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Abstract

One of the limiting factors of using support vector machines (SVMs) in large scale applica-
tions are their super-linear computational requirements in terms of the number of training
samples. To address this issue, several approaches that train SVMs on many small chunks
of large data sets separately have been proposed in the literature. So far, however, almost
all these approaches have only been empirically investigated. In addition, their motivation
was always based on computational requirements. In this work, we consider a localized
SVM approach based upon a partition of the input space. For this local SVM, we derive a
general oracle inequality. Then we apply this oracle inequality to least squares regression
using Gaussian kernels and deduce local learning rates that are essentially minimax opti-
mal under some standard smoothness assumptions on the regression function. Moreover,
we show that unlike the rates for standard global SVMs, our rates do not change if the
smoothness assumption is violated on sets of measure zero. This gives the first motivation
for using local SVMs that is not based on computational requirements but on theoretical
predictions on the generalization performance. We further introduce a data-dependent pa-
rameter selection method for our local SVM approach and show that this method achieves
the same learning rates as before. Finally, we present some larger scale experiments for our
localized SVM showing that it achieves essentially the same test performance as a global
SVM for a fraction of the computational requirements. In addition, it turns out that the
computational requirements for the local SVMs are similar to those of a vanilla random
chunk approach, while the achieved test errors are significantly better.

Keywords: least squares regression, support vector machines, localization

1. Introduction

Based on a training set D := ((z1,41),...,(Zn,yn)) of ii.d. input/output observations
drawn from an unknown distribution P on X x Y, where X € R% and Y C R, the goal of
non-parametric regression is to find a function fp : X — R such that important charac-
teristics of the conditional distribution P(Y|z), € X, can be recovered. For instance, an
fp approximating the conditional mean E(Y|z), x € X, is sought in the non-parametric
least squares regression. This classical non-parametric regression problem has been exten-
sively studied in the literature, where a general reference is the book (Gyorfi et al., [2002),
presenting plenty of results concerning the non-parametric least squares regression.

In the literature, there are many learning methods that solve the non-parametric re-
gression problems, some of them are e.g. described in (Gyorfi et al., 2002; Koenker, 2005;
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Simonoff, 1996). In this paper, we utilize some kernel-based regularized empirical risk
minimizers, also known as support vector machines (SVMs), which solve the regularized
problem

fo € arg;rggA I£17 + Rep (f) - (1)

Here, A > 0 is a fixed real number and H is a reproducing kernel Hilbert space (RKHS)
over X with reproducing kernel k : X x X — R, see e.g. (Aronszajn, 1950; Berlinet and
Thomas-Agnan, 2004; [Steinwart_and Christmann, 2008a). Besides, R p (f) denotes the
empirical risk of a function f: X — R, that is

Rep (f) = %ZL(JEi,yi,f(!Ei)) ;
i=1

where D is the empirical measure associated to the data D defined by D := % Sy O(za,m)
with Dirac measure 6, ,,) at (z;,y;). Note that the empirical SVM solution fp ) exists and
is unique (cf. Steinwart and Christmann, [2008a, Theorem 5.5) whenever the loss L is convex
in its last argument. Moreover, an SVM is L-risk consistent under a few assumptions on
the RKHS H and the regularization parameter A, see (Steinwart and Christmany, 20084,
Section 6.4) for more details. Besides, it is worth mentioning that the ability to choose
the RKHS H as well as the loss function L in () provides the possibility to flexibly apply
SVMs to various learning problems. Namely, the learning target is modeled by the loss
function, e.g. the least squares loss is used to estimate the conditional mean. Moreover,
since RKHSs be defined on arbitrary X, data types that are not R%valued can be handled,
too. Furthermore, SVMs are enjoying great popularity, since they can be implemented and
applied in a relatively simple way and only have a few free parameters that can usually be
determined by cross validation.

An essential theoretical task, which has attracted many considerations, is the investiga-
tion of learning rates for SVMs. For example, such rates for SVMs using the least squares

X f*(z)

z* z
Figure 1: The input space X is partitioned by  Figure 2: The target function f* is not
XM X@ and X®) such that the regression  smooth in z*. Is it anyway possible to glob-
function f* is less smooth on X compared ally achieve an optimal learning rate?
to X and X®). However, it is desirable to
achieve locally optimal learning rates.
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loss and generic kernels can be found in (Cucker and Smale. 2002: De Vito et all.[2005; Smale
and Zhou. 2007: |Caponnetto and De Vitd. [2007: Mendelson and Neeman 201;]; Steinwart
et al., M) and the references therein, while similar rates for SVMs using the pinball loss
can be found in (lSj_einMLarL_a‘ndﬁhristmand, 2008D, l2011|) At this point, we do not want
to take a closer look at these results, instead we relegate to (I&eﬂm&@m, M),
where a detailed discussion can be found. More important for our purposes is the fact that
Eberts and Steinwart (Im, M) establish (essentially) asymptotically optimal learning
rates for least squares SVMs (LS-SVMs) using Gaussian RBF kernels. More precisely, for
a domain X C By, Y := [—M, M] with M > 0, a distribution P on X x Y such that Px
has a bounded Lebesgue density on X, and for f* contained in the Sobolev space W§'(Px),
a € N, or in the Besov space ngoo(P x), a > 1, respectively, the LS-SVM using Gaussian

kernels learns for all & > 0 with rate n_#id”% with a high probability. Although these
rates are essentially asymptotically optimal, they depend on the order of smoothness of the
regression function on the entire input space X. That is, if the regression function f* is
on some area of X smoother than on another area, the learning rate is determined by the
part of X, where the regression function f* is least smooth (cf. Figure [Il). In contrast to
this, it would be desirable to achieve a learning rate on every region of X that corresponds
with the order of smoothness of f* on this region. Therefore, one of our goals of this paper
is to modify the standard SVM approach such that we achieve local learning rates that
are asymptotically optimal. Moreover, this approach will enable us to globally achieve the
optimal learning rate even if there is a P x-zero set where the regression function is not
smooth, cf. Figure 2] where the target function has a sharp kink at x*. Our technique to
achieve such local learning rates is a special local SVM approach. Local SVMs have been
extensively investigated in the literature to speed-up the training time, see for instance, the
early works (B n niki, M; M};Mﬁm@, M) The basic idea of many
local approaches is to a) split the training data and just consider a few examples near a
testing sample, b) train on this small subset of the training data, and c¢) use the solution
for a prediction w.r.t. the test sample. Here, many up-to-date investigations use SVMs to
train on the local data set but, yet there are different ways to split the whole training data
set into smaller, local sets. For example, (Chane et all (2010): 'Wu et all (1 ; Bennett
and Blue (|19_9ﬁ) use decision trees while in m Segata_and Blanzieri,

Blanzieri and Melgan i mﬂé Blanzieri and Bryl B)QMJE Zhang et al J umﬂ local subsets

are built considering k£ nearest nelghbors The latter approaches further vary, for example,

Zhang et all (Imﬂ Blanzieri_ and Bryl (20074); Hable (2013) consider different metrics
w.r.t. the input space whereas lSﬁgam_am_Eﬂanmd (|201)§ Eanmn_am_Mdgaﬂ (|20£ﬁ

Blanzieri and Bry (IM) consider metrics w.r.t. the feature space. Nonetheless, the basic
idea of all these articles is that an SVM problem based on k training samples is solved for
each test sample. Another approach using k nearest neighbors is investigated in (Segata
and Blanzieri, |2Q1d) Here, k-neighborhoods consisting of training samples and collectively
covering the training data set are constructed and an SVM is calculated on each neigh-
borhood. The prediction for a test sample is then made according to the nearest training
sample that is a center of a k-neighborhood. As for the other nearest neighbor approaches,
however, the results are mainly experimental. An exception to this rule is ) ),
where universal consistency for localized versions of SVMs, or more precisely, a large class
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of regularized kernel methods, is proven. Another article presenting theoretical results for
localized versions of learning methods is (Zakai and Ritov, 2009). Here, the authors show
that a consistent learning method behaves locally, i.e. the prediction is essentially influenced
by close by samples. However, this result is based on a localization technique considering
only training samples contained in a neighborhood with a fixed radius and center x when
an estimate in x is sought. Probably closest to our approach is the one examined in (Cheng
et al., 2010) and (Cheng et al), 2007), where the training data is splitted into clusters
and then an SVM is trained on each cluster. However, the presented results are only of
experimental character.

In this article, we partition the input space X according to a cover of X with radius r,
and build an SVM model for each partition cell. The following section is dedicated to the
detailed description of this method. Section [3] then presents some theoretical results that
enable the analysis of this new method. For example, we examine extensions and direct
sums of RKHSs. At the end of Section Bl we finally present a first oracle inequality for
the localized SVM. In Section Bl we focus on RKHSs using Gaussian RBF kernels and, in
conjunction with that, we study some entropy estimates. After that, Section [l concentrates
on the least squares loss and introduces an oracle inequality and learning rates for our
localized SVM method using Gaussian kernels. Moreover, a data-dependent parameter
selection method is studied that induces the same rates. Section [0 then presents some
experimental results w.r.t. the localized SVM technique. All proofs can be found in Section
[, and the appendix contains various tables displaying detailed results of our experiments.

2. Description of the Localized SVM Approach

In this section, we introduce some general notations and assumptions. Based on the latter
we modify the standard SVM approach. Let us start with the probability measure P on
X x Y, where X C R? is non-empty and Y := [~ M, M] for some M > 0. Depending on
the learning target one chooses a loss function L, i.e. a function L : X x Y x R — [0, 00)
that is measurable. Then, for a measurable function f : X — R, the L-risk is defined by

Rup(f) = / L(z.y. f(x)) dP(z,y)

XxY

and the optimal L-risk, called the Bayes risk with respect to P and L, is given by
Rip:=inf{Rpp(f) | f: X — R measurable} .

A measurable function f};P : X — R with R p( fEP) = RZP is called a Bayes decision
function. For the commonly used losses such as the least squares loss treated in Section
the Bayes decision function f7 p is Px-almost surely [— M, M]-valued, since Y = [-M, M].
In this case, it seems obvious to consider estimators with values in [—M, M] on X. To this
end, we now introduce the concept of clipping the decision function. Let ¢ be the clipped
value of some ¢t € R at =M defined by

-M ift<-M
=St if t € [~M, M)]
M ift> M.
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Then a loss is called clippable at M > 0 if, for all (z,y,t) € X x Y x R, we have
L(z,y,t) < L(z,y,1).

Obviously, the latter implies

—~

Rrp(f)<Rrp(f)

for all f: X — R. In other words, restricting the decision function to the interval [—M, M]|
containing our labels cannot worsen the risk, in fact, clipping this function typically reduces
the risk. Hence, we consider the clipped version fD of the decision function as well as the
risk Rva(fD) instead of the risk Ry p(fp) of the unclipped decision function. Note, this
clipping idea does mot change the learning method since it is performed after the training
phase.

To modify the standard SVM approach (), we assume that (A;)j—1,. ., is a partition
of X such that fij # () for every j € {1,...,m}. Obviously, this implies A; N A;, = 0 for
all j1,jo € {1,...,m} with j; # jo and

x={]a,.
j=1

Now, the basic idea of the approach developed in this paper is to consider for each set of the
partition (A;);j=1, .m an individual SVM. To describe this approach in a mathematically
rigorous way, we have to introduce some more definitions and notations. Let us begin with
the index set

IjZ:{iE{l,...,n}lxiEAj}, i=1....m,

indicating the samples of D contained in A;, as well as the corresponding data set

Djiz{(xi,yi)EDZiEIj}, i=1....m.
Moreover, for every j € {1,...,m}, we define a (local) loss function L; : X XY xR — [0, 00)
by
Lj(z,y,t) = 14,(z)L(z,y,t), (2)

where L : X XY xR — [0, 00) is the loss that corresponds to our learning problem at hand.
We further assume that H; is an RKHS over A; with kernel k; : A; x A; — R. Note that
every function f € Hj is only defined on A; even though a function fp : X — R is finally
sought. To this end, for f € H;, we define a function f : X - R by

sy flx), ze€Aj,

Then the space ]ij = {f : f € H;} equipped with the norm

”JE”[}{J = HfHHgv fE]ij,
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is an RKHS on X (cf. Lemma ). That is, H ;j is an isometrically isomorphic extension of
the RKHS H; on A; to an RKHS on X. After all, we are now able to formulate a modified
SVM approach. To this end, for every j € {1,...,m}, consider the local SVM optimization
problem

fo, —mg?mAHﬂF-+ Ejo“%f@m, (3)
=1
where \; > 0 for every j € {1,...,m}. Based on these empirical SVM solutions, we then

define the decision function fp x : X — R by

foa(z ZfDJ,,\ Z]lA (@) fo; 0 () 5 (4)

where A := (A1,...,\p). Here, clipping fp x at M yields

foalx Z]lA (2)

for every z € X. Note that the empirical SVM solutions fp, »; in (3) exist and are unique
by (Steinwart and Christmann, 2008a, Theorem 5.5) and that, for arbitrary j € {1,...,m},
I, =0ifz; ¢ Aj for all i € {1,...,n}. In addition, the SVM optimization problem (3)
equals the SVM optlmlzatlon problem (III) using H;, Dj, and the regularization parameter
)\] = |I‘)\],smce forfeH and f := f‘A,We have

AijHz ZL (i yir f (i) = NI U7, + ZL (@i, yi, f (1))

ZGI
_ 14
= 22 (G $1B, + Re, (1)) -
That is, fp,, as in (@) and hp, 5, 7= argminger, S‘J”f”%g +Rrp,(f) satisfy

hD]‘,S\j = ij7)‘j|Aj '

For the sake of completeness, we briefly examine the Bayes risks w.r.t. P and L;. To
this end, let X C R4, Y C R, L: X xY xR — [0,00) be a loss function and P be a
distribution on X x Y such that a Bayes decision function f; p: X — R exists. Then, for

all j € {1,...,m} and losses L; defined by (2, it is easy to show

Rei;p(fLp) =RL,p

whenever f] p exists. In other words, a Bayes decision function f; p, w.r.t. P and L addition-
ally is a Bayes decision function w.r.t. P and L;. Moreover, for function spaces Fi,...,Fp,
over X, we have

m

m
n Re;olf5) = i R ; 5
j; frg'rél.gj L],D(fj) f1 6]:17H..1.}Iflme]:m JZ:; Lij(f]) ( )
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by the construction of the loss Lj;.

Let us now present an advantageous characteristic of our modified SVM, namely the
required computing time. Solving an usual SVM problem has a computational cost of O(n?)
where ¢ € [2,3] and n is the sample size. For the new approach we consider m working
sets of size ny,...,n, where n; =~ n; for all i,j € {1,...,m}, i.e. n; = 2. Then for each
working set an usual SVM problem has to be solved such that, altogether, the modified
SVM induces a computational cost of O (m (%)q) That is, for some 8 > 0 and m ~ n®
our approach is computationally cheaper than a traditional SVM. Note that our strategy
using a partition of the input space is a typical way to speed-up algorithms and handle large
data sets. Other techniques that possess similar properties are e.g. applied in the articles
cited in the introduction. Besides, we refer to (Tsang et al., [2007) and (Tsang et all, 2005)
using enclosing ball problems to solve an SVM, to (Graf et all, [2005) presenting an model
of multiple filtering SVMs and to (Collobert et all, 2001) investigating a mixture of SVMs
based on several subsets of the training set.

To describe the above SVM approach (A;)j=1, . m only has to be some partition of X.
However, for the theoretical investigations concerning learning rates of our new approach,
we have to further specify the partition. To this end, we denote by Bég the closed unit ball

in the d-dimensional Euclidean space Eg and we define balls By, ..., B,, with radius r > 0
and mutually distinct centers z1,..., 2, € X by
Bj = By(zj) ={r € X : [z — zj|l2 < r} jed{l,...,m}, (6)
where || - ||2 is the Euclidean norm in R?. Moreover, choose r and z1, ..., z,, such that
m
UBi=x,
j=1

i.e. such that the balls By, ..., B, cover X (cf. Figure3]). The following well-known Lemma
relates the radius of such a cover with the number of centers.

Lemma 1 Let X C R? be a bounded subset, i.e. X C CBZ% for some constant ¢ > 0. Then
there exist balls (Bj)j=1,..m with radius v > 0 covering X such that

=

r < 8&m~

For simplicity of notation, we assume in the following that X C Bzg, i.e. according to
Lemma [I] there exists a cover (B;);j=1,..m with

=

r<8m~

(7)

Finally, we can specify the partition (A;)j=1..m of X by the following assumption.

(A) Let (Aj)j=1,..,m be a partition of X C Byg such that /Olj # () for every j € {1,...,m}
and such that there exist mutually distinct zq,...,2, € X with A; C B,(z;) =: By,
where (Bj);=1,..m is a cover of X satisfying ().
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Figure 3: Cover (Bj)j=1

m of X, where Figure 4: Voronoi partition (A;);=1
By,..., By, are balls with radius r and cen- X defined by (8), where A; C B; for every
ters z; (j=1,...,m). je{l,...,m}.

..........

In the remaining sections we will frequently refer to Assumption (A). However, the results
hold as well if we merely assume z1,...,2, € ng instead of z1,...,2,m, € X C Bzg in (A).
The following example illustrates that (A) is indeed a natural assumption.

Example 1 For some r > 0, let us consider an r-net zi,...,zm of X, where z1,...,2m
are mutually distinct. Based on these z1,...,2m, a Voronoi partition (Aj;)j=1,..m of X is
defined by
Aj = {x € X :j = min{ argmin ||z — zk||2}} , (8)
ke{lvvm}

cf. Figure[f] That is, A; contains all v € X such that the center z; is the nearest center to
x, and if there exist j1 and jo with j1 < jo and

2 = zj ll2 = |z — 2jl2 < ||z — 22

forallk € {1,...,m}\{j1, 2}, then x € Aj, since j1 < ja. In other words, they are resolved
in favor of the smallest index of the involved centers. Moreover, it is obvious that Aj # 0,
A; C Br(zj) forall j € {1,...,m}, A;;, N Aj, =0 for all ji,j2 € {1,...,m} with ji # jo,
and X = U;nzl Aj. In other words, a Voronoi partition based on an r-net z1,...,2y, of X
satisfies condition (A), if r and m fullfil (7).

Following Example[I] we call the learning method producing fp  given by (@) a Voronoi
partition support vector machine, in short VP-SVM. Nevertheless, we just take a partition
(Aj)j=1,..m satisfying (A) as basis here instead of requesting (A4;);=1,...m to be a Voronoi
partition.

Recall that our goal is to derive not only global but also local learning rates for this VP-
SVM approach. To this end, we additionally consider an arbitrary measurable set T' C X
such that Px(7") > 0. Then we examine the learning rate of the VP-SVM on this subset T’
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of X. To formalize this, it is necessary to introduce some basic notations related to T'. Let
us define the index set Jr by

Jre={je{l,...,m}: A;NT # 0} (9)

specifying every set A; that has at least one common point with 7". Note that, for every
non-empty set 7' C X, the index set Jp is non-empty, too, i.e. |Jp| > 1. Besides, deriving
local rates on T requires us to investigate the excess risk of the VP-SVM with respect to
the distribution P and the loss Ly : X x Y x R — [0, 00) defined by

Ly(z,y,t) := 1p(x)L(z,y,t). (10)

However, to manage the analysis we additionally
need the loss Ly, : X xY xR — [0,00) given
by

A @)Lyt (1)

which may only be nonzero, if x is contained in
some set A; with j € Jp. Note that the risiks
R, p(f) and RLJT,p(f) quantify the quality of
some function f just on 7" and

Ap = U Aj T,
JEJT

LJT (:Ev Y, t) = ]]'U

jeJr

respectively. Hence, examining the excess risks Figure 5: The input space X with the corre-

~ ~ sponding partition (A4;);=1,..., and the sub-
Ripp(foa) ~ Ripp < Riy p(fon) = Ri,, p (ids=t...m

set T', where the local learning rate should be
leads to learning rates on Ap and implicitly on

examined.
T. Recapitulatory, let us declare a second set of assumptions.

T) For T' C X, we define an index set Jr by (@), loss functions Ly, Ly, : X XY xR —
T
[0,00) by ([I0) and (1)), and the set Ap := ljeJT Aj.

3. An Oracle Inequality for VP-SVMs

In this section, we first focus on RKHSs and direct sums of RKHSs. Then we present a
lemma that relates the risk of a function w.r.t. the general loss L to the risks w.r.t. the
losses L;. Finally, we establish a first oracle inequality for VP-SVMs.

Let us begin with some basic notations. For ¢ € [1,00] and a measure v, we denote by
L,(v) the Lebesgue spaces of order ¢ w.r.t. v and for the Lebesgue measure 1 on X C R
we write Ly(X) := Ly(p). In addition, for a measurable space X, the set of all real-valued
measurable functions on X is given by Lo(X) := {f : X — R| f measurable}. Moreover,
for a measure v on X and measurable X C X , we define the trace measure V% of vin X

by V‘;{(A) = (AN X) for every A C X.
Our first goal is to show that fpx in (@) is actually an ordinary SVM solution. To

this end, we consider an RKHS on some A C X and extend it to an RKHS on X by the
following lemma, where we omit the obvious proof.
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Ler{lma 2 Let AC X and Hy be an RKHS on A with corresponding kernel ka. Denote
by f the extension of f € Hy to X defined by

o ) flx), forzeA,
fa) = {0, forx e X\A.

Then the space Hy = {f : f € Hy} equipped with the norm

1z, = 1l

is an RKHS on X and its reproducing kernel is given by

. : {k‘A(:E,:E’), if v,x' € A, (12)

0, else.

Based on this lemma, we are now able to construct an RKHS by a direct sum of RKHSs
Hj and Hp with A,B C X and AN B = (). Here, we skip the proof once more, since the
assertion follows immediately using, for example, orthonormal bases of H4 and Hpg.

Lemma 3 For A,B C X such that ANB =0 and AUB C X, let Hy and Hg be RKHSs
of ka and kg over A and B, respectively. Furthermore, let Hy and Hp be the RKHSSs of all
functions of Ha and Hp extended to X in the sense of Lemmald and let ka and kp given
by (@) be the associated reproducing kernels. Then HaN Hp = {0} and hence the direct
sum

H:=H,® Hp (13)

exists. For )‘A’Z\B >0 and f e H, let fA € Hy and fB € Hp be the unique functions such
that f = fa+ fp. Then we define the norm || - ||z by

£ o= Mall Fally + sl F (14)
and H equipped with the norm || - || g is again an RKHS for which
k(x,2') := AAl%A(x,x') + )\B]A{?B(l‘,l‘,), z, 2 € X,
1s the reproducing kernel.

To relate Lemmas [2] and [ with (@), we have to introduce some more notations. For
pairwise disjoint sets Ay,..., A, C X, let H; be an RKHS on A; for every j € {1,...,m}.
Then, based on RKHSs Hy, ..., H,, on X defined by Lemma 2 the joined RKHSs can be
designed analogously to Lemma [Bl That is, for an arbitrary index set J C {1,...,m} and
a vector A = (\;);es € (0,00)] the direct sum

Hy:=H; ==Y _f:fjcHforaljeJ

jed jedJ

10
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is again an RKHS equipped with the norm

11, = SNl - (15)

JjeJ
If J={1,...,m} we simply write
H:=Hj; (16)

Note that H contains inter alia fp x given by (). Summarizing, we can define another
assumption set.

(H) For every j € {1,...,m}, let H; be a separable RKHS of measurable kernels k; over
Aj, where Ay,..., Ay C X are pairwise disjoint and

”k‘jH%Q(PX‘Aj) = /ij(xax)dPXAj(x) <00
Then we define RKHSs Hy, ..., H,, by Lemma [ and the joined RKHS H by (I8)

equipped with the norm (I5) for fixed Aq,..., A, > 0.

Having designed a joined RKHS as above, a crucial property of its function’s risks is
expressed by the following lemma.

Lemma 4 Let P be a distribution on X XY and L : X xY xR — [0,00) be a loss
function. For A, B C X such that AUB = X and ANB = (), define loss functions L, Lp :
X xY xR — [0,00) by La(z,y,t) = La(x)L(x,y,t) and Lp(z,y,t) = 1p(x)L(x,y,t),
respectively. Furthermore, let f4 : X — R as well as fg : X — R be measurable functions
and f: X — R be defined by f(z) = L1a(x)fa(z) + 1p(z)fp(z) for all x € X. Then we
have

Rrp(f) =Rr,p(fa) +Rryp(fB).

as well as
Rrp(f) —Rip= (Reap(fa) —Ri,p) + (Rezp(fB) —Ri,p) -

Note that Lemma M can be transferred to finite, pairwise disjoint unions. To be more
precise, let us consider an arbitrary index set J C {1,...,m} and define the corresponding
loss function Ly : X x Y x R — [0,00) by

LJ(xayat) = ]lUjEJ Aj (.Z')L(.Z',y,t) :

Now, it is straightforward to show

Re,p(f) = Rip(f)

JjeJ

for every function f : X — R. Based on this generalization and the whole index set
J = {1,...,m}, let us briefly consider Lemma [ for the empirical measure D and for

11
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foa = Z?:l Ta,fp; ), where fp. ., j = 1,...,m, are defined by (@). Then, for an
arbitrary f € H, it immediately follows

NE

oy +Reo(fox) = <>\j | /o, ., HZJ + RLjD(fD,A))

1

3T

<, (Aj H]lAiji;rj + RLJ‘vD(f)>

= I3 + Reo(f). (17)

<
Il

That is, fp x is the decision function of an SVM using H and L as well as the regularization
parameter A = 1. In other words, the latter SVM equals the VP-SVM given by (). This
will be a key insight used in our analysis.

To derive an oracle inequality, i.e. an appropriate upper bound for the excess risk
RLJ7P(!)‘A’D7>\) — R}, p for some index set J C {1,...,m}, we have to introduce a few
more notations. Let P be a distribution on X x Y such that a Bayes decision function
fip: X — [-M, M] exists, for some constant M > 0 at which L can be clipped. Moreover,
we denote by L o f the function (x,y) — L(z,y, f(x)). If there exist constants B > 0,
¥ €1[0,1], and V > B>~ such that we have

L(z,y,t) < B, (18)
Ep(Lof—Lofip) <V-(Ep(Lof—Lofip))’, (19)
for all (z,y) € X xY,t € [-M,M], and f : X — [-M, M|, we say that the supremum

bound (I8) and the variance bound (I9)), respectively, is fulfilled. Actually, (I8) immediately
yields

Lj(z,y,t) =1y, _, a,(@)L(z,y,t) < L(z,y,t) < B

for all (z,y) € X xY and t € [-M, M], i.e. the supremum bound is also satisfied for L.
Moreover, if (I9) holds for all f : X — [-M, M], the variance bound using the loss L is

satisfied, too. Indeed, by the use of f(x) := Ly, 4 () f(x) + ]lX\(U»EJAj)(x)sz(x) for
J )
all x € X, we have

B 2
Ep <Ljof—LJOf£,P)
B 2
Ep (LOf—LOfiP)
) (EP (LOf— Lofz,P))ﬁ
- (Ep (Lyof— LJsz,P))ﬂ

for all f: X — [—M, M]. Let us quickly define a third assumption set.

Ep (Ljof—Ljo fz,P)2

IN

v
v

IN

(P) Let P be a distribution on X x Y such that the variance bound (I9) is satisfied for
constants ¥ € [0,1], V > B27? and all functions f : X — [~M, M].

12
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Up to now, there is still missing a classical tool that is used to derive learning rates,
namely entropy numbers, see (Carl and Stephani, 1990) or (Steinwart and Christmann,
20084, Definition A.5.26). Recall that, for normed spaces (E,| - ||g) and (F,| - ||r) as
well as an integer ¢ > 1, the i-th (dyadic) entropy number of a bounded, linear operator
S : E — F is defined by

ei(S:E—F):=¢(SBg,| - |F)

27,71
= inf{a > 0:3sq,...,89i-1 € SBg such that SBg C U (s + EBF)} ,
j=1

where we use the convention inf () := oo, and Bg as well as Br denote the closed unit balls
in E and F, respectively. Finally, we present a first oracle inequality involving an upper
bound for the excess risk R, p(fp.a) — R}y, p» where J C {1,...,m} is an arbitrary index
set.

Theorem 5 Let L : X XY xR — [0,00) be a locally Lipschitz continuous loss that can
be clipped at M > 0 and that satisfies the supremum bound ([A8) for some B > 0. Based
on a partition (Aj)j=1,...m of X, where fij # 0 for every j € {1,...,m}, we assume (H).
Furthermore, for an arbitrary index set J C {1,...,m}, we suppose (P). Assume that,
for fized n > 1, there exist constants p € (0,1) and ay,...,an > 0 such that for all
jed{l,...,m}

1

ei(id:Hj%LQ(PX‘Aj)) Saji_z, 1> 1. (20)

Finally, fiz an fo € H and a constant By > B such that ||Lj o folleo < Bo. Then, for all
fized 7 >0, A= (A1,...,A\p) >0, and

— -p_2p
a := max { cp/m E )\j a; ,B 3,
=1

the VP-SVM given by (@) using Hy, ..., H,, and Ly satisfies

m
> Ajllfo, H%,j +Re,p(for) —RL,p
j=1

S 2 2 —1\ s
<9 ZAJ\|nAjf0||gj+RLJ,p(f0)—RzJ,P +C (a2~ t) T 43

- n
Jj=1

n

<72V7’> = | 5By

T

with probability P™ not less than 1 — 3e™
M, V, 9, and B.

, where C' > 0 is a constant only depending on p,

The above theorem deals with the case of a partition with quite a few sets A;, j €
{1,...,m}. However, if we consider a partition consisting of just one set Ay, i.e. 4] = X,
Theorem [0 is supposed to provide an oracle inequality that is comparable to the already

13
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known ones. To make that sure, let us briefly consider the case m = 1 and hence A; := X,
A1 := X as well as RKHSs H; = H; = H over X with || - [|% = A|| - |3, Note that in this
case we have fp x = fp, . If (20) holds for H;, Theorem [{l yields that an SVM using H
and Lj = L satisfies

Ml foallE, +Rep(for) — Rip

2p ﬁ !
* G\ Ty T 15Byr
<9 (AlfollF, + Rep(fo) —Rip) +C (Cp ; ) 9 < n > N

APn n

with probability P™ not less than 1 — 3e~" for fixed 7 > 0. Note that this oracle inequality
indeed matches with the one stated in (Steinwart and Christmann, 20084, Theorem 7.23)
apart from the constant ¢,, which is, however, only depending on p, 9, and B.

In the folllowing section, we focus on RKHSs using Gaussian RBF kernels and examine
the associated entropy numbers to specify ([20). Subsequently in Section [l we additionally
consider the least squares loss and adapt the oracle inequality of Theorem [l

4. Entropy Estimates for Local Gaussian RKHSs

In this section, we refine assumption (20). More precisely, in the subsequent theorem we
determine an upper bound for the entropy numbers of the operator id : H,(A) — Lo(P X A)s
where H.,(A) is the RKHS over A of the Gaussian RBF kernel k., on A C R defined by

by (,2/) = exp (—y e = 2'[) . vl € A,
for some width v > 0.

Theorem 6 Let X C R, Px be a distribution on X and A C X be such that A # 0 and
such that there exists an Euclidean ball B C R% with radius v > 0 containing A, i.e. A C B.
Moreover, for 0 < v < r, let H,(A) be the RKHS of the Gaussian RBF kernel k., over A.
Then, for all p € (0,1), there exists a constant ¢, > 0 such that

d+2p d+2p 1

ei(id : Hy(A) = La(Px|a)) < ep/Px(A)r 2 o 2 i 2 i>1.

Obviously, this theorem specifies assumption (20). Now, for the Gaussian case we elab-
orate assumption (H) and introduce the following additional set of assumptions.

(G) Let Ay,..., Ay, be pairwise disjoint subsets of X with non-empty interior such that,
for some fixed r > 0 and every j € {1,...,m}, sup, weq, [z — 2'[l2 < 2r is satisfied.
Furthermore, for every j € {1,...,m}, let H; := H, (A;) be the RKHS of the Gaus-
sian kernel k., with width v; € (0,7] over A;. Consequently, for X := (A1,...,\p) €
(0,00)™, we define the joined RKHS H := P]., ]flw (A;) by [I8) equipped with the
norm ([I5).

Since we do not consider SVMs with a fixed kernel, we use a more detailed notation
than (B) and (@) in the following specifying the kernel width ~; of the RKHS H., (A;) at
hand. For all j € {1,...,m} and v := (71, ...,Ym), we thus write

. IS
I nm = argf min >‘J'HfH§L,(Aj) +- ZLj(iﬂi,yi,f(SUi)),
j ! i=1

€H~, (4

14
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and

m

fD,}\,’Y = Z ij,)\j,’Yj

J=1

instead of fp, x; and fp x in the remainder of this work.

In the subsequent section, we consider the least squares loss which, together with As-
sumption (G) and Theorem [0 allows us to elaborate the oracle inequality stated in Theorem
so that we finally obtain learning rates.

5. Learning Rates for Least Squares VP-SVMs

In this section, the non-parametric least squares regression problem is considered using the
least squares loss L : Y x R — [0, 00) defined by L(y,t) := (y — t). It is well known that,
in this case, the Bayes decision function f7 p : R? — R is given by fip(@) =Ep(Y|z) for
P x-almost all z € R?. Moreover, this function is unique up to zero-sets. Besides, for the
least squares loss the equality

Rep(f)—Rip=|f— fZ,PHQM(pX)

can be shown by some simple, well-known transformations. Recall that T' is a non-empty
subset of X, where the index set Jr defined by (@) indicates every set A; of the partition
(Aj)j=1,..m of X that shares at least one point with 7. The associated loss function
Ly, : X xY xR —[0,00) is defined by (II)).

5.1 Basic Oracle Inequalities for LS-VP-SVMs

To formulate oracle inequalities and derive rates for VP-SVMs using the least squares loss,
the target function fip is assumed to satisfy certain smoothness conditions. To this end, we
initially recall the modulus of smoothness, a device to measure the smoothness of functions
(see e.g. (DeVore and Lorentz, 1993, p. 44), (DeVore and Popov, [1988. p. 398), and (Berens
and DeVore, [1978, p. 360)). Denote by | - ||, the Euclidean norm and let X C R? be a subset
with non-empty interior, v be an arbitrary measure on X, p € (0,00], and f : X — R be
contained in L, (v). Then, for s € N, the s-th modulus of smoothness of f is defined by

Wg v f,t:Sllp AS f7' v) t207
Ly (f;1) ||h||2§t” R,

where A} (f, -) denotes the s-th difference of f given by
s S8\ (_1\5—J . .

0 if z ¢ Xsp
for h = (h1,...,hq) € [0,00)? and X, := {x € X : 2 +th € X fa. t €[0,s]}. Based on
the modulus of smoothness, we introduce Besov spaces, i.e. function spaces that provide
a finer scale of smoothness than the commonly used Sobolev spaces and that will thus be
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assumed to contain the target function later on. To this end, let 1 < p,q < o0, a > 0,
s:= |a] + 1, and v be an arbitrary measure. Then the Besov space By, (v) is defined by

Bo, ) i={f € L) : [flgy ) < 0} -

where the seminorm |- |ga (, is given by
p,q

1
% —a dt\ e
|f|Bqu(1/) = </0 (t Ws, Ly (v) (f, t))q 7) , 1<q< o0,

or
[flBg L) = sup (t™ws,r,0) (f,1)

see e.g. (Adams and Fournier, 2003, Section 7) and (Triebel, 2010, Sections 2 and 3).
Note that HfHng(y) = |Ifllg,0) + flg ) actually describes a norm of B, (v) for all
q € [1,00], see e.;g. (DeVore and Lorentz, K1993, pp. 54/55) and (DeVore and Popov, 1988,
p. 398). Again, if v is the Lebesgue measure on X, we write By (X) := By (v). For the
sake of completeness, recall from e.g. (Adams and Fournier, 2003, Section 3) and (Triebel,
2010, Sections 2 and 3) the scale of Sobolev spaces Wy*() defined by

Wy (v) = {f €L,(v): OB f e L, (v) exists for all B € N& with || < a} ,

where o € Ny, 1 < p < o0, v is an arbitrary measure, and 8% is the 3-th weak derivative
for a multi-index 8 = (B1,...,84) € Nd with |3| = Z?:l Bi. That is, W*(v) is the space
of all functions in L,(v), whose weak derivatives up to order « exist and are contained in
L,(v). Moreover, the Sobolev space is equipped with the Sobolev norm

1By = 3 0]

1B|<a

p
Ly(v)

(cf. |Adams and Fournier, 2003, page 60). We write W) (v) = L,(v) and, for the Lebesgue
measure p on X C R% we define WHX) := W (). It is well-known, see e.g. (Edmunds
and Triebel, [1996, p. 25 and p. 44), that the Sobolev spaces W;‘(Rd) fall into the scale of
Besov spaces, namely

a(md a d
W7 (R C By, (RY)

for « € N, p € (1,00), and max{p,2} < g < co. Moreover, for p = ¢ = 2 we actually have
equality, that is W' (RY) = B%Q(Rd) with equivalent norms.

Based on the least squares loss and RKHSs using Gaussian kernels over the partition
sets A;, the subsequent theorem refines the oracle inequality stated in Theorem [5l

Theorem 7 Let Y := [-M,M] for M >0, L: Y xR — [0,00) be the least squares loss
and P be a distribution on R x Y. We write X := suppPx. Furthermore, let (A) and
(G) be satisfied. In addition, for an arbitrary subset T C X, we assume (T). Moreover,
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let fip: R?Y — R be a Bayes decision function such that fip € La(RY) N Loo (RY) as
well as ffp € BY(Px|ay) for some o > 1. Then, for all p € 0,1), n >1, 7 > 1,
v = (7,- ..,ym) 0,7]™, and X = (M\,...,Am) > 0, the VP-SVM given by (IZI) using
H, (Ay),...,H, (Ay), and the loss Ly, satisfies

Z)\ Hij)\J,’YJHH (A +RL]T’ (fDAK')’) REJT,P
7=1
p

. N ¢ d+2

< CMap E )\Jy 7m?XJ€JT% max7 oy 2P E)\ 7 ”pPX(Aj) n~H4rn!
by J minje g, vj ) J€Jr J

T

with probability P™ not less than 1 —e™", where Chrap > 0 is a constant only depending on
M, a,p, d, Hfz,PHLz(Rd)} Hfz,P”Loo(Rd)} and \\fz,p\\ng(PX‘AT)-

Using this oracle inequality, we derive learning rates w.r.t. the loss L ;,, for the learning
method described by ([@B]) and (@) in the following theorem.

Theorem 8 Let 7 > 1 be fixed and B > 270‘ + 1. Under the assumptions of Theorem [7] and
with

1
rp =cin Pl (21)
>\n,j = CQT’d’I’L_l , (22)
1
Yn,j = €3N~ 2atd (23)

for every j € {1,...,my,}, we have, for alln >1 and £ > 0,
N * _ 2« +§
,R,LJT7P(fD,)\n,ﬂyn) - RLJTP < COrn~ 2a+d

with probability P™ not less than 1 — e 7, where Ay := (Ap1,..., Apm,,) as well as 7y, =
(Y15 s Ynmn) and C,c1, c2,c3 are positive constants with c3 < c;.

In the latter theorem the condition 5 > 20‘ + 1 is required to ensure 7, ; < r,, j =
1,...,my,, which in turn is a prerequisite ar1smg from Theorem [6] and the used entropy

1
estimate. Let us briefly examine the extreme case § = 270‘ +1. Using r,, & n~ 84 and (7)) leads

d
to covering numbers of the form m, =~ n?+d and computational costs of O(mn(min)q) =
2aq+d
(’)(n 20t ) which is actually less than the computational cost of order n?, g € [2,3], of an

usual SVM. Note that for increasing § the computatlonal cost of an VP-SVM is increasing

as well. However, for g > 20‘ +1,r, & n ~Fa and m, ~ nB a VP-SVM has costs of
1+(/J‘ 1)q

O(n ) which still is less that O (n9).
Let us finally take a closer look at thAe VP-SVM given by () and the considerations
related to ('), where fp x € H = @;”:1 Hj; solves the minimization problem

foa= argmin ZA 14311, +Reo (X 1) -
7j=1

fi€H1,... fm€Hm j=1

17
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Choosing Ay = ... = A, the VP-SVM problem can be understood as fo-multiple ker-
nel learning (MKL) problem using the RKHSs Hj, ..., Hy,. Learning rates for MKL have
been treated, for example, in (Suzuki, 2011) and (Kloft and Blanchard, 2012). Assuming

1
fz’P € H, the learning rate achieved in (Suzuki, 2011) is mn~ T+s for dense settings, where
s is the so-called spectral decay coefficient. In addition, Kloft and Blanchard (2012) ob-
tainessentially the same rates under these assumptions. Let us therefore briefly investigate

the above rate of (Suzuki, 2011). For RKHSs that are continuously embedded in a Sobolev

2a
space W§'(X), we have s = % such that the learning rate reduces to mn  2a+d. Note that

this learning rate is m times the optimal learning rate n_%, where the number m = m,,
of kernels may increase with the sample size n. In particular, if m, — oo polynomially,
then the rates obtained in (Suzuki, 2011) become substantially worse than the optimal rate.
In contrast, due to the special choice of the RKHSs, this is not the case for our VP-SVM
problem, provided that m,, does not grow faster than n'/?.

Note that the oracle inequalities and learning rates achieved in Theorems[7land Bl require
fz’P € By, (P X|Uje sy Aj). However, for an increasing sample size n, the sets A; shrink and
the index set Jr, indicating every set A; such that A;NT # @ and T C | iy Aj, increases.
In particular, this also involves that the set | J s A;j covering T changes in tandem with
n. Since this is very inconvenient and since it would be desirable to assume a certain level
of smoothness of the target function on a fixed region for all n € N, we consider the set T’
enlarged by an é-tube. To this end, for § > 0, we define T by

TT0:={z € X :3t € T such that ||z — t[]y <} , (24)

which implies T C T79 C X, cf. Figure[6l Note that, for every § > 0, there exists an ng € N
such that for every n > ns the union of all partition sets A;, having at least one common
point with 7, is contained in 719, i.e.

¥6>0 dngeN Vn>n; | AT, (25)
JEJT

where Jr:={j € {1,...,my} : A; NT # 0}. Collectively, this implies

Tc|)AcT?
JEJT

1
for all n > ns. Furthermore, since every set A; is contained in a ball with radius r,, = cn™ 74,
the lowest sample size ng in ([25) can be determined by choosing the smallest ns € N such
that § > 2r,, with r,, as in (), that is

This leads to the following corollary where we present an oracle inequality and learning
rates assuming the smoothness level « of the target function on a fixed region.

18



OPTIMAL LEARNING RATES FOR LOCALIZED SVMSs

Corollary 9 Let Y := [-M, M| for M >0, L : Y xR — [0,00) be the least squares loss
and P be a distribution on R x Y. We write X := suppPx. Furthermore, let (A) and
(G) be satisfied. In addition, for an arbitrary subset T C X, we assume (T). Moreover, let
fip: RY — R be a Bayes decision function such that fip€ La(RY) N Loo(RY) as well as

fip € By (Pxp+s)

for « > 1 and some 6 > 0. Then, for all p € (0,1), n > ng, T >1, 7= (71,.;.,%,1) €
0,7]™, and A = (A1,...,Am) >0, the VP-SVM given by @) using H, (A1), .., Hy,, (An),

and the loss Lt satisfies

m

m

) _
> Xilfp, H,:% ;) T Rerp(fory) = Ripp
=1

p
_ d+2p

d m
max; ;
< Cumap E )\j’Y»_d—i— LJT% maX’YJZO‘—FT% 2:)\‘_17' " Px(A)) T
o2 = J minge j, vy jE€JT = J

T

with probability P™ not less than 1 — e~
Theorem [T,

Additionally, let 8 > 270‘ + 1 as well as, for every j € {1,...,my}, 70, Anj, and vy ; be
as in [21), 22), and 23)), respectively, where c1,co,c3 are user-specified positive constants

with cg < c1. Then, for alln > ng = “%)Bd—‘ and & > 0, we have

, where Chra,p > 0 is the same constant as in

n _270‘_’_
RLTP(fD,}\n;yn) — R*LT,P < Ctn 2a+d 3

with probability P™ not less than 1 —e™ 7, where Ap = (A1, s Anmn)s Yn = (In1s---»
Ynmn), and C is a positive constant.

Note that the assumption f7 p € BS . (Px|r+s) made in Corollary 0l is satisfied if, for
example, f};P € BS"OO(T”‘;) and Py has a bounded Lebesgue density on 719, Moreover,

if this density is even bounded away from 0, it is well-known that the minmax rate is
n~ 2t for o > d/2 and target functions f; p € W5 (T'). Modulo &, our rate is therefore
asymptotically optimal in a minmax sense on 7'. In addition, for a > d, the learning rates
obtained for fip € ngoo(T ) are again asymptotically optimal modulo £ on T'.

Finally, let us consider the case that the regression function f] p satisfies a certain
smoothness level on the whole space X apart from some zero set Z C X. In this setting
we cannot simply use the above results. In fact, we have to take into account that on Z
the regression function is less smooth. Fortunately, the subsequent results, which deal with
the described setting, establish the same rates as above. For their formulation, however, we
need to introduce some notations first. For a subset Z C X, which is supposed to be fixed
and known from the context, and § > 0, we denote the complement of Z19 by

As = X\Z10,
cf. Figure [l In addition, we use the abbreviations

Ymax = max {1, ..., Ym} ,
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Figure 6: An input space X with the corre- Figure 7: An input space X with the corre-
sponding Voronoi partition as well as a subset ~ sponding Voronoi partition as well as a zero
T C X enlarged by an d-tube to T+9. set Z C X enlarged by an é-tube to Z19.

Amin = in {1, ..., Ym
in the following theorem.

Theorem 10 Let Y := [-M,M] for M > 0, L : Y x R — [0,00) be the least squares
loss and P be a distribution on R? x Y. We write X := suppPx. Furthermore, let (A)
and (G) be satisfied. Moreover, assume that Z C X is a Px-zero set with Px(Z%) > 0
for all § > 0. In addition, let fip : R? — R be a Bayes decision function such that
fip € La(RY) N Loo(RY) as well as fip € BS(Px|x\z+s) for fited @ > 1 and 6 > 0.
Then, for all p € (0,1), there exists a constant C > 0 such that for alln > 1, 7 > 1,
v =, m) € (0,7]™, and X = (A\1,...,\p) > 0, the VP-SVM given by @) using
H, (Ay),..., H, (An), and the loss L satisfies

m
> Xillfo, a0 ”%ij ) T Rep(foaq) = Rip
j=1
p
_d+2p

m d m
—d i 2 2 -1 -1, T s
<C El)\jvj —|—<ﬂ> Vi 1P El)\j v, 7 Px(4;)] n —I—E—I—PX(Z'F)
Jj= Jj=

min

T

with probability P™ not less than 1 —e™", where

- * 2
C:=C- HlaX{HfL,PHBg’OO(PX\A(S) ’ 1}
and C > 0 is a constant only depending on M, o, p, d, ||fz,P||L2(Rd)’ and Hfz’PHLm(Rd)'

Note that the constant C in Theorem [0ldepends on || f7 pllps_(p X1ag)" However, f7 p €

2,00

Bg‘m(P X|4;) does not necessarily mean that the corresponding norm is bounded by some
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constant independent of § for all § > 0. In fact, FigureBillustrates that there exist functions
fz’P € Bél,oo(P X| 4,) such that their norm is bounded by some constant or such that the
corresponding norm increases for decreasing §. In the following corollary we will derive the
same learning rates as in Theorem [§only if we exclude case (b) in Figure [§ and assume that
I1f z7p||Bgm(P X|a5) is bounded by some constant for arbitrarily small 4 > 0. Other scenarios,
which consider, for example, certain polynomial behavior of || f7 | Bg . (Px|a;) in ¢, can be
treated analogously.

fE,P(I) fz’p(z)
x x
(a) fip(@) =11 y(@) (1—|z|) (b) fip(z)=e Vidl
Figure 8: Assuming that Py is the uniform distribution on [~1,1] and Z*+° = [, 4] for some

6 € (0,1) yields [ff plp1 _(Pxa,) < 2 for (a) and |f} plpr Py ,,) < e " for (b) where ¢ is a
positive constant.

Corollary 11 Let the assumptions of Theorem[10 be satisfied and assume that there exists
a constant ¢ > 0 such that, for all § > 0, we have

0<Px(Z%°)<cd. (26)

Moreover, let T > 1 be fized, > 270‘ +1, and ||fz,P||B§’oo( y < ¢ forall 6 >0 and some

Pxag

_1 __1
constant ¢ € (0,00). Then, for ry, := cin Bd, A\, j := corin= as well as Vn,j = Cc3n ZaFd

for every j € {1,...,my}, and 6, = cmfﬁiﬁ, we have, for alln > 1 and £ > 0,

in ~ _ 2«
RLvP(fD,An,’yn) - R*L,P S CTTL 2a+d+5

T

with probability P™ not less than 1 —e™7, where Ap = (A1, s Anmn)s Yn = (In1s---»

Ynmn) and C,c1,ca,c3,cq4 are positive constants with cz < c;.

To illustrate the above assumption (26) let us assume that Z is closed and m-rectifiable
in the sense of (Federer, 1969, 3.2.14). Then (Federer, 1969, 3.2.27) together with (Federer,
1969, 3.2.39) shows that

pH(Z70) < 204 H™(Z)54

for all sufficiently small § > 0, where o4_,, denotes the u¢ "-volume of Bja-m, and H™ the
2
m-dimensional Hausdorff measure. From the latter it is easy to conclude that (26) holds.
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5.2 Data-Dependent Parameter Selection for VP-SVMs

Note that in the previous theorems the choice of the regularization parameters A, 1,...,
An,m, and the kernel widths v, 1,. .., Yn,m, requires us to know the smoothness parameter
«. Unfortunately, in practice, we usually do know neither this value nor its existence. In this
subsection, we thus show that a training/validation approach similar to the one examined
in (Steinwart and Christmann, 2008a, Chapters 6.5, 7.4, 8.2) and (Eberts and Steinwart,
2013) achieves the same rates adaptively, i.e. without knowing «. For this purpose, let
A :=(A,) and T := (') be sequences of finite subsets A, C (0,7¢] and T,, C (0,7,]. For a
data set D := ((x1,9y1), .-, (Tn,Yn)), we define

Dy = ((z1,11), -+ (T, m1))
Dy = ((xl-i-la yl-i-l)v SR (l‘n, yn)) )

where [ := [§] + 1 and n > 4. We further split these sets in data sets

D§1): {(gji,yi)EDlixieAj}, j€{17"'7mn}7
D®) = {(zi,y:) € Dy : w; € Aj} je{l...,mn},
and define [; := ]D](-l)] for all j € {1,...,my} such that 37" l; = I. For every j €

1,...,my,}, we basically use DW as a training set, i.e. based on D; in combination with
J
the loss function L; := 14, L we compute SVM decision functions

= argmin )‘j”f”z ) + R0, (f), (Aj, %) € Ap x Iy

ng‘l) ﬁVj (Aj
feH’Yj (Aj)

7>‘j7’\/‘7

(M

Again, note that fD(l) Mo 0if D;” = (). Next, for each j, we use D in tandem with L;
j LAVERY]

(or essentially D](?)) to determine a pair (Ap,_ j,YD,,j) € An x I';, such that

—~

R, | fom = min _ Ryp, (fym :
372\ D5 5 ADg, 1D A EAn XD, 72\ "D A

Finally, combining the decision functions fj,) o forall j € {1,...,m,}, and defining
j 257
AD, = (ADa,1, -+ - > ADyym,) and Yp, := (YDy,15- - - » YDaym, ), We Obtain a function

m

n
Ta, fryo
= J DJ 7)‘D2,j7PYD2,j’

mn
ID10, 1, 1= Z ngl)’ADz,MDz,j N
Jj=1 Jj=

and we call every learning method that produces these resulting decision functions
fDlyADzv’YDz a training validation Voronoi partition support vector machine (TV-VP-SVM)
w.r.t. A x I'. Moreover, using (@) we have, for A := (A1,..., A\p,) and v := (Y1, -+, Y )

Mn
Re.p, <fD1’>‘D2’7D2) - ZRLj’DQ (ngl)v)‘DQJv'YDzJ)
=1

22



OPTIMAL LEARNING RATES FOR LOCALIZED SVMSs

Mn
= E min  Rp;p, | fr,o
j_l ()\j,“{j)GAnXFn 3-2 < D] 7>‘j77j

Mn
= min § Rr;p, | frym
AMEAnxTaymn 8 TR0

= min Rrp <fD A >
(A,’y)G(AnXFn)mn , 12 1,27 b

where fp, x~y = Z;n:’ll fpm s with (Aj,v;) € Ap, x Ty, for all j € {1,...,m,}. In
J K b}

other words, the function fDl,ADZ Ay really minimizes the empirical risk R p, w.r.t. the

validation data set D9 and the loss L, where the minimum is taken over all functions fDl, Ay
with (X, 7) € (A, x T'p)™.
The following theorem presents learning rates for the above described TV-VP-SVM.

Theorem 12 Let r, := cn_ﬁ with constants ¢ > 0 and B > 1. Under the assumptions
of Theorem [] we fix sequences A := (A,) and T := (T,) of finite subsets A, C (0,7%]
and Ty, C (0,7,] such that A, is an (rle,)-net of (0,7%] and T, is a 6,-net of (0,r,] with
en <n ! and 5, < n" T, Furthermore, assume that the cardinalities |A,| and |T'y| grow
polynomially in n. Then, for all £ > 0, 7 > 1, and a < %d, the TV-VP-SVM producing

the decision functions fDl,AD2 A, satisfies

-~ _ _2a +¢ _
P" (RLJT7P(fD17AD277D2) — R*L(]:NP S cTn 2a+d 2 1—e T ,
where ¢ > 0 is a constant independent of n and T.

Once more, we can replace the assumption f; p € B\ (Px|a;) by f1 p € BS o (Pxp+s)
for some 0 > 0 and obtain the same learning rate as in Theorem [I12 for all n > ns although
T+9 is fixed for all n € N. Note that, if Px has a Lebesgue density that is bounded
away from 0 and oo and either f;p € W3 (T) for a > d/2 or f} p € BY (T) for a > d,
these learning rates are again asymptotically optimal modulo £ on 7T in a minmax sense.
However, the condition a < %d restricts the set of a-values where we obtain learning
rates adaptively. To be more precise, there is a trade-off between o and S. On the one
hand, for small values of 5 only a small number of possible values for « is covered. On the
other hand, for larger values of 5 the set of a-values where we achieve rates adaptively is
increasing but the savings in terms of computing time is decreasing.

Let us now consider TV-VP-SVMs in the case of a regression function f};P which is less
smooth on some zero set Z C X than on the remaining part of the space X.

Theorem 13 Let r, := cn_ﬁ with constants ¢ > 0 and B > 1 as well as
”ff,P”Béfoo(PX\Aﬁ) < ¢ for all 9 > 0 and some constant ¢ € (0,00). Under the assump-
tions of Theorem let Z C X be a Px-zero set such that there exist an € > 1 and a
constant & > 0 such that, for all ¥ > 0, we have 0 < Px(Z1Y) < é&9¢. We fix sequences
A = (A,) and T := (T'),) of finite subsets A, C (0,7%] and T, C (0,7,] such that A, is
an (rle,)-net of (0,7%] and Ty, is a 6,-net of (0,7,] with &, < n~" and 6, < n~za. Fur
thermore, assume that the cardinalities |Ay| and |T'y| grow polynomially in n. Then, for all
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E>0,7>1,9<ént, anda < %d, the TV-VP-SVM producing the decision functions
fDl)‘DZ;YD2 satisfies

In __2a —
P (RLP(fDl)\DQ,’VDQ) — RE,P <ectn 2a+d+5) >1—e7,

where ¢ > 0 is a constant independent of n and T.

6. Experimental Results

In the previous sections we defined VP-SVMs and derived essentially optimal learning rates
even if the regression function has jumps. So far, it is, however, not clear if the theoretical
results suggesting a generalization performance not worse than that of global SVMS can
be empirically confirmed and if the predicted advantages of VP-SVMs in terms of compu-
tational costs are preserved in practice. Note that the latter is not as obvious as it may
seem to be, since VP-SVMs create an overhead when generating the working sets, and the
working sets themselves do not need to be as balanced as we assumed in our naive analysis.
In this section, we thus investigate the performance of VP-SVMs empirically. Namely, we
carry out some experiments using the least squares loss with the objective to answer the
subsequent questions:

(1) How do different radii affect the performance of VP-SVMs? In particular, what is the
impact on the training time and the VP-SVM’s test error?

(2) How do the VP-LS-SVMs perform compared to the usual LS-SVMs in terms of the test
error? What is the speed-up?

(3) How does the performance of VP-SVMs compare to vanilla data splitting approaches
such as random chunking (RC-SVM), in which the data set is devided into a random
partition with equally sized subsets, and the final decision function is the average of
the SVMs computed on each subset?

(4) The theoretical results suggests an advantage of VP-SVMs over global LS-SVMs, if
the regression function has interruptions of its smoothness on zero sets. Can this be
empirically validated?

To address these questions we utilize two kinds of data sets. On the one hand, to
answer questions (1), (2), and (3), we examine the three real data sets COVTYPE, IJONN1,
and COD-RNA, which we obtained from LIBSVM’s homepage, see (Chang and Lin, 2011).
Table[[]summarizes some characteristics of these data sets. On the other hand, we generated

data set type ‘ full data set size dimension number of labels

COVTYPE 581012 54 2
COD-RNA 488 565 8 2
IJCNN1 141 691 22 2

Table 1: Characteristics of the considered LIBSVM data sets.

several artificial data sets to address the last question. In order to prepare the data sets
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Figure 9: Unscaled basic functions used to generate the artificial data sets.
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for the experiments, we edited the data sets from LIBSVM in the following manner. If
for a real-world data set type the raw data set was already split, we first merged these
sets so that we obtained one data set for each data set type. In a next step, we scaled
the data componentwise such that all samples including labels lie in [—1, 1]d+1, where d
is the dimension of the input data. Finally, for each data set type, we generated random
subsets that were afterwards randomly splitted into a training and a test data set. In this
manner, we obtained, for each of the three LIBSVM data set types, training sets consisting
of n = 1000, 2500, 5000, 10000, 25000, 50000, 100000 samples. Additionally, for the
data sets COVTYPE and COD-RNA, we created training sets of sizes 250000 and 500 000,
and of sizes 250000 and 400000, respectively. The test data sets associated to the various
training sets consist of nist = 50000 random samples, apart from the training sets with
Nrain < 5000, for which we took nyest = 10000 test samples.

For the artificial data, we proceeded in a slightly different way. To generate the data sets
we took as fundament the five regression functions pictured in Figure[@and as noise, the sum
of two uniform distributions on [—c(x), ¢(x)], where c(z) = 1 (3sin (Z|z|) + 1) for the one-
dimensional data sets and c(z) = % (sin (F (Jz1] 4 |z2|)) 4+ 1) for the two-dimensional data
sets. Thus, we produced five different types of artificial data sets, where the various data
set types are named according to their type numbers as in Figure [@ Initially, we created
two sets, namely one training and one test data set, each consisting of 10 000 random input
samples contained in [—1,1] and [~1,1]?, respectively. Then, for each artificial data set
type, we determined the labels belonging to the input data as sum of the corresponding
functional value and the noise and, finally, scaled all 20000 labels to [-1,1]. In a last
step, we randomly built subsets of the training sets of size n = 1000, 2500, 5000. In this
way, we altogether obtained, for each type of artificial data, four training data sets of size
n = 1000, 2500, 5000, 10000 and a corresponding test data set of size niee = 10000.
Based on the test data sets the Bayes risks can be determined, see Table 2] where the Bayes
risks are summarized for the various artificial data set types.

Typel Typell Typelll TypelV TypeV
Bayes risk  0.0254  0.0137 0.0529 0.0083 0.0634

Table 2: Bayes risks w.r.t. test data sets for the various artificial data set types.

To minimize random effects, we repeated the experiment for each setting several times.
Since experiments using large data sets entail long run times, we reran every experiment
using a training set of size n > 50000 only three times while for training sets of size
n = 10000, 25000 we performed ten repetitions and for smaller training sets, namely of
size n = 1000, 2500, 5000, even 100 runs. An exception are the experiments using artificial
training sets of size n = 10000, where we realized 100 repetitions for the sake of uniformity.

To approach the above problems we used the least squares loss and Gaussian kernels for
all experiments. We implemented an LS-SVM-solver in C++ similar to the one in (Steinwart
et al., 2011). Around this solver, we then built the routines for the VP-SVM and the RC-
SVM. The compilation of the three programmes was executed by LINUX’s gcc. To produce
comparable results in terms of run time, all real-world data experiments were realized by the
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Algorithm 1 Determine a Voronoi partition of the input data

Require: Input data set Dx = {x1,...,x,} with sample size n € N and some radius r > 0.
Ensure: Working sets indicating a Voronoi partition of Dx.
Pick an arbitrary z € Dx
Coverq <+ z
m <1
while max,ep,, ||z — Cover|js > r do
Z 4 argmaxgep, || — Cover||2
m<—m+1
Cover,, + z
WorkingSet,,, < ()
end while
fori=1tondo
k< argminjeqy oy [l — Coverj|la
WorkingSet,, < WorkingSet;, U {z;}
: end for
: return WorkingSet,, ..., WorkingSet,,

e e
e e

same professional compute serve equipped with four INTEL XEON E7-4830 (2.13 GHz)
8-core processor, 256 GB RAM, and a 64 bit version of Debian GNU /Linux 6.0.7. In order
that we can indeed compare their run time, we used eight cores to pre-compute the kernel
matrix and to evaluate the final decision functions on the test set, and one core for the
subsequent solver for every real data experiment. Since the artificial data sets consist of at
most 10000 samples we performed the according experiments by a computer equipped with
one INTEL CORE i7-3770K (3.50 GHz) quad core processor, 16 GB RAM, and a 64 bit
version of Debian GNU/Linux 6.0.7. For all artificial data experiments we used four cores
to pre-compute the kernel matrix and to evaluate the final decision functions on the test set,
and again one core for the solver. Even with pre-computed kernel matrices, our experiments
on the real-world data altogether required almost 810 hours (approximately 34 days) for
training and additionally almost 4 days for testing. Moreover, the experiments on the
artificial data took nearly 43 hours for training and 168 minutes for testing. Without pre-
computing the kernel matrices, e.g. by applying a standard caching approach, preliminary
experiments suggested a multiplcation of the training time, which would have rendered the
experiments infeasible. Besides, our experiments will show that the available amount of
RAM does not restrict the size of the training sets used by an VP-SVMs as severely as the
ones used by LS-SVMs.

Let us quickly illustrate the routines of the VP- and the RC-SVM implemented around
the LS-solver. For the VP-SVM, we first split the training set by Algorithm [I] in several
working sets representing a Voronoi partition w.r.t. the user-specified radius. For this
purpose, Algorithm [ initially determines a cover of the input data applying the farthest

1. On this occasion, we would like to thank the Institute for Applied Analysis and Numerical Simulation of
the University of Stuttgart, who placed the above mentioned compute server at our disposal and, thus,
enabled us to realize our experiments on large real-world data sets. In consequence, the overall time
available for our experiments was limited.
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first traversal algorithm, see (Dasgupta, 2008) and (Gonzalez, 1985) for more details. Note
that this procedure induces working sets whose sizes may be considerably varying. In the
case of an RC-SVM the working sets are created randomly, where their sizes are basically
equal and the number of working sets is predefined by the user. Then, for the VP-SVM- as
well as for the RC-SVM-algorithm the implemented LS-solver is applied on every working
set. For each working set, we randomly split the respective training data set of size Niain in
five folds to apply 5-fold cross-validation in order to deal with the hyper-parameters A and
~ taken from an 10 by 10 grid geometrically generated in [0.001-nt_r;in, 0.1] x [05n;;1/ﬁ , 10].
Finally, we obtain one decision function for each working set. To further process these
decision functions the VP-SVM-algorithms picks exactly one decision function depending
on the working set affiliation of the input value. On the contrary, the RC-SVM-algorithm
simply takes the average of all the decision functions. Moreover, since we scaled the labels of
all data sets to [—1, 1], the computed decision functions are clipped at £1. Altogether, note
that the usual LS-SVM-algorithm can be interpreted as special case of both the VP-SVM-
and the RC-SVM-algorithm using one working set.

The experimental results for the three real data sets are summarized in Tables 3] to [6l
These tables as well as Tables [7 to Il containing the results for the experiments on the
artificial data sets, can be found in the Appendix. In addition to the average run times
of the training and test phases, these tables reflect inter alia the average test errors of
the empirical SVM solutions. Additionally, the Lo-errors of the empirical SVM solutions,
i.e. the value of

1 Ntest = 2
Z (fD,)\p/(xtesti) - fz,P(xtesti)) )
Ttest i—1

is determined for the artificial data sets. Moreover, note that some of the result tables are
incomplete for very large real-world training data sets. In these cases, the kernel matrix,
whose size depends on the training set size, did not fit into the RAM of the used computer
and, thus, these experiments were left out.

6.1 Experiments on Real-World Data

In this subsection, we adress questions (1), (2), and (3) by examining the results for the
real-world data sets COVTYPE, COD-RNA, and IJCNN1, which are composed in Figures TOHIZ
and Tables BH6

6.1.1 COMPARISON OF VP-SVMs USING DIFFERENT RADII

In the following, we focus on the VP-SVMs using four different radii for the various real-
world data sets, where the experimental results are summarized in Tables BHG] as well as in
Subfigures|(d)H(f)| of Figures[[OHI2l Examining the achieved training times for each data set
type, we observe that, for increasing training set sizes, the radius that leads to the shortest
training time typically decreases. More precisely, for the real data sets with sample size
Ntrain > 10000, the VP-SVMs using the smallest radius always train fastest, while for the
data sets with N < 10000, we can not make a uniform statement. Clearly, this finding
is not surprising, since an SVM for a small data set trains considerably faster than an SVM
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for a large data set, such that splitting the large data set and running an SVM for each of
the small data sets may altogether still be faster. Recall additionally the considerations in
terms of the computational cost made in Section [21

Let us now consider the VP-SVM results in terms of the realized test errors. As expected,
for the real-world data sets, the test errors achieved by VP-SVMs with fixed radii decrease
with increasing sample size of the used data sets except twice. In addition, for the real
data sets COVTYPE and COD-RNA, the test errors decrease for increasing radii, cf. Figures
[10(f)| and [11(f)l Here, however, the test errors achieved for the various radii get close
to each other with increasing training sample size. The same behavior of the test errors
appears for the 1IJCNN1 data set, though, for n¢., > 5000, both intermediate radii yield
even smaller empirical risks than the largest radius, see Figure In consequence, it is
not straightforward to draw any conclusion on the relation between radius and test error.
Nonetheless, we can say that VP-SVMs using small radii enjoy test errors that are never
significantly larger and somethimes even smaller than those of VP-SVMs using the largest
of the applied radii.

Besides, Tables 3] and [l or Figures [10(e)li(f)| and [11(e)}f(f)| contain an additional finding.

For large data sets, namely for the COVTYPE data set of size 500 000 or for the COD-RNA data
sets of size 250000 and 400 000, the VP-SVMs with large radii did not yield any solution,
since they failed due to the technical requirements caused by the used computer. More
precisely, in these cases, there was at least one working set such that its kernel matrix did
not fit into the RAM any more. Fortunately, the working sets of VP-SVMs using smaller
radii were small enough such that we still received an outcome. What is more, these VP-
SVMs yielded a better empirical risk in partially less training time compared to VP-SVMs
with large radii and training sample sizes that still allowed a successful performance. That
is, using a small radius for the VP-SVM and a training set that is oversized for VP-SVMs
with a larger radius reduces the test error. More precisely, a large training set is crucial for
a small empirical risk, where the possibly arising computational restrictions can be eluded
by a VP-SVM with an appropriate radius.

All in all, localized SVMs using some small radius lead in substantially less training
time to either negligble worse or even better test errors than VP-SVMs with large radii, if
the training sample size is adequate, i.e. N¢rain = 5000. In addition, the real data sets with
a large sample size demonstrate that VP-SVMs with small radii are able to conquer the
technical restrictions caused by the used computer and thus yield a better empirical risk
than VP-SVMs with bigger radii can attain at all.

6.1.2 COMPARING VP-SVMs wiTH GLOBAL LS-SVMs

In the following, we compare the results of the VP-SVM using different radii to the standard
LS-SVM. For the real-world data sets COD-RNA and 1IJCNN1, the VP-SVMSs, based on the
largest of the applied radii, use only one working set. Thus, they coincide with the standard
LS-SVM modulo different values generated by the random number generator. To verify this
fact, we compare for the real data sets COD-RNA and 1JCNN1 the results of the VP-SVMs
using one working set to the results of the standard LS-SVMs, see Tables[Bland[6l Here, we
note that the LS-SVM test errors typically decrease with increasing training sample size.
The same holds for the VP-SVMs using one working set. Moreover, the latter VP-SVM and
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the LS-SVMs perform equally well in terms of training time and empirical risk, however,
for ngrain > 25000 the VP-SVMs train slower.

In practice, a crucial problem is caused by the run time required by an algorithm.
Hence, for each data set type, we compare hereafter the LS-SVM to the VP-SVM that
trains fastest for the largest training data set. The required average training times and
the average test errors of these SVMs are illustrated in Subfigures|(g)H(i)| of Figures TOHI21
First, we notice that the selected VP-SVM uses the smallest of the applied radii for each
data set type. Besides, the LS-SVM’s test errors are lower than those of the VP-SVMs.
However, with increasing training set size the VP-SVM’s test errors get close to the ones
of the LS-SVM. Moreover, for the IJCNN1 data set of size 100000, their empirical risks
even coincide, cf. Figure Besides, the VP-SVMs train considerably faster than the
LS-SVMs. In particular, for niraim = 100000 the VP-SVMs require at most 8.5% of the
LS-SVM’s training times, see Figures|10(h), [L1(h)| and [12(h)| Finally, recall that, for data
sets of size ngain > 250000, the LS-SVM problem is infeasible with our computer, just
like the VP-SVMs using the largest of the applied radii. In contrast, for ng.am > 250 000,
VP-SVMs using small radii usually train considerably faster and achieve lower test errors

than the LS-SVMs for nrain = 100000, cf. Figures (1) and (1)

Concluding, we have seen that the application of a VP-SVM using a small radius instead
of the standard LS-SVM reduces the run time considerably entailing at most a negligible
worsening or even an improvement of the test errors. Moreover, applying VP-SVMs with
sufficiently small radii enables us to use large data sets and, thus, to elude the computational
restrictions to sufficiently small data sets. As a result, handling really large data sets with
the help of suitable VP-SVMs can lead to significantly improved test errors compared to
an LS-SVM setting with memory constraints.

6.1.3 COMPARISON OF VP-SVMs wiTH RC-SVMs

First of all, let us investigate the RC-SVM results that are composed in Tables [@Hg] as well
as in Subfigures of Figures [[OHI2l For the real data sets COVTYPE we considered
ten, for the data sets COD-RNA nine, and for the data sets IJCNN1 eight different numbers of
working sets. In each case, we started with an RC-SVM using one working set, i.e. with an
RC-SVM that corresponds to the global LS-SVM modulo different values generated by the
random generator, cf. Tables fl and [6l Comparing for every data set the RC-SVMs using
various numbers of working sets, we observe that the number of working sets, minimizing
the RC-SVMs training time, increases in tandem with the sample size. Moreover, the RC-
SVM using one working set never trains fastest compared to the other RC-SVMs using
more than one working set. Furthermore, the average test errors for the applied RC-SVMs
usually decrease for a decreasing number of working sets and, hence, are minimized by the
smallest possible number of working sets. Of course, all these findings are not surprising,
since RC-SVMs are typically used to reduce the training time.

Let us now compare the results of VP- and RC-SVMs using roughly the same number
of working sets, cf. Tables BHGl Initially note that, even though we consider VP- and RC-
SVM based on the same number of working sets, the RC-SVM working sets are about the
same size whereas the VP-SVM working sets may have different sizes with a large range.
That is, the VP-SVMs often deal with a few substantially larger working sets than the
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RC-SVMs. Consequently, the RC-SVMs often perform faster than the VP-SVMs, which
require up to five times the RC-SVM’s training time for nty,;, = 100000. Contrarily, the
average empirical risks achieved by the VP-SVMs are substantially lower than those of the
RC-SVMs. Besides, in a few cases the VP-SVMs possess at least one working set which is
oversized for the computer’s RAM, so that these VP-SVM problems are infeasible, whereas
the comparable RC-SVMs avoid this conflict. Here, consider e.g. the RC-SVM using seven
working sets and the VP-SVM with radius » = 4 for the COVTYPE data set of size 500 000.

In Section [6.1.2] we compared for each data set type the LS-SVM with the VP-SVM
that trains fastest for the largest training data set. Here, we additionally compare this VP-
SVM to the RC-SVMs. To be able to draw a fair comparison in terms of the achieved test
errors, we choose those RC-SVMs that train roughly as fast as the VP-SVM for the largest
training set, i.e. the slowest RC-SVM training faster and the fastest RC-SVM training
slower than the above VP-SVM. Subfigures |(g)H(i)| of Figures illustrate the average
training times and the average test errors of these RC-SVMs, the above VP-SVM, and the
LS-SVM. Considering the RC-SVMs, the faster of the two requires for ni.;m = 100000
between 51% and 83% of the VP-SVMs training time and trains at most seven minutes
faster than the VP-SVM. However, at least for ngain > 5000, both considered RC-SVMs
induce substantially higher test errors than the VP- and LS-SVM. Finally, note that VP-
SVMSs for nirain > 250000 considerably outperform LS-SVMs for nip.i;, = 100000, while
RC-SVMs for nirain = 250000 lead to even worse test errors than the considered LS-SVMs.

Summarizing, we record that RC-SVMs using as few as possible working sets achieve
the smallest RC-SVM test errors, however, those using more working sets perform faster.
Furthermore, compared to VP-SVMs using roughly the same number of working sets as the
RC-SVMs, the latter ones may learn faster though not as good as the VP-SVMs. Moreover,
considering RC-SVMs that require roughly the same training time as the fastest VP-SVM,
we saw that the RC-SVMs lead to much higher empirical risks. That is, if the required
training time is a hard constraint, then the VP-SVM that satisfies this constraint achieves
a better test error than a RC-SVM that also trains fast enough.

6.2 Experiments on Artificial Data

It remains to address the last question. To this end, we consider the results on the various
artificial data sets, on the one hand, for the LS-SVM and, on the other hand, for the VP-
SVM performing fastest for ni,;, = 10000. Moreover, for the sake of comparability, we
again add to this selection the two RC-SVMs training roughly as fast as the VP-SVM for
the artificial data sets of size ni = 10000. However, for the artificial data sets of Type I,
II, and III, none of the executed RC-SVMs trained faster for niain = 10000 than the VP-
SVM with the smallest radius, so that we only consider one RC-SVM in these cases. The
required average training times and average test errors of the selected SVMs are illustrated
in Subfigures|(g)H(i)| of Figures and summarized in Tables [[HITl Here, we note that,
for the artificial data of Type I, I, and III, the VP-SVM using the smallest of the applied
radii trains fastest for ni.a;m = 10000, while for the artificial data of Type IV and V it is
the VP-SVM using the second smallest radius.

Expectedly, we detect an evident improvement of the various average empirical SVM
solutions using 10000 training samples instead of 1000 samples. Besides, the considered
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Figure 10: Average training time and test error of LS-, VP-, and RC-SVMs for the real-world data
COVTYPE depending on the training set size ngraim = 1000, ...,500000. Subfigures [(a)H(c)| show
the results for RC-SVMs using different numbers of working sets and Subfigures |(d)H(f)| illustrate
the results for VP-SVMs using various radii. At the bottom, Subfigures|(g)H(i)| contain the average
training times and the average test errors of the LS-SVM, one VP-SVM and two RC-SVMs. Here,
the VP-SVM is the one which trains fastest for niya;n = 500000 and the two RC-SVMs are those
which achieve for ng.;, = 500000 roughly the same training time as the chosen VP-SVM. Here,
note that, for ngaim,m = 10000, the RC-SVM using one working set trains substantially slower than
the LS-SVM, even though this RC-SVM is basically an LS-SVM. As a reason for this phenomenon,
we conjecture that the used compute server was busy because of other influences.
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Figure 11: Average training time and test error of LS-, VP-, and RC-SVMs for the real-world data
COD-RNA depending on the training set size nipain = 1000,...,400000. Subfigures [(a)H(c)| show
the results for RC-SVMs using different numbers of working sets and Subfigures |(d)H(f)| illustrate
the results for VP-SVMs using various radii. At the bottom, Subfigures contain the average
training times and the average test errors of the LS-SVM, one VP-SVM and two RC-SVMs. Here,
the VP-SVM is the one which trains fastest for niajn = 400000 and the two RC-SVMs are those
which achieve for niyain = 400 000 roughly the same training time as the chosen VP-SVM.
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Figure 12: Average training time and test error of LS-, VP-, and RC-SVMs for the real-world data

1JONN1 depending on the training set size ngrain = 1000, ...,100000. Subfigures |(a)H(c)
results for RC-SVMs using different numbers of working sets and Subfigures |(d)H(f)
results for VP-SVMs using various radii. At the bottom, Subfigures |(g)

show the
illustrate the

contain the average

training times and the average test errors of the LS-SVM, one VP-SVM and two RC-SVMs. Here,
the VP-SVM is the one which trains fastest for niajn = 100000 and the two RC-SVMs are those
which achieve for niyain = 100 000 roughly the same training time as the chosen VP-SVM.
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Figure 13: Average training time and test error of LS-, VP-, and RC-SVMs for the artificial data

Type I depending on the training set size ngpa;m = 1000, ...,10000. Subfigures |(a)H(c)|
results for RC-SVMs using different numbers of working sets and Subfigures |(d)H(f)|

show the
illustrate the

results for VP-SVMs using various radii. At the bottom, Subfigures [(g)H(i)| contain the average
training times and the average test errors of the LS-SVM, one VP-SVM and one RC-SVM. Here,
the VP-SVM and the RC-SVM are those which train fastest for niya;n = 10000. Note that in
the case at hand none of the considered RC-SVMs performs faster than the fastest VP-SVM for
Nirain = 10 000.
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Figure 14: Average training time and test error of LS-, VP-, and RC-SVMs for the artificial data
Type II depending on the training set size nipain = 1000, ...,10000. Subfigures |(a)H(c)| show the

results for RC-SVMs using different numbers of working sets and Subfigures |(d)H(f)|

illustrate the

results for VP-SVMs using various radii. At the bottom, Subfigures [(g)H(i)| contain the average
training times and the average test errors of the LS-SVM, one VP-SVM and one RC-SVM. Here,
the VP-SVM and the RC-SVM are those which train fastest for niya;n = 10000. Note that in
the case at hand none of the considered RC-SVMs performs faster than the fastest VP-SVM for

Ngrain = 10000.
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Figure 15: Average training time and test error of LS-, VP-, and RC-SVMs for the artificial data
Type III depending on the training set size ngpain = 1000, ...,10000. Subfigures |(a)H(c)| show the

results for RC-SVMs using different numbers of working sets and Subfigures |(d)H(f)|

illustrate the

results for VP-SVMs using various radii. At the bottom, Subfigures [(g)H(i)| contain the average
training times and the average test errors of the LS-SVM, one VP-SVM and one RC-SVM. Here,
the VP-SVM and the RC-SVM are those which train fastest for niya;n = 10000. Note that in
the case at hand none of the considered RC-SVMs performs faster than the fastest VP-SVM for

Ntrain = 10000.
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Figure 16: Average training time and test error of LS-, VP-, and RC-SVMs for the artificial data
Type IV depending on the training set size niyain = 1000, ...,10000. Subfigures |(a)H(c)| show the
results for RC-SVMs using different numbers of working sets and Subfigures |(d)H(f)| illustrate the
results for VP-SVMs using various radii. At the bottom, Subfigures [(g)H(i)| contain the average
training times and the average test errors of the LS-SVM, one VP-SVM and two RC-SVMs. Here,
the VP-SVM is the one which trains fastest for niram = 10000 and the two RC-SVMs are those
which achieve for nai;n = 10000 roughly the same training time as the chosen VP-SVM.
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Figure 17: Average training time and test error of LS-, VP-, and RC-SVMs for the artificial data
Type V depending on the training set size nipaim = 1000, ...,10000. Subfigures |(a)H(c)| show the

results for RC-SVMs using different numbers of working sets and Subfigures |(d)H(f)|

illustrate the

results for VP-SVMs using various radii. At the bottom, Subfigures [(g)H(i)| contain the average
training times and the average test errors of the LS-SVM, one VP-SVM and two RC-SVMs. Here,
the VP-SVM is the one which trains fastest for niramm = 10000 and the two RC-SVMs are those
which achieve for nyai;n = 10000 roughly the same training time as the chosen VP-SVM.
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Figure 18: Predictions for the artificial data sets of Type I, drawn from the step function in Figure
with noise depending on x. The left graphic shows the predictions for the data set of size
Nrain = 1 000 and the right graphic for the data set of size nypain = 10000. Here, note that the VP-
SVM solutions are not necessarily continuous, nevertheless we continuously connected its predicted
values in the above plots.

VP-SVM trains substantially faster than the standard LS-SVM with less than 11% of the
LS-SVM’s training time for na;m = 10000. Additionally, the VP-SVM’s test errors are
usually considerably lower than the test errors of the LS-SVM. Regarding the test errors of
the RC-SVMs, we note that, in the majority of cases, they are higher than the VP-SVM’s
and the LS-SVM’s test errors.

So far, we examined the behavior of LS-, VP-; and RC-SVMs in terms of training time
and test error. Let us finally compare the three different kinds of SVMs w.r.t. their optical
appearance. To this end, the average empirical SVM solutions are plotted in Figures I823]
for the different artificial data sets of size nipaim = 1000 and 10000. Here, note that, for
the artificial data of Type IV and V, we do not consider both RC-SVMs training roughly
as fast as the selected VP-SVM but only the one of the both RC-SVMs with the lower test

error.

The observation that, for the artificial data of Type I, II, and III, the VP-SVMs perform
best, is reinforced by the average empirical VP-SVM solutions illustrated in Figures [I8H211
More precisely, Figure [I§ shows that only the VP-SVMs exhaust the widths of the steps
of fip almost completely. Moreover, in Figure [19] the smoothness interruptions of fip are
again best illustrated by the VP-SVMs, which becomes even more evident in Figure
Besides, Figure 2] illustrates that the peaks of f};P are best reproduced by the VP-SVMs.
Considering the LS- and the RC-SVMs, we can not draw an universally valid conclusion,
which one performs worse. In particular, Figures [I8 and [I9 show that, for the artificial
data sets of Type I and II, both, the average empirical LS- and RC-SVM solutions, are not
very well suited to the Bayes decision function. Considering the data sets of Type III, the
LS-SVMs dominate the RC-SVMs in terms of the better test errors, though both kinds of
SVMs do not reproduce the peaks of fE,P’ especially for small values of |z|.
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Figure 19: Predictions for the artificial data sets of Type II, drawn from the cracked function in
Figure with noise depending on x. The left graphic shows the predictions for the data set of
size Ngrain = 1000 and the right graphic for the data set of size ngpain = 10 000.

-055 ' -0.45 ' -0.35 -055 ' -045 ' -0.35
X X X
——  Bayes decision function ——  average empirical VP-SVM solution
——— average empirical LS-SVM solution ——— average empirical RC-SVM solution

Figure 20: Predictions for the artificial data sets of Type II. The left graphic shows the predictions
for x € [—0.55, —0.4] and the data set of size niam = 1000, while the graphic on its right-hand side
pictures the predictions for the same interval for x and the data set of size niyain = 10000. The
two graphics on the right-hand side illustrate the predictions for € [0.3,0.6], the upper one for the
data set of size nirain = 1000 and the lower one for the data set of size nirain = 10 000.

It remains to optically analyze the results of the two-dimensional data sets in the fol-
lowing. For the artificial data sets of Type IV, the VP-SVM using 10 000 training samples
achieves the best test error. Moreover, ensuing the optical impression, this VP-SVM is the
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Figure 21: Predictions for the artificial data sets of Type III, drawn from the jagged function in
Figure with noise depending on x. The left graphic shows the predictions for the data set of
size Ngrain = 1000 and the right graphic for the data set of size ngpain = 10 000.

only one of the considered SVM types that reflects the circular steps of the Bayes decision
function as in Figure cf. Figure Finally, for the data sets of Type V, it is always
the LS-SVM which performs best in terms of the test errors, cf. Table Il This observation
is also substantiated optically. To be more precise, for niai;m = 1000, the uneven average
empirical decision function induced by the VP-SVM (cf. Figure 23]) shows that the RC-SVM
even performs better than the VP-SVM. However, for n¢rain = 10000, the VP-SVM results
are substantially improved such that the RC-SVM is now outperformed by the VP-SVM.

Recapulatory, we realize that the VP-SVMs possess the most distinctive ability to handle
smoothness interruptions of the Bayes decision function in most of our artificial data cases,
especially if ngaim = 10000. This finding agrees with the theoretical results of Section Bl
that already promised a stable behavior of the VP-SVM for Bayes decision functions that
are not smooth on zero sets. For the sake of completeness, we point out that the worst
performance was induced by the RC-SVMs in almost all cases, in particular for a training
sample size amounting to 10 000.

6.3 Conclusions

Finally, we summarize the essential findings of the previous subsections, where we considered
standard LS-SVMs and two kinds of localized SVMs, namely VP-SVMs and RC-SVMs. As
just analyzed in Subsection [6.2, VP-SVMs have the evident advantage that they manage
smoothness interruptions of the Bayes decision function better than LS- and RC-SVMs.
The real-world data sets demonstrated that the RC-SVMs perform considerably worse
than the LS-SVMs and the VP-SVMs, while the performance of VP-SVMs using small
radii is improved for increasing sample sizes. To be more precise, VP-SVMs outperform
LS-SVMs or at most leads to a negligible worsening compared to LS-SVMs for a fraction
of the training time and without memory constraints on the large data sets. For very
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Figure 22: Predictions for the artificial data sets of Type IV, drawn from the circular step function
in Figure with noise independent of x.
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norm in Figure with noise independent of x.
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small data sets, however, LS-SVMs actually train faster than VP-SVMs and, hence, are
preferable. What is more, for data sets of size nirain < 2500 all LS-SVMs require less than
9s to train, so that there are probably no reasons to apply a VP-SVM. Besides, really small
training sample sizes involve considerably smaller working sets for a VP-SVM using a small
radius, so that it is hard to find a well suited prediction.

Furthermore, despite a faster training procedure, a VP-SVM using a sufficiently small
radius induces considerably lower test errors for sample sizes n¢rain > 100000 than a LS-

SVM for training data sets that still enable computational feasibility.

7. Proofs

This section is dedicated to prove the results of the previous sections. We begin with the
proof of Lemma [I] relating the radius r of a cover B, (21),...,By(zm) of X defined by (@)
with the number m of centers z1, ..., zp.

Proof [Proof of Lemma[I] First of all, let us recall the m-th entropy number of X defined
by

m
em(X):=inf e >0:3z,...,2, € X such that X C U(Zj +€Beg)
j=1

Since X C cBZg, the m-th entropy number of X can be upper bounded by
Additionally, we know by (Carl and Stephani, 1990, Section 1.1) that
1 1
m~d < em(By) <4m”d,
so that we can find a cover (B;) =1, m of X C CBzg satisfying

1
r<8m 4.

7.1 Proofs of Section [3]

In Section Blwe presented a lemma that related the risk w.r.t. the loss L to the risk w.r.t. the
restricted loss L; and also transferred this result to the excess risk. Hereafter, the proof of
this lemma can be found.

Proof [Proof of Lemma[] Simple transformations using AU B = X and AN B = ) show

Rip(f) = / L (2,9, 14(x) fa(x) + Lp(x) fo(x)) dP(z,y)

XxXY

_ /XXY Ta(z)L(z,y, fa(z)) + 1p(z)L(z,y, fB(x)) dP(x,y)
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=Rp,p(fa) + Ry p(fs).

The second assertion follows immediately. |

To derive the new oracle inequality of Theorem [ we first have to relate the entropy
numbers of Hj, j € {1,...,m}, to those of H. To this end, we consider a similar concept
to entropy numbers, namely covering numbers, cf. (Gyorfi et all, 2002, Definition 9.3) or
(Steinwart and Christmann, 2008a, Definition 6.19).

Definition 14 Let (T,d) be a metric space and € > 0. A subset S C T is called an e-net
of T if for all t € T there exists an s € S such that d(s,t) < e. Furthermore, we define the
e-covering number of T by

N(T,d,e) := inf{n >1:3s1,...,8, €T such that T C UBd(SZ’,E)} ,
i=1

where inf () := oo and By(s,e) :={t € T :d(t,s) < e}.

Note that an upper bound on entropy numbers involves a bound on covering numbers.
To be more precise, for a metric space (T, d) and constants a > 0 and ¢ > 0, the implication

ei(T,d) <ai V1, i>1 — IMAN(T, d, ) < In(4) (9)q . Ve>0

9
(27)

holds by (Steinwart and Christmann, 2008a, Lemma 6.21). Additionally, (Steinwart and
Christmann, 2008a, Exercise 6.8) yields the opposite implication, namely

N (T, d,e) < (g)q . e>0 — (T, d) < 3Y%ai~ V9, wi>1,
(28)
Recall that we pursue the target to estimate e;(id : H — L2(Px)). In fact, the equivalence

of entropy and covering numbers enables us to estimate the covering number N (By, | -
[ 2o(Px)s€) of H instead.

Lemma 15 Let v be a distribution on X and A, B C X with ANB = 0. Moreover, let H4
and Hp be RKHSs on A and B that are embedded into La(v|4) and La(v|g), respectively.

Let the extended RKHSs ﬁA and fIB be defined as in Lemmald and denote their direct sum
by H as in [I3]), where the norm is given by ([I4) with Aa, A\p > 0. Then, for the e-covering
number of H w.r.t. || - ||1,), we have

NB, | Nea61:8) SN (02 Ba ol awaea) - N (05 Bagsll - o) ez) -

where 4,65 > 0 and € := /&% + £%.
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. . _1
Proof First of all, we assume that there exist a,b € N and functions fi,...,fo € A\,° B Aa
. . _1 . . _1
and hy, ..., hy € Ag® By suchthat {f1,..., fa} isan ea-cover of A ,* By wort. || - |10,
. . _1
{h1,... hp} is an ep-cover of Ap? By wrt. || - [|L,0),

1 1
a=NA By ol o), €a) and b=NQAg*Bg,. | - |Lo05)€8) -

_1
That is, for every function g4 € )\AQBI:IA, there exists an iq € {1,...,a} such that
AA - A' S €A, 29
Hg Jia La(va) (29)
_1
and for every function gp € A\3*B f1;» there exists an ip € {1,...,b} such that
B — ]AI <ep. 30
9878 | L) (30)

1
Let us now consider an arbitrary function g € By. Then there exists an g4 € A\, B o and

_1
an gp € Ag® By such that g = ga + gp. Together with ([29) and (B0), this implies

Hg B (f“‘ + ﬁis)‘ ;(u) - H(gA B f“‘) + <gB B ﬁis)‘ ;(u)
~ 2 ~ 2
= ‘ gA - fiA LQ(V‘A) + HQB - hiB LQ(V‘B)

With this, we know that
{fiA—l—]AIZ‘B : fiAE{fl,...,fa} and ]AIiBG{ill,...,ilb}}
is an e-net of H w.r.t. || - ||1,(,). Concerning the e-covering number of H, this finally implies

N Bl - s &) Sab=N (03B 1 Miawaa) N (A5 Bl s 25).

Based on Lemma [TI5] the following theorem relates entropy numbers of H4 and Hpg to
those of H.

Theorem 16 Let Px be a distribution on X and Ay,..., A, C X be pairwise disjoint.
Moreover, we assume (H) with weights A1, ..., Ay > 0. In addition, assume that there exist
constants p € (0,1) and a; >0, j € {1,...,m}, such that for every j € {1,...,m}

1

ei(id:Hj%Lg(PX‘Aj))Saji_ﬂ, 1 >1. (31)
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Then we have
ei(id: H — Ly(Px)) < 2v/m | 3In(4) Y A\ Pa? | i7", i>1,
7=1

and, for the average entropy numbers,

Epy~prei(id: H = Ly(Dx)) < cpv/m | DA Pai? | i 2, in>1.
j=1

Proof [Proof of Theorem [I6] First of all, note that the restriction operator Z : B i, By,

with Zf = f is an isometric isomorphism. Together with (Steinwart and Christmann, 2008a,
(A.36)) and assumption (BI), this yields

_1
ei(A; * By, La(Pxya,)) = 2)\j ¢i(Bpg,s L2(Px|a,))
< 2)\jHI : By, = Bullei(Ba;, La(Px)a;))

1
ajz T2,

J

1
2

<2A;

Furthermore, we know by (27)) that

_1 _1 \¥* _
InN <)\j ZBFIjv | - ”LQ(PXAJ-)’E> <In(4) <2)\j 26Lj> 2
holds for all € > 0. With this and ¢; := \/Lm for every j € {1,...,m}, Lemma [I5] implies

m

_1
A B | o) < 0 | TIA (4283l D055

= Zln/\f <)\J 2B1§[J.7H ’ ”LQ(PXAJ-)’ﬁ>

j=1
m 1 2p \/ﬁ 2p
7j=1
1N 2p
m 2p
=2 > APa? e
j=1

Using (28], the latter bound for the covering number of By finally implies the following
entropy estimate

eiid : H = Ly(Px)) < 3% | 2In(4 Z Pa i
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2(3In(4

||MS
"d
l\)
"d
-~
|
é\)H

The second assertion immediately follows by (Steinwart and Christmann, 2008a, Corollary
7.31). [ |

Applying Theorem [16, we now prove Theorem [l and thus an oracle inequality for VP-
SVMs using an ordinary type of losses.

Proof [Proof of Theorem [ Since Hy, ..., H,, are seperable RKHS of mesurable kernels

ki,...,km, H is a seperable RKHS and its kernel k is measurable, too. Furthermore,
Theorem [16] yields
1
m 2p
1. —p_2p — o ,
Epy~prei(id: H— Ly(Dx)) < cpv/m Z)‘j aj i, i,n>1.
j=1

That is, we can apply (Steinwart and Christmann, 2008a, Theorem 7.23) for a regularization
parameter A = 1 and, for all fixed 7 > 0 and A\; >0, j € {1,...,m}, we obtain

ZA | fo, 0,5, +Resp(Fox) =R, p

= |l follz + Re,p(fo) — RL,p

72VT> =7 | 5By

n

1
<0 (Ifoll% + Riy p(fo) — RY, p) +C (") 755795 43 (

m
1
<9 ZAJ\|nAjf0||§Ij+RLJ,p(fO)—RzJ,P L O (oY) T T 43
j=1

(721/7) = | 5By

n n

with probability P™ not less than 1 — 3e~", where C' > 0 is the constant of (Steinwart and
Christmann, 2008a, Theorem 7.23) only depending on p, M, V| J, and B. Moreover,

2p

m
—p 2
a :=max { cp/m E)\jpajp ,B 3,
=1

where we need a > B since it is a condition of (Steinwart and Christmannl, [2008a, Theorem
7.23). [ |

7.2 Proofs Related to the Entropy Estimates of Section (4]

In this subsection, just as in Section ], we focus on Gaussian RBF kernels and the associated

RKHSs. To be more precise, we derive a bound for the entropy numbers of H. ~(A), where
v >0and A C R? with A # 0.
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Proof [Proof of Theorem [6] First of all, we consider the commutative diagram

H,(A) d Ly(Px)a)
I};loZA id
H’Y(B) id eoo(B)

where the extension operator 74 : H,(A) — HV(Rd) and the restriction operator Igl :
H,(R?) — H,(B) given by (Steinwart and Christmann, 2008a, Corollary 4.43) are isometric
isomorphisms, so that |Z5' 0 Z : H,(A) — H,(B)|| = 1. Furthermore, for f € (s (B), we
have

s = . nArf@)PdPX(x)f <1l (/. nAdPXu)f — VXA | flle

ie. [lid : loo(B) — L2(Px|a)ll £ /Px(A). Together with (Steinwart and Christmann,
2008a, (A.38) and (A.39)) as well as (Steinwart and Christmann, 20084, Theorem 6.27), we
obtain for all 7 > 1

e,-(id : H»Y(A) — LQ(PX‘A))

<|Z5' o Za: Hy(A) = Hy(B)| - eiid : Hy(B) = €oo(B)) - |lid : loo(B) = L2(Pxa)|

< V PX(A) Cm,drm/y_mi_% ’

where m > 1 is an arbitrary integer and ¢, 4 a positive constant. For p € (0, 1), the choice
m= {%W finally yields

d+2p _ d+2p 1

eiid : Hy(A) = Ly(Pxa)) < VPx(A) emar™y ™™ & < ep/Px(A)r 2 v % i 5.

7.3 Proofs Related to the Least Squares VP-SVMs

In this subsection, we prove the results that are linked with the least squares loss, i.e. the
results of Section Bl Before we elaborate on the oracle inequality for VP-SVMs using the
least squares loss as well as RKHSs of Gaussian kernels, we have to examine the excess risk

Risp(fo) =Ry, p=lfo- fE,pHiQ( (32)

PX\AT) '

Let us begin by writing for fixed v; > 0

d
* (s _ 2 2 2||z||3
Kj:R'SR, x5 <€>(—1)1 ¢ <€2’y2w) exp (— JLJ‘;) , (33)
/=1 J
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and choosing fo := > 7 14, - (K * f{ p). Then (32)) can be estimated with the help of the
following theorem, which is together with its proof basically a modification of (Eberts and
Steinwart, 2013, Theorem 2.2). Indeed, the proofs proceed mainly identically. Note that in
we use the notation

Vmax = Max{Y1,. .., Ym} and Vmin = min{y1, ..., Ym}

in the following theorem and the associated proof.

Theorem 17 Let us fix some q € [1,00). Assume that v is a finite measure on R? with
suppr =: X C R¢ and let (Aj)j=1,..m be a partition of X. Furthermore, let f : R - R
be such that f € B (v) for some o > 1. For the functions K; : R* - R, j € {1,...,m},
defined by B3), where s :== |a| +1 and y1,...,Ym > 0, we then have

d
Ymax a
HZ]lA (K 1) = Al = Cog (22 ot

min

where Cp 4 —Hqua (%)%77 4I‘(qa+ )%

Proof In the following, we write J := {1,...,m}. To show

9« 1 d
q d\? _1 1)2 Ymax a
[Saawn =) <1y o (5) 7t (v g) " (22 st
jeJ a '

’len

we have to proceed in a similar way as in the proof of (Eberts and Steinwart,, 2013, The-
orem 2.2). First of all, we use the translation invariance of the Lebesgue measure and
exp (—|lull3) = exp (=] — ul|3) (u € R?) to obtain, for z € X and j € J,

WERE 2|z —t]|3
2= LX)z (ﬁ) eXp(‘Hva;HQ>f(t)d’f
(2 e (LB (5= (5 oy e
‘/w<vf-w> () (B () rem) o

With this we can derive, for ¢ > 1,

> da - (K« f)— f

=
J Lq(v)

q

[ @) (55 N @) - @) dvo)

jedJ

/ S 1, (2) 1K+ f (2) — f ()

jed

U

X
—~

8
~—
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_ /RdZnAj(x) |+ f () = £ (2)| dv ()

jeJ
=3 [ @K f @) = F @) dv (2)
jes R
: : q
2 2||h > sl
=3 Lo | [ () en 252 ) (2 () com -t ) an
jer R RI\ V5T 7 =0
: : q
. 2 2||h )
=[] [ e (T) exp (— ” J'?)Ahu,:c) an| dv(z)
jer /R Rd VT 7
: : q
2 2||l3
< T4.(x / — | exp| - AN (f,x)| dh | dv(z) .
ZJ/R AJ<><Rd<,Y]2W> ( el 1A ®
2\ /2
Then Holder’s inequality and [q exp (—27;2”]1“%) dh = (%) yield, for ¢ > 1,
q
> da - (Kjxf)—f
e’ L)

q—1

Sl (LG (%))

1\ 49

ERNIN A1 A YOUMTR R R
(/Rd (fy]?w) p( 72 )‘Ah(fa )| dh) dv (z)
2 : 2|
_Z/Rd ]lA x / <T> exp< H,yj”2> ’AS( 7x)’q dhdy(a:)

jeJ

2
_Z/Rd< S ) (_2”;12“2) /Rd]lAj(w)‘Ai(f’x)’q dv (z) dh
JjeJ i

2 \% 2|13
< By exp ( ——5—
R len /Vmax
2 \? 2105 | g (5,1
- =) e (- 183 (£,)12, ) dh
R¢ \ ™ Vmin ’Ymax Lq
| )

/. Zm )05, (f.2)|Y dv (x) dh

W1 o (£ I01],) dh
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Moreover, for ¢ = 1, we have

> da - (K f)— f

Jje€J Li(v)
<Z/ > ( 2”h”2> |AS (f,z)| dhdy ()
jed
A3

L. p< ) [ 1ot
S/Rd <m ) exp< 2thlg

Consequently, we can proceed in the same way for all ¢ > 1. To this end, note that the
assumption f € By (v) implies w, 1, () (f,1) < HfHBgoo(u) t* for t > 0. The latter together
with Holder’s inequality yields

) oty (s [l d

Vmax

q

D la, - (Kjxf)—f

jeJ
J Lq(v)

) ()
Wy ()" Lo ( 2'11‘f>dh
<l (mim>2</ o (-2) )" ([ o (- 241) )
=||f||qg,w(y)(2”‘“a") (/[ iz e (- 2”11’12)%)

to £%, we obtain

—1
Using the embedding constant d 2so S of €2qa

2||h 2h?
/ [h]|39* ex < ” ”2) dh < d9®~ 12/ 2aneXp< > >d(h1,...,hd)

max

d—1
2 h2
— dqa—l § : <7max7T> / hQQQ exp < ) dhg
=1 2 R ¢ Wmax

2 4t 2
— 21 <M> : /OO £29% exp ( 2t ) dt |
2 0 ’Ymax
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for v > 0. With the substitution t =
of the Gamma function I'; and I’ (%)

o) 2
/ #29% exp <_ 2; > 1 Vmax <7max> u(qa—i—%)—l exp (—u) du
0

/ymax
1’Ymax <’Ymax> <qa+ ;)

q

(% ﬁlax )%, the functional equation I'(t + 1) = ¢ T'(¢)
= /7 we further have

Altogether, we finally obtain

1
2 20, 2||h|3 2
< q max q o
<1l gyw@)( mm) ( /R Il esp (- 2012
1
220\ T () (77N e 1
<A Be ) <7r’y4- > <<§> <2—d Vo T ( g+ 5
4o 1 d
d\? _1 1\2 [/~
_ q e - max qo
- ”f” g,oo(”) <2> w4l <qa+ 2> <’Ymin> Tmax -

1
2

Based on Theorems [0l and [I7, we can now show Theorem [7l
Proof [Proof of Theorem [7] First, we have to choose a function fy € H. To this end, we
define functions K; : R? — R, j € {1,...,m}, by (B3), where s := [a] + 1 and 7; > 0.
Then we define fy by convolving each K; with the Bayes decision function ff p, that is

Z]IA (K * frp)(T), reR?.

JEJT

Now, to show that fj is indeed a suitable function to bound the approximation error, we
first need to ensure that fy is contained in H. In addition, we need to derive bounds for
both, the regularization term and the excess risk of fy. To this end, we apply (Eberts and
Steinwart, 2013, Theorem 2.3) and obtain, for every j € Jr,

(Kj * fz,P)‘Aj € H’Yj(Aj)
with
”]lAijHI:[,Yj(Aj) = H]lAJ'(Kj * fz7P)HI:I’Vj(AJ')
= H(KJ * fz,P)\Aj‘

< (yv/m) "2

HW]‘ (Aj)

2° = DIfLplLoma) -
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This implies

fo=> 1a,(K;* fip) € Hyp.
S~—_—— —

JeJT -
Equ (Aj)

Besides, note that 0 € ﬁ,yj(Aj) for every j € {1,...,m} such that fy can be written as
fo =227, fj, where

fii= ]lAj(Kj*fz,P)a JE€Jr,
77 o, id Jr.

Obviously, the latter implies fy € H. Furthermore, for Ap :=
0T yield

ey Aj, B2) and Theorem

Riyp (o) = Riy o = o= fipliuwy,a,)

= Z La,(Kj = frp) — fz,P”%z(PX‘AT)
jeJT

d
max;eJj, Vi
é Oa’2 <#> max,yjza,
min;e j, vj JEJT

where C, 2 is a constant only depending on «, d, and || f zva Bg __( )- To utilize Theorem

Px|a
[l it remains to examine the constants B, V, 1, and By. Since we c‘oripsider the least squares
loss, which can be clipped at M with Y = [—M, M], the supremum bound ([I8) holds
for B = 4M? and the variance bound (I9) for V = 16M? and ¥ = 1 (cf. Steinwart and
Christmann, 2008a, Example 7.3). Next, we derive a bound for ||L o fy||~ using (Eberts

and Steinwart, 2013, Theorem 2.3) which provides, for every x € X, the supremum bound

o) = S 1a, (o) - (K ) @)| < S0 14, 0) [ K 5 £ )| <2 = D) | F ] g

JjE€JT JjEJT
(34)
The latter implies
[Lsr 0 follo = sup  [L(y, fo(z))]
(z,y)eX XY
< sup (M?+2M|fo(x)| + | fo(2)]?)
(z,y)EX XY
< 4 max { M2 |5 ol gy | -
ie. By = 4° max{M2,||f}:7P||2Lw(Rd)}. Moreover, since Theorem provides

1 d+2p —4t2p
ei(id © Hy (A5) = La(Px4;)) < aji- 2 for i > 1 with aj = &/Px(4;)r 2Pp7j ®

we have
m % 2p
<max{cp\/ﬁ (Z A;pa§p> , B})
j=1
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e <Z_: <)\ 75 d?pPX(Aj)Y)%,B})zp

1 2p
" m _d+2p 2
< (max{cpépm%rdgj <Z/\j_17j ? PX(Aj)> ,B})
j=1
< { ~ i i '
C,

where we used the concavity of the function ¢ ~ tP for ¢t > 0, mr? < 8¢ by (), and
Cp:=¢cp c?,p 8¢. Finally, applying Theorem [ yields

RLJT7 (fD A,’Y) - RZJT,P

<Z>\ HfDJ,AmH 4 T Regp (foany) — RL,,.P
j=1
<9 ZA 114, foH2 ay) T Regp(fo) =R, p
j=1

1
+ O (@) g (721/7)219 | 1587

n

d
max;e s, vj 2
<9 Aj( -1 +C #> max -y;
JGZ:JT O/ A HfLPHLZ R) o2 <m1nj€JT Vj J'EJT%

P
- —— 34561
+CCyr? ZAJ-A% " Px(4;) n~ly OByt 22T
n
i=1

S * .
+15 - 4% max{M?, |7 p 7 ey} -

d
—dy ek - maxje jr Vg 2a
<9(2° —1)%n 2 2 /\--d+902<#> max v;
2 Ul 3 054960 () g

p
d+2p

m
+CCr [ AT, 7 Px(4y) | nTt+16PCM PR
j=1

S * T
+ (3456M2 +15 - 4° max{M?, | fL7P|12Lw(Rd)}> -
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with probability P™ not less than 1 — 3e™7. Finally, for 7 > 1, a variable transformation
implies

Z)\ Hij)\J,’YJHH (A +RL]T’ (fDAK')’) REJT,P
j=1

p

<C Ny~ d maXjeJjr Vj I 2p /\— ;ZPP A -1, A —1
VASEVA

with probability P™ not less than 1 — ™7, where the constant CM,a,p is defined by

N

] . ] d\* _1 1
CM,O!J) = max{9(2 - 1)27'[' 2 HfL,P”%Q(Rd) s 9HfL’PH2Bg,oo(PX\AT) <§> 7 al <20ﬁ + 5) ;
glCcrer | 16PC MY + (3456M2 +15 - 4° max{M?, || f7 p|l7 _ (Rd)}> (1+ ln(3))} .
|

Next, using the just proven oracle inequality presented in Theorem [7, we show the
learning rates of Theorem [§in only a few steps.

Proof [Proof of Theorem [§] First of all, we define sequences A, = con~ ! and A 1= 03n_T1+d
to simplify the presentation. Then Theorem [7] zm” x(4;) =1, and |Jp| < m, < 8%, ¢

together with X, ; = rd X, and Ynj = Yn for all j € {1,...,my} yield

Ris p(foAny,) = RL, P

p

d

max;ej, Yn,j 9 T

<C g An + | ——L=L ) max 2% 4 2P E A, Aj)|n+—

e jeJ: ’]’Yn’j mijejr Yn,j / J€JIT ’Yn J " jﬁyn J X( ]) n
JeJr

p
mn
= CMap |JT|T2/\n’7;d + 7%%0‘ + rr(f—d)P/\;pﬁ;(d—i-m?) Z Px(4;) n~! 4t

< 870 (MFn® + 52 4+ AP35 220y =t g pp 1)

< 1 _L .
Using the choices A, = can™!, 3, = c3n” Za+d, as well as r, = cin_ 72 finally implies
N *
Riyp(fpans,) —RL, p

< 87C 0 (M + 32 4+ AP 2y 2Dyt 4 p 1)

~ 1 d+2p (2—d)p 1 1
< Crap | n n%Fa +n Tata + nPnletdn” Bd n= 4+ 1N

N 2 2 __2a 2
= CMap (n_ﬁ L 4ttt +rn_l>
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2
< Crn 7atate

with probability P™ not less than 1 — e¢™7, where C > 0 is a constant and
2 1_ 2
52(1+m+g—m>p>0. |

Proof [Proof of Corollary @] For simplicity of notation, we write X, A;, v, and ~; instead
of An, Ay, Y, and 7y 5. Since |J Aj C T+ for all n > ng, the assumption f};P €
B3 (Px|p+s) implies

JEJT

fip € Bioo(Pxy, ;. 4,) -

With this, Theorems [ and B immediately yield
RLT, (f/oAary) —RLpp

< Z)\ HJ"'DJ,A],%H2 3T Rirp(foay) = Rip
7j=1

, _
< N, 00 ngj (4, T Ris p(fory) =RL, p

3

p

maXje jr Vg 9 B d+2p , T
<C A —edr 1) P ATl P Py(As L
e | Z2° () et Z 1 " Px(A)) Ty
T

2a
< Crn2ata’s

with probability P™ not less than 1 —e™7, where & > (1 + ﬁ + % — %) p > 0. Moreover,
the constants Carp > 0 and C' > 0 coincide with those of Theorems [l and [8 [ |

Proof [Proof of Theorem [I0] First of all, let us examine the approximation error R, p(fo)—
Rip of the function fy := Z;n:l T4, '(Kj*fip), where the functions K1, ..., K, are defined
by [B3]). We start with

Rerp(fo) = RLp

- /X (fole) — f1.p(2)’ dPx (x)
= [ 1) (o) — 0l ) + [ 00(0) (o) 00 Px()
X

X
= Hfo—fz,PHiz(Px‘A(;)"’ XﬂZH( )( o(z) — frp(x )) dPx (),

where (34) implies
/X 145(2) (folz) — f.p(2))* dPx ()
< / 145(2) (|fol@)] + | F.p(2)]) 2 dPx ()
X

o8
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2
< /X Ly+s(z) ((28 = DI plle@e + ”ff,P”Loo(Rd)) dP x (z)
= 4s”f£,P”ioo(Rd)PX <Z+5) .

for
Lq(Px)ag)

arbitrary ¢ > 1. To this end, we apply Theorem [T for v = P X145 and for the partition
(Aj)j:17...7m, where flj = A;NA; for every j € {1,...,m}. Since we actually have suppr =
As =L, (A; N As) and since ] p € BS (Px|4;) for @ > 1, we obtain

To esimate the approximation error on Ay, we initially investigate H fo— fz’P‘

2

m d
* 2 * * v 2
Hfo_fL7PHL (P ) = § ILAjﬁAg '(Kj*fL,P)_fL,P SCO&,Q ( mzllx> ’Ymoéx7
2\ XA 1 Ymin
= LZ(PX\Aa)
1
where Cp 9 = HfEPHQél (Pxia) (%)aﬂ_%l“ (200 + 3)2. Altogether, we can finally bound
) ,00 6

the approximation error by
* * 2 * 2
Rrp(fo) —Rip =||fo— fL,PHLz(PX\AJ) + /X Ly+s(x) (folz) — fip(x))” dPx(z)

d
< 0072 <M> meax +4SHfL P”L (R4) Px (Z+5>
“Ymin

Analogously to the proof of Theorem [0 applying Theorem [l yields

Rip(foa~) — RLp

< ZA /o, MJH2 +RLP(fD Av) — Rip
7j=1
<9 Z)\ 114, foH2 5 T Rip(fo) = Rip
7j=1

1
+C (a2pn—1)m 13 (M) 77 1Bl +In3)7

n n
Y a 5
<9 D (VA = 1Pl oy + Cona (222 2t ol e P (27)
p
m _d+2p
+ CCyr?p Z)\j_lyj » Px(4;) | nt+CB¥n!
j=1
(3456M2 +15 - 4° max{M?, | £ p|2_ g }) (1+In3)r
+ n
p
~ Ymax 2p - dtazp -1, 7 +6
<C Zm] - L ZA 77 Px(4)] n7l+T+Px (21)
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T

with probability P™ not less than 1 — e™7 and

1
2 . . d\* 1 1\?2
= max{9<28—1>2w ol ey el ey (5) 73T (204 5) " G

16PC M+ (3456M2-|-15 - 4% max{M?, HfZ,pHioo(Rd)}) (1+1n3),9- 4stz’PH%OO(Rd)}
< Cmax {1 fiplds _oxpa) 1}
where
~ s 2 _—7 d\* _1 1 %
C :=max 9(2 —1) 2”fLPHL2 (Rd) 5 9 5 n al 2a+§ ,CCp,
16pCM4”+(3456M2+15~45 M2, || FE o2 14+13), 945 fF 2
max{ 7HfL,PHLOO(Rd)} (1+In3), HfL,PHLOO(Rd) .
[

1
Proof [Proof of Corollar Using the sequences 7, = cin” 5d, A, i = corin~! as well as
y g sJ n
1 2a
Yn,j = can_ 2a+d for every j € {1,...,my} and 0, = cyn” 2e+d, we deduce with probability

P™ not less than 1 —e™ 7"

Mn
> X 1Dy A s ”%{m T Rip(foAnn,) — RLp

j=1
p
Y — T n
<C zA i (2 ) s zxnﬂm "Prap) wte Dapy (200)
mln
~ _ d+2
<C czcgdmnrdn_lnm + c2an_T+d + cz_pc3 (d+2p)r(2_d)pnpnﬁn_l +mn 4+ C5n>

(
(d

~ _ _ 2a+d+2
C 8 02C3 n 2a+d + C2an 2a+d + C pC (d+2p),,,,£L2 d)pn 2a+d+ 2atd p + ™~ + C(Sn)
-~ — _2-d 2 2a+d+42
< d 2a+d 2a+d (2=d)p c P (d+2p) 5d Py~ sarat Sara P
< 6263 n + c n~ + ¢ Cy'Cy n n
+ 7

-1 __sx
n -+ ceqn 2a+d>
-~ _d ——2a __2a 2—d)p —p —(d+2 —2e (1424121,
§C<8d02c3dn Zatd 4 3% Za+d —i—cg )pc2pc3( P)p” Zatd (et —7a)
—1 2o
+71n " +ceyn 20+
=~ _27014_5
< Ctn 204d7s

where C := C <8d626 + 2 + max{c?, 1}cl_dp02_pc§(d+2p) +1+ CC4> and & > (1 + ﬁ

—I—%—%)p>0.
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It remains to prove Theorem However, we previously have to consider the following
technical lemma.

Lemma 18 Letd > 1 and ry, = cn_ﬁ with 8 > 1 and a constant ¢ > 0. We fix finite
subsets A, C (0,79] and T, C (0,7,] such that A, is an (rie,)-net of (0,7%] and T, is
an 6p-net of (0,7,] with 0 < &, < n~t, §, > 0, Td e A,, and r, € T'y,. Moreover, let

JC{l,...,my} be an arbitrary non-empty index set and |J| < m, < 8~ Then, for all
1al, n>1, and all p € (0,1) with p < %, we have
d+2 P
. maxjeJj 2 £ -1
inf A #> max ;< +rP A P Px(A;) | n
(X)) i €(An xTp)™ Z ﬂj <H11njeJ Yi /) J€d Z 7] ( J)

jeJ
— 529+ | 20
§C’<n zata +5n),

where & = ((2a+d)2((?§i(j——;()i(—gi—)p)+2p) +max{ Bd ,0})p and C > 0 is a constant independent of

n, Ay, en, I'n, and 6,

Proof Without loss of generality, we may assume that A, and I',, are of the form A, =
{)\(1), . ,)\(“)} and I';, = {7(1), . ,7(”)} with \®) = r‘rf and ¥() = r, as well as A7) <
AD and v <A@ forall i =2,...,uand £ =2,...,v. With A9 := 0 and 4©) := 0 it is
easy to see that

2D\ < 27*%5” and O D < 95, (35)
2a+d
hold for all ¢ = 1,...,u and £ = 1,...,v. Furthermore, define \* := n” EEFD0% and
1
v* := en @F00+9F2 . Then there exist indices i € {1,...,u} and ¢ € {1,...,v} with

M= < pd s < AN and 41 < 4* < 4O, Together with (35), this yields
rANT < A0 < pdyr poopde and  4* <40 <4* 4+ 26,. (36)

Moreover, the definition of A\* implies €, < A* and the one of v* implies v* < r, for

a < %d and p € (0,p*], where p* := 52‘2;2;{;. Additionally, it is easy to check that

2 d—2
A\ (’Y*)_d + (,Y*)%c + ()P (,Y*)—(d+2p) Tg—d)pn—l <eén~ (2—a+d>(1+'p)+2pJ’ma"{W’O}f”7 (37)

where ¢ is a positive constant. Using (B8], the bound |J| < m,, < 8% ¢, and [B7), we
obtain

p

. maxjecjy e _
inf A #> max -y —1—7‘25” p P AN n!
()‘jvyj);'n:nlE(AnXFn ‘]ZE;] ]fyj <m1nj€J 7‘] jedJ Z ’Y] X( ])
. —d 20 mn N\ -1 —d+2p g
< Z A@ (7(5)) + <7(5)> + Z <)\(2)) (7(5)) " Px(4;) | rZPn7t
jed j=1
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< [JA® () . () . (x) " () ) 2,1

< 1) (riN 20 ) () (0 420002+ (X)) T g2
<8TBN (7)) T (77 4 200)7 + (V)P ()T 2

<o (W) () ) () T e

IN

2a d—2
éen” Bara(TmTes max{ 42.0}p 4 &6%

<C (n_%ﬁ + 5,2;1)

with £ := ((2a T diéii%ﬁ?p) T3 + max{ 7d ,0}) p and constants ¢ > 0 and C' > 0 indepen-
dent of n, Ay, e, 'y, and 0,,. [ |

In the end, we show Theorem [I2 using Theorem [7] as well as Lemma I8
Proof [Proof of Theorem [I2] Let [ be defined by [ := L%J +1, ie. I > 5. With this,
Theorem [T yields with probability P! not less than 1 — |A,, x I';,|™" e~ that

RLJT ,P(fDl,Af)’) - REJT 7P

p
a o —d maXjeJp Vj 2p ;zp ' -1 -1
: 2 J'GZJ:T)\”J i <minjeJT 7j> Jné%?r( B Z)\ 7] Px(Aj) | U+l
. . Mn d+2p P
Z )\jvj_d + <7méX]€JT %> max% + 2P Z)\ 7] " Px(4;) n~t 4t
jedr minge jr vj JE€JT
(38)
for all (A\j,v;) € A, x Ty, j € {1,...,m,}, simultaneously, where ¢; > 0 is a constant
independent of n, 7, A, and . Furthermore, the oracle inequality of (Steinwart and Christ-
mann, 20084, Theorem 7.2) for empirical risk minimization, n —1 > § —1 > %, and
Tn =T+ In(1 + |A,, x ['y|™") yield
Risp.p(fD1Apy, p,) = RI,, P (39)
<6 inf Re, p(foorn) — R +51oMm2
(/\jﬁj)?l:’ﬁlel%/\lern)m” L PRIDIAY L P n—1
. n * 2Tn
<0 ((/\jﬂ/j)ﬁ’ﬁlel%/f\nxl“n)mn RLJT’P(fDl’)"’y) RL‘]T’P) 20480 n (40)

with probability P~ not less than 1—e~". With 38), @) and Lemma [I§ we can conclude

RLJT 7P(fD17}\D2 YDy ) - RZ]T P

in T
<6 inf R - R; + 2048 M
<()‘J ,’yj);n:nle(Aan‘n)mn L‘]T7P(fD17A77) LJT’P> n
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d
. _ maXi;c.J. 1
< 6(31 inf E )\g% d + <LT’Y]> max,y?a
()\jﬁj);n:nl E(ApxTp)™mn jedr mlanJT 7) Je€JT

p
_d+2p

mn
2 (SN 7 Px(A)) | a7t | e +2048M2%
j=1

< 6 (C (n‘z%+§ + 525‘) + m—l) + 2048M2%"
< 12616’71_22%4{ + (6617’ + 2048M2Tn) n~!

with probability P” not less than 1 — (1 4 |A,, X I';,)|") e™". Finally, a variable transfor-
mation yields

RLJT,P(J?DLADQ,’VDQ) —Ri,. P
< 12¢;Cn Fata T 4 (6cr (7 +In (14 [An x Ty ™))
+2048M (7 4 21In (1 + [A, x T[™)) )"
< 126,03 4 (6 + 2048M2) (7 + 2mn In (1 + |Ap x Tn|)) 0t
< 12¢;Cn " 757 4 (Gey + 2048M72) (T +2- 8% (1+ A, x Fn\)) n”

o _B-1
= 12¢;Cn” 252t 4 (6 + 20480M2) <m—1 +2-8% I (14 [Ay x D)0~ 7 )
2 d —d _ 2« +5
< (12(:10 + (61 + 20481M2) (T +2-8% I (14 |A, x rny)>> " ava

with probability P™ not less than 1 — e™7, where we used

6—1 _B=1 __2a
a<Td <— n B8 <n 2atd

in the last step.
|

Proof [Proof of Theorem [I3] The assertion follows analogously to the proof of Theorem
using the oracle inequality of Theorem 10 |
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Appendix A

For the sake of completeness, we present in the following some tables containing the compu-
tational results achieved by the LS-, VP-, and RC-SVMs for all real and artificial data set
types. Here, the training and test times, given in seconds, are averaged over all successful
runs. Moreover, for the test and Lo-errors, we also stated the mean of all runs plus/minus
the standard deviation. The same is true for the number of working sets (# of ws), ex-
cept for the LS-SVMs, where we always have one working set by construction. The last
two columns contain median, minimum, and maximum of the working set sizes appearing

during the various runs.
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data set sizes | runs || train time test time test error # of ws ws size: median  ws size: range
1000 (10000) | 100 1.38 0.48  0.7142 +0.0097 1.00
2500 (10000) | 100 6.42 0.99  0.6323 +0.0074 1.00
E 5000 (10000) | 100 30.19 1.55  0.5707 +0.0070 1.00
N 10000 (50000) 10 138.01 12.14  0.4909 £0.0089 1.00
A 25000 (50000) 10 922.90 34.19  0.3816 +0.0042 1.00
50000 (50000) 3 3788 176.68  0.3117 +0.0012 1.00
100000 (50000) 3 16353 507.38  0.2417 +0.0102 1.00
data set sizes | runs || train time test time test error # of ws ws size: median ws size: range
1000 (10000) | 100 5.85 0.73  0.7521 +£0.0108  83.73 +1.86 6 1,156
2500 (10000) [ 100 7.44 1.15  0.6602 +0.0082 101.92 =+2.04 10 [1,481]
o« 5000 (10000) | 100 9.37 1.83  0.6011 +0.0079 106.72 +1.95 24 1,987
§ I 10000 (50000) | 10 13.45 13.68  0.5238 +£0.0076 120.20 £1.99 40 [1,952]
xR é 25000 (50000) 10 26.73 31.07  0.4134 +0.0057 131.00 +2.26 80 [1,3204]
% g 50000 (50000) 3 57.41 183.71  0.3449 £0.0047 139.67 +4.16 155 [3,4334]
= || 100000 (50000) 3 171.12 493.44  0.2658 +£0.0028 154.33 £5.51 271 [3,8121]
250000 (50000) 3 1128 1169 0.1924 +0.0016  166.33 +3.79 533 [3,22633]
500000 (50000) 3 5349 3020 0.1608 +0.0024 178.33 +0.58 987 [2, 44585]
1000 (10000) | 100 2.79 0.59  0.7262 +£0.0092  37.39 £1.85 15 [1,193]
2500 (10000) | 100 3.97 1.09  0.6379 £0.0072  44.40 +1.84 25 [1,493]
oo 5000 (10000) | 100 5.58 1.74  0.5845 +0.0062  47.59 +1.66 50 [1,1008]
§ I 10000 (50000) 10 10.64 13.43  0.5075 +£0.0042  51.20 £1.62 85 [1,1918]
@x § 25000 (50000) 10 31.83 32.38  0.4026 +£0.0044  58.60 £1.65 142 [3,4971]
g '% 50000 (50000) 3 120.10 208.34  0.3256 +0.0021 61.33 +2.08 274 [4, 10005]
~ || 100000 (50000) 3 444.39 523.39  0.2539 +0.0034  64.67 +1.53 484 [18 , 20082]
250000 (50000) 3 2825 1274 0.1859 +0.0018  68.33 £1.15 1169 [21, 49558]
500000 (50000) 3 12882 3786 0.1540 +0.0010 ~ 72.00 +1.00 2366 [54 , 74787)
1000 (10000) | 100 0.87 0.53  0.7095 +0.0102 4.40 +0.49 165 [42 , 489]
2500 (10000) | 100 2.14 1.05  0.6317 £0.0062 5.02 £0.49 382 [83, 1248]
o 5000 (10000) | 100 7.41 1.74  0.5737 +0.0073 4.94 +0.55 723 [229 , 2401]
§ 1l 10000 (50000) 10 28.58 13.62  0.5007 £0.0070 5.20 +0.42 1518 (488 , 4514]
@Q Q 25000 (50000) 10 201.17 33.16  0.3937 +0.0049 5.70 +0.67 2533 [566 , 11113]
g 3 50000 (50000) 3 827.41 218.85  0.3225 +0.0028 5.33 £0.58 7530 [2870 , 24509]
~ || 100000 (50000) 3 2823 548.96  0.2418 +0.0007 7.00 £0.00 6356 [2621 , 40018]
250000 (50000) 3 20010 1434 0.1689 +0.0041 6.33 £0.58 17721 [6061 , 110464]
500000 (50000) | 0 (3) NA NA NA £NA 7.33 £1.53 68182 [12469 , 233675)
1000 (10000) | 100 1.33 0.48  0.7138 +0.0100 1.06 +0.24 1000 [208 , 1000]
2500 (10000) | 100 5.97 1.01  0.6326 =+0.0080 1.16 +0.37 2500 [375 , 2500]
o 5000 (10000) | 100 29.20 1.58  0.5705 +0.0071 1.06 +0.24 5000 [1810 , 5000]
§ Il 10000 (50000) 10 131.83 12.48  0.4895 £0.0066 1.10 +0.32 10000 [4338 , 10000]
@Q ﬁ 25000 (50000) 10 832.08 33.09  0.3830 +0.0045 1.20 +0.42 25000 [8524 , 25000]
g || 50000 (50000) 3 3182 185.13  0.3151 +0.0066 1.33 +0.58 40062 [19875 , 50000]
~ || 100000 (50000) 3 10472 527.18  0.2427 +0.0030 1.67 +0.58 55873 [42218 , 100000]
250000 (50000) | 1 (3) ||34449 1445 0.1650 +0.0000 3.00 £0.00 86655 [46661 , 116684]
500000 (50000) | 0 (3) NA NA NA £NA 1.33 +0.58 375000 [186510 , 500000]

Table 3: LS- and VP-SVM results relating to the COVTYPE data sets
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data set sizes | runs || train time test time test error # of ws  ws size: median  ws size: range data set sizes | runs || train time test time test error # of ws ws size: median  ws size: range
1000 (10000) | 100 1.76 030 0.7159 00101 1.00 £0.00 1000 {1000} 1000 (10000) | 100 0.99 032 0.8134 200133 10.00 £0.00 100 {100}
2500 (10000) | 100 22.55 2.19  0.6324 +0.0073  1.00 +0.00 2500 {2500} 2500 (10000) | 100 2.73 529 0.7188 +0.0090  10.00 +£0.00 250 {250}
_ = || 5000 (0000) | 100 97.30 9.16  0.5707 £0.0070 1.0 £0.00 5000 {5000} _ 2| 5000 (0000) | 100 6.61 1524 0.6825 £0.0074  10.00 +0.00 500 {500}
§ ! 10000 (50000) | 10 741.46 111.75  0.4909 +0.0089  1.00 +0.00 10000 {10000} = 10000 (50000) | 10 31.94 69.23  0.6278 +£0.0079  10.00 £0.00 1000 {1000}
% £ 25000 (s0000) | 10 | 4629 20175 0.3816 £0.0042 1.00 £000 25000 {25000} @ £l 25000 (50000) | 10 259.18 30444 05444 £0.0041  10.00 £0.00 2500 {2500}
2 S| 50000 (so000) | 3 | 11416 521.84  0.3117 £0.0012  1.00 £0.00 50000 {50000} 2 = | 50000 (s0000) | 3 867.90 64572 0.4904 £0.0044  10.00 £0.00 5000 {5000}
# 11 100000 (50000) | 3 ||19921 622.99  0.2417 £00102  1.00 £0.00 100000 {100000} || 100000 (50000) | 3 | 2065 1204 0.4120 £0.0076  10.00 £0.00 10000 {10000}
250000 (50000) 0 NA NA NA +NA NA +NA NA {NA} 250000 (50000) 3 9534 1398 0.3039 £0.0017  10.00 +0.00 25000 {25000}
500000 (50000) | 0 NA NA NA £NA  NA £NA NA {NA} 500000 (50000) | 3 |[43146 2689 0.2300 £0.0008  10.00 £0.00 50000 {50000}
1000 (10000) | 100 0.59 029  0.7527 00143 4.00 £0.00 250 {250} 1000 (10000) | 100 1.67 0.33  0.8646 £0.0082  20.00 £0.00 50 {50}
2500 (10000) | 100 4.76 256 0.6676 £0.0077 4.00 £0.00 625 {625} 2500 (10000) | 100 3.16 443 0.7574 £0.0076  20.00 £0.00 125 {125}
- T 5000 (10000) | 100 25.57 11.60  0.6254 +0.0074  4.00 +0.00 1250 {1250} - ] 5000 (10000) | 100 3.99 13.46  0.7172 £0.0069  20.00 £0.00 250 {250}
; "L 10000 (50000) 10 89.55 83.44  0.5649 +£0.0047 4.00 £0.00 2500 {2500} ; I 10000 (50000) 10 22.55 170.42  0.6770 £0.0068  20.00 %0.00 500 {500}
@« E 25000 (50000) 10 905.89 243.32  0.4746 +0.0062 4.00 +0.00 6250 {6250} 3 Z 25000 (50000) | 10 87.06 236.67  0.5958 £0.0054  20.00 +0.00 1250 {1250}
2 3| 50000 (s0000) | 3 2160 52096 0.3990 £0.0032  4.00 £0.00 12500 {12500} Z T || 50000 (50000) | 3 150.59 269.68  0.5470 +0.0029  20.00 +0.00 2500 {2500}
* 1 100000 (50000) | 3 4191 826.40  0.3224 £0.0016 4.00 £0.00 25000 {25000} F || 100000 (50000) | 3 885.28 685.50  0.4760 £0.0028  20.00 £0.00 5000 {5000}
250000 (50 000) 3 29909 1677 0.2251 +£0.0012  4.00 £0.00 62500 {6250(]} 250000 (50000) 3 4559 1634 0.3752 £0.0057  20.00 £0.00 12500 {12500}
500000 (50000 | 0 (3) NA NA NA £NA  4.00 £0.00 125000 (125000} 500000 (50000) | 3 |[19033 2802 0.2071 £0.0008  20.00 £0.00 25000 {25000}
1000 (10000) | 100 0.69 0.30  0.7674 £0.0142  5.00 £0.00 200 {200} 1000 (10000) | 100 3.75 0.38  0.9280 +£0.0046  50.00 +0.00 20 {20}
2500 (10000) | 100 3.59 297 0.6798 £0.0092  5.00 +0.00 500 {500} - 2500 (10000) | 100 6.58 552 0.8220 +0.0073  50.00 +0.00 50 {50}
o ® 5000 (10000) | 100 18.79 14.25  0.6404 +0.0082 5.00 +0.00 1000 {1000} - ® 5000 (10000) | 100 6.04 15.28  0.7679 +0.0081  50.00 £0.00 100 {100}
Z 11 10000 0000y | 10 72.80 112.97  0.5790 00070 5.00 £0.00 2000 {2000} Z 1|l 10000 Goooo) | 10 1150 12414 0.7245 £0.0058  50.00 £0.00 200 {200}
% E | 25000 (50000) | 10 659.31 297.07  0.4886 £0.0048  5.00 £0.00 5000 {5000} S £ || 25000 (30000) | 10 19.95 27744 0.6551 £0.0056  50.00 £0.00 500 {500}
2 3 | 50000 (s0000) | 3 1620 470.55  0.4216 £0.0024  5.00 £0.00 10000 {10000} & 3| 50000 (s0000) | 3 54.19 22131 0.6101 £0.0032  50.00 £0.00 1000 {1000}
# | 100000 (50000) | 3 5441 1298 0.3420 £0.0040  5.00 £0.00 20000 {20000} = || 100000 (50000) | 3 319.38 1018 0.5600 £0.0023  50.00 £0.00 2000 {2000}
250000 (50000) | 3 ||20828 1614 0.2395 0.0015  5.00 £0.00 50000 {50000} 250000 (50000) | 3 || 2680 1659 0.4688 £0.0037  50.00 £0.00 5000 {5000}
500000 (50000) | 3 ||81660 2794 0.1931 £0.0007  5.00 £0.00 100000 {100000} 500000 (s0000) | 3 || 6984 2352 04011 £0.0022  50.00 £0.00 10000 {10000}
1000 (10000) | 100 0.73 0.29  0.7776 £0.0138 6.0 +0.00 167 [166 , 167] 1000 (10000) | 100 7.14 042 0.9562 +0.0035 100.00 +0.00 10 {10}
2500 (10000) | 100 3.49 3.27  0.6911 £0.0101  6.00 £0.00 17 416, 417) o || 2500 (10000) | 100 12.05 5.85  0.8752 +0.0049 100.00 +0.00 25 {25}
_ o | 5000 Goooo) | 100 15.61 1657 0.6519 200089 6.00 £0.00 833 (33, 834] ~ S| 5000 @ooo0) | 100 10.70 16.60  0.8239 £0.0061 100.00 £0.00 50 {50}
2 1 10000 o000 | 10 50.90 7944 0.5937 £0.0060 6.0 40.00 1667 (1666 . 1667] S || 10000 (s0000) | 10 12.05 92.09  0.7593 £0.0069 100.00 %£0.00 100 {100}
& = || 25000 (s0000) | 10 23076 259.58  0.5035 £0.0055 6.00 +0.00 4167 4166 , 4167] & E | 25000 0000) | 10 2160 276.4G 06926 +0.0037  100.00 +0.00 250 {250}
£ S| 50000 (s0000) | 3 1406 425.29  0.4355 £0.0028  6.00 £0.00 8333 8333 , 8334] & 5 || 50000 (0000) | 3 3239 206.27  0.6493 +0.0033 100.00 +0.00 500 {500}
* | 100000 0000y | 3 5139 1203 0.3579 200047 6.00 2000 16667 (16666 . 16667] s || 100000 (s0000) | 3 14139 T98.77  0.6082 £0.0022 100.00 %0.00 1000 {1000}
250000 (50000) | 3 ||17099 1577 02542 200027 6.00 £0.00 41667 (41666 . 41667] 250000 (50000) |3} 1325 1970 0.5306 £0.0029 10000 £0.00 2500 {2500}
500000 (s0000) | 3 [ 66335 2534 0.2013 £00004 6.00 £0.00 83333 (83333 , 83334] 500000 oooo) | 3 || 3053 2815 04670 #0005 10000 000 5000 {5000}
1000 (10000) | 100 0.72 030 0.7843 £0.0146  7.00 £0.00 143 (142 , 143] 1000 (10000) | 100 11.98 063 0.9650 +0.0023  150.00 £0.00 7 [6.7]
2500 (10000) | 100 3.76 622 0.6991 £0.0090 7.00 £0.00 357 357 , 358] o || 25300 (0000) | 100 15.21 466 0.9086 +0.000 150.00 £0.00 - (16, 17]
_ | 5000 qoooo) | 100 0.51 1049 0.6608 £0.0072  7.00 £0.00 4 (714 . 715] o 2| 5000 aoow) | 100 16.94 1418 0.8610 00053 150.00 £0.0 33 33, 34]
2 I 10000 oooo) | 10 51.30 7581 0.6045 £0.0078  7.00 %0.00 1429 [1428 , 1429] Z 1| 10000 0000) 10 18.06  142.93 0.7936 £0.0068  150.00 2000 67 [66 , 67]
@ £ | 25000 (50000) | 10 258.70  255.08  0.5163 £0.0057 7.00 £0.00 3571 3571 , 3572 & £ || 25000 (s0000) | 10 1647 18381 0.7141 +00039  150.00 £0.00 167 (166 , 167]
2 3| 50000 Goooo) | 3 | 1087 40.26 04463 <0002 7.00 4000 7143 (7142 , 7143] & 5 || 50000 (0000) | 3 26.25 18773 0.6742 00008 150.00 £0.00 333 [333, 334]
| 100000 (s0000) | 3 3174 6105 0.3765 00035 700 000 14986 (14285 | 14256] s | 100000 Goooo) | 3 100.66  755.96  0.6337 £0.0020 15000 £0.00 667 666 , 667)
250000 (50000) | 3 ||15472 1480 0.2638 £00012 7.00 £0.00 35714 35714 , 35715] 250000 (s0000) - 3 93702 1455 0-5658 £0.0004  150.00 £0.00 1667 [1666 , 1667]
500000 (50000) | 3 || 56601 2628 0.2004 +0.0013 7.00 £0.00 71429 [71428 , 71420] 500000 (s0000) | 3 || 1859 2336 0-5081 £0.0019 150.00 £000 3333 (3333 , 3334]
Table 4: RC-SVM results relating to the COVTYPE data sets
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Table 5: Experimental results relating to the COD-RNA data sets

data set sizes | runs || train time test time test error # of ws ws size: median  ws size: range data set sizes | runs || train time test time test error # of ws ws size: median ws size: range
1000 (10000) | 100 1.21 0.25  0.1916 £0.0055  1.00 1000 (10000) | 100 0.87 0.39  0.2036 £0.0050  3.00 +0.00 333 (333, 334]
_ 2500 (10000) | 100 8.25 0.57  0.1842 £0.0043  1.00 2500 (10000) | 100 2.65 0.63  0.1925 £0.0035  3.00 £0.00 833 (833, 834]
Z 5000 (10000) | 100 33.98 103 0.1672 +0.0032  1.00 ™ 5000 (10000) | 100 9.58 0.99  0.1758 £0.0027  3.00 £0.00 1667 [1666 , 1667)
0 10000 (50000) | 10 129.26 1176 0.1596 £0.0032  1.00 2 | 10000 0000y | 10 34.21 1114 0.1660 £0.0025  3.00 £0.00 3333 [3333 , 3334]
A 25000 (50000) | 10 791.14 52.75  0.1453 £0.0020  1.00 8 Z || 25000 (s0000) | 10 240.40 20.92  0.1506 +0.0017  3.00 +0.00 8333 (8333 , 8334]
50000 (50000) 3 3029 169.78  0.1410 +0.0022  1.00 z ° 50000 (50000) 3 972.97 33.79  0.1487 +0.0003  3.00 +0.00 16 667 [16666 , 16667]
100000 (50000) 3 11078 201.54  0.1302 +£0.0008  1.00 || 100000 (50000) 3 3732 178.60  0.1353 +0.0038  3.00 +0.00 33333 (33333 , 33334]
250000 (50000) | 3 21952 697.16  0.1251 £0.0021  3.00 £0.00 83333 (83333 , 83334]
400000 (50000) | 0 (3) NA NA NA +NA 3.00 £0.00 133333 [133333 , 133334]
data set sizes | runs || train time test time test error # of ws ws size: median  ws size: range
1000 (10000) | 100 0.82 0.40  0.2087 £0.0050  4.00 £0.00 250 {250}
1000 (10000) | 100 1.81 0.46  0.2586 £0.0090 21.62 +1.23 15 [1,469] 2500 (10000) | 100 1.92 0.57  0.1967 +£0.0032  4.00 +0.00 625 {625}
2500 (10000) | 100 2.90 0.90  0.2243 £0.0058  25.03 £1.58 28 [1, 1289 - 7 5000 (10000) | 100 6.82 0.93  0.1795 £0.0028  4.00 £0.00 1250 {1250}
- 5000 (10000) | 100 5.19 1.34 0.1891 +0.0036  26.50 £1.63 62 2, 2520] 2 l 10000 (50000) | 10 23.97 9.69  0.1716 £0.0020  4.00 +0.00 2500 {2500}
£ 1l | 10000 (s0000) | 10 12.27 9.21  0.1724 £0.0033  28.50 £1.51 84 [1,5018] & 2 || 25000 (s0000) |10 17279 2155 0.1525 £00015  4.00 £0.00 6250 {6250}
@ £ | 25000 (50000) | 10 43.56 2151 0.1522 +0.0024 34.10 £1.52 209 [1,6015] =1 ; 50000 (50000) | 3 723.49 36.48  0.1497 £0.0005  4.00 +0.00 12500 {12500}
g 2|l 50000 (s0000) | 3 245.63 169.75  0.1462 £0.0027 39.67 +2.31 9275 3, 18273 100000 (50000) | 3 2882 189.13  0.1373 £0.0009 ~ 4.00 £0.00 25000 {25000}
= | 100000 (s0000) | 3 932.30 347.92  0.1352 £0.0024  41.00 £1.00 535 6, 30230] 250000 (50000) | 3 18055 807.67  0.1272 £00010 ~ 4.00 £0.00 62500 {62500}
250000 (50000) | 3 9404 869.18  0.1277 £0.0014  44.67 £0.58 1120 [7.112012] 400000 (50000) | 1 (3) || 44182 1193 0.1225 £0.0000 ~ 4.00 £0.00 100000 {100000}
400000 (50000) 3 17110 1437 0.1152 £0.0014  44.67 £1.15 1804 [10, 116673] 1000 (10000) | 100 0.84 042 02137 £0.0044  5.00 £0.00 200 (200}
1000 (10000) | 100 1.02 040  0.2056 £0.0070  4.32 £0.72 86 5, 956] . Eggg ( iﬂggﬂ) igg }-‘fg ?i“; gfg‘l’(l) igﬂgjj Egg iggg 13gg {1?(?0}}
2500 (10000) | 100 269 081 0.1953 £0.005 484 4072 200 [3 . 2263) = 18 000 E’ooooi 10 28'28 11'74 [].173l8 +00026 ;'Uo £000 2000 §2000}
S 5000 (10000) | 100 10.51 1.25  0.1743 £0.0040  5.06 £0.81 304 [3, 4670] % 4 25000 ?0000 10 132.96 22'39 U.1556 iovomf ’VUU iOIOO 5000 {5000}
|| 10000 (50000) | 10 45.12 841  0.1636 £0.0022  4.70 +0.48 583 63, 8697] 2 S ao0o :;Omi s 1 28901556 io,mo; 2_00 o0 15000 {1.0000}
] 5 5 4 3 5 v 902 R - -U00: - -
&2 gg ggg Ejg gggi 130 1522'42 1;2(;3 8}122 iggg;z Zzg i??’) }222 [I[g(l] igﬁ% | 100000 s0000) | 3 | 2317 174.35  0.1397 00012 5.00 £0.00 20000 {20000}
> £ : o o . . S 250000 (50000) | 3 [ 13655 684.71  0.1290 £0.0013  5.00 £0.00 50000 {50000}
100000 (50000) | 3 3670 425.33  0.1279 £0.0016 £0.58 7167 (359 , 65686] 100000 (0000 | 3 |l35791 1360 01933 200005 500 000 80000 <0000
250000 (50000) | 0 (3) NA NA NA +NA .33 £208 34091 [547 , 210793 (50000) ° e s { '
400000 (50000) | 0 (3) NA NA NA +NA 7.33 £153 54545 [738 , 336202] 1000 (10000) | 100 0.86 042  0.2176 £0.0050 6.0 £0.00 167 [166 , 167]
i _ 2500 (10000) | 100 1.55 0.50  0.2036 +0.0037  6.00 £0.00 417 [416 , 417
;988 (10000) 188 ;g 3'?5 8'1232 10’00(31 }éé *O'f’ 22?7 [32 ’ ;ggg] _® 5000 (10000) | 100 5.29 1.26 0.1849 +0.0022  6.00 £0.00 833 (833 , 834]
500 (10000) 53 -5 1875 200055 1.60 £0.53 ! (55 , 2500] 2 I 10000 (0000) | 10 19.15 1214 0.1748 £0.0010  6.00 £0.00 1667 1666 , 1667]
5 o 5000 (10000) | 100 24.31 1.08  0.1687 £0.0035  1.36 £0.48 4795 [188 , 5000] Z £ as000 50000) | 10 106.73 2260 0.1580 £0.0016 6.0 £0.00 1167 (4166 | 4167]
= I 19 000 (fnnun) 10 }16.0[] 8.36 0.1592 £00032 110 2032 10000 615, 1(:000] 2 | 50000 ooon) | 3 178,62 1169 0.1540 £00013  6.00 £0.00 8333 (8333 . 8334]
P 25000 (50000) {0 o§0.23 41.?6 0.1473 £0.0029 1.80 042 21051 [732 , 25000] | 100000 (0000) | 3 1946 180.19  0.1396 £0.0018  6.00 £0.00 16667 [16666 , 16667)
= E | 50000 (s0000) | 3| 3130 186.34  0.1429 00015  1.67 058 42736 (1861 , 50000] 250000 (50000) | 3 [12080 690.60  0.1315 £0.0012  6.00 £0.00 41667 41666 , 41667]
100000 (30000) | 3 | 8886 37173 0.1303 200020 2.33 2058 12300 (2023 , 97977] 400000 (s0000) | 3 || 31533 1208 0.1251 400006 6.00 £0.00 66667 (66666 , 66667]
250000 (50000) | 0 (3) NA NA NA +NA 2.33 058 107143 12796 , 247204]
400000 (50000) | 0 (3) NA NA NA +NA 2.00 £0.00 200000 [4773 , 395227] 1000 (10000) | 100 1.02 0.45  0.2341 £0.0048  10.00 £0.00 100 {100}
2500 (10000) | 100 1.45 0.51  0.2136 +0.0030  10.00 =0.00 250 {250}
1000 (10000) | 100 1.15 023 0.1913 £0.0056  1.00 +0.00 1000 {1000} S 5000 (10000) | 100 3.42 1.30  0.1928 +0.0026  10.00 £0.00 500 {500}
2500 (10000) | 100 6.45 0.57  0.1842 £0.0043  1.00 £0.00 2500 {2500} Z 0| 10000 (s0000) | 10 12.03 13.35  0.1831 £0.0028 10.00 £0.00 1000 {1000}
R 5000 (10000) | 100 28.18 1.06  0.1672 £0.0032  1.00 +0.00 5000 {5000} %z 25000 (50000) | 10 58.63 22.87  0.1650 £0.0013  10.00 +0.00 2500 {2500}
£ 1l | 10000 (50000) | 10 119.95 858  0.1596 £0.0032  1.00 £0.00 10000 {10000} 2 3| 50000 o000y | 3 264.45 1721 01613 400005 10.00 £0.00 5000 {5000}
2 E || 25000 (50000) | 10 807.92 7242 0.1452 £0.0020  1.10 £032 25000 [6292 , 25000] # || 100000 (50000) | 3 1166 190.86  0.1450 £0.0022 10.00 +0.00 10000 {10000}
= F || 50000 (50000) | 3 3539 197.21  0.1410 £0.0022  1.00 £0.00 50000 {50000} 250000 (50000) | 3 7119 643.38  0.1374 £0.0012  10.00 £0.00 25000 {25000}
~ || 100000 (50000) 3 12679 389.43  0.1302 £0.0008  1.00 £0.00 100000 {100000} 400000 (50000) 3 18495 1317 0.1306 +0.0014  10.00 £0.00 40000 {40000}
250000 (50000) | 0 (3) NA NA NA +NA 1.00 £0.00 250000 {250000}
400000 (50000) | 0 (3) NA NA NA +NA 1.00 £0.00 400000 {400000} 1000 (10000) | 100 1.61 0.50  0.2736 +0.0071  20.00 +0.00 50 {50}
2500 (10000) | 100 1.76 0.55  0.2365 +0.0038  20.00 £0.00 125 {125}
_ 8 5000 (10000) | 100 2.84 1.33  0.2067 £0.0024  20.00 +0.00 250 {250}
data set sizes | runs || train time test time test error # of ws ws size: median  ws size: range § Il 10000 (50000) 10 6.79 14.07  0.1946 £0.0026 20.00 £0.00 500 {500}
w g 25000 (50000) 10 31.20 2320 0.1730 £0.0021  20.00 +0.00 1250 {1250}
1000 (10000) | 100 1.10 023 0.1912 £0.0054  1.00 £0.00 1000 {1000} 2 3| 50000 oooo) | 3 115.38 46.53  0.1699 £0.0003 20.00 £0.00 2500 {2500}
2500 (10000) | 100 7.11 0.53  0.1842 +0.0042  1.00 +0.00 2500 {2500} S || 100000 (50000) 3 524.48 201.80  0.1548 £0.0009  20.00 0.00 5000 {5000}
-~ 5000 (10000) | 100 32.00 0.87  0.1672 £0.0032  1.00 £0.00 5000 {5000} 250000 (50000) 3 3688 616.18  0.1418 £0.0006  20.00 =0.00 12500 {12500}
2 'l 10000 s0000) | 10 119.75 1136 0.1595 £0.0033  1.00 £0.00 10000 {10000} 400000 (50000) | 3 9783 1119 0.1374 40,0003 20.00 £0.00 20000 {20000}
@ E || 25000 (50000) | 10 737.28 24.31  0.1453 £0.0020  1.00 £0.00 25000 {25000}
£ 5| 50000 (s0000) | 3 2688 39.19  0.1410 £0.0022  1.00 +0.00 50000 {50000} 1000 (10000) | 100 3.35 0.51 04617 £0.0284  50.00 0.00 20 {20}
311 100000 (50000) | 3 ||10227 163.67  0.1302 £0.0008  1.00 £0.00 100000 {100000} - 2500 (10000) | 100 3.31 063 0.2958 £0.0079  50.00 +0.00 50 {50}
250000 (50000) | 0 NA NA NA +NA NA +NA NA {NA} o B 5000 (10000) | 100 4.79 1.56 0.235} +0.0034 ?0.00 +0.00 100 {100}
400000 (50000) | 0 NA NA NA £NA NA £NA NA {NA} S | 10000 oo00) | 10 5.77 1500 0.2125 £0.0014  50.00 0,00 200 {200}
@ g 25000 (50000) | 10 25.22 23.75  0.1867 £0.0013  50.00 +0.00 500 {500}
1000 (10000) | 100 1.06 0.38  0.1964 £0.0049  2.00 +0.00 500 {500} 2 3| 50000 (oooo) | 3 52.65 43.21  0.1812 £0.0004  50.00 £0.00 1000 {1000}
2500 (10000) | 100 3.88 0.59  0.1881 +0.0037  2.00 +0.00 1250 {1250} || 100000 (50000) 3 184.55 170.12  0.1666 £0.0002  50.00 +0.00 2000 {2000}
oo 5000 (10000) | 100 14.59 0.94  0.1721 £0.0030  2.00 £0.00 2500 {2500} 250000 (50000) | 3 1324 588.68  0.1547 £0.0003  50.00 0.00 5000 {5000}
2 I 10000 (s0000) | 10 55.61 11.33  0.1644 £0.0026  2.00 £0.00 5000 {5000} 400000 (50000) | 3 3825 1008 0.1491 40.0009  50.00 0.00 8000 {8000}
@ E 25000 (50000) | 10 369.81 18.29  0.1465 +0.0022  2.00 +0.00 12500 {12500}
£ 5| 50000 (s0000) | 3 1422 39.07  0.1439 £0.0017  2.00 £0.00 25000 {25000}
F | 100000 (s0000) | 3 5465 184.18  0.1325 +0.0003  2.00 £0.00 50000 {50000}
250000 (50000) | 0 (3) NA NA NA £NA 2.00 £0.00 125000 {125000}
400000 (50000) | 0 (3) NA NA NA +NA 2.00 £0.00 200000 {200000}
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Table 6: Experimental results relating to the 1JCNN1 data sets

data set sizes | runs || train time test time test error # of ws ws size: median  ws size: range data set sizes | runs || train time test time test error # of ws ws size: median  ws size: range
1000 (10000) | 100 1.13 0.41  0.1582 200052  1.00 1000 (10000) | 100 1.08 0.38  0.1582 £0.0052  1.00 £0.00 1000 {1000}
2500 (10000) | 100 4.08 0.80  0.1099 £0.0028  1.00 o 2500 (10000) | 100 4.01 0.85  0.1099 £0.0028  1.00 0.0 2500 {2500}
E 5000 (10000) | 100 18.37 131 0.1010 £0.0016  1.00 g ! 5000 (10000) | 100 17.47 129 0.1010 £0.0016 1.0 £0.00 5000 {5000}
@ 10000 (50000) | 10 82.65 9.29  0.0728 +0.0006 1.00 @ = 10000 (50000) | 10 79.67 8.62  0.0728 +0.0006 1.00 £0.00 10000 {10000}
A 25000 (50000) | 10 526.48 2421 0.0542 £0.0004  1.00 2 3| 25000 (s0000) | 10 500.55 2220 0.0542 £0.0004  1.00 £0.00 25000 {25000}
50000 (50000) | 3 2146 46.89  0.0448 £0.0003  1.00 F= 1 50000 oooo) | 3 2388 116.48  0.0448 £0.0003  1.00 £0.00 50000 {50000}
100000 (50000) | 3 8907 246.99  0.0365 £0.0002  1.00 100000 (50000) | 3 8592 231.08  0.0365 £0.0002  1.00 £0.00 100000 {100000}
1000 (10000) | 100 0.66 0.39  0.2250 £0.0075  5.00 £0.00 200 {200}
data set sizes | runs || train time test time test error # of ws ws size: median  ws size: range o 2500 (10000) | 100 1.26 0.84  0.1698 +0.0050 5.00 £0.00 500 {500}
g ! 5000 (10000) | 100 3.73 145 0.1480 £0.0031  5.00 £0.00 1000 {1000}
1000 (10000) | 100 4.22 0.58  0.2496 £0.0074  58.07 +1.99 10 1,83 xR j 10000 (50000) | 10 12.55 1146 0.1093 +0.0015 5.00 £0.00 2000 {2000}
- 2500 (10000) | 100 5.79 0.95  0.1489 +0.0043  76.80 +1.93 17 [1,177] % ° 25000 (50000) | 10 88.31 27.18  0.0805 +0.0009 5.00 £0.00 5000 {5000}
2 5000 (10000) | 100 772 140 01218 £0.0020  93.44 +2.24 21 1. 336] F 11 50000 (s0000) | 3 612.93 22631 0.0624 £0.0003  5.00 £0.00 10000 {10000}
@ £ 10000 (50000) | 10 11.40 9.93  0.0834 £0.0023 115.70 £2.63 29 1,618 100000 (50000) | 3 1623 301.96  0.0488 +0.0001  5.00 £0.00 20000 {20000}
£ 21| 25000 (s0000) | 10 24.17 30.30  0.0614 £0.0014 154.10 +3.35 43 [1,1835)
Sl 50000 s0000) | 3 86.99 20141 0.0455 £0.0012  162.33 +4.04 92 2, 2808) - 1000 (10000) | 100 0.94 0-360.2648 £00059  10.00 £0.00 100 {}90}
100000 (50000) | 3 264.22 35652 0.0365 £0.0019 199.00 £7.81 127 1, 5386] o~ | 2500 (ooo) | 100 L.40 0.90  0.2064 +£0.0049  10.00 £0.00 250 {250}
= 5000 (10000) | 100 3.20 1.39  0.1806 £0.0039  10.00 %0.00 500 {500}
1000 (10000) | 100 1.48 0.47  0.2038 £0.0061  18.08 0.69 67 (12, 110] 3 £ | 10000 (50000) | 10 6.99 10.92 0.1372 £0.0027  10.00 £0.00 1000 {1000}
s 2500 (10000) | 100 1.92 0.89  0.1185 £0.0034  18.93 +0.74 169 23, 276 Z 3 25000 (50000) | 10 40.29 29.37  0.0992 £0.0007  10.00 £0.00 2500 {2500}
2 5000 (10000) | 100 3.42 142 0.0977 £0.0024  19.41 +0.57 339 [16 , 539] # || 50000 (50000) | 3 199.33 168.55  0.0763 £0.0006  10.00 0.0 5000 {5000}
@R é 10000 (50000) 10 7.24 14.77  0.0660 £0.0015  20.40 +0.52 348 [41, 1010] 100000 (50000) 3 892.77 499.74  0.0590 £0.0004  10.00 £0.00 10000 {10000}
% 2 25000 (50000) | 10 28.04 34.35  0.0513 £0.0010  22.20 +0.92 664 [64 , 2516] R . O - -
= | 50000 (s0000) | 3 196.07 23505  0.0408 £0.0002  23.33 £058 1236 [171 , 4336] - ;‘fgg 88 328; igg ig} 38*(: 8;‘:2? iggg:z 2833 igzﬁ 12’9 {{fz“r}}
- / I3 N y - y . - ol 299 . .24 .003 . . i} 5
100000 (50000) | 3 688.80 110.05  0.0343 £0.0006  24.33 £0.58 2141 [306 , 9959] z 5000 o000y | 100 e 135 09156 00055 20,00 +0.00 250 {250}
1000 (10000) | 100 0.97 0.47  0.1857 £0.0050  9.98 +0.14 103 84, 152) 2 £ || 10000 (50000) | 10 4.67 1056 0.1704 £0.0031  20.00 £0.00 500 {500}
= 2500 Go000) | 100 1.34 0.90  0.1109 £0.0036  10.00 £0.00 2592 226 , 276] £ 5| 25000 (50000) | 10 22.59 29.35  0.1275 £0.0008  20.00 £0.00 1250 {1250}
2 5000 (10000) | 100 3.38 1.93  0.0966 £0.0023  10.00 £0.00 498 [467 , 539] F || 50000 (50000) | 3 92.33 168.15  0.0964 £0.0011  20.00 £0.00 2500 {2500}
@ £ 10000 (50000) | 10 8.67 1417 0.0660 +0.0008  10.00 +0.00 1000 [962 , 1059] 100000 (50000) | 3 1081 613.04  0.0731 £0.0004  20.00 +£0.00 5000 {5000}
& '% 25 000 (50000) | 10 64.97 7429 0.0507 £0.0005  10.00 £0.00 %494 (2447 , 2566] 1000 (10000) | 100 414 043  0.3478 £0.00d8  50.00 4£0.00 20 (20}
50000 (50000) | 3 310.74 24832 0.0409 +£0.0004  10.00 £0.00 5002 4902 , 5147 - . ) ”
100000 (s0000) | 3 | 1127 42173 0.0342 00004 10.00 £0.00 9988 (0912 , 10070) = B || 2500 (10000) | 100 3.7 0:84 02966 £0.0026 50.00 £0.00 50 {50}
‘ : : ; : : > SO = 5000 (10000) | 100 4.97 131 0.2694 £0.0036  50.00 %£0.00 100 {100}
1000 (10000) | 100 112 039 01582 +0.0052  1.00 +0.00 1000 {1000} & E|| 10000 Govoo) | 10 5.46 10.90  0.2220 00020 50.00 +0.00 200 {200}
_ = | 2500 (10000) | 100 3.94 081 0.1099 £0.0028  1.00 £0.00 2500 {2500} & T || 25000 (50000) | 10 18.23 2504 0.1715 +0.0031 50.00 +0.00 500 {500}
S | 5000 oooo) | 100 || 2167 136 01010 00016 1.00 £000 5000 {5000} || 30000 (s0000) | 3 3048 1868 01366 zo.0014 - 50.00 000 1000 {1000}
7 2| 10000 o000 | 10 0245 1162 0.0728 00006 1.00 000 10000 {10000} 100000 (50000) | 3 133.67 264.38  0.1036 £0.0028  50.00 £0.00 2000 {2000}
R . .
= E| 25000 coo00) |10 1052 10.79 - 0.0542 20,0004 1.00 2000 25000 {25000} 1000 (10000) | 100 6.86 0.51 03502 £0.0040 10000 £0.00 10 {10}
50000 (50000) | 3 3021 20131 0.0448 £00003  1.00 000 50000 {50000} _: 2500 (10000) | 100 737 092 0.3268 200031 100.00 £0.00 25 (25}
100000 (50000) | 3 || 12439 33357 0.0365 £0.0002  1.00 £0.00 100000 {100000} 2 5000 (10000) | 100 758 L3l 03123 200022 100.00 £0.00 0 {501
%z | 10000 (s0000) | 10 8.58 8.93  0.2678 £0.0032  100.00 0.0 100 {100}
2 < | 25000 (s0000) | 10 15.91 21.95  0.2077 £0.0021  100.00 £0.00 250 {250}
4 || 50000 (s0000) | 3 27.94 132.07  0.1679 +0.0023 100.00 0.0 500 {500}
100000 (50000) | 3 79.05 227.69  0.1341 £0.0017  100.00 £0.00 1000 {1000}
- 1000 (10000) | 100 10.52 0.62  0.3468 +0.0026  150.00 £0.00 7 6,7
_ = 2500 (10000) | 100 10.43 1.00  0.3328 £0.0024  150.00 +0.00 17 [16 , 17)
< 5000 (10000) | 100 9.34 1.23 0.3395 £0.0082  150.00 £0.00 33 33, 34]
&%z | 10000 (s0000) | 10 11.38 9.10  0.2943 +£0.0014  150.00 +0.00 67 66, 67)
2 < | 25000 (50000) | 10 17.25 1951 0.2336 £0.0041  150.00 £0.00 167 166 , 167]
46 || 50000 (50000) | 3 25.66 12227 0.1927 £0.0005 150.00 £0.00 333 333, 334]
100000 (50000) | 3 73.12 188.29  0.1538 £0.0012  150.00 0.0 667 666 , 667]
- 1000 (10000) | 100 13.70 0.64  0.3447 £0.0021  200.00 0.0 5 {5}
- = 2500 (10000) | 100 14.45 1.11  0.3346 £0.0020  200.00 +0.00 12 [12,13]
< 5000 (10000) | 100 12.32 122 0.3534 £0.0092  200.00 +£0.00 25 {25}
@ 2|l 10000 (50000) | 10 13.19 8.93  0.3091 £0.0024  200.00 0.0 50 {50}
E‘é b 25000 (50000) | 10 19.80 1841  0.2512 £0.0030  200.00 +0.00 125 {125}
$ 50000 (50000) 3 26.89 87.32  0.2095 £0.0033  200.00 £0.00 250 {250}
100000 (50000) | 3 70.20 185.72 01664 £0.0021 200.00 £0.00 500 {500}
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EBERTS AND STEINWART

data set si runs | train time test time  test error Ly-error # of ws data set sizes | runs | train time test time  test error Ly-error # of ws ws range
= 1000 (10000) | 100 0.33 0.07  0.0284 £0.0003 0.0541 £0.0033  1.00 =] 1000 (10000) | 100 0.60 0.12  0.0178 £0.0006  0.0641 £0.0047  1.00
% 2500 (10000) | 100 1.74 0.07  0.0275 +£0.0002  0.0461 +£0.0019  1.00 3 2500 (10000) | 100 2.29 0.21  0.0168 £0.0004 0.0559 +£0.0033  1.00
0 5000 (10000) | 100 7.14 0.14  0.0269 +0.0002  0.0396 +0.0019  1.00 % 5000 (10000) | 100 8.37 0.25  0.0165 +0.0003  0.0531 £0.0026  1.00
= 10000 (10000) | 100 27.90 022 0.0265 +0.0001  0.0323 £0.0014  1.00 = 10000 (10000) | 100 31.61 0.44  0.0163 £0.0003 0.0511 £0.0033  1.00

data st sizes | runs | train time test time  test error Lo-error # of ws median  ws size: range data sct sizes | runs | train time test time  test error Ly-error #of ws  ws size: median  ws size: range
b= 1000 (10000) | 100 1.84 0.28  0.0287 +0.0005 0.0561 +£0.0041  15.70 +2.43 64 [27 , 109] = 4 1000 (10000) | 100 1.55 0.29  0.0157 +£0.0004  0.0427 £0.0040 16.08 +2.50 62 [22,114]
% S 2500 (10000) | 100 1.90 0.34  0.0267 £0.0002  0.0368 £0.0027 15.77 £2. 159 [59 . 268] :7 S 2500 (10000) | 100 1.66 0.36  0.0146 +0.0002  0.0288 +0.0028  15.79 £2.40 158 [51 , 292]
9‘_ l 5000 (10000) | 100 2.01 0.40  0.0260 £0.0001  0.0248 £0.0018  16.04 +2.45 312 [125 , 532] E“* ! 5000 (10000) | 100 1.88 043 0.0142 £0.0001  0.0208 £0.0016  15.95 +2.53 313 [105 , 549]
- 10000 (10000) | 100 3.05 0.55  0.0257 £0.0001  0.0197 £0.0010  15.55 +2.43 643 [245 , 1054] l 10000 (10000) | 100 3.09 0.59  0.0140 £0.0001  0.0163 £0.0013  15.84 £2.50 631 [231 , 1043]
=3 1000 (10000) | 100 0.65 0.16  0.0277 £0.0004 0.0465 £0.0037  6.17 +0.88 162 [66 , 251] = 1000 (10000) | 100 0.58 0.17  0.0156 £0.0004 0.0426 £0.0045  6.21 £0.83 161 [60 , 267]
a = 2500 (10000) | 100 0.75 0.18  0.0265 £0.0002  0.0338 £0.0024  6.12 +0.87 408 [152, 645] f =] 2500 (10000) | 100 0.77 0.22 0.0147 +0.0002  0.0299 +0.0030  6.29 £0.81 397 [133, 676]
9'_ Il 5000 (10000) | 100 1.58 0.24  0.0260 +0.0001  0.0256 +0.0016  6.17 +0.79 810 [305 , 1291] E‘* I 5000 (10000) | 100 0.0144 +0.0001  0.0247 £0.0023  6.22 +0.82 804 [285 , 1299]
- 10000 (10000) | 100 4.93 0.38  0.0258 £0.0001  0.0213 £0.0013  6.27 £0.83 1595 [600 , 2550] =~ = || 10000 (10000) | 100 0.0141 £0.0001  0.0194 £0.0016 ~ 6.38 +0.80 1567 [597 , 2535]
S e 1000 (10000) | 100 0.37 0.11  0.0275 £0.0003  0.0447 £0.0032  3.49 £0.50 287 [121, 502] S n 1000 (10000) | 100 0.36 0.12  0.0159 +0.0004 0.0465 +0.0050  3.47 £0.50 288 ,482]
% S 2500 (10000) | 100 0.77 0.14  0.0266 £0.0002  0.0355 £0.0025  3.44 +0.50 727 (329, 1202] i S 2500 (10000) | 100 0.81 0.18  0.0151 £0.0002  0.0370 £0.0031  3.52 £0.50 710 , 1248]
E'_ ! 5000 (10000) | 100 2.31 0.19  0.0262 £0.0001  0.0290 £0.0021  3.41 +0.49 1466 [627 , 2511] E"‘ ! 5000 (10000) | 100 2.52 0.28  0.0150 £0.0002  0.0346 £0.0032  3.47 £0.50 1441 4, 2508]
- 10000 (10000) | 100 8.88 0.31  0.0259 +0.0001  0.0242 £0.0019  3.51 £0.50 2849 [1253 , 5003] - 10000 (10000) | 100 9.36 0.43  0.0147 £0.0002  0.0301 £0.0034  3.58 £0.50 2793 , 4962]
= 1000 (10000) | 100 0.27 0.08  0.0282 £0.0003 0.0517 £0.0030  2.00 %0.00 500 [266 , 734] =] 1000 (10000) | 100 0.33 0.09  0.0169 £0.0005 0.0562 £0.0047  2.00 £0.00 500 735]
% ] 2500 (10000) | 100 0.97 0.11  0.0272 +0.0002  0.0426 +£0.0024  2.00 +0.00 1250 [658 , 1842] ? T 2500 (10000) | 100 1.11 0.14  0.0160 +£0.0004  0.0477 £0.0041  2.00 +0.00 1250 [613 , 1887]
g'_ s 5000 (10000) | 100 3.68 0.15  0.0268 +0.0002  0.0382 £0.0021  2.00 +0.00 2500 [1224 , 3776] E"‘ s 5000 (10000) | 100 4.11 0.23  0.0158 £0.0004  0.0452 £0.0044  2.00 £0.00 2500 [1232 , 3768]
- 10000 (10000) | 100 14.93 0.44  0.0263 £0.0001  0.0309 £0.0020  2.00 £0.00 5000 [2501 , 7499] - 10000 (10000) | 100 16.26 042 0.0154 +0.0005  0.0402 +0.0064  2.00 £0.00 5000 [2533 , 7467]
= 1000 (10000) | 100 0.32 0.07  0.0284 +0.0004 0.0541 £0.0033  1.00 +0.00 1000 {1000} = 1000 (10000) | 100 0.37 0.08  0.0178 +£0.0006  0.0641 £0.0045  1.00 +0.00 1000 {1000}
% T" 2500 (10000) | 100 1.75 0.08  0.0275 £0.0002  0.0461 £0.0020  1.00 +0.00 2500 {2500} :7 ? 2500 (10000) | 100 2.03 0.12 0.0168 £0.0003  0.0558 £0.0033  1.00 £0.00 2500 {2500}
& e 5000 (10000) | 100 7.16 0.15  0.0269 +£0.0002  0.0396 £0.0019  1.00 £0.00 5000 {5000} E“* = 5000 (10000) | 100 8.12 0.20  0.0165 +0.0003  0.0531 +0.0026  1.00 £0.00 5000 {5000}
- 10000 (10000) | 100 27.91 0.24  0.0265 +0.0001  0.0323 +£0.0014  1.00 +0.00 10000 {10000} - 10000 (10000) | 100 31.12 0.36  0.0163 +£0.0003  0.0511 £0.0033  1.00 +0.00 10000 {10000}

data set sizes | runs | train time test time test error Ly-error #of ws  ws size: median  ws size: range data set sizes | runs | train time test time test error Ly-error #of ws  ws size: median  ws size: range
s - 1000 (10000) | 100 0.32 0.07  0.0284 +0.0003  0.0540 +0.0031 1.00 +0.00 1000 {1000} =N 1000 (10000) | 100 0.37 0.07  0.0178 +0.0006  0.0640 +0.0046  1.00 £0.00 1000 {1000}
% u 2500 (10000) | 100 1.76 0.08  0.0275 £0.0002  0.0461 £0.0020  1.00 +0.00 2500 {2500} 3 & 2500 (10000) | 100 2.02 0.13  0.0168 £0.0003  0.0558 £0.0033  1.00 £0.00 2500 {2500}
o F 5000 (10000) | 100 7.16 0.15  0.0269 +£0.0002 0.0396 £0.0019  1.00 £0.00 5000 {5000} o F 5000 (10000) | 100 8.14 0.19  0.0165 £0.0003  0.0531 £0.0026  1.00 £0.00 5000 {5000}
& 510000 (10000) | 100 28.05 0.24  0.0265 £0.0001  0.0323 £0.0014  1.00 £0.00 10000 {10000} & 31110000 (10000) | 100 31.45 0.36  0.0163 +£0.0003  0.0511 £0.0033  1.00 £0.00 10000 {10000}
= 1000 (10000) | 100 0.26 0.09  0.0287 +0.0005 0.0571 +£0.0042  2.00 +0.00 500 {500} =R 1000 (10000) | 100 0.30 0.11  0.0172 +£0.0005  0.0595 +0.0046  2.00 +0.00 500 {500}
a l 2500 (10000) | 100 0.94 0.11  0.0276 +0.0002  0.0475 £0.0018  2.00 +0.00 1250 {1250} :7 ﬂ 2500 (10000) | 100 110 0.15  0.0169 £0.0004 0.0567 £0.0037  2.00 £0.00 1250 {1250}
o F 5000 (10000) | 100 3.46 0.14  0.0273 £0.0001  0.0444 +0.0014  2.00 £0.00 2500 {2500} o F 5000 (10000) | 100 4.06 0.25  0.0165 +£0.0003  0.0528 £0.0029  2.00 £0.00 2500 {2500}
& 510000 (10000) | 100 14.37 0.28  0.0268 +0.0001  0.0376 +0.0016  2.00 +0.00 5000 {5000} & 31110000 (10000) | 100 16.33 041 0.0163 +£0.0002  0.0516 £0.0020  2.00 +0.00 5000 {5000}
= ™ 1000 (10000) | 100 0.31 0.11  0.0288 £0.0004 0.0583 £0.0037  3.00 +0.00 333 [333, 334] = 1000 (10000) | 100 0.32 0.14  0.0168 £0.0004  0.0555 £0.0040  3.00 £0.00 333 334]
a U} 2500 (10000) | 100 0.76 0.14  0.0277 £0.0002  0.0488 £0.0022  3.00 £0.00 833 j ﬂ 2500 (10000) | 100 0.88 0.17  0.0169 £0.0004 0.0566 £0.0033  3.00 £0.00 833 834]
o F 5000 (10000) | 100 2.32 017 0.0274 +0.0001  0.0456 +0.0014  3.00 +0.00 1667 o F 5000 (10000) | 100 2.71 0.28  0.0165 +0.0002  0.0534 £0.0022  3.00 +0.00 1667 , 1667
&3k || 10000 (10000) | 100 9.58 0.27  0.0271 +0.0001  0.0417 +0.0015 3.00 £0.00 3333 ~ 3 10000 (10000) | 100 10.99 0.45  0.0163 +0.0002 0.0515 £0.0018  3.00 £0.00 3333 , 3334]
=l 1000 (10000) | 100 0.43 0.12  0.0289 +0.0004 0.0588 +£0.0037  4.00 £0.00 250 = ¥ 1000 (10000) | 100 0.39 0.17  0.0166 +0.0004 0.0544 £0.0039  4.00 £0.00 250 {250}
2 l 2500 (10000) | 100 0.69 0.16  0.0278 £0.0003  0.0500 £0.0025  4.00 =0.00 625 Z ﬂ 2500 (10000) | 100 0.81 021 0.0166 +0.0003  0.0537 £0.0032  4.00 £0.00 625 {625}
o F 5000 (10000) | 100 1.90 0.20  0.0275 £0.0002  0.0469 £0.0016  4.00 +0.00 1250 o F 5000 (10000) | 100 2.23 0.31  0.0165 £0.0003  0.0532 £0.0027  4.00 £0.00 1250 {1250}
& 310000 (10000) | 100 6.95 0.27  0.0272 £0.0001  0.0432 £0.0010  4.00 £0.00 2500 & 3110000 (10000) | 100 8.16 0.49  0.0163 £0.0002  0.0516 £0.0020  4.00 £0.00 2500 {2500}
=l 1000 (10000) | 100 0.52 0.15  0.0287 £0.0004 0.0577 £0.0033  5.00 £0.00 200 = 1000 (10000) | 100 0.46 0.19  0.0167 £0.0004  0.0553 £0.0041  5.00 £0.00 200 {200}
;‘7‘) l 2500 (10000) | 100 0.67 0.18  0.0280 +0.0002 0.0515 +£0.0022  5.00 +0.00 500 ? ﬂ 2500 (10000) | 100 0.78 0.25  0.0165 +£0.0004  0.0532 £0.0035  5.00 +0.00 500 {500}
o F 5000 (10000) | 100 1.65 0.23  0.0276 +0.0002  0.0480 £0.0020 5.00 £0.00 1000 4 B 5000 (10000) | 100 1.94 0.32  0.0164 +£0.0003 0.0524 £0.0029  5.00 £0.00 1000 {1000}
&3 1110000 (10000) | 100 5.52 0.30  0.0273 £0.0001  0.0438 £0.0012  5.00 £0.00 2000 {2000} &3 1110000 (10000) | 100 6.51 0.51  0.0164 0.0002  0.0521 £0.0022  5.00 £0.00 2000 {2000}
5 © 1000 (10000) | 100 0.64 0.16  0.0288 +0.0004 0.0586 £0.0031  6.00 +0.00 167 [166 , 167] S © 1000 (10000) | 100 0.53 0.21  0.0168 £0.0004  0.0556 £0.0031  6.00 £0.00 167 [166 , 167]
% ‘l 2500 (10000) | 100 0.69 0.19  0.0281 £0.0003 0.0525 £0.0028  6.00 +0.00 417 [416 , 417] ? & 2500 (10000) | 100 0.76 0.28  0.0164 £0.0003  0.0520 £0.0029  6.00 £0.00 417 [416 , 417]
o F 5000 (10000) | 100 1.52 0.25  0.0277 £0.0002  0.0490 £0.0022  6.00 £0.00 833 (833, 834] O F 5000 (10000) | 100 1.77 0.37  0.0164 £0.0003  0.0518 £0.0027  6.00 £0.00 833 [833, 834]
& 510000 (10000) | 100 4.67 0.32 0.0273 +0.0001  0.0446 +0.0011  6.00 +0.00 1667 [1666 , 1667] & 31110000 (10000) | 100 5.49 0.54  0.0165 +£0.0002  0.0530 £0.0019  6.00 +0.00 1667 [1666 , 1667]
= S 1000 (10000) | 100 1.05 0.22 0.0288 +0.0003  0.0584 +0.0029 10.00 +0.00 100 {100} = i 1000 (10000) | 100 0.85 027 0.0171 £0.0003  0.0585 £0.0027  10.00 +0.00 100 {100}
% I 2500 (10000) | 100 1.08 027 0.0282 £0.0003  0.0534 £0.0026  10.00 +0.00 250 {250} ; I 2500 (10000) | 100 0.98 0.40  0.0160 £0.0003  0.0487 £0.0027  10.00 £0.00 250 {250}
O B 5000 (10000) | 100 1.39 0.34  0.0280 £0.0002  0.0522 £0.0023  10.00 +0.00 500 {500} &) g 5000 (10000) | 100 1.56 0.52  0.0160 £0.0002 0.0478 £0.0023  10.00 £0.00 500 {500}
& 5 | 10000 (10000) | 100 3.45 0.44  0.0275 £0.0001  0.0471 £0.0012  10.00 +0.00 1000 {1000} &5 || 10000 (10000) | 100 3.91 0.63  0.0164 £0.0002  0.0524 £0.0017  10.00 £0.00 1000 {1000}
= ] 1000 (10000) | 100 2.28 0.34  0.0293 £0.0004 0.0626 £0.0027  20.00 +0.00 50 {50} = ] 1000 (10000) | 100 1.83 0.37  0.0196 £0.0007  0.0774 £0.0042  20.00 £0.00 50 {50}
’g I 2500 (10000) | 100 2.06 0.43  0.0282 £0.0002  0.0531 £0.0022  20.00 +0.00 125 {125} j I 2500 (10000) | 100 1.97 0.56  0.0163 £0.0002  0.0512 £0.0020  20.00 £0.00 125 {125}
o E 5000 (10000) | 100 2.38 0.51  0.0283 £0.0002  0.0544 £0.0017  20.00 +0.00 250 {250} &) g 5000 (10000) | 100 2.20 0.79  0.0156 £0.0002  0.0446 £0.0018  20.00 £0.00 250 {250}
& 4 | 10000 (10000) | 100 3.14 0.64  0.0280 +0.0001  0.0520 +0.0014  20.00 £0.00 500 {500} % 3 || 10000 (10000) | 100 3.19 0.99  0.0160 +0.0002  0.0488 +0.0018  20.00 £0.00 500 {500}

Table 7: Experimental results relating to the artificial data of Type I ~Table 8: Experimental results relating to the artificial data of Type
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Table 9: Experimental results relating to the artificial data of Type

data se runs | train time test time  test error Lo-error # of ws median  w: data sc runs | train time test time  test error Ly-error # of ws ws range
= 1000 (10000) | 100 0.36 0.05  0.0588 £0.0009 0.0799 £0.0056  1.00 ] 1000 (10000) | 100 0.61 0.07  0.0155 £0.0002  0.0848 £0.0012  1.00
% 2500 (10000) | 100 1.82 0.07  0.0572 £0.0005 0.0677 £0.0039  1.00 3 2500 (10000) | 100 3.28 0.16  0.0151 £0.0003 0.0821 +£0.0016  1.00
h 5000 (10000) | 100 747 0.11  0.0580 +0.0003 0.0745 +0.0019  1.00 % 5000 (10000) | 100 11.89 0.63  0.0132 £0.0007  0.0694 +0.0049 1.00
= 10000 (10000) | 100 29.56 0.24  0.0559 +0.0003 0.0563 £0.0028  1.00 = 10000 (10000) | 100 45.94 0.58  0.0137 £0.0007  0.0730 £0.0046  1.00

data set sizes | runs | train time test time test error Ly-error # of ws ws size: median  ws size: range data set sizes | runs | train time test time test error Ly-error # of ws ws size: median
= 1000 (10000) | 100 1.52 0.29  0.0580 +0.0009 0.0731 £0.0057 15.55 +2.36 64 [26 , 109] = 1000 (10000) | 100 4.27 0.62  0.0172 +£0.0005  0.0946 £0.0024  44.23 +£2.19 23
% S 2500 (10000) | 100 1.61 0.35  0.0553 £0.0004 0.0493 +0.0038 15.99 + 156 [56 , 279] :7 =] 2500 (10000) | 100 4.78 0.85  0.0142 £0.0002 0.0775 £0.0015  46.09 £2.58 54
o l 5000 (10000) | 100 1.61 0.42  0.0539 £0.0002  0.0347 £0.0024  15.80 +2.45 316 [116 , 531] g 5000 (10000) | 100 5.03 116 0.0129 +0.0002  0.0682 +0.0010  46.32 £2.61 108
- 10000 (10000) | 100 3.14 0.58  0.0534 £0.0001  0.0257 £0.0016  15.73 +2.58 636 [236 , 1068] ~ = || 10000 (10000) | 100 5.72 1.76  0.0119 £0.0001  0.0607 £0.0007 47.52 £2.72 210
= 1000 (10000) | 100 0.53 0.16  0.0563 £0.0007  0.0600 £0.0057  6.18 +0.87 162 [56 , 259] b= 1000 (10000) | 100 145 0.30  0.0158 £0.0003  0.0867 £0.0019  14.50 £1.25
a = 2500 (10000) | 100 0.77 0.19  0.0547 £0.0003  0.0429 £0.0034  6.26 +0.81 399 [150 , 658] j S 2500 (10000) | 100 1.62 0.49  0.0139 £0.0002  0.0752 £0.0013  15.22 £1.47
9'_ Il 5000 (10000) | 100 1.65 0.26  0.0537 +£0.0001  0.0315 +£0.0024  6.27 +0.81 797 [321 , 1270] o _” 5000 (10000) | 100 2.17 0.78  0.0129 £0.0002  0.0683 +0.0011  15.00 +1.45
= = | 10000 (10000) | 100 5.11 0.39  0.0534 +£0.0001  0.0244 +0.0021 6.34 £0.79 1577 [597 , 2534] =~ 10000 (10000) | 100 4.52 1.24  0.0120 £0.0001  0.0611 £0.0009 15.72 £1.62
=R 1000 (10000) | 100 0.34 0.11  0.0564 £0.0007 0.0620 £0.0057  3.48 +0.50 287 [126 , 501] = 1000 (10000) | 100 0.49 0.18  0.0152 £0.0003  0.0833 £0.0017  5.16 +0.53 194
% S 2500 (10000) | 100 0.81 0.14  0.0551 £0.0004 0.0478 £0.0047  3.49 +0.50 716 [297 , 1244] i T 2500 (10000) | 100 0.99 0.32 0.0140 £0.0003  0.0753 £0.0019 5.40 £0.51 463
E'_ ! 5000 (10000) | 100 2.44 0.22 0.0543 £0.0004 0.0409 £0.0048  3.50 +0.50 1429 [641 , 2517] E"‘ w 5000 (10000) | 100 2.77 0.58  0.0132 £0.0003  0.0697 £0.0020  5.48 +0.54 912
- 10000 (10000) | 100 9.40 0.30  0.0538 £0.0004 0.0322 £0.0054  3.54 £0.50 2825 [1209 , 4993] - 10000 (10000) | 100 10.03 0.80  0.0124 £0.0002 0.0638 £0.0013  5.56 £0.64 1799
= 1000 (10000) | 100 0.28 0.08  0.0579 £0.0009 0.0738 £0.0062  2.00 £0.00 500 [248 , 752] =} 1000 (10000) | 100 0.43 0.10  0.0155 £0.0002  0.0847 +0.0014 1.72 £0.45 581 [283, 1000]
% ] 2500 (10000) | 100 1.04 0.11  0.0565 +0.0007  0.0617 £0.0059  2.00 +0.00 1250 [625 , 1875] ? T 2500 (10000) | 100 2.29 0.15  0.0149 +0.0004  0.0808 +0.0024 1.55 +0.50 1613 [696 , 2500]
g'_ 5000 (10000) 2500 [1281 , 3719] E"‘ 5000 (10000) 2994 [1345 , 5000
- 10000 (10000) 5000 [2404 , 7596] - 10000 (10000) 6098 [2702 , 10000]
= 1000 (10000) 1000 {1000} = 1000 (10000) 1000 {1000}
=z 2500 (10000) 2500 {2500} 2 2500 (10000) 2500 {2500}
a 5000 (10000) 5000 {5000} o 5000 (10000) 5000 {5000}
> 10000 (10000) 10000 {10000} - 10000 (10000) 10000 {10000}

data set sizes ws size: median  ws size: range data set sizes ws size: median  ws size: range
s - 1000 (10000) 1000 {1000} =N 1000 (10000) 1000 {1000}
= | 2500 (10000) 2500 {2500} = 11l 2500 (10000) 2500 {2500}
o F 5000 (10000) 5000 {5000} o F 5000 (10000) 5000 {5000}
&3 110000 (10000) 10000 {10000} &3 1110000 (10000) 10000 {10000}
= 1000 (10000) 500 {500} 5 1000 (10000) 500 {500}
= Il 2500 (10000) 1250 {1250} = 1l 2500 (10000) 1250 {1250}
o F 5000 (10000) 2500 {2500} o F 5000 (10000) 2500 {2500}
&3 | 10000 (10000) 5000 {5000} &3 |1 10000 (10000) 5000 {5000}
= 1000 (10000) 333 [333, 334] 5 @ 1000 (10000) 200 {200}
= | 2500 (10000) 833 833, 834] =z 2500 0000 500 {500}
o F 5000 (10000) 1667 [1666 , 1667] o F 5000 (10000) 1000 {1000}
&3 10000 (10000) 3333 (3333, 3334] 5511110000 (10000) 2000 {2000}
s 1000 (10000) 250 {250} = S 1000 (10000) 100 {100}
2 l 2500 (10000) 625 {625} Z || 2500 (10000) 250 {250}
o F 5000 (10000) 1250 {1250} & B 5000 (10000) 500 {500}
& 3110000 (10000) 2500 {2500} & 3 || 10000 (10000) 1000 {1000}
=l 1000 (10000) 200 {200} = 5 1000 (10000) 67 [66 , 67
=z | 2500 (10000) 500 {500} % || 2500 (10000) 167 [166 , 167]
o F 5000 (10000) 1000 {1000} S E 5000 (10000) 333 [333, 334]
&3 110000 (10000) 2000 {2000} & 5 || 10000 (10000) 667 [666 , 667]
5 © 1000 (10000) 167 [166 , 167] =} 5 1000 (10000) 50 {50}
= l 2500 (10000) 417 [416 , 417] | 2500 (10000) 125 {125}
o F 5000 (10000) 833 (833, 834] S B 5000 (10000) 250 {250}
&3 1110000 (10000) 1667 [1666 , 1667] &5 || 10000 (10000) 500 {500}
s 2 1000 (10000) 100 {100} = S || 1000 (10000) 25 {25}
z | 2500 (10000) 250 {250} z | 2500 (10000) 62 [62, 63]
& £ || 5000 (10000) 500 {500} & £ || 5000 (10000) 125 {125}
& 4 || 10000 (10000) 1000 {1000} &5 || 10000 (10000) 250 {250}
= ] 1000 (10000) 50 {50} = 2 1000 (10000) 20 {20}
z | 2500 (10000) 125 {125} z | 2500 (10000) 50 {50}
& £ || 5000 (10000) 250 {250} & E || 5000 (10000) 100 {100}
& 5 || 10000 (10000) 500 {500} & 3 || 10000 (10000) 200 {200}

Table 10: Experimental results relating to the artificial data of Type

SINAS dHZI'TVOOT 904 SHLVY ONINYVHT TVINILA(O



EBERTS AND STEINWART

Table 11: Experimental results relating to the artificial data of Type

v

data set runs | train time test time  test error Lo-error # of ws ze: median  ws size: range
= 1000 (10000) | 100 0.53 0.05  0.0649 £0.0004 0.0370 £0.0055  1.00
% 2500 (10000) | 100 6 0.09  0.0647 +£0.0002 0.0330 £0.0032  1.00
0 5000 (10000) | 100 12.51 0.15  0.0640 +0.0001  0.0240 +0.0015  1.00
= 10000 (10000) | 100 49.29 0.28  0.0640 +0.0001  0.0223 £0.0015  1.00
data st sizes | runs | train time test time  test error Lo-error # of ws  ws size: median  ws size: range
=5 1000 (10000) | 100 4.85 0.66  0.0797 +£0.0021  0.1258 +0.0076  44.56 +2.07 22 [6,54]
% S 2500 (10000) | 100 4.76 0.77  0.0719 £0.0009 0.0882 £0.0043 46.18 +2.55 54 [14, 116]
9‘_ Il 5000 (10000) | 100 4.88 0.95  0.0682 £0.0005 0.0663 £0.0033 47.45 £2.61 105 [20, 214]
== 10000 (10000) | 100 5.77 1.14  0.0657 £0.0003 0.0460 £0.0027 48.05 £2.78 208 [38, 407]
S 1000 (10000) | 100 1.65 0.30  0.0703 £0.0011  0.0820 £0.0068 14.98 +1.44 67 [16 , 129]
a < 2500 (10000) | 100 1.64 037 0.0670 £0.0006 0.0565 £0.0045 15.17 +1.52 165 [40 , 334]
9'_ l 5000 (10000) | 100 2.26 0.45  0.0652 +0.0003  0.0404 +0.0035 15.69 +1.47 319 [74 , 644]
- 10000 (10000) | 100 4.81 0.62  0.0645 £0.0002  0.0307 £0.0023 15.83 +1.49 632 [167 , 1343)
= 1000 (10000) | 100 0.56 0.16  0.0670 £0.0008 0.0578 £0.0064  5.33 £0.47 188 [68 , 464]
% ]‘ 2500 (10000) | 100 1.05 0.19  0.0656 £0.0004 0.0431 £0.0042  5.33 £0.47 469 (171, 1162]
E'- “ 5000 (10000) | 100 3.01 026 0.0643 £0.0002 0.0290 £0.0025  5.42 +0.52 923 [297 , 2445]
- 10000 (10000) | 100 10.81 041 0.0641 £0.0001  0.0243 £0.0022  5.54 £0.61 1805 [555 , 4840]
= 1000 (10000) | 100 0.49 0.13  0.0653 £0.0006 0.0427 £0.0061  1.65 +0.48 606 [266 , 1000]
% F‘\; 2500 (10000) | 100 2.21 0.11  0.0649 +0.0003  0.0357 £0.0042  1.70 +0.48 1471 [603 , 2500]
g'. IS 5000 (10000) | 100 9.32 0.18  0.0641 +0.0001  0.0248 £0.0018  1.54 +0.50 3247 [1348 , 5000]
- 10000 (10000) | 100 35.16 0.31  0.0640 £0.0001  0.0227 £0.0018  1.62 £0.49 6173 [2608 , 10000]
= 1000 (10000) | 100 0.54 0.07  0.0649 +0.0004 0.0371 £0.0055  1.00 +0.00 1000 {1000}
% ‘"' 2500 (10000) | 100 3.25 0.09  0.0647 £0.0002 0.0331 £0.0032  1.00 +0.00 2500 {2500}
& e 5000 (10000) | 100 12.54 0.16  0.0640 +0.0001  0.0240 +£0.0015  1.00 £0.00 5000 {5000}
- 10000 (10000) | 100 49.35 0.29  0.0640 +0.0001  0.0223 +0.0015  1.00 +0.00 10000 {10000}
data set sizes | runs | train time test time test error Lo-error # of ws ws size: median  ws size: range
s - 1000 (10000) | 100 0.53 0.07  0.0649 +£0.0004  0.0373 £0.0056  1.00 +0.00 1000 {1000}
% LL 2500 (10000) | 100 3.27 0.09  0.0647 £0.0002 0.0331 £0.0033  1.00 +0.00 2500 {2500}
o F 5000 (10000) | 100 12.55 0.16  0.0640 +0.0001  0.0240 £0.0015  1.00 +0.00 5000 {5000}
&3 1110000 (10000) | 100 50.04 0.29  0.0640 £0.0001  0.0223 £0.0015  1.00 £0.00 10000 {10000}
= 1000 (10000) | 100 0.38 0.09  0.0652 +0.0005 0.0409 £0.0056  2.00 +0.00 500 {500}
% l 2500 (10000) | 100 17 012 0.0649 +0.0003  0.0352 £0.0037  2.00 +0.00 250 {1250}
o F 5000 (10000) | 100 6.39 0.18  0.0640 £0.0001  0.0242 £0.0019  2.00 +0.00 2500 {2500}
& 510000 (10000) | 100 25.47 0.30  0.0640 +0.0001  0.0221 +0.0014  2.00 +0.00 5000 {5000}
= 1000 (10000) | 100 0.48 017 0.0655 £0.0005 0.0440 £0.0056  5.00 +0.00 200 {200}
a U‘ 2500 (10000) | 100 1.02 0.19  0.0654 £0.0004 0.0426 £0.0044  5.00 +0.00 500 {500}
o F 5000 (10000) | 100 2.82 024 0.0643 £0.0002  0.0295 £0.0026  5.00 +0.00 1000 {1000}
&3 10000 (10000) | 100 10.63 037 0.0641 £0.0001  0.0248 £0.0017  5.00 +0.00 2000 {2000}
s 2 1000 (10000) | 100 0.85 0.25  0.0657 £0.0005 0.0471 £0.0054  10.00 £0.00 100 {100}
g I 2500 (10000) | 100 1.05 0.33  0.0656 £0.0004  0.0448 £0.0041  10.00 £0.00 250 {250}
O E 5000 (10000) | 100 2.04 0.35  0.0646 £0.0002 0.0335 £0.0032 10.00 +0.00 500 {500}
& 5| 10000 (10000) | 100 6.34 0.51  0.0644 +0.0001  0.0299 +0.0019  10.00 +0.00 1000 {1000}
= 8 1000 (10000) | 100 147 0.32  0.0664 £0.0006 0.0537 £0.0059  15.00 £0.00 67 [66 , 67]
% I 2500 (10000) | 100 1.63 0.43  0.0656 +0.0004 0.0449 +0.0040 15.00 +0.00 167 [166 , 167]
O E 5000 (10000) | 100 2.18 0.49  0.0647 £0.0002  0.0350 £0.0030  15.00 £0.00 333 (333, 334]
&3k | 10000 (10000) | 100 5.23 0.58  0.0646 +0.0001  0.0335 £0.0022  15.00 £0.00 667 [666 , 667]
= & || 1000 (10000) | 100 1.92 038 0.0671 £0.0007  0.0601 £0.0054  20.00 =0.00 50 50
=
% I 2500 (10000) | 100 2.00 052 0.0659 £0.0004 0.0473 £0.0037  20.00 +0.00 125 {125}
O E 5000 (10000) | 100 2.32 0.61  0.0647 £0.0002  0.0356 £0.0029  20.00 +0.00 250 {250}
& 5 | 10000 (10000) | 100 4.75 0.69  0.0647 +0.0002  0.0353 +0.0021  20.00 +0.00 500 {500}
= g 1000 (10000) | 100 3.89 0.60  0.0707 +0.0011  0.0850 +0.0065 40.00 +0.00 25 25
=
% I 2500 (10000) | 100 4.05 0.81  0.0669 +0.0005 0.0577 £0.0039  40.00 +0.00 62 [62, 63]
& E || 5000 (10000) | 100 447 1.00  0.0650 £0.0002  0.0388 +0.0030 40.00 +0.00 125 {125}
& 5 | 10000 (10000) | 100 5.66 1.24  0.0649 £0.0002  0.0379 £0.0022  40.00 £0.00 250 {250}
= 3 1000 (10000) | 100 4.70 0.69  0.0726 £0.0010  0.0960 £0.0051  50.00 +0.00 20 20
=
o | 2500 (10000) | 100 5.06 0.90  0.0675 £0.0005  0.0627 £0.0038  50.00 £0.00 50 {50}
& B 5000 (10000) | 100 5.33 1.15  0.0651 £0.0002 0.0410 +£0.0027  50.00 +0.00 100 {100}
& 3 | 10000 (10000) | 100 6.57 1.49  0.0649 £0.0002  0.0383 £0.0020 50.00 +0.00 200 {200}
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