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A relative entropy approach to convergence of a low order

approximation to a nonlinear elasticity model with viscosity and

capillarity

Jan Giesselmann∗

Abstract

In this work we study the dynamics of an elastic bar undergoing phase transitions. It is modeled
by two regularizations of the equations of nonlinear elastodynamics with a non-convex energy.
We estimate the difference between solutions to the two regularizations if in one of them a
coupling parameter α is sent to infinity. This estimate is based on an adaptation of the relative
entropy framework using the regularizing terms in order to compensate for the non-convexity
of the energy density.

1 Introduction

This paper is concerned with two models describing longitudinal or shearing motions of an elastic
bar undergoing phase transitions between a low strain and high strain phase. The models are based
on the (isothermal) equations of elastodynamics which, in the multi-phase case, form a system
of hyperbolic/elliptic conservation laws. It is well-known that for such systems standard entropy
conditions are insufficient to guarantee uniqueness of weak solutions. There are two approaches to
overcome this obstacle: One is to impose so called kinetic relations at discontinuities, [1, 21, e.g.].
The other approach is to require solutions to be limits of solutions of regularized equations. We
are interested in the second approach and study two such regularizations. One of these systems is
well-accepted in the literature while the other one offers computational advantages. We estimate
the difference between solutions of the two regularized models. In particular, we will see that the
regularizations compensate for the non-convex energy density, in that they make the models well-
posed (which is well-known and can be seen as the main reason for their introduction) and in that
they allow us to use the relative entropy framework to derive estimates for the difference between
solutions. To be more precise, let us introduce the two models: We consider the following third
order model including viscous and capillary effects:

wt − vx = 0

vt − (W ′(w)− γwxx)x = µvxx,
(1.1)

where w is the deformation gradient, v is the velocity, γ, µ > 0 are the capillarity and the viscosity
parameter and W = W (w) is a (possibly) non-convex energy density. This model was studied

∗University of Stuttgart, Stuttgart, Germany, jan.giesselmann@mathematik.uni-stuttgart.de

1



in [2, 18, 26, 25, e.g.]. We will assume that W ∈ C3(R, [0,∞)) and that there exists a possibly
negative constant C ∈ R such that

W ′′(w) ≥ C ∀w ∈ R. (1.2)

It is important to note that we do not make any assumptions on convexity of W . The case we
have in mind is that W is a double-well potential. Recently the following family of lower order
approximations parametrized by α > 0 (whose solutions will be marked by ·̃) was suggested in [13]:

w̃αt − ṽαx = 0

ṽαt − (W ′(w̃α) + γαw̃α)x = µṽαxx − γαc̃αx
α(c̃α − w̃α) = c̃αxx.

(1.3)

Here w̃α is the deformation gradient, ṽα is the velocity, γ, µ > 0 are as above and c̃α is an auxiliary
variable without any immediate physical interpretation. For later use, let us note that the second
and third line of (1.3) can be combined to obtain

ṽαt − (W ′(w̃α)− γc̃αxx)x = µṽαxx. (1.4)

The minimization problem associated to the energy of (1.3), see (2.5), was studied in [7, 27]. In
[13] several advantages of (1.3) over (1.1) are stated. While arguments are provided indicating
that (1.3) is a meaningful physical model in itself the authors of [13] argue that their main reasons
for introducing (1.3) are numerical in nature. In particular, provided α is sufficiently large, the
first two equations in (1.3) form a strictly hyperbolic system of balance laws for w̃α and ṽα such
that the whole wealth of schemes developed for such problems can be employed to solve (1.3)1,2,
while (1.3)3 can easily be solved by any elliptic solver. Therefore, it is expected that numerical
schemes for (1.3), see [23], are much more robust and efficient than those developed for (1.1). The
construction of numerical methods for (1.1) is a delicate issue [8]. We refer to [8] and [6, 11, 16]
(dealing with numerical methods for the Navier-Stokes-Korteweg system) for ideas to overcome the
problems introduced by the hyperbolic-elliptic structure of the first order part of the equations.

As a matter of justifying (1.3) it was shown in [13] that for α → ∞ a sub-sequence of the
solutions of (1.3) converges weakly in L2 to a solution of (1.1). This is the starting point of this
study. We aim at making this convergence more explicit. In particular, we will prove an estimate
for the difference between strong solutions (w, v) of (1.1) and (w̃α, ṽα, c̃α) of (1.3) if the initial
data for both models are the same and sufficiently regular, see Theorem 3.12. We show that the
convergence of ‖w− c̃α‖H1 + ‖v− ṽα‖L2 is of order α−1/4. However, it must be noted that the error
constant is proportional to exp(T/µγ) if [0, T ] is the time interval under consideration.

Our estimate is based on an adaptation of the relative entropy framework, going back to [9, 12],
to higher order models making no assumptions on the convexity of the energy density W . In recent
years the relative entropy technique was frequently used for the study of hyperbolic conservation
laws and related systems. For a general overview of the development in the last decades we refer
to the references in [10, Section 5.7]. More recent works employing relative entropy arguments
include [5, 14, 15, 19, 20, 22, e.g.]. In these cases the energy densities are at least quasi-convex or
poly-convex. Estimates obtained using the relative entropy framework usually involve the use of
Gronwall’s inequality and, therefore, an exponential dependence on time. The dependence of the
estimate on γ, µ in our case is due to the fact that the estimate heavily relies on the convexity of
the energy functional and, here, the local part of the energy density W (w) is non-convex.
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In fact, a main novelty of the work at hand is that there exist higher order (regularizing)
mechanisms which may compensate for non-convex energy densities, in that they make stability
estimates based on the relative entropy possible even for entropies which are not quasi-convex.

This is also true in several space dimensions. In order to show this, we consider generalizations
of (1.3) and (1.1) which still allow for additional balance laws, which might be seen as energy
balances. However, in both multi-dimensional models neither the capillary nor the viscous terms
are materially frame indifferent [3, 4]. Therefore, the physical content of the multi-dimensional
equations studied here is at least dubious.

Still, from a mathematical viewpoint it turns out that the results from the one dimensional
situation can easily be generalized, provided the multi-dimensional equations admit sufficiently
smooth solutions. The proper physical generalization of the models (1.1) and (1.3) to several space
dimensions is a matter of ongoing research beyond the scope of this work.

The remainder of this work is structured as follows: In the forthcoming Section 2.1 we state the
energy balance laws associated with the systems under consideration. In particular, this enables us
to determine energies and energy fluxes which is a valuable prerequisite for employing the relative
entropy arguments later. Section 2.2 is devoted to the well-posedness analysis of (1.1) and (1.3).
In Section 3.1 we describe a generalized relative entropy approach and in Section 3.2 we establish
estimates related to the elliptic operator (1.3)3. These results are combined with Gronwall’s Lemma
in order to estimate the difference between the solutions of (1.3) and (1.1) in Section 3.3. Section
4 is devoted to a generalization of these results to several space dimensions.

2 Thermodynamics and well-posedness

2.1 Thermodynamical structure

In this section we recall the energy inequalities satisfied by (1.3) and (1.1). In doing so we identify
entropies and entropy fluxes. Moreover, the energy dissipation equation (2.3) will be crucial in
establishing the existence of global strong solutions to (1.1). In our analysis we will use the classical
Lebesgue Lp, Sobolev W k,p and Sobolev (Bochner) spaces Lp(0, T ;Hk(·)), for p ≥ 1 and k ∈ N,
where Hk refers to W k,2.

We will consider both systems on S1 by which we denote the unit interval with its endpoints
glued together. We choose functions w̄ : S1 → R and v̄ : S1 → R and complement (1.1), (1.3) with
identical initial data

w(0, ·) = w̄, v(0, ·) = v̄ in S1, (2.1)

w̃α(0, ·) = w̄, ṽα(0, ·) = v̄ in S1. (2.2)

Both systems are thermodynamically consistent in that they satisfy energy balance equations
and are materially frame indifferent.

Lemma 2.1 (Energy balance for (1.1)) Let T, γ, µ > 0 be given and let

(w, v) ∈
(
C0([0, T ], H3(S1)) ∩ C1((0, T ), H1(S1))

)
×
(
C0([0, T ], H2(S1)) ∩ C1((0, T ), L2(S1))

)
be a strong solution of (1.1). Then, the following energy balance law holds in (0, T )× S1 :(

W (w) +
γ

2
(wx)2 +

1

2
v2
)
t
−
(
vW ′(w)− γvwxx + γvxwx + µvxv

)
x

+ µ(vx)2 = 0. (2.3)
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Proof :
Equation (2.3) is obtained by multiplying (1.1)1 by W ′(w) − γwxx, multiplying (1.1)2 by v and
adding both equations. �

Lemma 2.2 (Energy balance for (1.3)) Let T, γ, µ > 0 and let (w̃α, ṽα, c̃α) with

w̃α ∈W 1,∞((0, T ), L2(S1)) ∩ C([0, T ], H1(S1))

ṽα ∈ H1(0, T ;L2(S1)) ∩ L∞(0, T ;H1(S1)) ∩ L2(0, T ;H2(S1))

c̃α ∈ C1((0, T ), H1(S1)) ∩ C([0, T ], H3(S1)),

(2.4)

be a strong solution of (1.3). Then, the following energy balance is satisfied in (0, T )× S1 :

(
W (w̃α) +

γα

2
(w̃α − c̃α)2 +

γ

2
(c̃αx)2 +

1

2
(ṽα)2

)
t

−
(
ṽαW ′(w̃α) + γαṽα(w̃α − c̃α) + c̃αt c̃

α
x + µṽαx ṽ

α
)
x

+ µ(ṽαx )2 = 0. (2.5)

Proof :
To obtain (2.5) we multiply (1.3)1 by W ′(w̃α) + αγ(w̃α − c̃α) and (1.3)2 by ṽα and, further, use

α(w̃α − c̃α)w̃αt = α(w̃α − c̃α)(w̃α − c̃α)t + c̃αx c̃
α
tx − (c̃αt c̃

α
x)x. (2.6)

�

2.2 Well-posedness of the models

From now on we will use the notation σ = W ′. Let us start with well-posedness of (1.1). In [2, 17]
weak solutions of (1.1) were investigated in case of natural boundary conditions. We consider
periodic boundary conditions and are interested in strong solutions. Still, our analysis goes along
the same lines as the one in [2, Sec. 6]. Using w = ux the system (1.1) can be rewritten as

ut − v = 0

vt − σ(ux)x = µvxx − γuxxxx
in (0,∞)× S1, (2.7)

with initial conditions
u(0, ·) = u0, v(0, ·) = v0 in S1. (2.8)

We denote

Hk
m(S1) :=

{
f ∈ Hk(S1) :

∫
S1

f dx = 0
}
.

Theorem 2.3 (Well-posedness of (2.7)) Let initial data u0 ∈ H4
m(S1), v0 ∈ H2

m(S1) and T > 0
be given. Then, the problem (2.7),(2.8) has a unique strong solution

(u, v) ∈
(
C0([0, T ], H4

m(S1)) ∩ C1((0, T ), H2
m(S1))

)
×
(
C0([0, T ], H2

m(S1)) ∩ C1((0, T ), L2
m(S1))

)
.

Corollary 2.4 (Well-posedness of (1.1)) Let initial data w̄ ∈ H3
m(S1), v̄ ∈ H2

m(S1) and T > 0
be given. Then, the problem (1.1),(2.1) has a unique strong solution

(w, v) ∈
(
C0([0, T ], H3

m(S1)) ∩ C1((0, T ), H1
m(S1))

)
×
(
C0([0, T ], H2

m(S1)) ∩ C1((0, T ), L2
m(S1))

)
.
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Proof of Theorem 2.3:
Let us note that the periodicity of u0 implies (u0)x ∈ H3

m(S1). In abstract form (2.7) can be written
as

yt = Ay + f(y) (2.9)

with

y =

(
u
v

)
, A =

(
0 Id

−γ∂xxxx µ∂xx

)
, f(y) =

(
0

σ(ux)x

)
. (2.10)

Let us define the spaces
X := H2

m(S1), Y := X × L2(S1). (2.11)

For every f ∈ X it holds that fx ∈ H1
m(S1) such that, by Poincaré’s inequality,〈(

u1

v1

)
,

(
u2

v2

)〉
Y

:=

∫
S1

γ(u1)xx(u2)xx + v1v2 dx,

∥∥∥∥(uv
)∥∥∥∥2

Y

:=

〈(
u
v

)
,

(
u
v

)〉
Y

(2.12)

define a scalar product and a norm on Y. The operator A is densely defined on Y with

D(A) =
(
H4(S1) ∩X

)
×H2(S1). (2.13)

The operator A induces a C0 semi-group on Y which can be seen analogously to the arguments in
[2] using {sin(2nπ·), cos(2nπ·) : n ∈ N} as a basis of X. Note that for all t ≥ 0 it holds∫

S1

u(t, ·) dx = 0,

∫
S1

u(t, ·)x dx = 0,

∫
S1

v(t, ·) dx = 0

due to our assumptions on the initial data and the fact that ux, v satisfy conservation laws. The
semi-group induced by A is, in fact, contractive as any solution (u, v) of(

u
v

)
t

= A

(
u
v

)
(2.14)

satisfies

d

dt

∥∥∥∥(uv
)∥∥∥∥2

Y

= 2

∫
S1

γuxxuxxt + vvt dx

= 2

∫
S1

γuxxuxxt − γutuxxxx + µvvxx dx ≤ −2

∫
S1

µ(vx)2 dx ≤ 0. (2.15)

Moreover, the map f : Y → Y is locally Lipschitz continuous as X ⊂ H2(S1) is continuously
embedded in C1(S1) and, therefore,∥∥∥∥f ((u1

v1

))
− f

((
u2

v2

))∥∥∥∥2

Y

=

∫
S1

(σ((u1)x)x − σ((u2)x)x)2 dx

≤ C1‖u1 − u2‖2H2(S1) + C2‖u2‖2H2(S1)‖u1 − u2‖2C1(S1) ≤ C
∥∥∥∥(u1 − u2

v1 − v2

)∥∥∥∥2

Y

, (2.16)

where

C1 := max
{
|σ′(w)|2 : |w| ≤ ‖u1‖H2(S1)

}
, C2 := max

{
|σ′′(w)|2 : |w| ≤ ‖u1‖H2(S1) + ‖u2‖H2(S1)

}
5



and C is a generic constant depending on C1, C2, ‖u2‖2H2 , γ, and the constant from the embedding
X → C1(S1). We have also used that the Poincaré constant on S1 is smaller than 1. Invoking [24,
Theorem 5.8] we infer that there exists a maximal time of existence Tm ∈ (0,∞] and a unique
strong solution (u, v) of (2.7), (2.8) with

u ∈ C0([0, Tm), H4
m(S1)) ∩ C1((0, Tm), H2

m(S1)),

v ∈ C0([0, Tm), H2
m(S1)) ∩ C1((0, Tm), L2

m(S1)).
(2.17)

In case Tm <∞ the result [24, Theorem 5.8] implies

‖(u(t, ·), v(t, ·))T ‖Y →∞ for t↗ Tmax.

We know from (2.3) that strong solutions of (2.7) satisfy

d

dt

∫
S1

W (ux) +
γ

2
(uxx)2 +

1

2
v2 dx ≤ 0. (2.18)

As W is bounded from below (2.18) implies that ‖(u(t, ·), v(t, ·))T ‖Y is uniformly bounded in time
and therefore Tmax = +∞.

�

Proof of Corollary 2.4:
As w̄ ∈ H3

m(S1) every primitive is in H4(S1), and there is exactly one primitive u0 ∈ H4
m(S1) of

w̄. Let (u, v) denote the solution of (2.7), (2.8) with initial data (u0, v̄). Then, (ux, v) is the unique
solution of (1.1), (2.1). �

The well-posedness of (1.3) is investigated in [13] in a similar way. There the system

ũαt − ṽα = 0

ṽαt − σ(ṽαx )x = ṽαxx − αγ(c̃α − ũαx)x
1

α
c̃αxx = c̃α − ũαx

(2.19)

equipped with the following initial and boundary conditions

ũα(t, 0) = ũα(t, 1) = 0, ṽα(t, 0) = ṽα(t, 1) = 0, c̃αx(t, 0) = c̃αx(t, 1) = 0, ∀t ∈ (0, T ),

ũα(0, x) = u0(x), ũαt (0, x) = v0(x) ∀x ∈ (0, 1),
(2.20)

is considered. The following result on existence of strong solutions is shown in [13] with I := [0, 1]:

Proposition 2.5 (Well-posedness of (2.19)) Let α, γ > 0 be fixed and suppose that

u0 ∈ H2(I) ∩H0(I) and v0 ∈ H2(I) ∩H1
0 (I).

Then, given T > 0, there is a unique solution (ũα, ṽα, c̃α) of (2.19), (2.20) with

ũαt = ṽα ∈ H1(0, T ;L2(I)) ∩ L∞(0, T ;H1
0 (I)) ∩ L2(0, T ;H2(I))

ũα ∈ C1((0, T ), L2(I)) ∩ C([0, T ], H2(I) ∩H1
0 (I))

c̃α ∈ C1((0, T ), H1(I)) ∩ C([0, T ], H3(I)).

(2.21)
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In particular, ũα ∈ W 1,∞(0, T ;H1(I)). In addition, there exists a constant C = C(T ) independent
of α such that

‖ũαxx(t, ·)‖L2(I) ≤ C(T ) ∀ t ∈ [0, T ]. (2.22)

Remark 2.6 (Boundary conditions) The analogous result to Proposition 2.5 with H2(I) and
H1

0 (I) replaced by H2(S1) and H1
m(S1) can be shown in the same way. Note that the result does

not require the choice of W from [13] but works for the more general class considered here. In
particular, assumption (1.2) is required to derive (2.22). Similarly, the viscous term ṽαxx may be
scaled by some µ > 0 without changing the result.

With respect to system (1.3) this implies

Proposition 2.7 (Well-posedness of (1.3)) Let α, γ, µ > 0 be fixed and suppose that

w̄ ∈ H1
m(S1) and v̄ ∈ H2(S1) ∩H1

m(S1).

Then, given T > 0, there is a unique solution (w̃α, ṽα, c̃α) of (1.3), (2.2) with

ṽα ∈ H1(0, T ;L2
m(S1)) ∩ L∞(0, T ;H1

m(S1)) ∩ L2(0, T ;H2
m(S1))

w̃α ∈W 1,∞(0, T ;L2
m(S1)) ∩ C([0, T ], H1

m(S1))

c̃α ∈ C1((0, T ), H1(S1)) ∩ C([0, T ], H3(S1)).

(2.23)

In addition, there exists a constant C = C(T ) independent of α such that

‖w̃αx (t, ·)‖L2(S1) ≤ C(T ) ∀ t ∈ [0, T ].

3 Estimates in the one dimensional case

3.1 A relative entropy argument

This section is devoted to an adaptation of the relative entropy framework to the situation of a
non-convex energy and higher order problems. It should be noted that the higher order mechanisms
compensate for the lack of convexity of W . For the general setup of the relative entropy framework
and the way it may be used to prove stability for hyperbolic balance laws, we refer to [10, Chapter
5]. As in this isothermal problem energy and entropy coincide we will use the terms relative entropy
and relative energy interchangeably.

We start our considerations with a relative entropy inequality still involving W. The main issue
here is the correct choice of the parts of the relative entropy and relative entropy flux corresponding
to the third order terms.

Proposition 3.1 (Relative entropy equality) For T > 0, let (w, v) be a strong solution of
(1.1),(2.1) in the sense of Corollary 2.4 and let (w̃α, ṽα, c̃α) be a solution of (1.3),(2.2) in the sense
of Proposition 2.7. Then, the following relative entropy equation is satisfied

d

dt

∫
S1

W (w̃α) +
αγ

2
(w̃α − c̃α)2 +

γ

2
(c̃αx)2 +

1

2
(ṽα)2 −W (w)− γ

2
(wx)2 − 1

2
v2

−W ′(w)(w̃α − w)− γwx(c̃α − w)x − v(ṽα − v) dx

=

∫
S1

−µ(ṽαx − vx)2 + vx
(
W ′(w̃α)−W ′(w)−W ′′(w)(w̃α − w)

)
− γwxx(w̃αt − c̃αt ) dx. (3.1)

7



Proof :
We start with a direct computation following the general relative entropy framework:

A :=

∫
S1

∂t

(
W (w̃α) +

αγ

2
(w̃α − c̃α)2 +

γ

2
(c̃αx)2 +

1

2
(ṽα)2 −W (w)− γ

2
(wx)2 − 1

2
v2

−W ′(w)(w̃α − w)− γwx(c̃α − w)x − v(ṽα − v)
)

+ ∂x

(
−W ′(w̃α)ṽα + γc̃αxxṽ

α +W ′(w)v − γwxxv +W ′(w)(ṽα − v)− γwxx(ṽα − v)

+ vW ′(w̃α)− γc̃αxxv −W ′(w)v + γwxxv
)

dx

=

∫
S1

W ′(w̃α)w̃αt + αγ(w̃α − c̃α)(w̃αt − c̃αt ) + γc̃αx c̃
α
xt + ṽαṽαt −W ′(w)wt

− γwxwxt − vvt −W ′′(w)wt(w̃
α − w)−W ′(w)w̃αt +W ′(w)wt

− γwxtc̃αx + γwxwxt − γwxc̃αxt + γwxwxt − vtṽα + vtv − vṽαt + vvt

−W ′(w̃α)ṽαx − ṽαW ′(w̃α)x + γṽαc̃αxxx + γc̃αxxṽ
α
x

+ ṽαW ′(w)x − vW ′(w)x +W ′(w)ṽαx −W ′(w)vx

− γṽαwxxx + γvwxxx − γwxxṽαx + γwxxvx

+ vxW
′(w̃α) + vW ′(w̃α)x − γvc̃αxxx − γc̃αxxvx dx.

(3.2)

In this equation several terms cancel out. We use the evolution equations (1.1), (1.3) and

−wxc̃αxt = −wxṽαxx + (wxṽ
α
x − wxc̃αt )x − wxx(w̃αt − c̃αt ) (3.3)

to get rid of the time derivatives and obtain

A =

∫
S1

W ′(w̃α)ṽαx − γc̃αxxṽαx + (c̃αt c̃
α
x)x + ṽαW ′(w̃α)x − γṽαc̃αxxx + µṽαṽαxx

−W ′′(w)vx(w̃α − w)−W ′(w)ṽαx − γvxxc̃αx − γwxṽαxx + γ(wxṽ
α
x − wxc̃αt )x

− γwxx(w̃αt − c̃αt ) + γwxvxx − ṽαW ′(w)x + γṽαwxxx − µṽαvxx
+ vW ′(w)x − γvwxxx + µvvxx − vW ′(w̃α)x + γvc̃αxxx − µvṽαxx
−W ′(w̃α)ṽαx − ṽαW ′(w̃α)x + γṽαc̃αxxx + γc̃αxxṽ

α
x

+ ṽαW ′(w)x − vW ′(w)x +W ′(w)ṽαx −W ′(w)vx

− γṽαwxxx + γvwxxx − γwxxṽαx + γwxxvx

+ vxW
′(w̃α) + vW ′(w̃α)x − γvc̃αxxx − γvxc̃αxx dx

=

∫
S1

µ(ṽα − v)(ṽα − v)xx + γ
(
c̃αt c̃

α
x − vxc̃αx + vxwx − ṽαxwx + wxṽ

α
x − wxc̃αt

)
x

+ vx
(
W ′(w̃α)−W ′(w)−W ′′(w)(w̃α − w)

)
− γwxx(w̃αt − c̃αt ) dx.

(3.4)

The assertion of the proposition follows from (3.2),(3.4) upon using Gauss’ Theorem and the bound-
ary conditions.

�

By rearranging the velocity and gradient terms in the relative energy in (3.1) we obtain:
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Corollary 3.2 (Reformulated relative entropy equality) Under the assumptions of Proposi-
tion 3.1 the following relative energy equation is satisfied

d

dt

∫
S1

W (w̃α)−W (w)−W ′(w)(w̃α − w) +
αγ

2
(w̃α − c̃α)2 +

γ

2
(c̃αx − wx)2 +

1

2
(ṽα − v)2 dx

=

∫
S1

−µ(ṽαx − vx)2 + vx
(
W ′(w̃α)−W ′(w)−W ′′(w)(w̃α − w)

)
− γwxx(w̃αt − c̃αt ) dx. (3.5)

If W were a convex function the only remaining problem preventing us to use (3.5) and Gron-
wall’s inequality to show convergence of solutions for α →∞ would be to estimate the integral of
γwxx(w̃αt − c̃αt ). In fact, this is a major step in our analysis, see Lemma 3.6. However, we have
the additional difficulty that the gradient terms in the energy functional do not make the energy
functional globally convex. Thus, we have to deal with the (non-convex) W -terms on the left hand
side of (3.1). Our next step is to remove these terms.

Corollary 3.3 (Reduced relative entropy inequality) Provided the assumptions of Proposi-
tion 3.1 are satisfied, then

d

dt

∫
S1

αγ

2
(w̃α − c̃α)2 +

γ

2
(c̃αx − wx)2 +

1

2
(ṽα − v)2 dx

≤
∫
S1

1

4µ

(
W ′(w̃α)−W ′(w)

)2 − γwxx(w̃αt − c̃αt ) dx. (3.6)

Proof :
A straightforward calculation using the evolution equations (1.1), (1.3) shows

∂t

(
W (w̃α)−W (w)−W ′(w)(w̃α − w)

)
− vx

(
W ′(w̃α)−W ′(w)−W ′′(w)(w̃α − w)

)
= W ′(w̃α)ṽαx −W ′(w)vx −W ′′(w)vx(w̃α − w)−W ′(w)ṽαx +W ′(w)vx

− vxW ′(w̃α) + vxW
′(w) + vxW

′′(w)(w̃α − w)

=
(
W ′(w̃α)−W ′(w)

)(
ṽαx − vx

)
.

(3.7)

Inserting (3.7) into (3.5) implies

d

dt

∫
S1

αγ

2
(w̃α − c̃α)2 +

γ

2
(c̃αx − wx)2 +

1

2
(ṽα − v)2 dx

=

∫
S1

−µ(ṽαx − vx)2 −
(
W ′(w̃α)−W ′(w)

)(
ṽαx − vx

)
− γwxx(w̃αt − c̃αt ) dx. (3.8)

The assertion of the corollary follows from (3.8) and Young’s inequality. �

3.2 Estimates for the elliptic operator

Let us denote the solution operator to Id− 1
α∂xx on S1 by Gα, i.e., for f ∈ L2(S1) we have

Gα[f ]− 1

α
Gα[f ]xx = f (3.9)
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at least weakly. Thus,
c̃α = Gα[w̃α] (3.10)

by definition.

Lemma 3.4 (Regularity of elliptic approximation) For any f ∈ L2(S1) the following in-
equality holds

‖Gα[f ]‖L2(S1) ≤ ‖f‖L2(S1). (3.11)

Moreover, for any k ∈ N the fact that Gα is the solution operator to a linear elliptic equation with
constant coefficients implies

Gα[f ] ∈ Hk+2(S1) for f ∈ Hk(S1)

and
Gα[fx] = (Gα[f ])x (3.12)

for all f ∈ H1(S1).

Proof :
Upon testing (3.9) with Gα[f ] and using the periodic boundary conditions we obtain

‖Gα[f ]‖2L2(S1) +
1

α
|Gα[f ]|2H1(S1) =

∫
S1

fGα[f ] dx ≤ ‖Gα[f ]‖L2(S1)‖f‖L2(S1), (3.13)

which implies (3.11). The other assertions of the Lemma follow as ∂x commutes with Id− 1
α∂xx. �

Our next step is to investigate the approximation properties of the elliptic operator in (1.3)3.

Lemma 3.5 (Elliptic approximation estimate) Let f ∈ H1(S1), then

‖f −Gα[f ]‖2L2(S1) ≤
2

α
|f |2H1(S1).

In case f ∈ H2(S1) the following (stronger) estimate is satisfied:

‖f −Gα[f ]‖2L2(S1) ≤
1

α2
|f |2H2(S1).

Proof :
From testing (3.9) with f −Gα[f ] we infer

‖f −Gα[f ]‖2L2(S1) =
−1

α

∫
S1

(f −Gα[f ])∂xxGα[f ] dx =
1

α

∫
S1

(f −Gα[f ])xGα[f ]x dx

≤ 1

α
‖fx −Gα[fx]‖L2(S1)‖Gα[fx]‖L2(S1) ≤

2

α
|f |2H1(S1)

(3.14)

upon applying (3.11). This shows the first assertion of the Lemma. For f ∈ H2(S1) we compute

‖f −Gα[f ]‖2L2(S1) =
1

α2

∫
S1

(∂xxGα[f ])2 dx =
1

α2

∫
S1

(Gα[fxx])2 dx ≤ 1

α2
|f |2H2(S1). (3.15)

�

10



3.3 Difference estimates

Lemma 3.6 (Estimate on time derivatives) Under the assumptions of Proposition 3.1 the fol-
lowing inequality is satisfied for all t ∈ (0, T ) :∣∣∣ ∫

S1

wxx(c̃αt − w̃αt ) dx
∣∣∣ ≤√ 2

α
|w|H3(S1)|ṽα|H1(S1). (3.16)

Proof :
A straightforward calculation, based on c̃αt = Gα[w̃αt ], gives∫

S1

wxx(c̃αt − w̃αt ) dx =

∫
S1

wxx(Gα[ṽαx ]− ṽαx ) dx = −
∫
S1

wxxx(Gα[ṽα]− ṽα) dx. (3.17)

Using Lemma 3.5 we obtain∣∣∣ ∫
S1

wxx(c̃αt − w̃αt ) dx
∣∣∣ ≤ |w|H3(S1)

√
2

α
|ṽα|H1(S1).

�

Remark 3.7 (Boundary conditions) If we considered natural boundary conditions, as in [13],
instead of periodic ones, there would be additional (non-vanishing) boundary terms in (3.16). It is
not clear whether it is possible to estimate them properly.

Proposition 3.8 (Reduced relative entropy growth estimate) Let w̄ ∈ H3
m(S1), v̄ ∈ H2

m(S1)
and T, µ, γ > 0 be given. Then, it exists a constant C > 0 such that for α large enough the strong
solution (w, v) of (1.1),(2.1) and the strong solution (w̃α, ṽα, c̃α) of (1.3),(2.2) satisfy the following
estimate for all t ∈ (0, T ) :

d

dt

(αγ
2
‖w̃α − c̃α‖2L2(S1) +

γ

2
|c̃α − w|2H1(S1) +

1

2
‖ṽα − v‖2L2(S1)

)
≤ C

γµ

(αγ
2
‖w̃α − c̃α‖2L2(S1) +

γ

2
|c̃α − w|2H1(S1)

)
+ γ|w|H3(S1)

√
2

α
|ṽα|H1(S1). (3.18)

Proof :
The existence of (w, v) and (w̃α, ṽα, c̃α) follows from Corollary 2.4 and Proposition 2.7. As w̃α(t, ·) ∈
H1
m(S1) for all α > 0 and all t ∈ [0, T ] the bound (independent of α) on supt∈[0,T ] |w̃α|H1(S1) asserted

in Proposition 2.7 implies that ‖w̃α(t, ·)‖H1(S1) is bounded independent of α. Due to the continuous
embedding of H1(S1) into C0(S1) this implies

wmax := max
{
‖w‖L∞([0,T ]×S1), sup

α>0
‖w̃α‖L∞([0,T ]×S1)

}
<∞, and W̄ := max

|w|≤wmax

|W ′′(w)| <∞.

(3.19)

11



Combining (3.6) and Lemma 3.6 we find

d

dt

(αγ
2
‖w̃α − c̃α‖2L2(S1) +

γ

2
|c̃α − w|2H1(S1) +

1

2
‖ṽα − v‖2L2(S1)

)
≤ W̄ 2

2µ

(
‖w̃α − c̃α‖2L2(S1) + ‖c̃α − w‖2L2(S1)

)
+ γ|w|H3(S1)

√
2

α
|ṽα|H1(S1)

≤ max
{ 1

α
, 1
}W̄ 2

µγ

(αγ
2
‖w̃α − c̃α‖2L2(S1) +

γ

2
|c̃α − w|2H1(S1)

)
+ γ|w|H3(S1)

√
2

α
|ṽα|H1(S1), (3.20)

because Poincaré’s inequality is applicable to c̃α − w as∫
S1

c̃α(t, ·)− w(t, ·) dx =

∫
S1

w̃α(t, ·)− w(t, ·) dx =

∫
S1

w̃α(0, ·)− w(0, ·) dx = 0.

Equation (3.20) proves the assertion of the proposition.
�

Remark 3.9 (Dependency of W̄ .) While the constant W̄ defined in (3.19) is independent of α,
it might very well depend on w̄, v̄, γ and µ as wmax might depend on those data.

Remark 3.10 (Higher order estimate) Analogous to the derivation of Proposition 3.8, but us-
ing a modification of Lemma 3.6 which relies on the second assertion of Lemma 3.5 instead of the
first one, we can show that

d

dt

(αγ
2
‖w̃α − c̃α‖2L2(S1) +

γ

2
|c̃α − w|2H1(S1) +

1

2
‖ṽα − v‖2L2(S1)

)
≤ C

γµ

(αγ
2
‖w̃α − c̃α‖2L2(S1) +

γ

2
|c̃α − w|2H1(S1)

)
+ γ|w|H3(S1)

1

α
|ṽα|H2(S1), (3.21)

for some C > 0 independent of α, holds under the assumptions of Proposition 3.8.

Let us define the following reduced relative entropy (without the W -terms)

ηα(t) :=
αγ

2
‖w̃α(t, ·)− c̃α(t, ·)‖2L2(S1) +

γ

2
|c̃α(t, ·)−w(t, ·)|2H1(S1) +

1

2
‖ṽα(t, ·)− v(t, ·)‖2L2(S1). (3.22)

Using this notation we can write the assertion of Proposition 3.8 as

(ηα)′(t) ≤ C

γµ
ηα(t) + γ

√
2

α
|w(t, ·)|H3(S1)|ṽα(t, ·)|H1(S1). (3.23)

In order to derive a bound for ηα via Gronwall’s inequality we need to study ηα(0).

Proposition 3.11 (Estimate on initial relative entropy) Provided the assumptions of Propo-
sition 3.8 are fulfilled, then ηα defined in (3.22) satisfies

ηα(0) ≤ γ

α
‖w̄‖2H3(S1) (3.24)

and |ṽα(t, ·)|L2(0,T ;H1
s (S1)) is bounded uniformly for all α ≥ 1, where | · |L2(0,T ;H1

s (S1)) indicates that
we consider the H1-semi-norm in space.
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Proof :
As ṽα(0, ·) = v(0, ·) and w̃α(0, ·) = w(0, ·) we have

ηα(0) =
αγ

2
‖w̃α(0, ·)− c̃α(0, ·)‖2L2(S1) +

γ

2
|c̃α(0, ·)− w̃α(0, ·)|2H1(S1). (3.25)

The second assertion of Lemma 3.6 implies

γ

2
|c̃α(0, ·)− w̃α(0, ·)|2H1(S1) =

γ

2
|Gα[w̄]− w̄|2H1(S1) ≤

γ

2α2
|w̄|2H3(S1) (3.26)

and
γα

2
‖c̃α(0, ·)− w̃α(0, ·)‖2L2(S1) =

γα

2
‖Gα[w̄]− w̄‖2L2(S1) ≤

γ

2α
|w̄|2H2(S1). (3.27)

Combining (3.26) and (3.27) proves (3.24). Integrating (2.5) in space implies

d

dt

∫
S1

W (w̃α) +
γα

2
(w̃α − c̃α)2 +

γ

2
(c̃αx)2 +

1

2
(ṽα)2 dx = −µ

∫
S1

(ṽαx )2 dx

such that, because the energy density is non-negative,

|ṽα(t, ·)|L2(0,T ;H1
s (S1)) ≤

∫
S1

W (w̄) +
γα

2
(w̄ −Gα[w̄])2 +

γ

2
(Gα[w̄]x)2 +

1

2
v̄2 dx

≤
∫
S1

W (w̄) +
γ

2
(w̄x)2 +

1

2
(v̄)2 dx+ ηα(0). (3.28)

�

Combining our preparatory results we are now in position to prove our main result:

Theorem 3.12 (Model convergence) Let w̄ ∈ H3
m(S1), v̄ ∈ H2

m(S1) and µ, γ, T > 0 be given.
Then, it exists a constant W̄ so that for α large enough the strong solution (w, v) of (1.1),(2.1)
and the strong solution (w̃α, ṽα, c̃α) of (1.3),(2.2) fulfill the following estimate for all t ∈ (0, T ):

αγ

2
‖w̃α(t, ·)− c̃α(t, ·)‖2L2(S1) +

γ

2
|c̃α(t, ·)− w(t, ·)|2H1(S1) +

1

2
‖ṽα(t, ·)− v(t, ·)‖2L2(S1)

≤ γ

α
‖w̄‖2H3(S1)e

Kt + γ

√
2

α
eKt
(
‖w‖2L2(0,T ;H3(S1)) +

E0

µ
+

γ

αµ
‖w̄‖2H3(S1)

)
(3.29)

with

E0 :=

∫
S1

W (w̄) +
γ

2
|w̄x|2 +

1

2
v̄2 dx and K :=

W̄ 2

γµ
.

Proof :
Applying Gronwall’s inequality to (3.23) we find

ηα(t) ≤ ηα(0)eKt + γ

√
2

α

∫ t

0
eK(s−t)|w(s, ·)|H3(S1)|ṽα(s, ·)|H1(S1) d s. (3.30)

Using Proposition 3.11 and Young’s inequality in (3.30) we find

ηα(t) ≤ γ

α
‖w̄‖2H3(S1)e

Kt + γ

√
2

α
eKt
(
‖w‖2L2(0,T ;H3(S1)) + |ṽα|2L2(0,T ;H1

s (S1))

)
. (3.31)
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This completes the proof as

µ|ṽα|2L2(0,T ;H1
s (S1)) ≤ E0 + ηα(0) ≤ E0 +

γ

α
‖w̄‖2H3(S1)

by Proposition 3.11.
�

Remark 3.13 (Parameter and time dependence) Theorem 3.12 implies that for given γ, µ >
0 it holds ηα(t) = O(α−1/2) locally uniform in time. It must be noted that the constant in this
estimate depends strongly on γ and µ and for γ, µ very small the error might be quite large. In
particular, the strong dependence on γ was to be expected as it scales the part of the energy which
is convex in w.

Remark 3.14 (Initial data) Note that we do not need to impose identical initial data for (1.1)
and (1.3) but we simply did so for simplicity. For Theorem 3.12 to hold, it is sufficient that the
initial data are sufficiently regular and such that Proposition 3.11 is valid.

Remark 3.15 (Different convergence rates) Theorem 3.12 guarantees strong convergence of
solutions provided the initial data are sufficiently smooth. However, in most numerical examples
higher orders of convergence are observed, see [23]. We expect that in those cases some additional
terms are uniformly bounded in α, while it is not clear how to uniformly bound these terms in
general. As an indication in this direction we will give an estimate below, which shows how the
convergence is accelerated in case ‖ṽα‖2L2(0,T ;H2(S1)) is uniformly bounded

Theorem 3.16 (Model convergence II) Let w̄ ∈ H3
m(S1), v̄ ∈ H2

m(S1) and T, γ, µ > 0 be
given. Let (w, v) be the strong solution of (1.1),(2.1) and let (w̃α, ṽα, c̃α) denote the strong solution
of (1.3),(2.2). In case there exist constants C,α0 > 0 such that

‖ṽα‖2L2(0,T ;H2(S1)) ≤ C ∀α > α0,

there exists a constant W̄ so that for α large enough and K := W̄
γµ the following estimate is satisfied:

αγ

2
‖w̃α(t, ·)− c̃α(t, ·)‖2L2(S1) +

γ

2
|c̃α(t, ·)− w(t, ·)|2H1(S1) +

1

2
‖ṽα(t, ·)− v(t, ·)‖2L2(S1)

≤ γ

α
‖w̄‖2H2(S1)e

Kt +
γ

α
eKt
(
‖w‖2L2(0,T ;H3(S1)) + C

)
. (3.32)

This can be proven analogous to Theorem 3.12. The only difference is that Proposition 3.8 has
to be replaced by Remark 3.10.

4 The multidimensional case

4.1 Layout of the problem

In this section we consider the multi-dimensional equations of non-linear elastodynamics supple-
mented by a rate type and a second gradient type term. Those terms are multidimensional versions
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of the viscosity and capillarity terms in (1.1). However, the multi-dimensional terms are not mate-
rially frame indifferent, cf. [4, e.g.], and therefore do not allow for any physical interpretation.

We will denote the strain by F = (Fij) and the velocity by v = (vi); space derivatives are
abbreviated by ∂i. Whenever one index appears twice it is understood that it is summed. For
given γ, µ > 0 we consider the following third order model

∂tFij − ∂jvi = 0 for i, j = 1, . . . , d

∂tvi − ∂j(
∂W

∂Fij
(F)− γ∆Fij) = µ∆vi for i = 1, . . . , d

(4.1)

subject to the involution ∂kFij = ∂jFik for i, j, k = 1, . . . , d. In (4.1) we assume that W ∈
C3(Md×d

+ ,R), where Md×d
+ is the space of d × d matrices with positive determinant. For the

first order part of (4.1) to be materially frame indifferent W needs to satisfy certain conditions, see
[3, 10, e.g.] which rule out convexity. Instead of investigating the effects of certain assumptions of
W, e.g. poly-convexity or quasi-convexity, which are compatible with material frame indifference,
our analysis will rely on the higher order regularization mechanisms. We only impose that there
exists a constant W̄ such that( ∂W

∂Fij
(F̃α)− ∂W

∂Fij
(F)
)2
≤ W̄ |F̃α − F|2 ∀F, F̃α ∈Md×d

+ (4.2)

and we will see that in this case the higher order regularizations will indeed compensate for the
non-convexity. We are well aware that Assumption (4.2) is problematic for realistic energy densities
as W (F) will usually be singular for det(F)→ 0. However, assumptions like (4.2), i.e. boundedness
of the second derivative, are standard for relative entropy estimates.

We will compare solutions of (4.1) to those of a family of lower order approximations (parametrized
by α > 0)

∂tF̃
α
ij − ∂j ṽαi = 0 for i, j = 1, . . . , d

∂tṽ
α
i − ∂j(

∂W

∂Fij
(F̃α) + γαF̃αij) = µ∆ṽαi − γα∂jC̃αij for i = 1, . . . , d

α(C̃αij − F̃αij) = ∆C̃αij for i, j = 1, . . . , d

(4.3)

subject to the involution ∂kF̃ij = ∂jF̃ik for i, j, k = 1, . . . , d. Note that the second and third line of
(4.3) can be combined to obtain

∂tṽ
α
i − ∂j(

∂W

∂Fij
(F̃α)− γ∆C̃αij) = µ∆ṽαi . (4.4)

In addition, equations (4.3)1,2 form a hyperbolic system of balance laws for (F,v) provided α is
large enough.

Both systems satisfy an additional balance law, which, in case of periodic boundary conditions,
gives rise to a Lyapunov function, upon integration in space. Strong solutions of the third order
system (4.1) satisfy

∂t(W (F) +
γ

2
|∇F|2 +

1

2
|v|2)

− ∂j
(
vi
∂W

∂Fij
(F)− γvi∆Fij + γ∂tFik∂jFik + µvi∂jvi

)
+ µ|Dv|2 = 0 (4.5)
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where Dv denotes the Jacobian of v. Equation (4.5) is obtained by multiplying (4.1)1 by ∂W
∂Fij

(F)−
γ∆Fij and (4.1)2 by vi and summing. Strong solutions of the lower order system (4.3) fulfill

∂t(W (F̃α) +
γα

2
|F̃α − C̃α|2 +

γ

2
|∇C̃α|2 +

1

2
|ṽα|2)

− ∂j
(
ṽαi
∂W

∂Fij
(F̃α)− γαṽαi (F̃αij − C̃αij) + γ(∂tC̃ik)∂jC̃ik + µṽαi ∂j ṽ

α
i

)
+ µ|Dṽα|2 = 0. (4.6)

To obtain (4.6) we multiply (4.3)1 by ∂W
∂Fij

(F̃α) + αγ(F̃αij − C̃αij) and (4.3)2 by ṽαi and, further, use

α(F̃αij − C̃αij)∂tC̃αij = −∂k(∂tC̃αij∂kC̃αij) +
1

2
∂t
((
∂kC̃

α
ij)

2
)
. (4.7)

In the sequel we will consider both systems on the flat d-dimensional torus Td, i.e., the
cube [0, 1]d with periodic boundary conditions. We choose functions F̄ ∈ H3(Td,Md×d

+ ) and
v̄ ∈ H2(Td,Rd) and complement (4.1), (4.3) with the following initial data

F̃α(0, ·) = F(0, ·) = F̄, ṽα(0, ·) = v(0, ·) = v̄, in Td. (4.8)

Definition 4.1 (Strong solution of (4.1)) We call a tuple (F,v) a strong solution of (4.1) if

F ∈ C0([0, T ], H3(Td,Md×d
+ )) ∩ C1((0, T ), H1(Td,Md×d

+ ))

v ∈ C0([0, T ], H2(Td,Rd)) ∩ C1((0, T ), L2(Td,Rd))
(4.9)

and if it satisfies (4.1) in a point-wise sense almost everywhere.

Definition 4.2 (Strong solution of (4.3)) We call a tuple (F̃α, ṽα, C̃α) a strong solution of
(4.3) if

F̃α ∈W 1,∞(0, T ;L2(Td,Md×d
+ )) ∩ C([0, T ], H1(Td,Md×d

+ ))

ṽα ∈ H1(0, T ;L2(Td,Rd)) ∩ L∞(0, T ;H1(Td,Rd)) ∩ L2(0, T ;H2(Td,Rd))
C̃α ∈ C1((0, T ), H1(Td,Md×d

+ )) ∩ C([0, T ], H3(Td,Md×d
+ ))

(4.10)

and if it satisfies (4.3) in a point-wise sense almost everywhere.

We will not provide any well-posedness analysis in the multi-dimensional case. A main difficulty
of such an analysis would be to exclude det(F̃α) → 0 at some point in finite time. We will show
results under the assumption that strong solutions exist.

4.2 Relative entropy

Proposition 4.3 (Relative entropy equality) Let T, γ, µ > 0 be given. Let (F,v) be a strong
solution of (4.1),(4.8) and let (F̃α, ṽα, C̃α) be a strong solution of (4.3),(4.8). Then, the following
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relative energy estimate is satisfied:

d

dt

∫
Td

W (F̃α) +
αγ

2
|F̃α − C̃α|2 +

γ

2
|∇C̃α|2 +

1

2
|ṽα|2 −W (F)− γ

2
|∇F|2 − 1

2
|v|2

− ∂W

∂Fij
(F)(F̃αij − Fij)− γ∂kFij∂k(C̃αij − Fij)− vi(ṽαi − vi) d x

=

∫
Td

−µ|Dṽα −Dv|2 + ∂jvi

[ ∂W
∂Fij

(F̃α)− ∂W

∂Fij
(F)− ∂2W

∂Fij∂Fkl
(F)(F̃kl − Fkl)

]
+ γ∆Fij∂t(C̃

α
ij − F̃αij) d x. (4.11)

Proof :
The proof is analogous to the proof of Lemma 3.1. For completeness it is given in the Appendix.
�

Corollary 4.4 (Reformulated relative entropy) Under the assumptions of Proposition 4.3 the
following equation is fulfilled

d

dt

∫
Td

W (F̃α)−W (F)− ∂W

∂Fij
(F)(F̃αij − Fij) +

αγ

2
|F̃α − C̃α|2 +

γ

2
|∇C̃α −∇F|2 +

1

2
|ṽα − v|2 d x

=

∫
Td

γ∆Fij∂t(C̃
α
ij−F̃αij)−µ|Dṽα−Dv|2+∂jvi

[ ∂W
∂Fij

(F̃α)− ∂W
∂Fij

(F)− ∂2W

∂Fij∂Fkl
(F)(F̃kl−Fkl)

]
d x.

(4.12)

Proof :
The proof is immediate upon rearranging the velocity and gradient terms in (4.11). �

As in the 1-dimensional case we need to remove the W -terms from the left hand side of (4.12).

Corollary 4.5 (Reduced relative entropy) Under the assumptions of Proposition 4.3 the fol-
lowing estimate is satisfied

d

dt

∫
Td

αγ

2
|F̃α − C̃α|2 +

γ

2
|∇C̃α −∇F|2 +

1

2
|ṽα − v|2 d x

≤
∫
Td

γ∆Fij∂t(C̃
α
ij − F̃αij) +

1

4µ

( ∂W
∂Fij

(F̃α)− ∂W

∂Fij
(F)
)2

d x. (4.13)
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Proof :
A straightforward calculation shows

∂t
(
W (F̃α)−W (F)− ∂W

∂Fij
(F)(F̃αij − Fij)

)
− ∂jvi

( ∂W
∂Fij

(F̃α)− ∂W

∂Fij
(F)− ∂2W

∂Fij∂Fkl
(F)(F̃kl − Fkl)

)
=
∂W

∂Fij
(F̃α)∂j ṽ

α
i −

∂W

∂Fij
(F)∂jvi −

∂2W

∂Fij∂Fkl
(F)∂lvk(F̃

α
ij − Fij)−

∂W

∂Fij
(F)∂j ṽ

α
i +

∂W

∂Fij
(F)∂jvi

− ∂jvi
∂W

∂Fij
(F̃α) + ∂jvi

∂W

∂Fij
(F) + ∂jvi

∂2W

∂Fij∂Fkl
(F)(F̃kl − Fkl)

)
=
( ∂W
∂Fij

(F̃α))− ∂W

∂Fij
(F)
)(
∂j ṽ

α
i − ∂jvi

)
.

(4.14)

Inserting (4.14) into (4.12) implies

d

dt

∫
Td

αγ

2
|F̃α − C̃α|2 +

γ

2
|∇C̃α −∇F|2 +

1

2
|ṽα − v|2 dx

=

∫
Td

−µ|Dṽα −Dv|2 −
( ∂W
∂Fij

(F̃α)− ∂W

∂Fij
(F)
)(
∂j ṽ

α
i − ∂jvi

)
+ γ∆Fij∂t(C̃

α
ij − F̃αij) d x. (4.15)

The assertion of the corollary follows from (4.15) upon using Young’s inequality. �

Lemma 4.6 (Estimate on time derivatives) Under the assumptions of Proposition 4.3 it holds

∣∣ ∫
Td

∆Fij∂t(C̃
α
ij − F̃αij) d x

∣∣ ≤√ 2

α
|F|H3(Td)|ṽα|H1(Td).

Proof :
Because of Lemma 3.11 we have

∣∣ ∫
Td

∆Fij∂t(C̃
α
ij − F̃αij) d x

∣∣ =
∣∣ ∫

Td

∆Fij(Gα[∂iṽ
α
j ]− ∂ivj) d x

∣∣
=
∣∣ ∫

Td

∂ikkFij(Gα[ṽαj ]− ṽαj ) d x
∣∣ ≤√ 2

α
|F|H3(Td)|ṽα|H1(Td). (4.16)

�

Let us denote the Poincaré constant on Td by Kp such that

‖F(t, ·)− C̃α(t, ·)‖2L2(Td) ≤ Kp|F(t, ·)− C̃α(t, ·)|2H1(Td) ∀t ∈ [0, T ], (4.17)

because of∫
Td

F(t,x)− C̃α(t,x) d x =

∫
Td

F(t,x)− F̃α(t,x) d x =

∫
Td

F(0,x)− F̃α(0,x) d x = 0.
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Proposition 4.7 (Growth of reduced relative entropy) Provided the assumptions of Propo-
sition 4.3 are satisfied, then for α large enough

d

dt

(αγ
2
‖F̃α − C̃α‖2L2(Td) +

γ

2
|C̃α − F|2H1(Td) +

1

2
‖ṽα − v‖2L2(Td)

)
≤ W̄ 2Kp

µγ

(αγ
2
‖F̃α − C̃α‖2L2(Td) +

γ

2
|C̃α − F|2H1(Td)

)
+ γ

√
2

α
|F|H3(Td)|ṽα|H1(Td), (4.18)

with W̄ defined in (4.2) and Kp defined in (4.17)

Proof :
Combining (4.13) and Lemma 4.6 we find

d

dt

(αγ
2
‖F̃α − C̃α‖2L2(Td) +

γ

2
|C̃α − F|2H1(Td) +

1

2
‖ṽα − v‖2L2(Td)

)
≤ W̄ 2

2µ

(
‖F̃α − C̃α‖2L2(Td) + ‖C̃α − F‖2L2(Td)

)
+ γ

√
2

α
|F|H3(Td)‖ṽα‖H1(Td)

≤ max
{ 1

α
,Kp

}W̄ 2

γµ

(αγ
2
‖F̃α − C̃α‖2L2(Td) +

γ

2
|C̃α − F|2H1(Td)

)
+ γ

√
2

α
|F|H3(Td)|ṽα|H1(Td). (4.19)

Equation (4.19) proves (4.18) for α sufficiently large.
�

Let us define the multi-dimensional reduced relative energy

ηα(t) :=
αγ

2
‖F̃α(t, ·)−C̃α(t, ·)‖2L2(Td)+

γ

2
|C̃α(t, ·)−F(t, ·)|2H1(Td)+

1

2
‖ṽα(t, ·)−v(t, ·)‖2L2(Td). (4.20)

Then, we can write the assertion of Proposition 4.7 as

(ηα)′(t) ≤ W̄ 2Kp

µγ
ηα(t) + γ

√
2

α
|F(t, ·)|H3(Td)|ṽα(t, ·)|H1(Td). (4.21)

We would like to use Gronwall’s inequality to derive a bound for ηα. In order to do this we need to
estimate ηα(0).

Proposition 4.8 (Estimate on initial relative entropy) Provided the assumptions of Propo-
sition 4.3 are fulfilled, then ηα defined in (4.20) satisfies

ηα(0) ≤ γ

α
‖F̄‖2H3(Td).
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Proof :
We have

ηα(0) =
αγ

2
‖F̃α(0, ·)− C̃α(0, ·)‖2L2(Td) +

γ

2
|C̃α(0, ·)− F(0, ·)|2H1(Td). (4.22)

Using Lemma 3.11 we find

αγ

2
‖F̃α(0, ·)− C̃α(0, ·)‖2L2(Td) ≤

γ

2α
|F̄|2H2(Td)

γ

2
|C̃α(0, ·)− F(0, ·)|2H1(Td) ≤

γ

2α2
|F̄|2H3(Td).

(4.23)

�

Theorem 4.9 (Multi-dimensional model convergence) Let the assumptions of Proposition
4.3 be fulfilled. Then, for α large enough the strong solution (F,v) of (4.1),(4.8) and the strong
solution (F̃α, ṽα, C̃α) of (4.3),(4.8) fulfill the following estimate for all t ∈ (0, T ):

αγ

2
‖F̃α(t, ·)− C̃α(t, ·)‖2L2(Td) +

γ

2
|C̃α(t, ·)− F(t, ·)|2H1(Td) +

1

2
‖ṽα(t, ·)− v(t, ·)‖2L2(S1)

≤ γ

α
‖F̄‖2H3(S1)e

Kt + γ

√
2

α
eKt
(
‖F‖2L2(0,T ;H3(Td)) +

E0

µ
+

γ

µα
‖F̄‖2H3(Td)

)
(4.24)

with

E0 :=

∫
Td

W (F̄) +
γ

2
|∇F̄|2 +

1

2
|v̄|2 d x and K :=

W̄ 2Kp

γµ
.

Proof :
Applying Gronwall’s inequality to (4.21) we find

ηα(t) ≤ ηα(0)eKt + γ

√
2

α

∫ t

0
eK(s−t)|F(s, ·)|H3(Td)|ṽα(s, ·)|H1(Td) d s.

Using Proposition 4.8 and Young’s inequality we find

ηα(t) ≤ γ

α
‖F̄‖2H3(Td)e

Kt + γ

√
2

α
eKt
(
‖F‖2L2(0,T ;H3(Td)) + |ṽα|2L2(0,T ;H1

s (Td))

)
. (4.25)

This completes the proof as

µ|ṽα|2L2(0,T ;H1
s (Td)) ≤ E0 + ηα(0) ≤ E0 +

γ

α
‖F̄‖2H3(Td)

by equation (4.6) analogous to Proposition 3.11.
�

Remark 4.10 (Higher order convergence) If we assumed ‖ṽα‖L2(0,T ;H2(Td)) was bounded uni-
formly in α we would obtain a higher order convergence result analogous to Theorem 3.16.
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Appendix

Proof of Lemma 4.3:
We begin with a direct computation

A :=

∫
Td

∂t

(
W (F̃α) +

αγ

2
(F̃αij − C̃αij)2 +

γ

2
(∂kC̃

α
ij)

2 +
1

2
|ṽα|2 −W (F)− γ

2
(∂kFij)

2 − 1

2
|v|2

− ∂W

∂Fij
(F)(F̃αij − Fij)− γ∂kFij∂k(C̃αij − Fij)− vi(ṽαi − vi)

)
+ ∂j

(
− ∂W

∂Fij
(F̃α)ṽαi + αγ(C̃αij − F̃αij)ṽαi +

∂W

∂Fij
(F)(ṽαi − vi) + γ∂kFij∂k(ṽ

α
i − vi)

+
∂W

∂Fij
(F̃α)vi − γ∂kkC̃αijvi

)
d x

=

∫
Td

∂W

∂Fij
(F̃α)∂tF̃

α
ij − γ∂kkC̃αij(∂tF̃αij − ∂tC̃αij) + γ∂kC̃

α
ij∂k∂tC̃

α
ij + ṽαi ∂tṽ

α
i

− ∂W

∂Fij
(F)∂tFij − γ∂kFij∂k∂tFij − vi∂tvi −

∂2W

∂Fij∂Fkl
(F)∂tFkl(F̃

α
ij − Fij)

− ∂W

∂Fij
(F)∂tF̃

α
ij +

∂W

∂Fij
(F)∂tFij − γ∂t∂kFij∂kC̃αij + γ∂t∂kFij∂kFij

− γ∂kFij∂t∂kC̃αij + γ∂kFij∂t∂kF̃
α
ij − γ∂kFij∂t∂kF̃αij + γ∂kFij∂k∂tFij

− ∂tviṽαi + ∂tvivi − vi∂tṽαi + vi∂tvi

− ∂j(
∂W

∂Fij
(F̃α))ṽαi −

∂W

∂Fij
(F̃α)∂j ṽ

α
i + αγ∂jC̃

α
ij ṽ

α
i − αγ∂jF̃αij ṽαi + γ∂kkC̃

α
ij∂j ṽ

α
i

+ ∂j(
∂W

∂Fij
(F))ṽαi − ∂j(

∂W

∂Fij
(F))vi +

∂W

∂Fij
(F)∂j ṽ

α
i −

∂W

∂Fij
(F)∂jvi

+ γ∂kjFij∂kṽ
α
i − γ∂kjFij∂kvi + γ∂kFij∂kj ṽ

α
i − γ∂kFij∂kjvi

+ ∂j(
∂W

∂Fij
(F̃α))vi +

∂W

∂Fij
(F̃α)∂jvi − γ∂kkjC̃αijvi − γ∂kkC̃αij∂jvi d x.

(4.26)
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In (4.26) several terms cancel and we get

A =

∫
Td

∂W

∂Fij
(F̃α)∂j ṽ

α
i − γ∂kkC̃αij∂j ṽαi + γ∂k(∂kC̃

α
ij∂tC̃

α
ij) + ṽαi ∂j(

∂W

∂Fij
(F̃α))

− γṽαi ∂jkkC̃αij + µṽαi ∆ṽαi −
∂2W

∂Fij∂Fkl
(F)∂lvk(F̃

α
ij − Fij)−

∂W

∂Fij
(F)∂j ṽ

α
i

− γ∂kjvi∂kC̃αij + γ∂kjvi∂kFij − γ∂k
(
∂kFij(∂tC̃

α
ij − ∂j ṽαi )

)
+ γ∂kkFij∂t(C̃

α
ij − F̃αij)

− γ∂kFij∂kj ṽαi − ṽαi ∂j(
∂W

∂Fij
(F)) + γṽαi ∂jkkFij − µṽαi ∆vi + vi∂j(

∂W

∂Fij
(F))

− γvi∂jkkFij + µvi∆vi − vi∂j(
∂W

∂Fij
(F̃α)) + γvi∂jkkC̃

α
ij − µvi∆ṽαi

− ∂j(
∂W

∂Fij
(F̃α))ṽαi −

∂W

∂Fij
(F̃α)∂j ṽ

α
i + γ∂jkkC̃

α
ij ṽ

α
i + γ∂kkC̃

α
ij∂j ṽ

α
i + ∂j(

∂W

∂Fij
(F))ṽαi

− ∂j(
∂W

∂Fij
(F))vi +

∂W

∂Fij
(F)∂j ṽ

α
i −

∂W

∂Fij
(F)∂jvi + γ∂kjFij∂kṽ

α
i − γ∂kjFij∂kvi + γ∂kFij∂kj ṽ

α
i

− γ∂kFij∂kjvi + ∂j(
∂W

∂Fij
(F̃α))vi +

∂W

∂Fij
(F̃α)∂jvi − γ∂kkjC̃αijvi − γ∂kkC̃αij∂jvi d x.

(4.27)

Once more several terms cancel and others may be combined to obtain conservative terms such
that

A =

∫
Td

γ∂k(∂kC̃
α
ij∂tC̃

α
ij) + µ(ṽαi − vi)∆(ṽαi − vi)−

∂2W

∂Fij∂Fkl
(F)∂jvi(F̃kl − Fkl)− γ∂k(∂jvi∂kC̃αij)

− γ∂k
(
∂kFij(∂tC̃

α
ij − ∂j ṽαi )

)
+ γ∂kkFij∂t(C̃

α
ij − F̃αij) + γ∂k(ṽ

α
i ∂jkFij)− ∂j(∂kṽαi ∂kFij)

− γ∂k(vi∂kjFij)−
∂W

∂Fij
(F)∂jvi + γ∂j(∂kFij∂kṽ

α
i ) +

∂W

∂Fij
(F̃α)∂jvi d x.

(4.28)

The assertion of the Proposition follows from (4.26) and (4.28), upon using Gauss’ Theorem and
the periodicity.

�
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2011-016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines

2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance
Function

2011-014 Müller, S.; Dippon, J.: k-NN Kernel Estimate for Nonparametric Functional
Regression in Time Series Analysis

2011-013 Knarr, N.; Stroppel, M.: Unitals over composition algebras

2011-012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of
characteristic two

2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes

2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds
with special holonomy

2011-009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential
Equations

2011-008 Stroppel, M.: Orthogonal polar spaces and unitals



2011-007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe
Gruppenalgebra

2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic
spaces

2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
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2009-001 Brehm, U.; Kühnel, W.: Lattice triangulations of E3 and of the 3-torus
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