of the local extrema
is guaranteed by Lemma 7.3. In addition, this lemma actually shows x+

δ,− ∈ (x+
− − δ, x+

− + δ),

x−δ,− ∈ (x−− − δ, x−− + δ), x+
δ,+ ∈ (x+

+ − δ, x+
+ + δ), and x−δ,+ ∈ (x−+ − δ, x−+ + δ). Moreover, since

A−δ ⊂ A	δ, we have
ψ∗A(δ) = sup

z∈A
d(z,A−δ) ≤ sup

z∈A
d(z,A	δ) .

In the following, we thus estimate d(z,A	δ) for z := (x, y) ∈ A.
Let us begin with the case x ∈ [−1, xδ,−1]. For later purposes, we note that the definition of A

then yields x ≥ x0,−1. By the monotonicity of f± on [−1,−0.8 + δ] we further know f±δ (x + δ) =
f±(x). We write x′ := xδ,−1 + δ and

y′ :=


f−(xδ,−1) + δ if y ≤ f−(xδ,−1) + δ

y if y ∈ [f−(xδ,−1) + δ, f+(xδ,−1)− δ]
f+(xδ,−1)− δ if y ≥ f+(xδ,−1)− δ .

If y ≤ f−(xδ,−1) + δ, we then obtain y ≤ y′ and y′ = f−(xδ,−1) + δ ≤ f−(x) + δ ≤ y + δ, that is
|y − y′| ≤ δ, and it is easy to check that the same is true in the two other cases. Consequently, we
have ‖(x, y)− (x′, y′)‖∞ = xδ,−1 + δ − x, and our construction further ensures

y′ ∈ [f−(xδ,−1) + δ, f+(xδ,−1)− δ] = [f−−δ(x
′) + δ, f+

−δ(x
′)− δ] .

By Example 7.1 we conclude (x′, y′) ∈ A	δ, and from this we easily find

d(z,A	δ) ≤ δ + xδ,−1 − x ≤ δ + xδ,−1 − x0,−1 . (76)

Let us now show that the latter inequality is also true in the case x ∈ [xδ,−1,−0.8 + δ]. To this
end, we first observe that the monotonicity of f± on [−1,−0.8 + 2δ] then yields

f+(x)− f−(x) ≥ f+(xδ,−1)− f−(xδ,−1) ≥ 2δ ,

and consequently, we can define

y′ :=


f−(x) + δ if y ≤ f−(x) + δ

y if y ∈ [f−(x) + δ, f+(x)− δ]
f+(x)− δ if y ≥ f+(x)− δ .

If y ≤ f−(x) + δ we then obtain y ≤ y′ and y′ = f−(x) + δ ≤ y + δ, that is |y − y′| ≤ δ, and again
it is easy to check that the same is true in the two other cases. Writing x′ := x + δ, we thus have
‖(x, y)− (x′, y′)‖∞ = δ. Moreover, the construction together with f±δ (x+ δ) = f±(x) ensures

y′ ∈ [f−(x) + δ, f+(x)− δ] = [f−−δ(x
′) + δ, f+

−δ(x
′)− δ] ,
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and hence we find (x′, y′) ∈ A	δ by Example 7.1. Consequently, we have shown

d(z,A	δ) ≤ δ ≤ δ + xδ,−1 − x0,−1 ,

that is, (76) is true for all x ∈ [−1,−0.8 + δ].
Let us now consider the case x ∈ [−0.8+δ,−0.2−δ]. Here, we will focus on the sub-case y ≥ 0, the

subcase y ≤ 0 can be shown analogously. For later purposes, note that we have f−(x±δ) ≤ −2δ. Now
suppose that we actually have x ∈ [−0.8+δ, x+

δ,−−δ]. Then we set x′ := x+δ and y′ := y∧(f+(x)−δ).
This gives y′ ≤ y and y − δ ≤ f+(x) − δ ≤ y′, and hence we again have ‖(x, y) − (x′, y′)‖∞ = δ.
Moreover, our constructions together with Lemma 7.3 ensures

y′ ∈ [−δ, f+(x)− δ] = [−δ, f+
−δ(x

′)− δ] ⊂ [f−−δ(x
′) + δ, f+

−δ(x
′)− δ] ,

that is (x′, y′) ∈ A	δ, and hence (76) is true in this case, too. The next case, we consider, is
x ∈ [x+

δ,− − δ, x
+
δ,− + δ]. In this case we set x′ := x+

δ,− and y′ := y ∧ (f+
−δ(x

+
δ,−)− δ). This implies

y′ ∈ [−δ, f+
−δ(x

+
δ,−)− δ] ⊂ [f−−δ(x

′) + δ, f+
−δ(x

′)− δ] ,

and hence (x′, y′) ∈ A	δ. Moreover, we clearly have |x− x′| ≤ δ and, if y ≤ f+
−δ(x

+
δ,−)− δ, we also

have |y − y′| = 0. Conversely, if y ≥ f+
−δ(x

+
δ,−)− δ, we find

y ≤ f+(x) ≤ f+(x+
−) = f+(x+

−)− (f+
−δ(x

+
δ,−)− δ) + y′ ,

that is |y − y′| ≤ δ + f+(x+
−) − f+

−δ(x
+
δ,−). Combining the latter two cases, we therefore obtain

‖(x, y)− (x′, y′)‖∞ ≤ δ + f+(x+
−)− f+

−δ(x
+
δ,−), that is

d(z,A	δ) ≤ δ + f+(x+
−)− f+

−δ(x
+
δ,−) .

Since all remaining cases can be treated analogously, the proof of the general estimate of ψ∗A(δ) is
finished.

Let us now consider the additional assumptions of f±. For example, suppose that we have

|f+(x+
−)− f+(x)| ≤ c|x+

− − x|γ

for all x ∈ [x+
− − 0.1, x+

− + 0.1]. By Lemma 7.3 we know x+
δ,− ∈ (x+

− − δ, x+
− + δ). Without loss of

generality, we may assume that x+
δ,− ∈ [x+

−, x
+
−+ δ). Using Lemma 7.3 and x+

δ,−− δ ∈ [x+
−− δ, x+

−) ⊂
[x+
− − 0.1, x+

− + 0.1], we then obtain∣∣f+(x+
−)− f+

−δ(x
+
δ,−)

∣∣ =
∣∣f+(x+

−)− f+(x+
δ,− − δ)

∣∣ ≤ c∣∣x+
− − x+

δ,− + δ
∣∣γ ≤ cδγ .

Now let us assume that for e.g. i := −1 we have δ0 > 0. For δ ∈ (0, δ0] we then find f+(x0,−1) −
f−(x0,−1) ≥ 2δ, and thus x0,−1 = xδ,−1 = −1. Conversely, let δ ∈ (δ0, 0.1]. Then we have
f+(x0,−1)− f−(x0,−1) < 2δ and a simple application of the intermediate value theorem thus yields
f+(xδ,−1) − f−(xδ,−1) = 2δ. Using the additional assumption on f± around the point x0,−1, we
then find

2c−1/γ |xδ,−1 − x0,−1|1/γ ≤ |f−(xδ,−1)|+ |f+(xδ,−1)| = f+(xδ,−1)− f−(xδ,−1) = 2δ ,

that is |xδ,−1 − x0,−1| ≤ cδγ .

Our next example, which represents the main result of this appendix, shows that many continuous
distributions satisfy our thickness assumption.

Example 7.4. Let X := [−1, 1]×[−2, 2] be equipped with the metric defined by the supremums norm.
Moreover, let P be a Lebesgue absolutely continuous probability measure that has a continuous density
h. Furthermore, assume that there exists a ρ∗∗ > 0, such that, for all ρ ∈ (0, ρ∗∗], the level set Mρ

is of the form considered in Example 7.2. In addition, we assume that there is a constant K ∈ (0, 1)
such that ∣∣h(x, y)− ρ∗ − x2 + y2

∣∣ ≤ K(x2 + y2) (77)
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for some ρ∗ ∈ [0, ρ∗∗) and all (x, y) ∈ {h > 0} ∩
(
[−0.2, 0.2] × (−1.1, 1.1)

)
. Moreover, assume that

h is continuously differentiable on the sets

A1 := {h > 0} ∩
((

(−0.7,−0.3) ∪ (0.3, 0.7)
)
×
(
(−1.1,−0.2) ∪ (0.2, 1.1)

))
A2 := {h > 0} ∩

((
(−1,−0.8) ∪ (0.8, 1)

)
×
(
(−1.1, 0) ∪ (0.2, 1.1)

))
A3 := {h > 0} ∩

{
(x, y) ∈ X : x ∈ (−0.2, 0) ∪ (0, 0.2) and |y| <

√
1 +K

1−K
|x|
}

with hy := ∂h
∂y 6= 0 on A1 and hx := ∂h

∂x 6= 0 on A2 ∪ A3. Finally, assume that there exists another

constant C > 0 such that |hx| ≤ C|hy| on A1 and |hy| ≤ C|hx| on A2 ∪A3. Then the distribution P
has thick levels of order γ = 1 with δthick = 0.1 and

cthick = 1 + max

{
C,

√
1 +K

1−K

}
.

Moreover, P can be topologically clustered between the critical levels ρ∗ and ρ∗∗ and for all ε ∈
(0, ρ∗∗ − ρ] we have

2√
1−K

√
ε ≤ τ∗Mρ∗+ε

≤ 2√
1 +K

√
ε . (78)

Proof of Example 7.4: Since we consider the Lebesgue measure onX, we haveM0 = X. Moreover,
we have X−δ = X since we consider the operation in X, and from this, we immediately see ψ∗X(δ) = 0
for all δ > 0. Consequently, there is nothing to prove for ρ = 0.

Let us now fix some ρ ∈ (0, ρ∗∗]. Moreover, let f± : [−1, 1] → [−1, 1] be the two functions
satisfying the assumptions of Example 7.2 and

Mρ =
{

(x, y) ∈ X : x ∈ [−1, 1] and f−(x) ≤ y ≤ f+(x)
}
.

Let us now pick an (x, y) ∈Mρ with y = f+(x) or y = f−(x). Then we find (x, y) ∈ ∂Mρ, and thus
we have h(x, y) = ρ by Lemma 2.1, that is h(x, f±(x)) = ρ.

Our first goal is to verify (73). To this end, we solely focus without loss of generality to the case x+
+

and f+, since the other cases can be treated analogously. Let us fix an x ∈ [x+
+−0.1, x+

+ +0.1]. Then
we have x ∈ (0.3, 0.7) and thus f+(x) ∈ (0.2, 1.1) by (72). Consequently, h is continuously differen-
tiable in (x, f+(x)). By the implicit function theorem and the previously shown h(x′, f+(x′)) = ρ
for all x′ ∈ (0.3, 0.7) we then conclude that f+ is continuously differentiable at x and

(f+(x))′ = −
(
∂h

∂y

(
x, f+(x)

))−1

· ∂h
∂x

(
x, f+(x)

)
=
hx(x, f+(x))

hy(x, f+(x))
. (79)

Using |hx| ≤ C|hy| on A1, we thus find |(f+(x))′| ≤ C, and hence f+ is Lipschitz continuous on
(0.3, 0.7) with Lipschitz constant smaller than or equal to C. This implies (73) with constant C and
exponent γ = 1.

Let us now consider the endpoints x0,±1, where again it suffices to consider one case, say x0,−1,
due to symmetry. Let us write 2δ0 := f+(x0,−1) − f−(x0,−1). Then, if δ0 ≥ 0.1, we have |xδ,−1 −
x0,−1| = 0 for all δ ∈ (0, 0.1] by Example 7.2, and hence it suffice to show (74) in the case δ0 < 0.1.
Observing that it actually suffice to show (74) for all x ∈ (x0,−1,−0.8) by continuity, we begin by
fixing such an x. By monotonicity we then have 0 < f+(x) < f+(0.8) < 1.1, and consequently, h is
continuously differentiable at (x, f+(x)). The implicit function theorem and the previously shown
h(x′, f+(x′)) = ρ for all x′ ∈ (x0,−1,−0.8), then shows that f+ is continuously differentiable at x
and (79) holds. Using |hy| ≤ C|hx| on A2, we then find |(f+(x))′| ≥ 1/C, and the fundamental
theorem of calculus thus yields

∣∣f+(x′)− f+(x)
∣∣ =

∣∣∣∣∫ x′

x

(f+(t))′dt

∣∣∣∣ ≥ C−1|x′ − x|

for all x, x′ ∈ (x0,−1,−0.8). Now, letting x′ → x0,−1, we obtain, for all x ∈ (x0,−1,−0.8),

|f+(x)| ≥ f+(x)− f+(x0,−1) =
∣∣f+(x)− f+(x0,−1)

∣∣ ≥ C−1|x0,−1 − x| ,
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that is (74) holds with constant C and exponent γ = 1.
Finally, let us consider the points x0,±0, where yet another time, we only focus on one case, say

x0,+0. For x ∈ [x0,+0, 0.2], we then have

ρ = h(x, f+(x)) ≤ ρ∗ + (1 +K)x2 + (K − 1)(f+(x))2 , (80)

that is (f+(x))2 ≤ ρ∗−ρ
1−K + 1+K

1−Kx
2. Analogously, we can find a lower bound on (f+(x))2, so that we

end up having

(f+(x))2 ∈
[
ρ∗ − ρ
1 +K

+
1−K
1 +K

x2,
ρ∗ − ρ
1−K

+
1 +K

1−K
x2

]
, (81)

and an analogue result holds for (f−(x))2. Again, our goal is to show an analogue of (74). To this
end, we first consider the case ρ ∈ (0, ρ∗]. By (77), we then know that h(0, 0) = ρ∗ ≥ ρ, and hence
f+(0) ≥ 0. Analogously, we find f−(0) ≤ 0, which together implies x0,+0 = 0. Furthermore, for
x ∈ [x0,+0, 0.2], (81) gives

f+(x) ≥
√
ρ∗ − ρ
1 +K

+
1−K
1 +K

x2 ≥
√

1−K
1 +K

|x| =
√

1−K
1 +K

|x0,+0 − x| ,

that is (74) holds with constant
√

1+K
1−K and exponent γ = 1. Let us now consider the case ρ ∈

(ρ∗, ρ∗∗]. For x ∈ (x0,+0, 0.2), (81) then yields

f+(x) ≤
√
ρ∗ − ρ
1−K

+
1 +K

1−K
x2 <

√
1 +K

1−K
|x| ,

and thus we find (x, f+(x)) ∈ A3. Consequently, h is continuously differentiable at (x, f+(x)), and
(79) holds. As for x0,−1, we can then show that (74) holds with constant C and exponent γ = 1.

In order to show that P can be topologically clustered between the critical levels ρ∗ and ρ∗∗,
we first note that the assumed continuity of h guarantees that P is normal by Lemma 2.4. Let us
now fix a ρ ∈ (ρ∗, ρ∗∗]. Since from (77) we infer that h(0, 0) = ρ∗, we then obtain (0, 0) 6∈ Mρ.
The latter implies x0,−0 < 0 < x0,+0, where x0,−0 and x0,+0 are the points defined in Example 7.2
for the set Mρ. By Example 7.1 we then see that C(Mρ)| = 2. Analogously, for ρ ∈ [0, ρ∗], the
equality h(0, 0) = ρ∗ implies x0,−0 = 0 = x0,+0, which shows C(Mρ)| = 1. Finally, the bijectivity of
ζ : C(Mρ∗∗)→ C(Mρ) follows from the form of the connected components described in Example 7.1.

Let us finally prove (78). To this end, we fix an ε ∈ (0, ρ∗∗ − ρ] and define ρ := ρ∗ + ε. Then
we have already observed that x0,−0 < 0 < x0,+0, and hence f±(x0,±0) = 0. For x := x0,+0 we then
obtain

ρ = h(x, f+(x)) ≤ ρ∗ + (1 +K)x2

by (80), and applying some simple transformations we thus find x0,+0 = x ≥
√

ρ−ρ∗
1+K =

√
ε

1+K . For

x := x0,+0 we further have
ρ = h(x, f+(x)) ≥ ρ∗ + (1−K)x2 ,

and hence x0,+0 ≤
√

ε
1−K . Since analogous estimates can be derived for x0,−0, the formula τ∗Mρ∗+ε

=

x0,+0 − x0,−0 found in Example 7.1 then gives (78).

The last example of this appendix shows that the distributions from the previous example have
a smooth boundary.

Example 7.5. Let X and P be as in Example 7.4. Then the clusters have an α-smooth boundary
for α = 1 and

cbound = 8

(
10 + C +

√
1 +K

1−K

)
.

Proof of Example 7.5: Let us first consider the case 0 < δ ≤ 0.1. To this end, we fix a ρ ∈ (ρ∗, ρ∗∗].
Without loss of generality, we only consider the connected component A with x < 0 for all (x, y) ∈ A.
From Remark 2.18 we know that A+δ/2 \ A−δ/2 ⊂ A⊕δ \ A	δ and the latter two sets have been
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calculated in Example 7.1. In the following, we will only estimate λ2({(x, y) : y ≥ 0} ∩A⊕δ \A	δ),
the case y ≤ 0 can be treated analogously. Our first intermediate result towards the desired estimate
is

λ2
(
[−1 ∨ (x0,−1 − δ), xδ,−1]× [0, 2] ∩A⊕δ \A	δ

)
≤ 2|(x0,−1 − δ)− xδ,−1|
≤ 2δ + 2|x0,−1 − xδ,−1|
≤ 2(1 + C)δ ,

where in the last step we used that the proof of Example 7.4 showed (74) for c = C and γ = 1.
Moreover, we have

λ2
(
[xδ,−1, x

+
− − δ]× [0, 2] ∩A⊕δ \A	δ

)
=

∫ x+
−−δ

xδ,−1

f+(x+ δ)− f+(x− δ) + 2δ dx

≤ 2δ +

∫ x+
−+δ

x+
−−δ

f(x) dx

≤ 4δ

and analogously we obtain λ2
(
[x+
− + δ, xδ,−0]× [0, 2] ∩A⊕δ \A	δ

)
≤ 4δ. In addition, we easily find

λ2
(
[x+
− − δ, x+

− + δ]× [0, 2] ∩A⊕δ \A	δ
)
≤ 4δ and finally, we have

λ2
(
[xδ,−0, 0 ∧ (x0,−0 + δ)]× [0, 2] ∩A⊕δ \A	δ

)
≤ 2
∣∣xδ,−0 − x0,−0 − δ

∣∣ ≤ 2δ + 2

√
1 +K

1−K
δ ,

where we used that the proof of Example 7.4 showed (74) for c =
√

1+K
1−K and γ = 1. Combining all

these estimates we obtain

λ2
(
[−1, 0]× [0, 2] ∩A⊕δ \A	δ

)
≤ 4

(
6 + C +

√
1 +K

1−K

)
δ

for all δ ∈ (0, 0.05]. Moreover, for δ ∈ [0.05, 1] we easily obtain

λ2
(
[−1, 0]× [0, 2] ∩A⊕δ \A	δ

)
≤ 2 ≤ 40δ

Combining both estimates and adding the case y ≤ 0, we then obtain the assertion.
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2010-006 Höllig, K.; Hörner, J.; Hoffacker, A.: Finite Element Analysis with B-Splines:
Weighted and Isogeometric Methods

2010-005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function
estimates for the regularization of inverse problems

2010-004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary

2010-003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for
stationary and ergodic data

2010-002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein
Quadric, and Automorphisms of Heisenberg Algebras

2010-001 Leitner, F.: Examples of almost Einstein structures on products and in
cohomogeneity one

2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED

2009-007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant
n-polaron systems

2009-006 Demirel, S.; Harrell II, E.M.: On semiclassical and universal inequalities for
eigenvalues of quantum graphs
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