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Abstract

This paper is devoted to a comparison of early works of Kato and Yosida on
the integration of non-autonomous linear evolution equations ẋ = A(t)x in Banach
space, where the domain D of A(t) is independent of t. Our focus is on the regu-
larity assumed of t 7→ A(t) and our main objective is to clarify the meaning of the
rather involved set of assumptions given in Yosida’s classic and highly influential
Functional Analysis. We prove Yosida’s assumptions to be equivalent to Kato’s
condition that t 7→ A(t)x is continuously differentiable for each x ∈ D.

1 Introduction

This paper is devoted to a comparison of early works of Kato and Yosida on the
integration of non-autonomous, linear evolution equations in Banach space. Explicitly,
we consider the abstract initial value problem

ẋ = A(t)x, x(s) = y, (1)

in the Banach space X, where A(t) : D ⊂ X → X for each t ∈ [0, 1] is a closed linear
operator with a dense domain D. The initial value y belongs to D and 0 ≤ s < 1.
The importance of this problem is based on the vast range of applications and on the
fact that problems of this kind are still the subject of research. Kato in 1953 assumes
that D is independent of t and that A(t) for each t is the generator of a contraction
semigroup [5]. In addition, there are some regularity assumptions on t 7→ A(t), which
are now understood to be equivalent to the simple condition that for every x ∈ D

t 7→ A(t)x is continuously differentiable (2)

in the norm of X. These conditions are sufficient for the existence of a unique evo-
lution system (propagator) U(t, s) such that t 7→ U(t, s)y for y ∈ D is a continuously
differentiable solution of the initial value problem (1) [5, 2, 11].

In 1956 and 1970, Kato generalized his above-mentioned result to time-dependent
domains and to linear operators A(t) generating semigroups that are not necessar-
ily contractive [6, 7]. The C1-condition (2) first appeared explicitly in [6]. Meanwhile,
Yosida, in the second edition of his classic and influential Functional Analysis, had given
a simplified presentation of Kato’s work of 1953 with hypotheses that were adjusted ac-
cordingly [18]. Yosida’s regularity conditions appear weaker than Kato’s C1-condition
as they involve no derivative of A(t). Yet they are far more complicated. Yosida’s
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account of Kato’s theorem remained unchanged over the last five editions of his book
and it has been adopted by Reed and Simon, and by Blank, Exner and Havlicek [12, 1].
Due to the authority and tremendous popularity of the books by Yosida and by Reed
and Simon, Yosida’s version of Kato’s theorem in a large scientific community is better
known than the refined version of Kato stated above.

In this paper we prove that Yosida’s conditions, the above mentioned C1-condition,
and Kato’s original conditions introduced in 1953 are all strictly equivalent. Likewise,
Yosida’s regularity conditions in the case of locally convex spaces can be simplified
[17, 13]. The equivalence of Kato’s 1953-condition and the C1-condition is fairly easy
to prove; it was known to Kato and it is known to the experts on evolution equations
[2, 11]. It is not entirely obvious, however, and we shall provide a proof for the reader’s
convenience. The equivalence of Yosida’s conditions and the C1-condition was discov-
ered by one of us in connection with the adiabatic theorem [14]. This equivalence is
surprising, in view of the complexity of Yosida’s conditions. Nevertheless the proof is
fairly short and the idea is simple: Yosida’s assumptions require the uniform conver-
gence of certain left-sided difference quotients of the map t 7→ A(t)x, x ∈ D. It is not
hard to see that this requirement implies continuous differentiability, and this is the
core of our proof, see Lemma 2.3, below. That the converse holds was known previously
to the experts and is straightforward to prove.

As far as we know the literature, before our work a direct comparison of the condi-
tions of Kato and Yosida has never been undertaken. Such a comparison is mentioned
neither in the monographs [10, 16, 11, 3, 2] nor in the review articles [8, 15]. Of course,
Kato’s theorem has been generalized in various directions and for that the reader is
referred to Pazy’s book [11] and to Kato’s Fermi lectures from 1985 [4].

2 Equivalence of regularity assumptions

We recall from the introduction that A(t) : D ⊂ X → X for each t ∈ [0, 1] is a closed
linear operator with a dense, t-independent domain D. We are interested in the case
where A(t), for each t is the generator of a strongly continuous contraction semigroup,
but this is not needed for the comparison of regularity assumptions. The bounded
invertibility of 1−A(t) and A(t), respectively, suffices to state the assumptions and to
prove our theorems. We often write I for the interval [0, 1].

Kato in Theorem 4 of [5] made the following assumption:

Assumption 1 (Kato 53).

(i) B(t, s) = (1−A(t))(1−A(s))−1 is uniformly bounded on I × I.

(ii) B(t, s) is of bounded variation in t in the sense that there is an N ≥ 0 such that

n−1∑
j=0

‖B(tj+1, s))−B(tj , s)‖ ≤ N <∞

for every partition 0 = t0 < t1 < · · · < tn = 1 of I, at least for some s.

(iii) B(t, s) is weakly differentiable in t and ∂tB(t, s) is strongly continuous in t, at
least for some s ∈ I
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Note that the statements (ii) and (iii) hold for all s ∈ I, if they are satisfied for some
s. This follows from B(t, s) = B(t, s0)B(s0, s). In the proof of the Proposition 2.1,
below, we will see that conditions (i) and (ii) follow from condition (iii), and that (iii) is
equivalent to the C1-condition (2). In 1953, Kato did not seem to be aware of that but
from remarks in [5, 6] it becomes clear that he knew it by 1956. See also Remark 6.2
of [7] which states that the new result – Theorem 6.1 of [7] – reduces to Theorem 4 of
[5] in the situation considered there.

Proposition 2.1 (Kato). Suppose that for each t ∈ I the linear operator A(t) : D ⊂
X → X is closed and that 1 − A(t) has a bounded inverse. Then Assumption 1 is
satisfied if and only if the C1-condition (2) holds.

Proof. From (iii) its follows (first in the weak, then in the strong sense) that

B(t, s)x−B(t′, s)x =

∫ t

t′
∂τB(τ, s)x dτ. (3)

This equation shows that t 7→ B(t, s)x is of class C1, which is equivalent to the C1-
condition (2). Hence (iii) is equivalent to the condition (2) and it remains to derive (i)
and (ii) from (iii). By the strong continuity of τ 7→ ∂τB(τ, s) and by the principle of
uniform boundedness,

sup
τ∈I
‖∂τB(τ, s)‖ <∞. (4)

Combining (3) with (4), we see that B(t, s) is of bounded variation as a function of
t, which is statement (ii), and that t 7→ B(t, s) is continuous in norm. Therefore the
inverse t 7→ B(t, s)−1 = B(s, t) is continuous as well and B(t, s) = B(t, 0)B(0, s) is
uniformly bounded for t, s ∈ I.

The following Assumption 2 collects the regularity conditions from Yosida’s Theo-
rem XIV.4.1, [19].

Assumption 2 (Yosida).

(i) {(s′, t′) ∈ I2 : s′ 6= t′} 3 (s, t) 7→ 1
t−s C(t, s)x is bounded and uniformly continuous

for all x ∈ X, where C(t, s) := A(t)A(s)−1 − 1

(ii) C(t)x := limk→∞ k C(t, t− 1
k )x exists uniformly in t ∈ (0, 1] for all x ∈ X

(iii) (0, 1] 3 t 7→ C(t)x is continuous for all x ∈ X.

The continuity assumption (iii) above was added for convenience. It follows from
the uniform continuity in (i) and the uniform convergence in (ii). In fact, (i) and (ii)
imply that (0, 1] 3 t 7→ C(t)x is uniformly continuous and hence can be extended
continuously to the left end point 0.

The following theorem is our main result. The key ingredient for its proof is the
Lemma 2.3, below.

Theorem 2.2. Suppose that for each t ∈ I the linear operator A(t) : D ⊂ X → X is
closed and that A(t) has a bounded inverse. Then Assumption 2 and the C1-condition
(2) are equivalent.
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Remark. Note that the bounded invertibility is no restriction. If A(t) for each t ∈ I
is the generator of a contraction semigroup, then so is A(t) − 1 and moreover, by
Hille–Yosida, A(t)− 1 has a bounded inverse.

Proof. Assumption 2 ⇒ (2): Suppose that conditions (i) - (iii) of Assumption 2 are
satisfied and let x ∈ D. We show that the map t 7→ f(t) = A(t)x satisfies the hypotheses
of Lemma 2.3, below. First, from the boundedness condition in (i), it follows that f is
continuous: indeed, for every t ∈ [0, 1], one has

f(t+ h)− f(t) =
(
A(t+ h)A(t)−1 − 1

)
A(t)x = C(t+ h, t)A(t)x −→ 0 (h→ 0).

Second, we deduce from the uniform convergence condition in (ii), from the uniform
continuity of t 7→ A(t)x just established, and from the boundedness condition (i) that

−k
(
f
(
t− 1

k

)
− f(t)

)
= k C

(
t, t− 1

k

)
A
(
t− 1

k

)
x −→ C(t)A(t)x (k →∞)

uniformly in t ∈ (0, 1]. And third, the limit map (0, 1] 3 t 7→ C(t)A(t)x is continuously
extendable to the left endpoint 0 by the remark following Assumption 2. We have thus
verified all hypotheses of Lemma 2.3, and this lemma shows that the C1-condition (2)
is satisfied.

(2) ⇒ Assumption 2: Suppose that (2) is satisfied and let Ȧ(t)x denote the deriva-
tive of A(t)x. Then s 7→ A(s)A(0)−1 is strongly continuously differentiable and hence

continuous in norm. It follows that the inverse s 7→
(
A(s)A(0)−1

)−1
= A(0)A(s)−1 is

norm-continuous as well. Thus, by (2), the map

(s, τ) 7→ Ȧ(τ)A(s)−1x = Ȧ(τ)A(0)−1A(0)A(s)−1x

is continuous for every x ∈ X. From this, using the integral representation

1

t− s
C(t, s)x =

1

t− s
(
A(t)−A(s)

)
A(s)−1x =

1

t− s

∫ t

s
Ȧ(τ)A(s)−1x dτ,

one readily obtains that {s′ 6= t′} 3 (s, t) 7→ 1
t−s C(t, s)x extends to a continuous

map on the whole of I2 from which conditions (i) through (iii) of Assumption 2 are
obvious.

The exposition of Yosida’s proof given in [14] shows that the continuity in part (i)
of Assumption 2 may be dropped if in part (iii) the requirement is added that the limit
limt↘0C(t)x exists for all x ∈ X. Our proof of Theorem 2.2 shows, that this modified
version of Assumption 2 is still equivalent to the C1-condition (2).

The main ingredient for the proof of Theorem 2.2 is the following lemma. It is
a discretized version of the well-known, elementary fact that a continuous and left-
differentiable map with vanishing left derivative is constant (see Lemma III.1.36 in [9]
or Corollary 1.2, Chapter 2 of [11]).

Lemma 2.3. Suppose f : [0, 1]→ X is continuous and the limit g(t) := limk→∞ k
(
f(t)−

f(t− 1
k )
)

exists uniformly in t ∈ (0, 1], that is, the limit exists for every t ∈ (0, 1] and
supt∈[ 1

k
,1]

∥∥k (f(t)− f(t− 1
k )
)
− g(t)

∥∥ −→ 0 (k →∞). Then

‖f(1)− f(t)‖ ≤ (1− t) sup
τ∈[t,1]

‖g(τ)‖ for all t ∈ (0, 1], (5)
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and f is continuously differentiable in (0, 1] with f ′ = g. If, in addition, the limit
g(0) := limt↘0 g(t) exists, then f ′ = g on [0, 1].

Proof. The map g is continuous on (0, 1] by the continuity of f and the uniform con-
vergence assumption. By the density of (0, 1)∩Q in I and the continuity of f and g on
(0, 1] it suffices to show that, for every ε > 0 and for every q ∈ (0, 1) ∩Q, the estimate

‖f(1)− f(q)‖ ≤ (1− q)(Mq + ε) (6)

holds with Mq := supτ∈[q,1] ‖g(τ)‖ < ∞. Let q = 1 − r/s with r, s ∈ N and let ε > 0.
For any n ∈ N we may write the difference f(1)− f(1− r/s) as a telescoping sum

f(1)− f
(

1− r

s

)
= f(1)− f

(
1− nr

ns

)
=

nr−1∑
k=0

[
f
(

1− k

ns

)
− f

(
1− k

ns
− 1

ns

)]
(7)

where, by the assumed uniform convergence, we may choose n so large, that

sup
t∈[q,1]

∥∥∥f(t)− f
(
t− 1

ns

)∥∥∥ ≤ (Mq + ε)
1

ns
. (8)

Combining (7) and (8) we immediately obtain (6) and the proof of the estimate (5) is
complete.

If the limit limt↘0 g(t) exists, we can define h(t) := f(t) −
∫ t
0 g(τ) dτ for t ∈ I. It

is straightforward to check that k(h(t)− h(t− k−1)→ 0 uniformly and the established
estimate yields the constancy of h. The proof of the remaining statement of the lemma
is an easy exercise that is left to the reader.
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[19] Kōsaku Yosida. Functional analysis. Classics in Mathematics. Springer-Verlag,
Berlin, 1995. Reprint of the sixth (1980) edition.



Jochen Schmid
Universität Stuttgart
Fachbereich Mathematik
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: Jochen.Schmid@mathematik.uni-stuttgart.de

Marcel Griesemer
Universität Stuttgart
Fachbereich Mathematik
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: Marcel.Griesemer@mathematik.uni-stuttgart.de

WWW: www.iadm.uni-stuttgart.de/AbAna/Griesemer/

mailto:Jochen.Schmid@mathematik.uni-stuttgart.de
mailto:Marcel.Griesemer@mathematik.uni-stuttgart.de




Erschienene Preprints ab Nummer 2007/2007-001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2014-005 Schmid, J.; Griesemer, M.: Integration of Non-Autonomous Linear Evolution
Equations

2014-004 Markhasin, L.: L2- and Sr
p,qB-discrepancy of (order 2) digital nets

2014-003 Markhasin, L.: Discrepancy and integration in function spaces with dominating
mixed smoothness

2014-002 Eberts, M.; Steinwart, I.: Optimal Learning Rates for Localized SVMs

2014-001 Giesselmann, J.: A relative entropy approach to convergence of a low order
approximation to a nonlinear elasticity model with viscosity and capillarity

2013-016 Steinwart, I.: Fully Adaptive Density-Based Clustering

2013-015 Steinwart, I.: Some Remarks on the Statistical Analysis of SVMs and Related
Methods

2013-014 Rohde, C.; Zeiler, C.: A Relaxation Riemann Solver for Compressible Two-Phase
Flow with Phase Transition and Surface Tension

2013-013 Moroianu, A.; Semmelmann, U.: Generalized Killling spinors on Einstein manifolds

2013-012 Moroianu, A.; Semmelmann, U.: Generalized Killing Spinors on Spheres
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