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Abstract
Properties of distributions are real-valued functionals such as the mean, quantile or conditional
value at risk. A property is elicitable if there exists a scoring function such that minimization of the
associated risks recovers the property. We extend existing results to characterize the elicitability of
properties in a general setting. We further relate elicitability to identifiability (a notion introduced
by Osband) and provide a general formula describing all scoring functions for an elicitable property.
Finally, we draw some connections to the theory of coherent risk measures.
Keywords: Elicitation, property, scoring function, identification function, risk measure, expectile.

1. Introduction

Probability distributions are widely used to model data. While some machine learning methods
provide complete probabilistic forecasts, it is often necessary for computational or other reasons to
work with partial information about the distributions (Gneiting and Katzfuss, 2014). The choice of
what partial information affects the performance of methods, their usefulness and validity for real
world prediction problems.

A property is a functional that assigns a real number to a probability distribution. For example,
the mean, the variance, and τ -quantiles are properties. Properties are often intimately related to
scoring functions. It is well known (Klein and Grottke, 2008), for example, that the mean µ of
a distribution P on R can be written as µ = arg mint∈R EY∼P (Y − t)2. Analogously, the τ -
quantile qτ (P ) of P satisfies qτ = arg mint∈R EY∼PSτ (Y, t) for the so-called τ -pinball function
Sτ (t, y) = (1t≥y − τ)(t − y) (Gneiting, 2011). However, there are other functions S that lead to
the mean or the τ -quantile; in the case of the mean it has been long known that such S must take
the form of a Bregman divergence (McCarthy, 1956; Savage, 1971; Schervish, 1989). On the other
hand, there are properties such as the “conditional value at risk” CVaRα(P ) = 1

1−α
∫ 1
α qβ(P )dβ

for which there is no such scoring function. This motivates the question: which properties are
elicitable? That is, for which properties is there a suitable scoring function?

. † Siyu Zhang was a Master of Mathematics student from Ecole normale supérieure de Cachan visiting ANU/NICTA
in 2013. He contributed to many of the results and writing in this paper but suddenly and tragically passed away
before it was completed. We dedicate the paper to his memory.
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Previous work has given partial answers to this question, see Gneiting (2011) and Lambert
(2012) for recent summaries of much of the earlier literature. Most previous work has focused on
somewhat restricted cases. For example, (Lambert et al., 2008) proved a similar result for distribu-
tions on finite sets, and in addition, they also considered vector-valued properties. Abernethy and
Frongillo (2012) presented a more general treatment for linear properties and showed the charac-
terization of scoring functions in terms of Bregman divergence holds in that more general setting.
Finally, Lambert (2012) presented a theorem similar to one of our main results for continuous densi-
ties on compact metric spaces. Unfortunately, however, there is a flaw in his proof, see Appendix A
for details. We fix this flaw and simultaneously extend the characterization of elicitable properties
to classes of arbitrary bounded densities.

Expressing a property as an argmin as above is analogous (modulo a flip of sign) to the con-
ventional M-estimators of robust statistics (Huber, 1981). By differentiating the defining nonlinear
function of an M-estimator, one obtains a “Z-estimator”, which is also known as an “identification
function” (Osband, 1985). Our characterization of elicitable properties also includes a result regard-
ing the associated identification function. In particular it turns out that we can construct all scoring
functions from a given identification function but finding an identification function from a scoring
function is not always possible.

Properties and their associated scoring functions are related to risk measures (Artzner et al.,
1999; Bellini et al., 2014; Kusuoka, 2001; Rockafellar and Uryasev, 2013; Rockafellar, 2007).
Connections between these measures and certain machine learning algorithms have recently ap-
peared (Tsyarmasto and Uryasev, 2012; Gotoh et al., 2013; Gotoh and Uryasev, 2013). Another
contribution of our paper is to resolve an open question that elucidates the relationship between the
requirement of “coherence” of a risk measure and the elicitability of the associated property; the
result shows that the expectile (Newey and Powell, 1987), which is a type of generalized quantile
(Jones, 1994), is the only elicitable coherent risk measure.

We like to remark that elicitable properties are exactly those properties that, in their condi-
tional form, can be estimated by (regularized) empirical risk minimization (ERM) algorithms. For
example, SVMs with the τ -pinball loss estimate the conditional τ -quantiles, see Steinwart and
Christmann (2011). By characterizing elicitable properties we thus describe the boundaries of this
broad class of algorithms. In this respect note that even if the primal learning algorithm is not of
ERM type, but its hyper-parameter selection uses cross-validation based on empirical risks, or it is
eventually tested with the help of an empirical risk, the question of elicitability arises naturally.

The paper is organized as follows. In §2 we introduce properties and scoring functions, define
elicitability and show the relationship between convexity of level sets of the property and the elic-
itability of the property. In §3 we introduce identification functions and show how scoring functions
can be constructed from identification functions. In §4 we characterize which properties are elic-
itable. In addition, we characterize all suitable scoring functions for an elicitable property. The latter
generalizes known results for particular properties such as the above mentioned ones by Abernethy
and Frongillo (2012) and Gneiting (2011). We further illustrate the general theory by constructing
the scoring functions for generalized quantiles, see Bellini et al. (2014). In §5 we connect elicitabil-
ity and coherent risk measures by solving an open question recently raised by Ziegel (2014).
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ELICITATION AND IDENTIFICATION OF PROPERTIES

2. Properties and Scoring Functions

Let us begin by introducing some notations and assumptions used throughout this paper. To this
end, let A ⊂ R be an interval. For technical reasons we will always equip A with the Lebesgue
completion B̂(A) of the Borel σ-algebra B(A). We further write λ for the Lebesgue measure on A.
Recall that a measure ν on A is strictly positive, if ν(O) > 0 for all open O ⊂ A. For later use note
that this is the case, if and only if ν((a, b]) > 0 for all (a, b] ⊂ A.

In the following, let (Y,A) be a measurable space, where we will think of Y as a set of possible
observations. We further fix a set P of probability measures on (Y,A) and call P topological, if
there is a topology on P that is induced by some vector space topology on the linear span spanP
of P . We further call a map T : P → R a property, and denote its image by imT . Simple examples
of properties are the mean and the variance on suitable sets P .

Ultimately, we are interested in estimating the property T (P ) from observations drawn from
P . To this end, assume that we have a so-called P-scoring function S : A × Y → R, that is,
EY∼P S(t,Y) exists for all t ∈ A and P ∈ P . Note that for loss functions, i.e. non-negative and
measurable scoring functions, the existence of the expectation is always guaranteed although it may
not be finite in general. We will view S(t, y) as a penalty for estimating y ∈ Y by t ∈ A, so that
smaller values S(t, y) are preferred. Following this idea, we call S strictly P-consistent for the
property T : P → R, if imT ⊂ A and, for all P ∈ P , we have

T (P ) = arg min
t∈R

EY∼PS(t,Y) . (1)

Clearly, (1) is a minimal requirement for any ERM approach to work consistently. In general,
however, we will not be able to minimize the right hand side of (1) exactly without knowing P ,
and thus we need to specify the effects of such inaccuracies. One such specification introduced by
Lambert (2012) is that of order sensitivity. Recall that S is said to be P-order sensitive for T , if
imT ⊂ A and, for all P ∈ P and all t1, t2 ∈ A with either t2 < t1 ≤ T (P ) or T (P ) ≤ t1 < t2,
we have

EY∼PS(t1,Y) < EY∼PS(t2,Y) . (2)

Clearly, order sensitive scoring functions are consistent. Another concept introduced by Steinwart
(2007) to deal with inaccuracies is self-calibration. Recall, that if we have a property T and a P-
consistent scoring function S for T , then S is called P-self-calibrated, if, for all ε > 0 and P ∈ P ,
there exists a δ > 0, such that for t∗ := T (P ) and all t ∈ A we have∣∣EY∼PS(t,Y)− EY∼PS(t∗,Y)

∣∣< δ =⇒ |t− t∗| < ε .

For self-calibrated S, every δ-approximate minimizer of EY∼PS(·,Y), approximates the desired
property T (P ) with precision not worse than ε. The relationship between ε and δ is exactly de-
scribed by the so-called self-calibration function, which can often be explicitly calculated; see Stein-
wart (2007). In some sense order sensitivity is a global and qualitative notion while self-calibration
is a local and quantitative notion. The next lemma relates order sensitivity and self-calibration.

Lemma 1 Let T : P → R be a property and S : A × Y → R be a P-order sensitive scoring
function for T . Then S is P-self-calibrated.

If we start with a scoring function, we can use (1) to define a property T whenever the optimiza-
tion problem has a unique solution. In other scenarios, however, we need to start with a property
and thus need to look for consistent scoring functions. This leads to the following definition.
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Definition 2 A property T : P → R is elicitable, if there is a P-consistent scoring function for T .

One of our main goals is to characterize elicitable properties. Let us begin with the following
necessary condition taken from Osband (1985), see also Lambert et al. (2008); Gneiting (2011).

Theorem 3 Let T : P → R be an elicitable property. Then, for all P0, P1 ∈ P with T (P0) =
T (P1) and all α ∈ [0, 1] with (1− α)P0 + αP1 ∈ P we have

T (P0) = T (P1) = T
(
(1− α)P0 + αP1

)
.

In particular, if P is convex, then, for all t ∈ R, the level set {T = t} is convex.

Note that a direct consequence of Theorem 3 is that, for sufficiently large and convex P , the
variance is not elicitable.

Our next goal is to characterize the convexity of the level sets. To this end, let us recall that a
function f : X → R defined on some convex subset X ⊂ E of a vector space E is called quasi-
convex, if, for all t ∈ R, the sublevel sets {f ≤ t} := {x ∈ X : f(x) ≤ t} are convex. It is
well-known (Greenberg and Pierskalla, 1971) that f is quasi-convex, if and only if

f
(
(1− α)x+ αy

)
≤ max

{
f(x), f(y)

}
for all x, y ∈ X and α ∈ [0, 1]. Analogously, f is called quasi-concave, if −f is quasi-convex. Fi-
nally, f is called quasi-monotonic, if f is both quasi-convex and quasi-concave. With these notions
being introduced, we can now formulate the following result.

Theorem 4 Let P be a convex and topological, and T : P → R be a continuous property. Then
imT is an interval, and the following statements are equivalent:

i) For all t ∈ R, the level set {T = t} is convex.
ii) For all t ∈ R, the sets {T < t} and {T > t} are convex.

iii) T is quasi-monotonic.
iv) For all P0, P1 ∈ P , the function α 7→ T ((1− α)P0 + αP1) defined on [0, 1] is monotonic.

3. Identification Functions and their Relation to Scoring Functions

Consistent scoring functions are closely related to M-estimators. Similarly, the following, second
tool to recover a property is closely related to so-called Z-estimators Huber (1981); confer (Dawid,
2007, p.79). To introduce it, let T : P → R be a property and A ⊂ R be an interval. Furthermore,
let N ∈ B̂(A) with λ(N) = 0 and V : A× Y → R be a function such that V (t, · ) ∈ L1(P ) for all
t ∈ A \N and P ∈ P . Then V is called a P-identification function for T , if imT ⊂ A and

EY∼PV (t,Y) = 0 ⇐⇒ t = T (P ) (3)

for all t ∈ ˚imT \N and P ∈ P , where ˚imT denotes the interior of imT . If, in addition, we have

EY∼PV (t,Y) > 0 ⇐⇒ t > T (P ) (4)
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for all t ∈ ˚imT \ N and P ∈ P , then V is called oriented. Finally, if N = ∅, then V is called
strong. Note that besides some technicalities, these notions have been taken from Gneiting (2011)
who in turn credits Osband (1985). In a more implicit form, it is also used by e.g. Lambert (2012).

In the following we are not only interested in properties for which there exists a consistent
scoring function, but also in properties, for which there is an identification function. This motivates
the following definition.

Definition 5 Let P be a set of probability measures on (Y,A). A property T : P → R is said to be
identifiable, if there exists a P-identification function for T

For later use note that two properties T1, T2 on P having the same strong P-identification func-
tion are necessarily equal, that is T1 = T2. Furthermore, multiplying an (oriented) identification
function V by a strictly positive weight w : A → (0,∞) gives another (oriented) identification
function wV . Moreover, the following lemma shows that either V or −V is actually oriented.

Lemma 6 Let P be a convex and topological, T : P → R be a continuous, quasi-monotonic
property, and V be a P-identification function T . Then either V or −V is an oriented.

Intuitively, there is a close connection between scoring and identification functions. Indeed,
assume that we can naı̈vely take the derivative of the S-risks, that is

∂EY∼PS(t,Y)

∂t
= EY∼PS

′(t,Y) , (5)

where S′ denotes the derivative of S with respect to the first argument. For t∗ := T (P ), the consis-
tency (1) of S then implies EY∼PS

′(t∗,Y) = 0. Unfortunately, the required converse implication is
in general not easy to show, see the discussion following Theorem 7, and, of course, (5) only holds
under additional assumptions. Interestingly, however, if we start with an oriented identification
function V then its anti-derivative is an order sensitive scoring function, and thus consistent.

To present a corresponding formal statement we call, analogously to loss functions, a scoring
function S : A × Y → R locally Lipschitz continuous, if for all intervals [a, b] ⊂ A there exists a
constant ca,b ≥ 0 such that, for all t1, t2 ∈ [a, b] and all y ∈ Y , we have∣∣S(t1, y)− S(t2, y)

∣∣ ≤ ca,b |t1 − t2| .
Similarly, we say that a function V : A × Y → R is locally bounded, if, for all [a, b] ⊂ A, the
restriction V|[a,b]×Y of V onto [a, b] × Y is bounded. Furthermore, we need to extend derivatives
that are only almost everywhere defined. To make this precise, let S : A×Y → R be a function and
D ⊂ A×Y be the set on which S is differentiable in its first variable. Then the canonical extension
Ŝ′ : A× Y → R of the derivative S′ of S is defined by

Ŝ′(t, y) :=

{
S′(t, y) if (t, y) ∈ D
0 otherwise.

(6)

Finally, for a measure ν on A, an f ∈ L1(ν), and a, b ∈ R we need the following notation∫ b

a
f dν := sign(b− a)

∫
(a∧b,a∨b]

fdν .

With these preparations we can now construct order sensitive scoring functions from identification
functions.

5
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Theorem 7 Let (Y,A, µ) be a σ-finite measure space, P be a set of µ-absolutely continuous dis-
tributions on (Y,A), and T : P → R be a property such that imT is an interval. Moreover, let
V : A × Y → R be a measurable, locally bounded, and oriented P-identification function for T ,
and ν be a measure on A with ν � λ whose λ-density w is locally bounded. For some fixed t0 ∈ A
and κ : Y → R with κ ∈ L1(P ) for all P ∈ P , we define S : A× Y → R by

S(t, y) :=

∫ t

t0

V (r, y) dν(r) + κ(y) , (t, y) ∈ A× Y . (7)

Then the following statements hold:

i) The map S : A × Y → R is measurable and locally Lipschitz continuous. Moreover, for all
y ∈ Y , the Lebesgue almost everywhere defined derivative S′(·, y) : A→ R satisfies

S′(t, y) = w(t)V (t, y) . (8)

In particular, its extension Ŝ′ defined by (6) is a measurable and oriented P-identification
function for T if and only if w(t) > 0 for λ-almost all t ∈ imT , that is, if and only if,
µ({y ∈ Y : Ŝ′(t, y) 6= 0}) > 0 for λ-almost all t ∈ imT .

ii) The map S is P-order sensitive, if and only if ν is strictly positive.

Let us assume for a moment that we are in the situation of Theorem 7. In addition, assume that
V is actually bounded and that ν is finite. Then, using the function κ : Y → R defined by

κ(y) :=

∫
A
|V (r, y)| dν(r) <∞ (9)

in (7) gives S(t, y) ≥ 0 for all t ∈ A and y ∈ Y . In other words, S is an order preserving (and thus
consistent) loss function.

The construction (7) is also possible for certain measures ν that are not Lebesgue absolutely con-
tinuous. For example, the order sensitivity can be ensured for all measures ν with 0 < ν((t1, t2]) <
∞ for all t1, t2 ∈ Å with t1 < t2, if ν additionally satisfies ν(N) = 0 for the set N excluded in (3).
While it turns out that for such measures S is still measurable, the other properties listed in i) may
be lost. In particular, S(·, y) is, in general, no longer almost everywhere differentiable.

Interestingly, Ŝ′ is not always an identification function for S of the form (7), since there exist
strictly positive measures ν � λ whose densities are not λ-almost everywhere strictly positive.
For example, take an enumeration (qn) of [0, 1] ∩ Q and consider the density w := 1A, where
A :=

⋃
n≥1[qn − 5−n, qn + 5−n]. Since λ(A) < 1, we then see that w is not λ-almost everywhere

strictly positive, but the denseness of (qn) in [0, 1] shows that ν := wdλ is strictly positive.

4. Existence of Scoring and Identification Functions

In this section we show that modulo some technical assumptions, continuous, quasi-monotonic
properties that are defined on the set of bounded densities are elicitable. Moreover, we character-
ize the set of corresponding order-sensitive scoring functions. Finally, we illustrate the developed
theory by characterizing the order sensitive scoring functions for generalized quantiles.
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In the following, let (Y,A, µ) be a finite measure space, that is µ(Y ) <∞. Recall that (Y,A, µ)
is separable, if there exists a countable family (Ai) ⊂ A such that, for all A ∈ A and ε > 0, there
exists an Ai such that

µ(A M Ai) ≤ ε . (10)

Clearly, this is satisfied if and only if the family (1Ai) is dense in the set of all measurable indicator
functions with respect to the norm ‖ · ‖Lp(µ), where p ∈ [1,∞). From the latter it is not hard to
conclude that (Y,A, µ) is separable, if and only if, for all 1 ≤ p ≤ ∞, the space Lp(µ) is separable.
Let us denote the set of bounded probability densities with respect to µ by

∆≥0 := {h ∈ L∞(µ) : h ≥ 0, Eµh = 1} ,

and analogously, we write ∆>0 := {h ∈ L∞(µ) : h ≥ ε for some ε > 0 and Eµh = 1}. In the
following, we always consider either ∆ := ∆≥0 or ∆ := ∆>0. We write

P(∆) :=
{
P : ∃h ∈ ∆ such that P = hdµ

}
for the corresponding set of probability measures on Y . For p ∈ [1,∞], we further write ∆p, when
∆ is viewed as a metric space with metric ‖ · ‖Lp(µ), and analogously, P(∆p) denotes the set P(∆)
equipped with the metric induced by ‖ · ‖Lp(µ), that is

‖P1 − P2‖Lp(µ) := ‖h1 − h2‖Lp(µ)

for P1 = h1dµ and P2 = h2dµ ∈ ∆. Note that the metric on P(∆1) is the total variation norm.
With these preparations we can now formulate the following technical assumption on a property.

Definition 8 A property T : P(∆) → R is strictly locally non-constant, if for all t ∈ ˚imT , ε > 0,
and P ∈ {T = t}, there exist a P− ∈ {T < t} and a P+ ∈ {T > t} such that ‖P −P±‖L∞(µ) ≤ ε.

The definition above basically ensures that for each distribution we can suitably change the
density to change the property. A very similar assumption is used by Lambert (2012).

Our next goal is to show that under the assumptions above, there exists an oriented identification
function.

Theorem 9 Let (Y,A, µ) be a separable and finite measure space and T : P(∆1) → R be a
continuous, quasi-monotonic property. Assume that imT is equipped with B̂(imT ). Then, if T is
strictly locally non-constant, the following statements are true:

i) There exists a measurable and oriented P(∆)-identification function V ∗ : imT × Y → R
for T such that for Lebesgue-almost all t ∈ imT we have

‖V ∗(t, · )‖L∞(µ) = 1 .

ii) If V : imT × Y → R is a measurable oriented P(∆)-identification for T , then there exists a
measurable w : imT → (0,∞) such that, for λ⊗ µ-almost all (t, y) ∈ ˚imT × Y , we have

V (t, y) = w(t)V ∗(t, y) . (11)

7
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iii) If S : imT × Y → R is a measurable, locally Lipschitz continuous, and P(∆)-consistent
scoring function for T , then, for λ ⊗ µ-almost all (t, y) ∈ ˚imT × Y , the derivative S′(t, y)
exists. Furthermore, there exists a measurable and locally bounded w : imT → R, such that,
for λ⊗ µ-almost all (t, y) ∈ ˚imT × Y , we have

S′(t, y) = w(t)V ∗(t, y) . (12)

Finally, S is P(∆)-order sensitive for T , if and only if w ≥ 0 and the measure ν := wdλ is
strictly positive.

Unfortunately, the proof of the existence of V ∗ is anything than constructive, since it relies
on Hahn-Banach’s theorem. Nonetheless, in specific situations V ∗ can be found by elementary
considerations. Before we can present some examples, let us first combine Theorem 9 with the
results from the previous sections:

Corollary 10 Let (Y,A, µ) be a separable, finite measure space and T : P(∆1) → R be a
continuous, strictly locally non-constant property. Then the following statements are equivalent:

i) For all t ∈ imT , the level set {T = t} is convex.
ii) T is quasi-monotonic.

iii) T is identifiable and has a bounded identification function.
iv) T is elicitable.
v) There exists a non-negative, measurable, locally Lipschitz continuous scoring function that is
P(∆)-order sensitive for T .

Moreover, if T is elicitable, then every measurable, locally Lipschitz continuous scoring function
S : imT × R→ R that is P(∆)-order sensitive for T is of the form

S(t, y) =

∫ t

t0

V ∗(r, y)w(r) dr + κ(y) , (t, y) ∈ imT × (Y \N) (13)

where V ∗ is the identification function from Theorem 9, t0 ∈ imT , w ≥ 0 is measurable and locally
bounded such that ν := wdλ is strictly positive, κ : Y → R is a function with κ ∈ L1(P ) for all
P ∈ P , and N ⊂ Y is measurable with µ(Y ) = 0.

Note that the variability of t0 in (13) is actually superfluous. Indeed, if we pick a w satisfying
the assumptions mentioned above and we have, e.g. t0 < t1, then, for all t ∈ imT , we find∫ t

t0

V ∗(r, y)w(r) dr =

∫ t

t1

V ∗(r, y)w(r) dr +

∫ t1

t0

V ∗(r, y)w(r) dr ,

and since the second integral on the right hand side does not depend on t anymore, it can simply be
viewed as part of the offset function κ.

To give some concrete examples of the theory developed so far, let us fix an interval Y := [a, b]
and equip it with the Lebesgue measure, i.e. µ := λ. For τ ∈ (0, 1), recall that the τ -quantile for a
distribution P ∈ P(∆>0) is the unique solution T (P ) := t∗ ∈ [a, b] of the set of equations

P
(
(−∞, t)

)
= τ and P

(
(t,∞)

)
= 1− τ .

8
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Clearly this t∗ solves the equation (1− τ)EP1(−∞,t) = τEP1(t,∞), and consequently

V (t, y) := (1− τ)1(−∞,t)(y)− τ1(t,∞)(y) , t, y ∈ [a, b],

is, modulo an obvious normalization constant, the only candidate for V ∗. Moreover, the function
t 7→ (1 − τ)EP1(−∞,t) is strictly increasing in t, while τEP1(t,∞) is strictly decreasing in t, and
from this it is easy to conclude that V is indeed a (strong) identification function for the τ -quantile.
Let us now find all measurable, locally Lipschitz continuous and P(∆>0)-order sensitive scoring
functions. To this end, we first observe that we can replace V ∗ by V in (13), since the weight w in
(12) is bounded away from zero and infinity by the specific form of V . Now, we set t0 := a and fix a
measurable, locally bounded w ≥ 0 such that wdλ is strictly positive. Let us further denote the anti-
derivative of w by g, that is g(r) :=

∫ r
a w(s)ds for r ∈ [a, b]. By the assumptions made on w, we

then see that g is non-negative, strictly increasing, and locally Lipschitz with g(a) = 0. Conversely,
it is not hard to see that every g satisfying the latter set of assumptions is an anti-derivative of the
form above. Now, for a ≤ t ≤ y, we have∫ t

a
V (r, y)w(r)dr + τg(y) = −τ

∫ t

a
w(r)dr + τg(y) = τ

(
g(y)− g(t)

)
, (14)

while for a ≤ y ≤ t we obtain∫ t

a
V (r, y)w(r)dr + τg(y) =

∫ y

a
V (r, y)w(r)dr +

∫ t

y
V (r, y)w(r)dr + τg(y)

= (1− τ)
(
g(t)− g(y)

)
. (15)

Combining both expressions and adding an offset function κ gives the general form

S(t, y) =
∣∣1(−∞,t](y)− τ

∣∣ · ∣∣g(t)− g(y)
∣∣+ κ(y) (16)

of all measurable, locally Lipschitz continuous and P(∆>0)-order sensitive scoring functions for
the τ -quantile. Here g is an arbitrary non-negative, strictly increasing, and locally Lipschitz function
on [a, b]. Clearly, S is Lipschitz, if and only if g is Lipschitz, and for such S, the form (16) coincides
with the representation found by Lambert (2012), while for differentiable g it coincides with that
of Grant and Gneiting (2013). Moreover, by considering g(r) := r and κ = 0, we obtain the well-
known τ -pinball loss. Finally, note that by (14) and (15), an S of the form (16) is convex in t, if and
only if g is both concave and convex. This leads to the following corollary.

Corollary 11 For each interval Y = [a, b], the τ -pinball loss is, modulo a constant factor and an
offset function, the only locally Lipschitz continuous and convex scoring function that is P(∆>0)-
order sensitive for the τ -quantile.

Our next goal is to generalize these considerations to so-called generalized quantiles considered
in e.g. Bellini et al. (2014) because of their importance as a risk measure for financial applications.
To this end, let Φ−,Φ+ : [0,∞) → [0,∞) be strictly convex and strictly increasing functions
satisfying Φi(0) = 0 and Φi(1) = 1 for i = ±. Then, for τ ∈ (0, 1), the generalized τ -quantile of
a P ∈ P(∆≥0) is the unique solution of

t∗ = arg min
t∈R

(1− τ)EY∼PΦ−
(
(Y − t)−

)
+ τEY∼PΦ+

(
(Y − t)+

)
. (17)

9
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Note that unlike Bellini et al. (2014) we assumed that the functions Φ−,Φ+ are not only convex
but strictly convex to ensure that (17) has a unique solution for all P ∈ P(∆≥0). Of course, this
excludes the quantiles, which, however, we have already treated above. Probably the best-known
example of generalized quantiles are expectiles, see (Newey and Powell, 1987), that correspond to
the choice Φ−(r) = Φ+(r) = r2 for r ≥ 0. Clearly, generalized quantiles are elicitable, since (17)
directly translates into an optimization problem of the form (1) for the score function

S(t, y) := (1− τ)Φ−
(
(y − t)−

)
+ τΦ+

(
(y − t)+

)
, t, y ∈ [a, b] . (18)

Note that for expectiles, this S becomes the asymmetric least squares loss, which has recently
attracted some interest in the machine learning community, see e.g. Huang et al. (2014). In the
following, our goal is to characterize all order sensitive scoring functions for generalized quantiles.
To keep the corresponding calculations brief, we restrict our considerations to the case Φ− = Φ+.
Let Φ : R → [0,∞) be the symmetric extension of Φ+, that is Φ(r) := Φ+(|r|) for r ∈ R.
Now assume that Φ is continuously differentiable, and that its derivative ψ := Φ′ is absolutely
continuous. Then Corollary 3 of Bellini et al. (2014) implies that the canonical extension of S′,
which for y 6= t is given by

S′(t, y) = (1− τ)ψ
(
(t− y)+

)
− τψ

(
(y − t)+

)
, (19)

is a corresponding (oriented) identification function. By some simple considerations we further find

min{1− τ, τ} · ‖ψ|[0,(b−a)/2]‖∞ ≤ ‖S′(t, ·)‖∞ ≤ ‖ψ|[0,b−a]‖∞

for all t ∈ [a, b], and therefore the weight w in (12) is bounded away from zero and infinity. In
(13) we can thus replace V ∗ by Ŝ′. Now, we set t0 := a and fix a measurable, locally bounded
w ≥ 0 such that wdλ is strictly positive. Let us further denote the anti-derivative of w by g, that is
g(r) :=

∫ r
a w(s)ds for r ∈ [a, b]. Furthermore, we define

G(t, y) :=

∫ t

a
ψ′(y − r)g(r)dr =

∫ t

a
ψ′(r − y)g(r)dr , t, y ∈ [a, b]. (20)

where the last identity follows from the symmetry of Φ, which implies ψ′(−r) = ψ′(r) for all
r ∈ R. Now, for a ≤ t ≤ y, we have∫ t

a
S′(r, y)w(r)dr+ τG(y, y) = −τ

∫ t

a
ψ(y− r)g′(r)dr = τ

(
G(y, y)−G(t, y)− g(t)ψ(y− t)

)
by integration by parts, see e.g. (Bogachev, 2007a, Corollary 5.4.3) for the case of absolutely con-
tinuous functions. Similarly, for a ≤ y ≤ t we obtain∫ t

a
S′(r, y)w(r)dr + τG(y, y) = (1− τ)

(
G(y, y)−G(t, y)− g(t)ψ(y − t)

)
.

Combining both expressions and adding an offset function κ gives the general form

S(t, y) =
∣∣1(−∞,t](y)− τ

∣∣ · (G(y, y)−G(t, y)− g(t)ψ(y − t)
)

+ κ(y) (21)

of all measurable, locally Lipschitz continuous and P(∆≥0)-order sensitive scoring functions for
the generalized τ -quantile. Here g is an arbitrary non-negative, strictly increasing, and locally
Lipschitz function on [a, b], and G is given by (20).

10
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In some cases, the function G can be explicitly calculated. For example, for expectiles, we have
Φ(r) = r2, and thus ψ(r) = 2r and ψ′(r) = 2. Consequently, G(·, y) equals, independently of
y, the anti-derivative of 2g, and (21) coincides with the characterization by Gneiting (2011). More
generally, for Φ(r) = rn with n ∈ N and n ≥ 2, G can be computed using induction. For example,
for n = 3, we have G(t, y) = 6|g−′′(y) − g−′′(t) − g−′(t)(y − t)|, where g−

′
and g−

′′
denote the

first and second anti-derivative of g, respectively.
Finally, note that the above calculations are an example of how to solve the following general

question: Given a scoring function S0 and a resulting property T , which other scoring functions S
can be used to find T ? Note that such surrogate scoring functions S may be desirable, for example,
to find an efficient learning algorithm or to better control statistical behaviour, or robustness of an
estimation procedure. With the developed theory, the answer to the question above is, ignoring the
described technicalities, straightforward: First compute the derivative S′0, then normalize it such
that it becomes V ∗, and then compute all S by (13).

5. Expectiles

In this section we negatively answer an open question recently posed by Ziegel (2014): Is there any
coherent, law-invariant, and elicitable property other than expectiles? Bellini and Bignozzi (2013)
(confer Bellini et al. (2014)) have recently presented a similar result, but under stronger hypotheses.

To begin, we recall the notion of coherent risk measures, see Rockafellar and Uryasev (2013).
To this end, we fix probability space (Ω,A, ν) and write P := {PY : Y ∈ L0(ν)} for the set of all
distributions of random variables Y : Ω → R. Given a property T : P → R, we further write, in a
slight abuse of notations, T (Y) := T (PY) for all Y ∈ L0(ν), where L0(ν) denotes the space of all
ν-equivalence classes of measurable Y : Ω → R. Thus, we can view T as a map T : L0(ν) → R.
In the literature, such maps that factor through P are called law-invariant. Let us consider the
following features of T , that are assumed to be satisfied for all Y,Y′ ∈ L0(ν), λ > 0, and c ∈ R:

T0 (definite). T (0) = 0.
T1 (translation equivariant). T (Y + c) = T (Y) + c

T2 (positively homogeneous). T (λY) = λT (Y)

T3 (subadditive). T (Y + Y′) ≤ T (Y) + T (Y′)

T4 (monotonic). T (Y) ≤ T (Y′) whenever Y ≤ Y′

T5 (convex). T ((1− t)Y + tY′) ≤ (1− t)T (Y) + tT (Y′)

If −T satisfies T0 to T4, then T is called a coherent risk measure. The following theorem partially
describes the identification function of identifiable properties satisfying some of these assumptions.

Theorem 12 Let (Ω,A, ν) be an atom-free measure space, P := {PY : Y ∈ L0(ν)}, and T :
P → R be an identifiable property. If T satisfies T0 and T1, then the following statements are true:

i) There exists a ψ : R→ R with ψ(0) = 0 and ψ(−1) = 1 such that V : R× R→ R defined
by

V (t, y) := ψ(y − t) , y, t ∈ R (22)

is an oriented P-identification function for T . Moreover, ψ(s) < 0 if and only if s > 0.

ii) If T also satisfies T2, then we have ψ(1)ψ(st) = ψ(s)ψ(t) and ψ(s) = ψ(1)ψ(−s) for all
s, t > 0. In addition, there exists an s0 > 0 with ψ(s0) 6= ψ(1).

11
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iii) If T also satisfies T3 and T4, then ψ considered in (22) is decreasing on (0,∞).

iv) If T also satisfies T2 and ψ is decreasing on (0,∞), then there exists an α > 0 such that ψ is
given by

ψ(s) =

{
ψ(1)sα if s ≥ 0

(−s)α if s ≤ 0 .
(23)

v) If T also satisfies T5, andψ considered in (22) is continuous and surjective, thenψ is concave.

With the help of the theorem above, we can now present the following result that answers the
question raised by Ziegel (2014):

Corollary 13 Let (Ω,A, ν) be an atom-free measure space, P := {PY : Y ∈ L0(ν)}, and T :
P → R be an identifiable property satisfying T0 to T4. Then T is an τ -expectile for some τ ≥ 1/2.

Note that Bellini et al. (2014) only gave a partial answer to Zeigel’s question. Namely, they
showed that the only coherent generalized τ -quantiles are expectiles.

6. Some Proofs

Proof [Lemma 1] For a fixed ε > 0 we define t−ε := t∗ − ε and t+ε := t∗ + ε. Furthermore, we
define

δ := min
{
EY∼PS(t−ε ,Y),EY∼PS(t∗ε,Y)

}
− EY∼PS(t+,Y) .

Setting t1 := t∗ and t2 := t±ε , we then see by (2) that δ > 0. Let us now fix a t ∈ A
with t ≥ t∗ and |EY∼PS(t,Y) − EY∼PS(t∗,Y)| < δ. By the definition of δ, we then obtain
EY∼PS(t,Y) < EY∼PS(t+ε ,Y), and using (2) we conclude that t ≤ t+ε . In other words we have
shown |t− t∗| ≤ ε. The case t ≤ t∗ can be treated analogously.

Proof [Corollary 10] iii)⇒ v). Follows from Theorem 7 and (9) by using a strictly positive, bounded
and Lebesgue integrable w : imT → R.

v)⇒ iv). Trivial.
iv)⇒ i). Theorem 3.
i)⇒ ii). Theorem 4.
ii)⇒ iii). Theorem 9.
Finally, to show 13, we assume that T is elicitable and fix a measurable, locally Lipschitz

continuous scoring function S : imT × R → R that is P(∆)-order sensitive for T . By part ii) of
Theorem 9 we then find a measurable and locally bounded w : imT → [0,∞) such that (12) holds
and ν := wdλ is strictly positive. Consequently, there exists a measurable N ⊂ Y with µ(Y ) = 0
such that for all y ∈ Y \ N there exists a measurable Ny ⊂ ˚imT with λ(Ny) = 0 such that
(12) holds for all t ∈ ˚imT \ Ny. The fundamental theorem of calculus for absolutely continuous
functions, see e.g. (Bogachev, 2007a, Theorems 5.3.6 and 5.4.2), yields

S(t, y)− S(t0, y) =

∫ t

t0

S′(r, y) dr =

∫ t

t0

w(r)V ∗(r, y) dr

for all t ∈ imT and y ∈ Y \N . By setting b(y) := S(t0, y), we then see that S is of the form (13).

12
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Proof [Corollary 13] We apply Theorem 12: since T satisfies T0 to T4, it has an identification
function V of the form (22), where ψ is given by (23) for some α > 0 and ψ(1) < 0. However, for
α > 0, the function ψ is continuous and and surjective. T2 and T3 imply T5, and therefore, ψ is
concave. However, the only ψ of the form (23) that is concave, is that for α = 1 and ψ(1) ≤ −1. In
the case ψ(1) = −1, we immediately see that ψ is the identification function of the 1/2-expectile.
Moreover, if ψ(1) < −1, then multiplying ψ by 1

1−ψ(1) , we see that ψ equals the identification

function for the τ -expectile with τ = ψ(1)
ψ(1)−1 . Finally, using ψ(1) < 1 we find τ > 1/2.
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Appendix A. Comparison with (Lambert, 2012)

Let us briefly summarize the differences between (Lambert, 2012) and the present paper:

• As mentioned earlier, (Lambert, 2012) considers distributions with continuous densities on
compact metric spaces. Our results of Section 4 require significantly weaker assumptions on
the considered distributions. In fact, we do not need any sort of topological assumption.

• Lambert only considers Lipschitz continuous scoring functions in the representation and re-
quires a scoring function to begin with (instead of an identification function). However, this
is a lesser difference as we think that his paper could be easily changed along these lines.

• There is a bug in his proof on page 46, 4 lines from the bottom of the page. Here, Lambert
has a family of normalized functionals Φθ such that Φθ(f)→ Φθ0(f) for all f ∈ ker Φθ0(f).
He then claims that this implies |Φθ(v)| → 1 for some v with Φθ0(v) = 1.

In finite dimensional spaces this is true: by compactness there exists a subsequence Φθn that
converges to some Φ in norm and thus ‖Φ‖ = 1. Our Lemma 33 shows Φ = αΦθ0 for some
α ∈ R and by comparing norms we obtain |α| = 1. Moreover, the last arguments actually
hold for all convergent subsequences, and thus the assertion follows.

15

http://www.moksloperiodika.lt/STOPROG_2012/abstract/114-118-Tsyar.pdf
http://www.moksloperiodika.lt/STOPROG_2012/abstract/114-118-Tsyar.pdf


STEINWART PASIN WILLIAMSON ZHANG

In infinite dimensional spaces, this argument no longer works: Depending on the involved
spaces, one only gets weak- or weak*-convergent subsequences (or nets) and their limit Φ
does not need to satisfy ‖Φ‖ = 1, but only ‖Φ‖ ≤ 1, where < 1 is not just a rare pathological
case but more the rule than the exception.

Unfortunately, this bug has far reaching consequences. Indeed, Lambert needs the conver-
gence above to find a measurable version of V ∗. While considering measurability is often
viewed as a technical detail left to mathematicians, it is, in this case, at the core of the entire
characterization (13), and Lambert is actually very aware of this, too. Indeed, this measura-
bility is needed in (30), analogously to Lambert’s proof, to apply Fubini’s theorem. Without
this change of integration, it cannot be proven that S is order sensitive.

It is not clear at all to us how to repair this bug within Lambert’s proof. In this paper we thus
take a completely different route, which is laid out in detail in Section G.

Appendix B. Proofs Related to Scoring Functions

Proof [Theorem 3] Let S : A × Y → R be a P-consistent scoring function for T . Moreover, let
P0, P1 ∈ P and α ∈ [0, 1] satisfy both t∗ := T (P0) = T (P1) and Pα := (1 − α)P0 + αP1 ∈ P .
For t ∈ A, we then have

EY∼PαS(t∗,Y) = (1− α)EY∼P0S(t∗,Y) + αEY∼P1S(t∗,Y)

≤ (1− α)EY∼P0S(t,Y) + αEY∼P1S(t,Y)

= EY∼PαS(t,Y) .

Consequently, t∗ minimizes EY∼PαS( · ,Y), and by (1) we thus find t∗ = T (Pα).

Lemma 14 Let E be a topological vector space, X ⊂ E be a convex subset and f : X → R be a
continuous function. Then the following statements are equivalent:

i) For all t ∈ R, the level sets {f = t} are convex.
ii) For all t ∈ R, the sets {f < t} and {f > t} are convex.

iii) The function f is quasi-monotonic.
iv) For all x0, x1 ∈ X , the function h : [0, 1] → R defined by α 7→ f((1 − α)x0 + αx1) is

monotonic.

Proof [Lemma 14] i)⇒ ii). By symmetry, it suffices to consider the case {f < t}. Let us assume
that {f < t} is not convex. Then there exist x0, x1 ∈ {f < t} and an α ∈ (0, 1) such that
for xα := (1 − α)x0 + αx1 we have xα 6∈ {f < t}, that is f(xα) ≥ t. Now, we first observe
that, for t0 := f(x0) < t and t1 := f(x1) < t, we have t0 6= t1, since t0 = t1 would imply
f(xα) ∈ {f = t0} ⊂ {f < t} by the assumed convexity of the level set {f = t0}. Let us assume
without loss of generality that t0 < t1. Then we have t1 ∈ (f(x0), f(xα)), and thus the intermediate
value theorem applied to the continuous map β 7→ f((1−β)x0+βxα) on (0, 1) yields a β∗ ∈ (0, 1)

such that for x∗ := (1 − β∗)x0 + β∗xα we have f(x∗) = t1. Let us define γ := (1−β∗)α
1−β∗α . Then

we have γ ∈ (0, 1) and xα = (1 − γ)x∗ + γx1. By the assumed convexity of {f = t1}, we thus
conclude that f(xα) ∈ {f = t1} ⊂ {f < t}, i.e. we have found a contradiction.
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ii)⇒ iii). This follows from {f ≥ t} =
⋂
t′<t{f > t′} and {f ≤ t} =

⋂
t′>t{f < t′}.

iii)⇒ i). This follows from {f = t} = {f ≤ t} ∩ {f ≥ t}.
iii)⇒ iv). Let us pick x0, x1 ∈ X , and without loss of generality, we may assume that f(x0) ≤

f(x1). For α ∈ [0, 1] we further write xα := (1−α)x1+αx0, so that the quasi-monotonicity implies
f(x0) ≤ f(xα) ≤ f(x1). Now assume that h is not monotonic. Then h is not increasing and hence
there exist α0 ≤ α1 with f(xα1) < f(xα0). We write t := 1

2f(xα0) + 1
2f(xα1), which ensures

f(x0) ≤ f(xα1) < t < f(xα0). By the continuity of α → f(xα) there then exist α∗ ∈ [0, α0) and
α∗∗ ∈ (α0, α1) such that xα∗ , xα∗∗ ∈ {f = t}. However, the already shown implication iii)⇒ i)
ensures the convexity of {f = t}, which in turn implies f(xα0) = t by α0 ∈ (α∗, α∗∗). This is a
contradiction, and hence h is monotonic.

iv)⇒ iii). Let us assume without loss of generality that α 7→ f((1− α)x0 + αx1) is increasing
on [0, 1]. Then we obtain

min
{
f(x0), f(x1)

}
= f(x0) ≤ f((1− α)x0 + αx1) ≤ f(x1) = max

{
f(x0), f(x1)

}
,

and hence f is both quasi-convex and quasi-concave.

Proof [Theorem 4] The equivalence follows directly from Lemma 14. Moreover P is convex and
thus connected. The continuity of T then shows that imT is connected, too, and hence imT is an
interval.

Appendix C. Proofs Related to Identification Functions

Proof [Lemma 6] Let us fix a t ∈ ˚imT \N . If t = T (P ) for all P ∈ P , there is nothing to prove,
and hence we may assume without loss of generality that there exists a P ∈ P with t 6= T (P ). By
(3) we conclude that EY∼PV (t,Y) 6= 0. Let us focus on the case t > T (P ) and EY∼PV (t,Y) > 0
since the remaining three cases can be treated analogously. Let us first show that, for all Q ∈ P , we
have

t > T (Q) =⇒ EY∼QV (t,Y) > 0 . (24)

To this end, we assume the converse, that is, there exists aQ ∈ P with t > T (Q) and EY∼QV (t,Y) ≤
0. For α ∈ [0, 1] we consider Pα := αP + (1− α)Q and

h(α) := EY∼PαV (t,Y) = αEY∼PV (t,Y) + (1− α)EY∼QV (t,Y) .

Then P,Q ∈ {T < t} together with Theorem 4 implies Pα ∈ {T < t} for all α ∈ [0, 1], while
our assumptions ensure h(0) ≤ 0 and h(1) > 0. Since h is continuous, the intermediate value
theorem gives an α∗ ∈ [0, 1) with h(α∗) = 0, that is EY∼Pα∗V (t,Y) = 0. By (3) we conclude that
Pα∗ ∈ {T = t}, which contradicts the earlier found Pα∗ ∈ {T < t}, i.e. we have shown (24).

Let us now show that, for all Q ∈ P , we have

t < T (Q) =⇒ EY∼QV (t,Y) < 0 . (25)

Let us assume the converse, i.e. that there is a Q ∈ P with t < T (Q) and EY∼QV (t,Y) ≥ 0. By
(3), we can exclude the case EY∼QV (t,Y) = 0, and hence we have EY∼QV (t,Y) > 0. Let us
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define Pα and h(α) as above. Then h(0) > 0 and h(1) > 0 imply h(α) > 0 for all α ∈ [0, 1] by
Theorem 4. Let us now consider g(α) := T (Pα) for α ∈ [0, 1]. The continuity of T guarantees
that g : [0, 1] → R is continuous, while the assumed T (P ) < t < T (Q) gives g(1) < t < g(0).
The intermediate value theorem then shows that there exists an α∗ ∈ [0, 1] such that g(α∗) = t,
that is T (Pα∗) = t. By (3) we thus find EY∼Pα∗V (t,Y) = 0, that is h(α∗) = 0. Since the latter
contradicts the earlier found h(α∗) > 0, we have shown (25).

By combining (3) with (24) and (25), we then see that V is an oriented identification function.

Lemma 15 Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be σ-finite measure spaces and A ∈ A1 ⊗A2. For
ω1 ∈ Ω1 we define Aω1 := {ω2 : (ω1, ω2) ∈ A}. Then Aω1 is measurable. Moreover, we have
µ1 ⊗ µ2(A) = 0 if and only if µ2(Aω1) = 0 for µ1-almost all ω1 ∈ Ω1.

Proof The measurability of the setAω1 follows e.g. from (Bogachev, 2007a, Proposition 3.3.2). By
Tonelli’s theorem and the measurability of A we further conclude that

µ1 ⊗ µ2(A) =

∫
Ω1

∫
Ω2

1A(ω1, ω2) dµ2(ω2)dµ1(ω1) =

∫
Ω1

µ2(Aω1) dµ1(ω1) .

Now the equivalence easily follows.

Lemma 16 Let (Y,A, µ) be a σ-finite measure space and A be an interval that is equipped with
B̂(A). Let S : A× Y → R be a measurable and locally Lipschitz continuous function and

D :=
{

(t, y) ∈ Å× Y : ∃S′(t, y)
}
.

Then, the following statements are true:

i) The set D is B̂(A) ⊗ A-measurable and of full measure, i.e. λ ⊗ µ((A × Y ) \ D) = 0.
Moreover, for all y ∈ Y , the set Dy := {t ∈ Å : (t, y) ∈ D} is measurable and satisfies
λ(Å \Dy) = 0.

ii) The canonical extension Ŝ′ : A× Y → R defined by (6) is measurable and locally bounded.

iii) Let P be a µ-absolutely continuous probability measure such that S(t, ·) ∈ L1(P ) for all
t ∈ R. Then, there exists a measurable N ⊂ ˚imT with λ(N) = 0, which is independent of
P , such that the function RP : imT → R defined by

RP (t) := EY∼PS(t,Y) , t ∈ imT,

is differentiable at all t ∈ ˚imT \N and its derivative is given by

R′P (t) = EY∼P Ŝ
′(t,Y) . (26)

Furthermore, we have µ(Y \Dt) = 0 for all t ∈ ˚imT \N , where Dt := {y : (t, y) ∈ D}.
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Proof i). Let us fix an interval [a, b] ⊂ Å and a y ∈ Y . Then S(·, y)|[a,b] is Lipschitz continuous,
and therefore absolutely continuous. By (Bogachev, 2007a, Proposition 5.3.4), we conclude that
S(·, y)|[a,b] is of bounded variation and hence S′(t, y) exists for Lebesgue almost all t ∈ Å by
(Bogachev, 2007a, Theorem 5.2.6). Moreover, using the local Lipschitz continuity of S and the
completeness of R it is elementary to show that

D =
∞⋂
n=1

∞⋃
k=1

⋂
ε,δ∈[− 1

k
, 1
k

]∩Q\{0}

An,ε,δ

where

An,ε,δ :=

{
(t, y)∈Å× Y : t+ ε, t+ δ∈Å and

∣∣∣∣S(t+ε, y)−S(t, y)

ε
− S(t+δ, y)−S(t, y)

δ

∣∣∣∣≤ 1

n

}
.

By the measurability of S, all sets An,ε,δ are measurable, and hence so is D. Let us write Z :=

(Å × Y ) \ D as well as Zy := {t ∈ Å : (t, y) ∈ Z} = {t ∈ Å : ¬∃S′(t, y)} = Å \ Dy.
By Lemma 15 and the measurability of D, all Zy are measurable and our previous considerations
showed λ(Zy) = 0 for all y ∈ Y , so that by Lemma 15 we find λ⊗ µ(Z) = 0.

ii). Our first observation is that the measurability of Ŝ′ is a direct consequence of the measurabil-
ity of the set D considered above. Let us now pick an interval [a, b] ⊂ A and a pair (t, y) ∈ Å× Y
with t ∈ [a, b]. Note that if t = a, then a ∈ Å, and hence there exists an ε > 0 such that
[a − ε, b] ⊂ Å ⊂ A and, of course, t ∈ (a − ε, b). Moreover, if Ŝ′ turns out to be bounded on
[a − ε, b] × Y , then it is also bounded on [a, b] × Y and therefore we may assume without loss of
generality that t > a. By the same argument we may also assume t < b, that is t ∈ (a, b). Now,
if (t, y) 6∈ D, then Ŝ′(t, y) = 0 and hence there is nothing to prove. Moreover, if (t, y) ∈ D, then
S′(t, y) exists and for an arbitrary non-vanishing sequence tn → 0 we have

Sn(t, y) :=
S(t+ tn, y)− S(t, y)

tn
→ S′(t, y) (27)

for n → ∞. Without loss of generality we may assume that t + tn ∈ (a, b) for all n ≥ 1. Then,
using the local Lipschitz constant ca,b ≥ 0 we find∣∣S(t+ tn, y)− S(t, y)

∣∣ ≤ ca,b|tn| ,
and hence we obtain first |Sn(t, y)| ≤ ca,b and then |S′(t, y)| ≤ ca,b.

iii). By our previous considerations and Lemma 15 we first note that there exists a measurable
N ⊂ ˚imT with λ(N) = 0 and µ(Y \Dt) = 0 for all t ∈ ˚imT \N . Let us pick a t ∈ ˚imT \N .
Then P � µ implies P (Y \ Dt) = 0. Let us further fix a y ∈ Dt. Then we have previously
seen that |Sn(t, y)| ≤ ca,b, and obviously, we have ca,b ∈ L1(P ). Therefore, (27) and Lebesgue’s
theorem of dominated convergence shows

lim
n→∞

RP (t+ tn)−RP (t)

tn
= lim

n→∞
EY∼PSn(t,Y) = EY∼P Ŝ

′(t,Y) , (28)

that is, we have shown (26).
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Proof [Theorem 7] Before we begin with the actual proof, let us first note that the integral in (7) is
defined and finite for all t ∈ A and y ∈ Y , since for fixed y ∈ Y , the function r 7→ w(r)V (r, y) is
bounded on (t0 ∧ t, t0 ∨ t].

i). For [a, b] ⊂ A, t1, t2 ∈ [a, b] with t1 < t2, and y ∈ Y we obtain∣∣S(t1, y)− S(t2, y)
∣∣ ≤ ‖V|[a,b]×Y ‖∞ ∫ t2

t1

w(r)dr ≤ ‖V|[a,b]×Y ‖∞ · ‖w|[a,b]‖∞ · |t1 − t2| ,

and therefore S is indeed locally Lipschitz continuous. In particular, S(·, y) : A→ R is continuous
for all y ∈ Y . Let us now show that S(t, ·) : Y → R is measurable for all t ∈ A. Without loss
of generality we consider the case t0 ≤ t, only. For an arbitrary but fixed P ∈ P , the function
(r, y) 7→ 1(t0,t](r)w(r)V (r, y) is bounded and since it is only non-zero on a set of finite measure
λ ⊗ P , we find ((r, y) 7→ 1(t0,t](r)w(r)V (r, y)) ∈ L1(λ ⊗ P ). Fubini’s theorem, see e.g. (Bauer,
2001, Corollary 23.7) then gives S(t, ·) ∈ L1(P ). In particular, EY∼PS(t,Y) exists and the function
S(t, ·) : Y → R is measurable. Now, the measurability of S follows from the continuity of S(·, y) :
A → R and the measurability of S(t, ·) : Y → R with the help of (Castaing and Valadier, 1977,
Lemma III.14 on p. 70) and the fact that intervals are Polish spaces, cf. (Bauer, 2001, p. 157).

To show the assertions around (8), we first observe by Lemma 16 that, for given y ∈ Y , the
derivative S′(t, y) exists for Lebesgue almost all t ∈ Å and the extension Ŝ′ is locally bounded.
The formula (8) follows from (Bogachev, 2007a, Theorems 5.3.6 and 5.4.2).

To characterize when Ŝ′ is an oriented identification function, we observe by Lemma 15 that
there exists an N ⊂ Å with λ(N) = 0, such that, for all t ∈ Å \N , the derivative S′(t, y) satisfies
(8) for µ-almost all y ∈ Y . Let us pick a t ∈ Å \N and a P ∈ P . Since P � µ and Ŝ′ is locally
bounded, we then find Ŝ′(t, ·) ∈ L1(P ) and

EY∼P Ŝ
′(t,Y) = EY∼Pw(t)V (t,Y) = w(t)EY∼PV (t,Y) . (29)

Now the first characterization immediately follows, since EY∼PV (t,Y) 6= 0 for λ-almost all t by
(3). To show the second characterization, we first observe that µ({y ∈ Y : Ŝ′(t, y) 6= 0}) = 0
implies EY∼P Ŝ

′(t,Y) = 0 by P � µ. Now, if Ŝ′ is an oriented identification function, then we
have already seen that EY∼P Ŝ

′(t,Y) 6= 0 for λ-almost all t ∈ A by (4), and hence we obtain
µ({y ∈ Y : Ŝ′(t, y) 6= 0}) > 0 for λ-almost all t ∈ A. Conversely, if we start with the latter, we
can solve (8) for w(t) to find w > 0 Lebesgue almost surely.

ii). We pick a P = hdµ ∈ P and write t∗ := T (P ). For t1, t2 ∈ imT with t2 < t1 ≤ t∗

we obtain by Tonelli’s theorem together with ‖1(t0,t1]V ‖∞ < ∞ and h ∈ L1(µ) that 1(t0,t1]V ∈
L1(ν ⊗ P ) and 1(t0,t2]V ∈ L1(ν ⊗ P ), and thus also 1(t2,t1]V ∈ L1(ν ⊗ P ). Fubini’s theorem
hence implies

EY∼PS(t1,Y)− EY∼PS(t2,Y) =

∫
Y

∫ t1

t2

V (r, y) dν(r) dP (y)

=

∫ t1

t2

EY∼PV (r,Y) dν(r) . (30)

Now, if ν((t1, t2]) > 0, then EY∼PV (r,Y) < 0 for all r ∈ (t2, t1] \N , where N is the set excluded
in (4), ensures that the last integral is strictly negative, and hence EY∼PS(t1,Y) < EY∼PS(t2,Y)
follows. Conversely, if ν((t1, t2]) = 0, then (30) implies EY∼PS(t1,Y) = EY∼PS(t2,Y), and
hence S is not order sensitive. The second case, t2 > t1 ≥ t∗, can be treated analogously.

20



ELICITATION AND IDENTIFICATION OF PROPERTIES

Appendix D. Proofs Related to Existence of Identification Function

Our first goal is to show that we can apply all results from Appendices F and G. Note that the
material in these two appendices is entirely independent of the rest of the paper and thus it is no
problem using forward references to results of these appendices as soon as we have checked that all
assumptions made in these appendices are met. This is done in the following lemma.

Lemma 17 Let (Y,A, µ), ∆, and T : P(∆) → R be as in Theorem 9. We fix a p ∈ [1,∞), write
B := ∆, and consider the map Γ : B → R defined by Γ(h) := T (hdµ). Furthermore, we consider
h? := µ(Y )−11Y ∈ B, the set A := −h? + B, the norm ‖ · ‖F := ‖ · ‖∞, the space E := Lp(µ),
and the functional ϕ′ := (Eµ)|Lp(µ). Then, the assumptions G1 to G5 of Appendix F are satisfied
and we have H = L∞(µ). Moreover, if p ∈ (1,∞), then the assumptions G6 to G9 of Appendix G
are also satisfied.

Proof Clearly, the set B is convex and non-empty. In addition, the expectation Eµ : L1(µ)→ R is
continuous, and, since µ is finite, its restriction ϕ′ onto Lp(µ) is continuous with respect to ‖ · ‖p.
Furthermore, we clearly have B ⊂ {ϕ′ = 1}, and thus G1 is satisfied. Moreover, H = L∞(µ) is
obvious.

To check G2, we first observe that ‖ · ‖E ≤ ‖ · ‖F on F := spanA ⊂ L∞(µ), and thus
we can apply Lemma 21 to obtain F ⊂ kerϕ′. For f ∈ F with ‖f‖∞ < µ(Y )−1, we first find
h? + f ≥ ε > 0 with ε := µ(Y )−1 − ‖f‖∞, and thus h? + f ∈ cone ∆. Hence, there exist a
c ∈ R and a g ∈ ∆ such that h? + f = cg, and this yields Eµ(h? + f) = Eµcg = c. On the other
hand, F ⊂ kerϕ′ implies Eµ(h? + f) = Eµh? = 1, and thus we conclude that c = 1. This yields
h? + f = g ∈ ∆ = B, and consequently, we have f ∈ −h? + B = A. In other words, we have
shown µ(Y )−1BF ⊂ A, and thus 0 ∈ ÅF .

To show G3, we first consider the case ∆ = ∆≥0. Here we pick a g ∈ L∞(µ) and define
g+ := max{g, 0} and g− := max{−g, 0}. This gives g+, g− ∈ coneB and

‖g+‖pLp(µ) + ‖g−‖pLp(µ) = ‖g‖pLp(µ) .

Using a + b ≤ 21−1/p(ap + bp)1/p we then obtain the cone assumption G3 for K = 21−1/p. In
the case ∆ = ∆>0 we first observe that there is nothing to prove for g = 0. Let us thus fix a
g ∈ L∞(µ) with g 6= 0. We define ε := µ(Y )−1/p‖g‖Lp(µ) > 0 and consider g+

ε := g+ + ε1Y and
g−ε := g− + ε1Y . Clearly, this gives both g = g+

ε − g−ε and g±ε ∈ ∆>0. Moreover, we have

‖g+
ε ‖Lp(µ) + ‖g−ε ‖Lp(µ) ≤ ‖g+‖Lp(µ) + ‖g−‖Lp(µ) + 2εµ(Y )1/p

≤ K
(
‖g+‖pLp(µ) + ‖g−‖pLp(µ)

)1/p
+ 2‖g‖Lp(µ)

= (K + 2) · ‖g‖Lp(µ) .

To check G4 it suffices to observe that the assumed continuity of T : P(∆1)→ R immediately
implies the continuity of T : P(∆p)→ R. Furthermore, in Theorem 9 we assume that T is strictly
locally non-constant, which directly translates into G5. Moreover, E = Lp(µ) is a Banach space,
and hence G7 is satisfied. In addition, µ is assumed to be separable, and hence the space Lp′(µ)
is separable. Using L′p(µ) is isometrically isomorphic to Lp′(µ), we conclude that L′p(µ) = E′ is
separable, i.e. G8 is satisfied. Furthermore, H = L∞(µ) is dense in Lp(µ), so that G9 is satisfied,
too.
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It remains to prove G6. Let us begin by showing that B = ∆ is a B(E)-measurable subset of
E. To this end, we consider the sets

Bt,m := {h ∈ Lp(µ) : t ≤ h ≤ m} .

Then, for each t ≥ 0 and m ∈ N with t ≤ m, the set Bt,m is closed in E = Lp(µ). Indeed, if
(hn) ⊂ Bt,m is a sequence converging to some h ∈ Lp(µ), that is ‖hn − h‖Lp(µ) → 0, then there
exists a subsequence (hnk) that converges µ-almost surely to h. Since t ≤ hn ≤ m for all n ≥ 1,
we then obtain t ≤ h ≤ m. Therefore Bt,m is also B(E)-measurable, and so is the set

B0 :=
∞⋃
m=1

B0,m .

In addition, K := {h ∈ Lp(µ) : Eµ = 1} is closed in Lp(µ) since we have already seen that ϕ′ is
continuous, and therefore this set is also B(E)-measurable. Now the measurablity of ∆≥0 follows
from ∆≥0 = B0∩K. The measurability of ∆>0 follows analogously by the identity ∆>0 = B̃0∩K,
where

B̃0 :=

∞⋃
m,n=1

B1/n,m .

Let us finally show that G6 is satisfied, that is, Γ−1(I) is a Borel measurable subset of E. To this
end, we first observe that I = ˚Γ(B) is open and since Γ : B → R is continuous with respect to
‖ · ‖E , the set Γ−1(I) is open in the metric space (B, ‖ · ‖E). Since the topology of the latter space
is the trace topology of ‖ · ‖E on B we conclude that there is an ‖ · ‖E-open subset O of E such that
Γ−1(I) = B ∩O. Now the assertion follows from the previously established measurability of B.

Lemma 18 Let 1 ≤ p, q < ∞ and (Ω, µ) be a σ-finite measure space. Furthermore, let ϕ ∈
L′∞(µ) such that the restrictions

ϕ : (L∞(µ) ∩ Lp(µ), ‖ · ‖p)→ R
ϕ : (L∞(µ) ∩ Lq(µ), ‖ · ‖p)→ R

are continuous. Let ϕp ∈ L′p(µ) and ϕq ∈ L′q(µ) be the corresponding unique extensions of ϕ and
fp ∈ Lp′(µ) and fq ∈ Lq′(µ) be the representing functions for ϕp and ϕq. Then for µ-almost all
ω ∈ Ω we have fp(ω) = fq(ω).

Proof [Lemma 18] For h ∈ L∞(µ) our assumptions yield∫
Ω
fph dµ = ϕp(h) = ϕ(h) = ϕq(h) =

∫
Ω
fqh dµ .

Now the assertion follows from considering h := 1{fp>fq} and h := 1{fp<fq}.

Lemma 19 Let (Y,A, µ) be a finite and separable measure space and ∆ be either ∆≥0 or ∆>0.
Moreover, let T : P(∆) → R be a strictly locally non-constant and quasi-monotonic property
and V be an oriented P(∆)-identification function for T . Then, for all p ∈ [1,∞), the following
statements are equivalent:
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i) T : P(∆p)→ R is continuous.

ii) For Lebesgue-almost all t ∈ imT we have V (t, ·) ∈ Lp′(µ).

Proof [Lemma 19] Let us fix a Lebesgue zero set N ⊂ ˚imT such that (3) and (4) hold for all
t ∈ ˚imT \N . For t ∈ ˚imT \N , we then have

{T = t} = {P ∈ P(∆) : EY∼PV (t,Y) = 0} (31)

{T ≥ t} = {P ∈ P(∆) : EY∼PV (t,Y) ≤ 0} (32)

{T ≤ t} = {P ∈ P(∆) : EY∼PV (t,Y) ≥ 0} . (33)

Now letB := ∆, H := span ∆ = L∞(µ), and Γ : B → R defined by Γ(h) := T (hdµ). Moreover,
for t ∈ ˚imT \N we define the linear functional z̃′t : H → R by

z̃′t(h) :=

∫
Y
V (t, y)h(y)dµ(y),

where we note that V (t, ·) ∈ L1(hdµ) for all h ∈ ∆ and span ∆ = L∞(µ) ensure that z̃′t is actually
well-defined.

i)⇒ ii). Since we assume that T : P(∆p) → R is continuous, we conclude that from Lemma
17 that G1 to G5 are satisfied, and hence we can apply Theorem 22. For t ∈ ˚imT \ N , let
z′t ∈ (H, ‖ · ‖Lp(µ))

′ be the separating functional obtained by the latter theorem. We then obtain

ker z′t ∩B = {T = t} = ker z̃′t ∩B

by (31). By Lemma 32 we conclude that z̃′t 6= 0 and ker z′t = span{T = t} = ker z̃′t, and since the
former is closed with respect to ‖ ·‖Lp(µ), so is the latter. However, this implies that z̃′t is continuous
with respect to ‖ · ‖Lp(µ). Since H = L∞(µ) is dense in Lp(µ) and V (t, ·) is the representing
function of z̃′t, we finally conclude that V (t, ·) ∈ Lp′(µ) by Lemma 18.

ii)⇒ i). Without loss of generality we may assume that V (t, ·) ∈ Lp′(µ) for all t ∈ ˚imT \N .
Then z̃′t is continuous with respect to ‖·‖Lp(µ) for t ∈ ˚imT \N , and therefore the sets {z̃′t ≤ 0} and
{z̃′t ≥ 0} are closed in (H, ‖ · ‖Lp(µ)). This shows that B ∩ {z̃′t ≤ 0} and B ∩ {z̃′t ≥ 0} are closed
in B with respect to ‖ · ‖Lp(µ), and using (32) and (33) we conclude that {T ≥ t} and {T ≤ t} are
closed in P(∆p) for all t ∈ ˚imT \ N . Moreover, for t ∈ N , we find a sequence tn ∈ ˚imT \ N
with tn ↘ t since N is a Lebesgue zero set and ˚imT is open. This gives

{T ≤ t} =
⋂
n≥1

{T ≤ tn} (34)

and hence {T ≤ t} is closed. Analogously, we find that {T ≥ t} is closed for all t ∈ N . Let us
finally consider the possible endpoints of the interval imT . For example, if t = min imT exists,
then we find by an argument identical to (34) that {T ≤ t} is closed, and {T ≥ t} = P(∆p) is also
closed in P(∆p). Summing up, the sets {T ≤ t} and {T ≥ t} are closed in P(∆p) for all t ∈ imT ,
and hence T is both lower- and upper-semicontinuous with respect to ‖·‖Lp(µ), i.e. T : P(∆p)→ R
is continuous.
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Proof [Theorem 9] i). Let us fix a p ∈ [1,∞). By Lemma 17 we know that G1 to G5 are satisfied,
and G6 to G9 are additionally satisfied if p > 1. Consequently, we can apply Theorem 22 and, if
p > 1, also Theorem 34. For all t ∈ I = ˚imT , let z′t ∈ (H, ‖·‖Lp(µ))

′ be the functional provided by
Theorem 22. SinceH = L∞(µ) is dense in Lp(µ), each z′t can be uniquely extended to a functional
ẑ′t ∈ Lp(µ)′ and, in addition, this extension satisfies ‖ẑ′t‖Lp(µ)′ = 1. Now let ιp : Lp′(µ)→ Lp(µ)′

be the isometric isomorphism defined by

ιpg(f) :=

∫
Y
gfdµ , g ∈ Lp′(µ), f ∈ Lp(µ) .

Then Vp(t, · ) := −ι−1
p ẑ′t, t ∈ R, defines an oriented P(∆)-identification function for T , since for

P = hµ ∈ P(∆) we have

EY∼PVp(t,Y) =

∫
Y
Vp(t, y)h(y)dµ(y) = ιpVp(t, · )(h) = −ẑ′t(h) .

Note that the definition of Vp actually depends on the chosen p. Of course, eventually, we are only
interested in V1, but we will see below that for establishing the measurability of V1, it actually
makes sense to consider Vp for p > 1, too. For later use we further note that, given an oriented
P(∆)-identification Ṽ for T with

‖Ṽ (t, · )‖Lp′ (µ) = 1

for Lebesgue almost all t ∈ ˚imT , we have ιpṼ (t, · ) = −ẑ′t for such t by the uniqueness of z′t in
Theorem 22. For Lebesgue almost all t ∈ ˚imT we thus have

Vp(t, ·) = Ṽ (t, ·) µ-almost everywhere. (35)

Our next goal is to show that there exists a measurable modification of V1. Here, we will proceed
in two steps. In the first step we show that there is such a modification for Vp if p > 1. Based on
this, the measurable modification of V1 is then found in the second step.

Now, let p > 1 be fixed and Z : (I, B̂(I)) → (E′,B(E′)) be the map obtained by Theorem
34 for E := Lp(µ) and I := ˚imT . Then we have Z(t) = −ẑ′t = ιpVp(t, · ) for all t ∈ I , and
thus the map t 7→ Vp(t, · ) is (B̂(I),B(Lp′(µ)))-measurable. Let us now fix a finite measure ν on
B̂(I), that has a strictly positive Lebesgue density. Then Z is Bochner ν-integrable by Theorem
34, and hence so is the map t 7→ Vp(t, · ). By (Pietsch, 1987, Proposition 6.2.12) we then obtain
a (B̂(I) ⊗ A,B(R))-measurable map Ṽp : ˚imT × Y → R such that, for all Lebesgue-almost all
t ∈ ˚imT , we have

µ
({
y ∈ Y : Vp(t, y) 6= Ṽp(t, y)

})
= 0 . (36)

Since for t ∈ ˚imT satisfying (36), we have ιpVp(t, ·) = ιpṼp(t, ·), this map Ṽp is a measurable and
oriented P(∆)-identification function for T .

Let us now find the modification for V1. To this end, we fix some arbitrary p > 1 and continue
considering the map Z : (I, B̂(I))→ (E′,B(E′)) for E := Lp(µ). For H = span ∆ we then have

Z(t)|H = −z′t , t ∈ I,

where z′t ∈ H ′∩ (H, ‖ · ‖Lp(µ))
′ is the separating functional obtained by Theorem 22. For Γ defined

in Lemma 17, we consequently have

{Γ = t} = {Z(t)|H = 0} ∩B . (37)
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Now let z̃′t ∈ H ′ ∩ (H, ‖ · ‖L1(µ))
′ be the separating functional obtained by Theorem 22 in the case

“p = 1”. Then we have
{Γ = t} = {z̃′t = 0} ∩B , (38)

so that Lemma 33 together with (37) and (38) gives an α(t) 6= 0 with

Z(t)|H = −α(t)z̃′t , t ∈ I. (39)

Moreover, both functionals have opposite orientation, and hence we actually have α(t) > 0. Since,
for fixed t ∈ I , the functional z̃′t is continuous with respect to ‖ · ‖L1(µ) on H , the same is thus true
for Z(t)|H . Now, using the separability of µ, there exists a countable subset L ⊂ L∞(µ) that is
dense in L1(µ). With the help of this subset we obtain∥∥Z(t)|H : (H, ‖ · ‖L1(µ))→ R

∥∥ = sup
h∈BL1(µ)

∩L∞(µ)

∣∣Z(t)|H(h)
∣∣ = sup

h∈BL1(µ)
∩L∞(µ)∩L

∣∣Z(t)|H(h)
∣∣

by the continuity of Z(t)|H on H with respect to ‖ · ‖L1(µ). Moreover, for fixed h ∈ BL1(µ) ∩
L∞(µ) ∩L the map t 7→ Z(t)|H(h) = Z(t)(h) is (B̂(I)),B(R))-measurable by the above measur-
ability of Z and h ∈ Lp(µ). Since countable suprema over measurable functions are measurable,
we conclude that the map

t 7→
∥∥ z(t)|H : (H, ‖ · ‖L1(µ))→ R

∥∥
is (B̂(I)),B(R))-measurable. Using (39) we further have∥∥Z(t)|H : (H, ‖ · ‖L1(µ))→ R

∥∥ = |α(t)| · ‖z̃′t : (H, ‖ · ‖L1(µ))→ R‖ = α(t) ,

and hence t 7→ α(t) is (B̂(I)),B(R))-measurable. Now recall that Ṽp(t, ·) is, for Lebesgue almost
t ∈ ˚imT , a representation of Z(t), that is

Ṽp(t, ·) = ι−1
p Z(t) .

Let us pick a t ∈ ˚imT . By construction V1(t, ·) is then a representation of the extension ẑ′t of
z̃′t to L1(µ), and hence α(t)V1(t, ·) = −ι−1

1 (α(t)ẑ′t). Furthermore, (39) shows that on the dense
subspace H = L∞(µ), the functionals Z(t) and α(t)ẑ′t coincide. By Lemma 18 we conclude that

Ṽp(t, ·) = α(t)V1(t, ·)

µ-almost surely. Consequently, Ṽ1(t, y) :=
Ṽp(t,y)
α(t) , where (t, y) ∈ imT × Y , defines a measurable

and oriented P(∆)-identification function for T with ‖Ṽ1(t, · )‖L∞(µ) = 1 for Lebesgue-almost all
t ∈ ˚imT .

ii). Let V ∗ be a measurable and oriented P(∆)-identification function for T obtained in i).
We have already seen in (35) that V ∗ is µ ⊗ λ-almost surely unique. Moreover, let V be another
measurable and oriented P(∆)-identification function for T . Since T : P(∆1)→ R is continuous,
we see by Lemma 19 that V (t, ·) ∈ L∞(µ) for Lebesgue almost all t ∈ imT . Moreover, the
definition of an identification function immediately gives V (t, ·) 6= 0 for Lebesgue almost all t ∈
imT . For t ∈ imT we write

w(t) := ‖V (t, ·)‖L∞(µ) , (40)
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if V (t, ·) ∈ L∞(µ) and V (t, ·) 6= 0, and w(t) := 1 otherwise. This gives w(t) > 0 for all t ∈ imT ,
and thus

Ṽ (t, y) :=
V (t, y)

w(t)
, (t, y) ∈ imT × Y,

defines another orientedP(∆)-identification function for T . Since we further have ‖Ṽ (t, · )‖L∞(µ) =

1 for Lebesgue almost all t ∈ ˚imT , Equation (35) gives (11).
Finally, to show that w is measurable, we fix a countable and dense subset D of BL1(µ) and fix

a Lebesgue zero set N ⊂ imT with V (t, ·) ∈ L∞(µ) for all t ∈ imT \N . Moreover, we consider
the maps V̄ := 1imT\NV and w̄ : imT → R defined by

w̄(t) := ‖V̄ (t, ·)‖L∞(µ) = sup
h∈D

∣∣〈ι1V̄ (t, ·), h〉
∣∣ , t ∈ imT .

Then, for each h ∈ D, the map t 7→ 〈ιV̄ (t, ·), h〉 is (B̂(imT ),B(R))-measurable by the assumed
measurability of V , and hence so is w̄. However, our construction ensures w = w̄ Lebesgue almost
surely, and thus w is (B̂(imT ),B(R))-measurable, too.

iii). The existence of S′ outside a measurable set Z ⊂ ˚imT × Y with λ ⊗ µ(Z) = 0 follows
from Lemma 16.

To show (12), let N ⊂ ˚imT be the λ-zero set considered around (26). Our first goal is to show
that, for all t ∈ ˚imT \N and all P ∈ P(∆), we have

t = T (P ) =⇒ EY∼P Ŝ
′(t,Y) = 0 . (41)

To this end, we fix a P ∈ P(∆) with T (P ) ∈ ˚imT \N and consider the function RP : imT → R
defined in Lemma 16. Then the map RP : imT → R has a global minimum at t∗ := T (P ), since
S is P(∆)-consistent for T . Moreover, RP : imT → R is differentiable at t∗ by Lemma 16, and
hence we obtain R′P (t∗) = 0. Equation (26) then yields (41).

Now let V ∗ be the oriented identification function obtained in part i). Without loss of generality
we may assume that the λ-zero set N obtained above is such that ‖V ∗(t, · )‖L∞(µ) = 1 and both
(3) and (4) hold for V ∗ and all t ∈ ˚imT \ N . For a fixed t ∈ ˚imT \ N , we can thus consider
ẑ′t := (ι1Ŝ

′(t, ·))|H and zt := (ι1V
∗(t, ·))|H . Here we note that Ŝ′ is locally bounded by Lemma

16, and thus Ŝ′(t, ·) ∈ L∞(µ). Furthermore, let again Γ be the map considered in Lemma 17.
By (41) we then know that {Γ = t} ⊂ ker ẑ′t ∩ B, while (3) ensures {Γ = t} = ker z′t ∩ B.
Consequently, Lemma 33 gives a w(t) ∈ R with ẑ′t = w(t)z′t, and from this we immediately obtain
(12). For later purposes, let us write w(t) := 0 for t ∈ N .

To show that w is locally bounded, we fix an interval [a, b] ⊂ imT . By Lemma 16 we then
know that there exists a constant ca,b such that |S′(t, y)| ≤ ca,b for all t ∈ [a, b] \ N and y ∈ Dt,
where Dt := {y : ∃S′(t, y)}. As above, we may further assume that ‖V ∗(t, ·)‖L∞(µ) = 1 for all
t ∈ [a, b] \N . By (12) we conclude that |w(t)| = ‖S′(t, ·)‖L∞(µ) ≤ ca,b for all t ∈ [a, b] \N .

To show the measurability of w, we fix a 1 < p < ∞ and a countable dense subset L ⊂
Lp(µ). By (Pietsch, 1987, Proposition 6.2.12) and the measurability of Ŝ′ we then know that the
map [a, b] → Lp′(µ) defined by t 7→ Ŝ′(t, ·) is (B̂(I),B(Lp′(µ)))-measurable, and hence the map
t 7→ |〈Ŝ′(t, ·), f〉| is (B̂(I),B(R))-measurable for a fixed f ∈ L. For t ∈ ˚imT \N we further have

‖Ŝ′(t, ·)‖Lp′ (µ) = sup
f∈BLp(µ)∩L

|〈Ŝ′(t, ·), f〉| <∞ ,
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and hence t 7→ ‖Ŝ′(t, ·)‖Lp′ (µ) is also measurable. Analogously, we obtain the measurability of
t 7→ ‖V ∗(t, ·)‖Lp′ (µ), and since ‖V ∗(t, ·)‖Lp′ (µ) 6= 0 for all t ∈ [a, b] \ N , we finally obtain the
measurability of w by (12).

Our next goal is to show that w ≥ 0, if S is order sensitive. To this end, we fix a P ∈ P(∆)
with T (P ) ∈ ˚imT . Since S is P(∆)-order sensitive for T , the map t 7→ RP (t) considered in
Lemma 16 is decreasing on (−∞, T (P )] ∩ imT , and consequently, we have R′P (t) ≤ 0 for all
t ∈ (−∞, T (P )] ∩ ( ˚imT \N). On the other hand, using (26) and (12) we conclude that

R′P (t) = w(t)Ey∼PV ∗(t, y)

for all t ∈ ˚imT \N , where N ⊂ ˚imT is the Lebesgue zero set considered around (26). Now, the
orientation of V ∗ gives Ey∼PV ∗(t, y) < 0 for all t ∈ (−∞, T (P )) ∩ ( ˚imT \ N), and hence we
find w(t) ≥ 0 for such t. For the remaining t recall that we set w(t) = 0 above.

Let us now assume that w ≥ 0. Then it remains to show that the measure ν := wdλ satisfies
ν((t1, t2]) > 0 for all t1, t2 ∈ imT with t1 < t2, if and only if S is order sensitive. To this end,
observe that by (12) there exists a measurableZ ⊂ Y with µ(Z) = 0 such that for all y ∈ Y \Z there
exists a measurable Ny ⊂ ˚imT with λ(Ny) = 0 such that (12) holds for all t ∈ ˚imT \ Ny. The
fundamental theorem of calculus for absolutely continuous functions, see e.g. (Bogachev, 2007a,
Theorems 5.3.6 and 5.4.2), yields

S(t, y)− S(t0, y) =

∫ t

t0

S′(r, y) dr =

∫ t

t0

w(r)V ∗(r, y) dr

for all t ∈ imT and y ∈ Y \ Z. By setting b(y) := S(t0, y), we then see that S is of the form (7).
Now the assertion follows by part ii) of Theorem 7.

Appendix E. Proofs Related to Expectiles

Lemma 20 Let ϕ : (0,∞)→ (0,∞) be a group homomorphism, that is ϕ(st) = ϕ(s)ϕ(t) for all
s, t ∈ (0,∞). If ϕ is increasing and there exists an s0 ∈ (0,∞) with ϕ(s0) 6= 1, then there exists
an α > 0 such that ϕ(s) = sα for all s ∈ (0,∞). In particular, ϕ is continuous and surjective.

Proof [Lemma 20] Note that from ϕ(sn) = (ϕ(s))n, which follows by simple induction, we obtain
(ϕ(t))1/n = ϕ(t1/n) by setting t = sn. Combining both yields ϕ(sq) = (ϕ(s))q for all s > 0 and
q ∈ Q with q > 0. Moreover, since we have ϕ(s)ϕ(s−1) = 1, this identity also holds for q ∈ Q
with q < 0, and for q = 0 it is obviously satisfied. Let us define

D := {sq0 : q ∈ Q}

and α := lnϕ(s0)
ln s0

. Note that we have α > 0 since ϕ is assumed to be increasing and ϕ(s0) 6= 0.
Then the definition of α yields sα0 = ϕ(s0), and thus ϕ(sq0) = (ϕ(s0))q = sαq0 , that is ϕ(t) = tα for
all t ∈ D. Since D is dense in (0,∞) it hence remains to show that ϕ is continuous. Note that the
latter follows from the continuity at 1, since sn → s implies sns−1 → 1 and thus ϕ(sn)ϕ(s−1) =
ϕ(sns

−1)→ ϕ(1) = 1.
To show the continuity at 1, we first observe that ϕ(s0)ϕ(s−1

0 ) = 1 implies ϕ(s−1
0 ) 6= 1, and

hence we may assume without loss of generality that s0 > 1. Let us now assume that ϕ is not
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continuous at 1. Then, there exists a sequence (tn) ⊂ (0,∞) such that tn → 1 and ϕ(tn) 6→ 1.
This implies that ϕ(t−1

n ) = (ϕ(tn))−1 6→ 1, and hence we may assume without loss of generality
that tn > 1 for all n ≥ 1. In addition, we may clearly assume that tn ↘ 1. Now, ϕ(tn) 6→ 1 yields
an ε > 0 such that ϕ(tn) ≥ 1 + ε for all n ≥ 1. Let us pick a t > 1. Then there exists an n ≥ 1
such that tn < t, and thus ϕ(tn) ≤ ϕ(t), that is ϕ(t) ≥ 1 + ε for all t > 1. On the other hand, we
have ϕ(s

1/n
0 ) = s

α/n
0 → 1, i.e. we have found a contradiction.

Proof [Theorem 12] i). Let us fix an oriented P-identification function Ṽ : R × R → R for T .
We begin by some preliminary considerations on Ṽ . To this end, we first note that for Y := 0 and
y ∈ R we find T (y) = T (Y + y) = T (Y) + y = y. For Y′ := y and t ∈ R we further have
Eν Ṽ (t,Y′) = Ṽ (t, y). By T (Y′) = y and the definition of oriented identification functions we
conclude that Ṽ (t, y) = 0 if and only if t = y, as well as, Ṽ (t, y) > 0 if and only if t > y. With
these preparations, we now fix some y1 < t < y2 and define

p :=
Ṽ (t, y1)

Ṽ (t, y1)− Ṽ (t, y2)
.

Our preliminary considerations show both Ṽ (t, y1) > 0 and −Ṽ (t, y2) > 0, and thus we find
p ∈ (0, 1). Since (Ω,A, ν) is atom-free, there then exists an A ∈ A with ν(A) = 1 − p. Let us
consider the random variable

Y := y11A + y21Ω\A . (42)

An easy calculation shows that

Eν Ṽ (t,Y) = Ṽ (t, y1)(1− p) + Ṽ (t, y2)p = − Ṽ (t, y1)Ṽ (t, y2)

Ṽ (t, y1)− Ṽ (t, y2)
+

Ṽ (t, y2)Ṽ (t, y1)

Ṽ (t, y1)− Ṽ (t, y2)
= 0 ,

and thus T (Y) = t. For s ∈ R this yields T (Y + s) = T (Y) + s = t+ s, and hence we find

0 = Eν Ṽ (t+ s,Y + s) = − Ṽ (t+ s, y1 + s)Ṽ (t, y2)

Ṽ (t, y1)− Ṽ (t, y2)
+
Ṽ (t+ s, y2 + s)Ṽ (t, y1)

Ṽ (t, y1)− Ṽ (t, y2)
.

From the latter we easily conclude that

Ṽ (t, y1)

Ṽ (t, y2)
=
Ṽ (t+ s, y1 + s)

Ṽ (t+ s, y2 + s)
(43)

for all y1 < t < y2 and s ∈ R. Now, for y < t, we have y − t < 0 < 1, and hence (43) implies

Ṽ (0, y − t)
Ṽ (0, 1)

=
Ṽ (t, y − t+ t)

Ṽ (t, 1 + t)
=

Ṽ (t, y)

Ṽ (t, t+ 1)
. (44)

Analogously, for y > t, we have −1 < 0 < y − t, and hence (43) implies

Ṽ (0,−1)

Ṽ (0, y − t)
=

Ṽ (t,−1 + t)

Ṽ (t, y − t+ t)
=
Ṽ (t, t− 1)

Ṽ (t, y)
. (45)
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Finally, −1 < 0 < 1 together with (43) implies

Ṽ (0,−1)

Ṽ (0, 1)
=
Ṽ (t,−1 + t)

Ṽ (t, 1 + t)
=
Ṽ (t, t− 1)

Ṽ (t, t+ 1)
(46)

for all t ∈ R. Let us write w(t) := Ṽ (t, t− 1) and ψ(r) := Ṽ (0,r)

Ṽ (0,−1)
for r, t ∈ R. Clearly, this gives

both ψ(0) = 0 and ψ(−1) = 1, and combining (44) with (46) we further find

Ṽ (t, y) = w(t)ψ(y − t) (47)

for y < t, while (45) gives (47) for y > t. Moreover, for y = t our preliminary considerations yield
Ṽ (t, y) = 0 = w(t)ψ(y − t), and thus (47) holds for all y, t ∈ R. Finally, we have w(t) > 0 for all
t ∈ R, so that V = Ṽ /w is an oriented P-identification function for T .

ii). For y1 < t < y2, we again consider the random variable Y given by (42). Then the assumed
homogeneity of T gives T (sY) = sT (Y) = st for all s > 0, and thus we obtain

0 = Eν Ṽ (st, sY) = − Ṽ (st, sy1)Ṽ (t, y2)

Ṽ (t, y1)− Ṽ (t, y2)
+
Ṽ (st, sy2)Ṽ (t, y1)

Ṽ (t, y1)− Ṽ (t, y2)
.

The latter together with (47) implies

Ṽ (t, y1)

Ṽ (t, y2)
=
Ṽ (st, sy1)

Ṽ (st, sy2)

for all y1 < t < y2 and s ∈ R. For r1 := y1 − t and r2 := y2 − t, Equation (47) thus gives us

ψ(r1)

ψ(r2)
=
ψ(sr1)

ψ(sr2)
(48)

for all r1 < 0 < r2 and s > 0. In particular, for r1 := −1 and r2 := 1, we get ψ(s) = ψ(1)ψ(−s)
for all s > 0. Similarly, for r1 := −1 and r2 := s > 0 we find

ψ(−1)

ψ(s)
=
ψ(−s)
ψ(s2)

=
ψ(s)

ψ(1)ψ(s2)
,

and thus we obtain ψ(s)ψ(s) = ψ(1)ψ(s2) for all s > 0. Furthermore, considering r1 := −t and
r2 := s for s, t > 0, we find

ψ(t)

ψ(s)
=
ψ(1)ψ(−t)

ψ(s)
=
ψ(1)ψ(−st)

ψ(s2)
=
ψ(1)ψ(st)

ψ(s)ψ(s)

and hence the functional equations are proven. Let us finally assume that ψ(s) = ψ(1) for all
s > 0. Note that this yields ψ(s) = ψ(−1) for all s < 0. Our goal is to show that V given by
(22) is not an identification function for T , which means that we can exclude this case altogether.
To this end, we assume the converse, that is, V given by (22) is an identification function for T .
Let us again consider the variable Y given by (42), where this time we set y1 := −1, t := 0, and
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y2 := 1. Moreover, we replace the generic identification function Ṽ by V . Then we already know
that T (Y) = 0. However, we also have

Eν(1/2,Y) = V (1/2,−1)(1− p) + V (1/2, 1)p = ψ(−1− 1/2)(1− p) + ψ(1− 1/2)p

= ψ(−1)(1− p) + ψ(1)p

= Eν(0,Y) = 0 ,

and thus we conclude that T (Y) = 1/2, since V was assumed to be an identification function.
iii). Let us assume that ψ is not decreasing on (0,∞). Then there exists 0 < y1 < y2 with

ψ(y1) < ψ(y2). For a fixed y3 < 0 we now define

p :=
−ψ(y3)

ψ(y1)− ψ(y3)
and q :=

ψ(y2)

ψ(y2)− ψ(y3)
.

Note that ψ(y1) < 0 and −ψ(y3) < 0 imply p ∈ (0, 1), and analogously we ensure q ∈ (0, 1).
Moreover, we have 1 − q > p, since ψ(y1) − ψ(y3) < ψ(y2) − ψ(y3) < 0 implies 1

ψ(y2)−ψ(y3) <
1

ψ(y1)−ψ(y3) , and thus

1− q =
−ψ(y3)

ψ(y2)− ψ(y3)
>

−ψ(y3)

ψ(y1)− ψ(y3)
= p .

Since (Ω,A, ν) is atom-free, there then exist disjoint A,B ∈ A with ν(A) = p and ν(B) = q. Let
us consider the random variables

Y1 := y11A + y31Ω\A

Y2 := y31B + y21Ω\B .

Since A ⊂ Ω \ B, we then have Y1 = y1 < y2 = Y2 on A. Similarly, B ⊂ Ω \ A implies
Y1 = y3 = Y2 on B, and on the remaining set Ω \ (A ∪ B), we have Y1 = y3 < y2 = Y2.
Consequently, we have Y1 ≤ Y2 and thus

T (Y1 − Y2) ≤ T (0) = 0 . (49)

On the other hand, we have

EνV (0,Y1) = ψ(y1)p+ ψ(y3)(1− p) = − ψ(y1)ψ(y3)

ψ(y1)− ψ(y3)
+

ψ(y3)ψ(y1)

ψ(y1)− ψ(y3)
= 0

and

EνV (0,Y2) = ψ(y3)q + ψ(y2)(1− q) =
ψ(y3)ψ(y2)

ψ(y2)− ψ(y3)
− ψ(y2)ψ(y3)

ψ(y2)− ψ(y3)
= 0 .

Consequently, we find T (Y1) = T (Y2) = 0, and thus we obtain 0 = T (Y1) ≤ T (Y1 − Y2) +
T (Y2) = T (Y1 − Y2). Together with (49) we conclude that T (Y1 − Y2) = 0. Now consider the
random variable Y3 := (y1 − y2)1A. Then Y3 ≤ 0 implies T (Y3) ≤ T (0) = 0. On the other
hand, the construction yields Y3 = y1 − y2 = Y1 − Y2 on A, Y3 = 0 = Y1 − Y2 on B, and
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Y3 = 0 > y3 − y2 = Y1 − Y2 on Ω \ (A ∪ B). Consequently, we have Y3 ≥ Y1 − Y2, and thus
T (Y3) ≥ T (Y1 − Y2) = 0. Together, these considerations show T (Y3) = 0, which in turn leads to

0 = EνV (0,Y3) = ψ(y1 − y2)p+ ψ(0)(1− p) = ψ(y1 − y2)p .

Now, p 6= 0 gives ψ(y1 − y2) = 0, which contradicts ψ(y1 − y2) > 0.
iv). Let us define ϕ : (0,∞) → (0,∞) by ϕ(s) := ψ(s)

ψ(1) . By part ii) we then know that ϕ
is a group homomorphism and that there exists an s0 > 0 with ϕ(s0) 6= 1. Moreover, since ψ is
assumed to be decreasing on (0,∞), the map ϕ is increasing, and hence Lemma 20 tells us that
there exists an α > 0 such that ϕ(s) = sα for all s > 0. Now, (23) follows from part ii).

v). Let us assume that ψ is not concave. Since ψ is assumed to be continuous, we conclude by
(Behringer, 1992, Theorems 8 and 10) that ψ is not mid-point concave, i.e. there exist y1, y2 ∈ R
such that

ψ
(y1 + y2

2

)
<
ψ(y1)

2
+
ψ(y2)

2
.

Now, ψ is assumed to be surjective, and thus we find a y3 ∈ R such that

−ψ(y1)

2
− ψ(y2)

2
< ψ(y3) < −ψ

(y1 + y2

2

)
.

For some fixed, disjoint A,B ∈ A with ν(A) = ν(B) = 1/4, we consider the random variables

Y1 := y11A + y21B + y31Ω\(A∪B)

Y2 := y21A + y11B + y31Ω\(A∪B) .

For V given by (22) this construction yields

EνV (0,Y1) =
ψ(y1)

4
+
ψ(y2)

4
+
ψ(y3)

2
> 0 ,

and analogously, EνV (0,Y2) > 0. Since V is an oriented identification function, we conclude that
T (Y1) < 0 and T (Y2) < 0. Furthermore, we have

EνV
(

0,
Y1 + Y2

2

)
=

1

4
ψ
(y1 + y2

2

)
+

1

4
ψ
(y1 + y2

2

)
+
ψ(y3)

2
< 0

and thus T (Y1+Y2
2 ) > 0. Together, these consideration give

T (Y1)

2
+
T (Y2)

2
< 0 < T

(Y1 + Y2

2

)
,

which contradicts the assumed convexity of T .

Appendix F. An Abstract Separation Theorem

The goal of this Appendix is to present a rather generic separation result for Banach spaces. Note
that the results of this appendix are entirely independent of all results presented so far with the
exception of Lemma 14, which itself is independent of the rest of the paper.
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Let us begin by fixing some notations. To this end, let (E, ‖ · ‖E) be a normed space. We write
E′ for its dual and BE for its closed unit ball. Moreover, for an A ⊂ E we write ÅE for the interior
of A with respect to the norm ‖ · ‖E . Furthermore, spanA denotes the space spanned by A and
coneA := {αx : α ≥ 0, x ∈ A} denotes the cone generated by A. In addition, we need to make
the following assumptions:

G1 (Simplex face). (E, ‖ · ‖E) is a normed space and B ⊂ BE is a non-empty, convex set for
which there exists a ϕ′ ∈ E′ such that B ⊂ {ϕ′ = 1}. We write H := spanB.

G2 (Non-empty relative interior). For a fixed x? ∈ B, we define A := −x? +B and

F := spanA

We assume that there exists a norm ‖ · ‖F on F such that ‖ · ‖E ≤ ‖ · ‖F and 0 ∈ ÅF .
G3 (Cone decomposition). There exists a constant K > 0 such that for all z ∈ H there exist

z−, z+ ∈ coneB such that z = z+ − z− and

‖z−‖E + ‖z+‖E ≤ K‖z‖E .

G4 (Continuous, quasi-monotonic functional). We have a quasi-monotonic functional Γ : B →
R that is ‖ · ‖E-continuous.

G5 (Strictly locally non-constant). We write I := ˚Γ(B) for the interior of the image of B under
Γ. We assume that, for all r ∈ I , ε > 0, and x ∈ {Γ = r}, there exist x− ∈ {Γ < r} and
x+ ∈ {Γ > r} such that ‖x− x−‖F ≤ ε and ‖x− x+‖F ≤ ε.

Before we can formulate our separation result, we need to define a norm on H . This is done in
the following lemma.

Lemma 21 Let G1 be satisfied, and suppose that all assumptions except 0 ∈ ÅF of G2 are satis-
fied, too. Then, the space F satisfies F ⊂ kerϕ′. In particular, we have x? 6∈ F and

H = F ⊕ Rx? .

If we equip H with the norm ‖ · ‖H , defined by

‖y + αx?‖H := ‖y‖F + ‖αx?‖E

for all y + αx? ∈ F ⊕ Rx?, then, we have ‖ · ‖E ≤ ‖ · ‖H on H , ‖ · ‖F = ‖ · ‖H on F .

Proof Let us fix a y ∈ F . Since F = span(−x? + B), there then exists α1, . . . , αn ∈ R and
x1, . . . , xn ∈ B such that y =

∑n
i=1 αi(−x? + xi). By the linearity of ϕ′, this yields

〈ϕ′, y〉 =
n∑
i=1

αi
(
〈ϕ′, xi〉 − 〈ϕ′, x?〉

)
= 0 ,

where in the last step we used 〈ϕ′, xi〉 = 1 = 〈ϕ′, x?〉. The second assertion follows from the first
and 〈ϕ′, x?〉 = 1. Now, we immediately obtain F ∩Rx? = {0}, and thus F ⊕Rx? is indeed a direct
sum. Moreover, the equality F ⊕ Rx? = spanB follows from

n∑
i=1

αi(−x? + xi) + α0x? =
n∑
i=1

αixi +
(
α0 −

n∑
i=1

αi

)
x? ,
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which holds for all n ∈ N, α0, . . . , αn ∈ R, and x1, . . . , xn ∈ B. Now, ‖ · ‖H can be constructed in
the described way. Here we note, that the definition of ‖ · ‖H resembles a standard way of defining
norms on direct sums, and thus ‖ · ‖H is indeed a norm. Furthermore, ‖ · ‖E ≤ ‖ · ‖H immediately
follows from the construction of ‖ · ‖H and the assumed ‖ · ‖E ≤ ‖ · ‖F . In addition, ‖ · ‖F = ‖ · ‖H
on F is obvious.

With the help of these assumptions we can now formulate the generic separation result for
Banach spaces that will be used in the proof of Theorem 9. Note that in its formulation as well as
in the following results we write ‖z′‖E′ = 1 for the norm of a functional z′ ∈ (H, ‖ · ‖E)′.

Theorem 22 Assume that G1 to G5 are satisfied. Then, for all r ∈ I , there exists exactly one
z′r ∈ (H, ‖ · ‖E)′ such that ‖z′r‖E′ = 1, and

{Γ < r} = {z′r < 0} ∩B
{Γ = r} = {z′r = 0} ∩B
{Γ > r} = {z′r > 0} ∩B .

In the remainder of this section, we prove Theorem 22. To this end, we assume, if not stated
otherwise, throughout this section that the conditions G1 to G5 are satisfied. Moreover, on B we
consider both the metric dE induced by ‖ · ‖E and the metric dF induced by ‖ · ‖F via translation,
that is

dF (x1, x2) := ‖(−x? + x1)− (−x? + x2)‖F = ‖x1 − x2‖F = ‖x1 − x2‖H , x1, x2 ∈ B,

where the last identity follows from Lemma 21.
Before we can actually prove Theorem 22, we need a couple of intermediate results. We begin

with some simple consequences of the assumptions G1 to G5. Our first result in this direction shows
that the space H can be generated from F and an arbitrary element of B.

Lemma 23 For all x0 ∈ B we have F ⊕ Rx0 = H .

Proof [Lemma 23] By ϕ′(x0) = 1 and the inclusion F ⊂ kerϕ′ established in Lemma 21, we see
that x0 6∈ F , and hence F ∩ Rx0 = {0}.

The inclusion F ⊕ Rx0 ⊂ H follows from the equality H = spanB established in Lemma 21
and

n∑
i=1

αi(−x? + xi) + α0x0 =
n∑
i=0

αixi −
n∑
i=1

αix? ,

which holds for all n ∈ N, α0, . . . , αn ∈ R, and x1, . . . , xn ∈ B.
To prove the converse inclusion, we first note that −x? = (−x? + x0) − x0 ∈ F ⊕ Rx0

implies Rx? ⊂ F ⊕ Rx0. Since we also have F ⊂ F ⊕ Rx0, we conclude by Lemma 21 that
H = F ⊕ Rx? ⊂ F ⊕ Rx0.

The following, trivial result compares the metrics dE and dF . The only reason why we state
this lemma explicitly is that we need its results several times, so that it becomes convenient to have
a reference.
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Lemma 24 The identity map id : (B, dF )→ (B, dE) is Lipschitz continuous. In particular, open,
respectively closed, sets with respect to dE are also open, respectively closed, with respect to dF .

Proof [Lemma 24] The assumed inequality ‖ · ‖E ≤ ‖ · ‖F immediately implies dE(x1, x2) ≤
dF (x1, x2) for all x1, x2 ∈ B, and thus the identity map id : (B, dF ) → (B, dE) is indeed Lip-
schitz continuous. The other assertions are a direct consequence of this continuity.

The next lemma shows that the cone decomposition G3 makes it easier to decide whether a
linear functional is continuous.

Lemma 25 A linear map z′ : H → R is continuous with respect to ‖ · ‖E , if and only if for all
sequences (zn) ⊂ coneB with ‖zn‖E → 0 we have 〈z′, zn〉 → 0.

Proof [Lemma 25] “⇒ ”: Since coneB ⊂ H by the definition of H , this implication is trivial.
“⇐ ”: By the linearity of z′ it suffices to show that z′ is ‖ · ‖E-continuous in 0. To show the

latter, we fix a sequence (zn) ⊂ H with ‖zn‖E → 0. SinceH = spanB, there then exist sequences
(z−n ), (z+

n ) ⊂ coneB with zn = z+
n − z−n and ‖z−n ‖E + ‖z+

n ‖E ≤ K‖zn‖E . Consequently, we
obtain ‖z−n ‖E → 0 and ‖z+

n ‖E → 0, and thus our assumption together with the linearity of z′ yields
〈z′, zn〉 = 〈z′, z+

n 〉 − 〈z′, z−n 〉 → 0

The following result collects properties of the sets {Γ < r} and {Γ > r} we wish to separate.

Lemma 26 The image Γ(B) is an interval, and, for all r ∈ Γ̊(B), the sets {Γ < r} and {Γ > r}
are convex and open in B with respect to both dE and dF .

Proof [Lemma 26] Clearly, the sets {Γ < r} and {Γ > r} are open with respect to dE , since Γ
is assumed to be continuous with respect to dE . By Lemma 24, the sets are then also open with
respect to dF . Since B is convex, it is connected, and thus Γ(B) is connected by the continuity of
Γ. Moreover, the only connected sets in R are intervals, and hence Γ(B) is an interval. Finally, the
convexity of the sets {Γ < r} and {Γ > r} directly follows from Lemma 14.

Our next goal is to investigate relative interiors of subsets of A. We begin with a result that
shows the richness of ÅF .

Lemma 27 For all r ∈ I , there exists an x ∈ {Γ = r} such that −x? + x ∈ ÅF .

Proof [Lemma 27] If x? ∈ {Γ = r} there is nothing to prove, and hence we may assume without
loss of generality that x? ∈ {Γ > r}. Let us write r? := Γ(x?). Now, since r ∈ I and I is an open
interval by Lemma 26, there exists an s ∈ I with s < r. Let us fix an x0 ∈ {Γ = s}. Then, for
λ ∈ [0, 1] we consider xλ := λx? + (1 − λ)x0. Then we have Γ(x0) = s < r < r? = Γ(x?),
and thus the intermediate theorem shows that there exists a λ ∈ (0, 1) with Γ(xλ) = r. Our goal is
to show that this xλ satisfies −x? + xλ ∈ ÅF . To this end, we recall that 0 ∈ ÅF gives an ε > 0
such that for all y ∈ F satisfying ‖y‖F ≤ ε we actually have y ∈ A. Let us write δ := λε. Then it
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suffices to show that, for all y ∈ F satisfying ‖−x?+xλ−y‖F ≤ δ, we have y ∈ A. Consequently,
let us fix such a y ∈ F . For

x̃ := x? +
y − (1− λ)(−x? + x0)

λ

we then have y = λ(−x? + x̃) + (1− λ)(−x? + x0). By the convexity of A and −x? + x0 ∈ A, it
thus suffices to show −x? + x̃ ∈ A. However, the latter follows from

‖ − x? + x̃‖F = λ−1‖y − (1− λ)(−x? + x0)‖F
= λ−1‖y − xλ + x?‖F
≤ λ−1δ ,

and thus the assertion is proven.

Our last elementary result shows that having non-empty relative interior in A implies a non-
empty relative interior in F . This result will later be applied to translates of the open, non-empty
sets {Γ < r} and {Γ > r}.

Lemma 28 Let K ⊂ A be an arbitrary subset with K̊A 6= ∅, that is K has non-empty relative
‖ · ‖F -interior in A. Then, for all y ∈ K̊A, there exists a δy ∈ (0, 1/2] such that (1− δ)y ∈ K̊F for
all δ ∈ (0, δy]. In particular, we have K̊F 6= ∅.

Proof [Lemma 28] By the assumed 0 ∈ ÅF , there exists an ε0 ∈ (0, 1] such that ε0BF ⊂ A.
Moreover, the assumption y ∈ K̊A yields an ε1 ∈ (0, ε0] such that

(y + ε1BF ) ∩A ⊂ K . (50)

We define δy := ε1/(ε1 + ‖y‖F ). Then, it suffices to show that

(1− δ)y + ε1δBF ⊂ K (51)

for all δ ∈ (0, δy]. To show the latter, we fix a y1 ∈ ε1δBF . An easy estimate then shows that
‖ − δy + y1‖F ≤ δ‖y‖F + ‖y1‖F ≤ δ(‖y‖F + ε1) ≤ ε1, and hence we obtain

(1− δ)y + y1 = y − δy + y1 ∈ (y + ε1BF ) .

By (50) it thus suffices to show (1 − δ)y + y1 ∈ A. Now, if y1 = 0, then the latter immediately
follows from (1− δ)y+ y1 = (1− δ)y+ δ · 0, the convexity of A, and 0 ∈ A. Therefore, it remains
to consider the case y1 6= 0. Then we have

ε0

‖y1‖F
y1 ∈ ε0BF ⊂ A ,

and ‖y1‖Fε0
≤ ε1δ

ε0
≤ δ. Consequently, the convexity of A and 0 ∈ A yield

(1− δ)y + y1 = (1− δ)y +
‖y1‖F
ε0

(
ε0

‖y1‖F
y1

)
+

(
δ − ‖y1‖F

ε0

)
· 0 ∈ A ,
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and hence (51) follows.

Our next goal is to move towards the proof of Theorem 22. This is done in a couple of interme-
diate results that successively establish more properties of certain, separating functionals.

We begin with a somewhat crude separation of convex subsets in A that have an non-empty
relative interior.

Lemma 29 Let K−,K+ ⊂ A be two convex sets with K̊A
± 6= ∅ and K− ∩ K̊F

+ = ∅. Then there
exist a y′ ∈ F ′ and an s ∈ R such that

K− ⊂ {y′ ≤ s} and K̊F
− ⊂ {y′ < s} ,

K+ ⊂ {y′ ≥ s} and K̊F
+ ⊂ {y′ > s} .

Moreover, if s ≤ 0, then we actually have K̊A
− ⊂ {y′ < s}, and, if s ≥ 0, we have K̊A

+ ⊂ {y′ > s}.

Proof [Lemma 29] By Lemma 28 and the assumed K̊A
± 6= ∅ we find K̊F

± 6= ∅. By a version of
the Hahn-Banach separation theorem, see e.g. (Megginson, 1998, Thm. 2.2.26), there thus exist a
y′ ∈ F ′ and an s ∈ R such that

K− ⊂ {y′ ≤ s}
K+ ⊂ {y′ ≥ s}
K̊F

+ ⊂ {y′ > s} .

Let us first show K̊F
− ⊂ {y′ < s}. To this end, we fix a y1 ∈ K̊F

− and a y2 ∈ K̊F
+ . Since K̊F

− is
open in F , there then exists an λ ∈ (0, 1) such that

λy2 + (1− λ)y1 = y1 + λ(y2 − y1) ∈ K̊F
− ⊂ K− .

From the latter and the already obtained inclusions we conclude that

s ≥
〈
y′, λy2 + (1− λ)y1

〉
= λ〈y′, y2〉+ (1− λ)〈y′, y1〉 > λs+ (1− λ)〈y′, y1〉 .

Now, some simple transformations together with λ ∈ (0, 1) yield 〈y′, y1〉 < s, i.e. we have shown
K̊F
− ⊂ {y′ < s}.

Let us now show that s ≤ 0 implies K̊A
− ⊂ {y′ < s}. To this end, we use contraposition, that is,

we assume that there exists a y ∈ K̊A
− with 〈y′, y〉 ≥ s. Since K̊A

− ⊂ K−, the already established
inclusion K− ⊂ {y′ ≤ s} then yields 〈y′, y〉 = s. Moreover, by Lemma 28 there exists a δ > 0
such that (1− δ)y ∈ K̊F

− . From the previously established K̊F
− ⊂ {y′ < s} we thus obtain

s >
〈
y′, (1− δ)y

〉
= (1− δ)s .

Clearly, this yields δs > 0, and since δ > 0, we find s > 0. The remaining implication can be
shown analogously.

The next result refines the separation of Lemma 29 under additional assumptions on the sets that
are to be separated.
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Proposition 30 LetK−,K0,K+ ⊂ A be mutually disjoint, non-empty convex sets with K̊A
± = K±

and A = K− ∪ K0 ∪ K+. Furthermore, assume that, for all y ∈ K0 and ε > 0, we have
K− ∩ (y+ εBF ) 6= ∅ and K+ ∩ (y+ εBF ) 6= ∅. Then there exist a y′ ∈ F ′ and an s ∈ R such that

K− = {y′ < s} ∩A
K0 = {y′ = s} ∩A
K+ = {y′ > s} ∩A .

Proof [Proposition 30] We begin by proving K0 = {y′ = s} ∩ A with the help of Lemma 29. To
this end, we first observe that we clearly have K̊A

± = K± 6= ∅ and K− ∩ K̊F
+ ⊂ K− ∩ K+ = ∅.

Consequently, Lemma 29 provides a y′ ∈ F ′ and an s ∈ R that satisfy the inclusions listed in
Lemma 29. Our first goal is to show K0 ⊂ {y′ = s} ∩ A. To this end, we fix a y ∈ K0. Since
K− ∩ (y + εBF ) 6= ∅ for all ε > 0, we then find a sequence (yn) ⊂ K− such that yn → y. By
Lemma 29 we then obtain

〈y′, y〉 = lim
n→∞

〈y′, yn〉 ≤ s ,

i.e. y ∈ {y′ ≤ s} ∩ A. Using K+ ∩ (y + εBF ) 6= ∅ for all ε > 0, we can analogously show
y ∈ {y′ ≥ s} ∩A, and hence we obtain y ∈ {y′ = s} ∩A.

To show the inclusion {y′ = s} ∩ A ⊂ K0, we assume without loss of generality that s ≥ 0.
Let us now fix a y ∈ A \K0, so that our goal becomes to show y 6∈ {y′ = s} ∩A. Now, if y ∈ K+,
we obtain 〈y′, y〉 > s, since we have seen in Lemma 29 that s ≥ 0 implies K+ = K̊A

+ ⊂ {y′ > s}.
Therefore, it remains to consider the case y ∈ K−. Let us fix a y1 ∈ K+. Then we have just seen
that 〈y′, y1〉 > s. For λ ∈ [0, 1] we now define yλ := λy1 + (1− λ)y. Now, if there is a λ ∈ (0, 1)
with 〈y′, yλ〉 = s, we obtain

s =
〈
y′, λy1 + (1− λ)y

〉
= λ〈y′, y1〉+ (1− λ)〈y′, y〉 > λs+ (1− λ)〈y′, y〉 ,

that is 〈y′, y〉 < s. Consequently, it remains to show the existence of such a λ ∈ (0, 1). Let us
assume the converse, that is xλ ∈ K− ∪K+ for all λ ∈ (0, 1). Since y0 = y ∈ K− and y1 ∈ K+,
we then have

xλ ∈ K− ∪K+ (52)

for all λ ∈ [0, 1]. Let us now consider the map ψ : [0, 1]→ A defined by ψ(λ) := yλ. Clearly, ψ is
continuous, and sinceK± = K̊A

± , the pre-images ψ−1(K−) and ψ−1(K+) are open, and, of course,
disjoint. Moreover, by ψ(0) = y0 = y ∈ K− and ψ(1) = y1 ∈ K+, they are also non-empty,
and (52) ensures ψ−1(K−) ∪ ψ−1(K+) = [0, 1]. Consequently, we have found a partition of [0, 1]
consisting of two open, non-empty sets, i.e. [0, 1] is not connected. Since this is obviously false, we
found a contradiction finishing the proof of {y′ = s} ∩A ⊂ K0.

To prove the remaining two equalities, let us again assume without loss of generality that s ≥ 0.
By Lemma 29, we then know K+ = K̊A

+ ⊂ {y′ > s} ∩ A. Conversely, for y ∈ {y′ > s} ∩ A we
have already shown y 6∈ K0, and by the inclusion K− ⊂ {y′ ≤ s} established in Lemma 29 we
also know y 6∈ K−. Since A = K− ∪K0 ∪K+, we conclude that y ∈ K+. Consequently, we have
also shownK+ = {y′ > s}∩A, and the remainingK− = {y′ < s}∩A now immediately follows.

The next result shows the existence of a separating functional considered in Theorem 22. Its
proof heavily relies on the preceding results.
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Theorem 31 For all r ∈ I there exists an z′ ∈ H ′ such that

{Γ < r} = {z′ < 0} ∩B
{Γ = r} = {z′ = 0} ∩B
{Γ > r} = {z′ > 0} ∩B .

Moreover, z′ is actually continuous with respect to ‖ · ‖E .

Proof [Theorem 31] Let us consider the sets

K− := −x? + {Γ < r}
K0 := −x? + {Γ = r}
K+ := −x? + {Γ > r} .

Our first goal is to show that these sets satisfy the assumptions of Proposition 30. To this end, we
first observe that {Γ < r} ⊂ B immediately implies K− ⊂ −x? +B = A, and the same argument
can be applied to K0 and K+. Moreover, they are mutually disjoint since the defining level sets are
mutually disjoint, and since r ∈ Γ̊(B) they are also non-empty. The equality A = K− ∪K0 ∪K+

follows fromB = {Γ < r}∪{Γ = r}∪{Γ > r}, and the convexity ofK− andK+ is a consequence
of the convexity of {Γ < r} and {Γ > r} established in Lemma 26. Similarly, the convexity of
K0 follows from the assumed quasi-monotonicity of Γ by Lemma 14. Moreover, by Lemma 26, the
set {Γ < r} is open in B with respect to dF , and since the metric spaces (B, dF ) and (A, ‖ · ‖F )
are isometrically isomorphic via translation with −x?, we see that K− is open in A with respect to
‖ · ‖F . This shows K̊A

− = K−, and K̊A
+ = K+ can be shown analogously. Finally, observe that for

x ∈ {Γ = r}, ε > 0, and y := −x? + x we have

K− ∩ (y + εBF ) =
(
−x? + {Γ < r}

)
∩
(
−x? + x+ εBF

)
=
(
−x? + {Γ < r}

)
∩
(
−x? + x+ εBH

)
= −x? +

(
{Γ < r} ∩ (x+ εBH)

)
6= ∅ ,

where in the second step we used the fact ‖ · ‖F = ‖ · ‖H on A ⊂ F , see Lemma 21. Obviously,
K− ∩ (y + εBF ) 6= ∅ can be shown analogously, and hence, the assumptions of Proposition 30 are
indeed satisfied.

Now, let y′ ∈ F ′ and s ∈ R be according to Proposition 30. Moreover, let ŷ′ ∈ H ′ be the
extension of y′ to H that is defined by

〈ŷ′, y + αx?〉 := 〈y′, y〉

for all y+αx? ∈ H = F ⊕Rx?. Clearly, ŷ′ is indeed an extension of y′ to H and the continuity of
ŷ′ on H follows from

|〈ŷ′, y + αx?〉| = |〈y′, y〉| ≤ ‖y′‖ · ‖y‖F ≤ ‖y′‖ · ‖y + αx?‖H .

With the preparations, we now define an z′ ∈ H ′ by

〈z′, z〉 := −s〈ϕ′, z〉+
〈
ŷ′, z − 〈ϕ′, z〉x?

〉
, z ∈ H.
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Indeed, z′ is obviously linear. Moreover, the restriction ϕ′|H of ϕ′ to H is continuous with respect
to ‖ · ‖H , since Lemma 21 ensured ‖ · ‖E ≤ ‖ · ‖H on H , and consequently we obtain z′ ∈ H ′.

Let us show that z′ is the desired functional. To this end, we first observe that the inclusion
F ⊂ kerϕ′ established in Lemma 21 together with x? ∈ B ⊂ {ϕ′ = 1} yields x?+F ⊂ {ϕ′ = 1}.
For x ∈ x? + F ⊂ H this gives

〈z′, x〉 = −s〈ϕ′, x〉+
〈
ŷ′, x− 〈ϕ′, x〉x?

〉
= −s+

〈
ŷ′, x− x?

〉
= −s+

〈
y′, x− x?

〉
.

Moreover, recall that we have x ∈ B if and only if −x? + x ∈ A, and hence we obtain

{z′ = 0} ∩B = {x ∈ B : 〈y′, x− x?〉 = s}
=
{
x ∈ B : −x? + x ∈ {y′ = s}

}
= x? +

{
y ∈ A : y ∈ {y′ = s}

}
= x? +

(
{y′ = s} ∩A

)
= x? +K0

= {Γ = r} .

The remaining equalities {Γ < r} = {z′ < 0} ∩ B and {Γ > r} = {z′ > 0} ∩ B can be shown
analogously.

Let us finally show that the functional z′ found so far is actually continuous with respect to
‖ · ‖E . Let us assume the converse. By Lemma 25, there then exists a sequence (zn) ⊂ coneB
with ‖zn‖E → 0 and 〈z′, zn〉 6→ 0. Picking a suitable subsequence and scaling it appropriately, we
may assume without loss of generality that either 〈z′, zn〉 < −1 for all n ≥ 1, or 〈z′, zn〉 > 1 for
all n ≥ 1. Let us consider the first case, only, the second case can be treated analogously. We begin
by picking an x0 ∈ {Γ > r} = {z′ > 0} ∩ B. This yields α := 〈z′, x0〉 > 0. Moreover, since
(zn) ⊂ coneB and zn 6= 0 by the assumed 〈z′, zn〉 < −1, we find sequences (αn) ⊂ (0,∞) and
(xn) ⊂ B such that zn = αnxn for all n ≥ 1. Our first goal is to show that αn → 0. To this end,
we observe that xn ∈ B ⊂ {ϕ′ = 1} implies 1 = |〈ϕ′, xn〉| ≤ ‖ϕ′‖ · ‖xn‖E , and hence we obtain

|αn| ≤ |αn| · ‖ϕ′‖ · ‖xn‖E = ‖ϕ′‖ · ‖zn‖E → 0 .

For n ≥ 1, we define βn := 1
1+ααn

. Our considerations made so far then yield both βn → 1 and
βn ∈ (0, 1) for all n ≥ 1. By the definition of α and the assumptions made on (zn), this yields

〈z′, βn(x0 + αzn)〉 = βn
(
α+ α〈z′, zn〉

)
< 0 (53)

for all n ≥ 1. On the other hand, x0 ∈ {Γ > r} ensures Γ(x0)−r
2 > 0, and by the ‖ · ‖E-continuity

of Γ, there thus exists a δ > 0 such that, for all x ∈ B with ‖x− x0‖E ≤ δ, we have∣∣Γ(x)− Γ(x0)
∣∣ ≤ Γ(x0)− r

2
.

For such x, a simple transformation then yields Γ(x) ≥ Γ(x0)+r
2 > r, and thus we find{

x ∈ B : ‖x− x0‖E ≤ δ
}
⊂ {Γ > r} = {z′ > 0} ∩B .

To find a contradiction to (53), it thus suffices to show that

βn(x0 + αzn) ∈ {x ∈ B : ‖x− x0‖E ≤ δ} (54)
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for all sufficiently large n. To prove this, we first observe that

βn(x0 + αzn) = βnx0 +
ααn

1 + ααn
xn = βnx0 + (1− βn)xn ,

and since βn ∈ (0, 1), the convexity of B yields βn(x0 + αzn) ∈ B. Finally, we have

‖x0 − βn(x0 + αzn)‖E ≤ (1− βn)‖x0‖E + αβn‖zn‖E → 0

since βn → 1 and ‖zn‖E → 0. Consequently, (54) is indeed satisfied for all sufficiently large n,
which finishes the proof.

Theorem 31 has shown the existence of a functional separating the level sets of Γ. Our next
and final goal is to show that this functional is unique modulo normalization. To this end, we
need the following lemma, which shows that the null space of a separating functional is completely
determined by the set {Γ = r}.

Lemma 32 Let r ∈ I and z : H → R be a linear functional satisfying {Γ = r} = B ∩ ker z′.
Then we have ker z′ = span(ker z′ ∩B) = span{Γ = r} and z′ 6= 0.

Proof [Lemma 32] Since ker z′ is a subspace, the inclusion span(ker z′ ∩B) ⊂ ker z′ is obvious.
To prove the converse inclusion, we fix an z ∈ ker z′. Moreover, using Lemma 27, we fix an

x0 ∈ {Γ = r} = B ∩ ker z′ satisfying −x? + x0 ∈ ÅF . By z ∈ ker z′ ⊂ H and Lemma 23,
which showed H = F ⊕ Rx0, there then exist a y ∈ F and an α ∈ R such that z = y + αx0.
Obviously, it suffices to show both αx0 ∈ span(ker z′ ∩ B) and y ∈ span(ker z′ ∩ B). Now,
αx0 ∈ span(ker z′ ∩ B) immediately follows from x0 ∈ span(ker z′ ∩ B), and for y = 0 the
second inclusion is trivial. Therefore, let us assume that y 6= 0. Since −x? + x0 ∈ ÅF , there then
exists an ε > 0 such that for all y′ ∈ F with ‖ − x? + x0 − y′‖F ≤ ε we have y′ ∈ A. Writing
ŷ := ε

‖y‖F y, we have ŷ ∈ F by the assumed y ∈ F , and thus also ỹ := −x? + x0 + ŷ ∈ F .
Moreover, our construction immediately yields ‖ − x? + x0 − ỹ‖F = ε, and hence we actually
have ỹ ∈ A = −x? + B. Consequently, we have found x0 + ŷ = ỹ + x? ∈ B. On the other
hand, the assumed x0 ∈ ker z′ implies αx0 ∈ ker z′, and thus we find y ∈ ker z′ by z ∈ ker z′

and z = y + αx0. Using both x0, y ∈ ker z′, we thus obtain x0 + ŷ ∈ ker z′, which together with
the already established x0 + ŷ ∈ B shows x0 + ŷ ∈ span(ker z′ ∩ B). Since x0 ∈ B ∩ ker z′ by
assumption we therefore finally find the desired y ∈ span(ker z′ ∩B) by the definition of ŷ.

Finally, assume that z′ = 0. By G5 there then exists an x ∈ {Γ < r}. Then the assumed z′ = 0
implies x ∈ ker z′ while {Γ < r} ⊂ B implies x ∈ B. This yields x ∈ B ∩ ker z′ = {Γ = r},
which contradicts the assumed x ∈ {Γ < r}.

The next lemma shows that modulo orientation, two normalized separating functionals are
equal.

Lemma 33 Let r ∈ I and z′1, z
′
2 ∈ H ′ such that {Γ = r} = B∩ker z′1 and {Γ = r} ⊂ B∩ker z′2.

Then there exists an α ∈ R such that z′2 = αz′1, and if {Γ = r} = B ∩ ker z′2, we actually have
α 6= 0.
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Proof [Lemma 33] Our assumptions guarantee B ∩ ker z′1 ⊂ B ∩ ker z′2 ⊂ ker z′2, and thus Lemma
32 yields ker z′1 ⊂ ker z′2. Moreover, Lemma 32 shows z′1 6= 0, which in turn gives a z0 ∈ H with
z0 6∈ ker z′1. For z ∈ H , an easy calculation then shows that

z − 〈z
′
1, z〉

〈z′1, z0〉
z0 ∈ ker z′1 ⊂ ker z′2 .

and hence we conclude that 〈z′2, z〉 =
〈z′1,z〉
〈z′1,z0〉

〈z′2, z0〉. In other words, for α :=
〈z′2,z0〉
〈z′1,z0〉

, we have
z′2 = αz′1. Finally, {Γ = r} = B ∩ ker z′2 implies z′2 6= 0 by Lemma 32, and hence we conclude
that α 6= 0.

With these preparations, we can finally present the proof of Theorem 22. Because of all the
preliminary work, this proof actually reduces to a few lines.

Proof [Theorem 22] The existence of z′r has already be shown in Theorem 31. To show that z′r is
unique, we assume that there is another z̃′r that enjoys the properties of z′r. Then Lemma 33 gives
an α 6= 0 with z′r = αz̃′r. The imposed normalization ‖z′r‖E′ = 1 = ‖z̃′r‖E′ implies |α| = 1, and
the orientation of z′r and z̃′r on {Γ < r} excludes the case α = −1. Thus we have z′r = z̃′r.

Appendix G. Measurable Dependence of the Separating Hyperplanes

In this section we show that the separating functional found in Theorem 22 depends measurably on
the level r provided that some additional assumptions are satisfied.

In the following we always assume that G1 to G5 are satisfied. Moreover, z′r ∈ (H, ‖ · ‖E)′

denotes the unique separating functional found in Theorem 22. In addition to G1 to G5, we consider
the following assumptions:

G6 (Measurability). The pre-image Γ−1(I) is a Borel measurable subset of E.
G7 (Completeness). The space E is a Banach space.
G8 (Separability). The dual space E′ is separable.
G9 (Denseness). The space H = spanB is dense in E with respect to ‖ · ‖E .

The following theorem essentially shows that under these additional assumptions the map r 7→
z′r is measurable. To formulate it, we write B(X) for the Borel σ-algebra of a given topological
space X . Moreover, we equip the interval I with the Lebesgue completion B̂(I) of the Borel σ-
algebra B(I).

Theorem 34 Assume that G1 to G9 are satisfied. Then for every r ∈ I there exists exactly one
ẑ′r ∈ E′ such that (ẑ′r)|H = z′r. Moreover, the map Z : (I, B̂(I))→ (E′,B(E′)) defined by

Z(r) := −ẑ′r

is measurable and satisfies ‖Z(r)‖E′ = 1 for all r ∈ I . Moreover, for all finite measures ν on B̂(I),
the map Z is Bochner ν-integrable.
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To prove Theorem 34 we again need a couple of preliminary results. Most of these results
consider, in one form or the other, the following function Ψ : I → [0,∞) defined by

Ψ(r) := inf
z′∈S+

sup
x∈{Γ=r}

∣∣〈z′, x〉∣∣ , r ∈ I, (55)

where S+ := {z′ ∈ E′ : ‖z′|H‖E′ = 1 and 〈z′, x?〉 ≥ 0}.
Our first result shows that the functionals found in Theorem 22 are essentially the only mini-

mizers of the outer infimum in (55).

Lemma 35 Assume that G1 to G5 are satisfied. Then, for all r ∈ I , we have Ψ(r) = 0, and there
exists a z′ ∈ S+ such that

Ψ(r) = sup
x∈{Γ=r}

|〈z′, x〉| .

Moreover, for every z′ ∈ S+ satisfying this equation, we have the following implications

Γ(x?) < r ⇒ z′|H = −z′r
Γ(x?) = r ⇒ z′|H = ±z′r
Γ(x?) > r ⇒ z′|H = z′r .

Proof [Lemma 35] To show the existence of z′ ∈ S+, we assume without loss of generality that
Γ(x?) ≥ r. Then the unique separating functional z′r ∈ (H, ‖ · ‖E)′ found in Theorem 22 satisfies

sup
x∈{Γ=r}

|〈z′r, x〉| = 0 ,

and since Ψ(r) ≥ 0, we conclude that

Ψ(r) = sup
x∈{Γ=r}

|〈z′r, x〉| = 0 .

In addition, Γ(x?) ≥ r implies 〈z′r, x?〉 ≥ 0. Extending z′r to a bounded linear functional z′ ∈ E′
with the help of Hahn-Banach’s extension theorem, see e.g. (Megginson, 1998, Theorem 1.9.6),
then yields z′ ∈ S+, and as a by-product of the proof, we have also established Ψ(r) = 0.

To show the implications, we restrict our considerations to the case Γ(x?) < r, the remaining
two cases can be treated analogously. Then the already established Ψ(r) = 0 yields 〈z′, x〉 = 0
for all x ∈ {Γ = r}, that is {Γ = r} ⊂ B ∩ ker z′. Since ‖z′r‖E′ = 1 = ‖z′|H‖E′ , we then
conclude by Lemma 33 and Theorem 22 that z′r = −z′|H or z′r = z′|H . Assume that the latter is true.
Then Γ(x?) < r implies 0 > 〈z′r, x?〉 = 〈z′, x?〉 ≥ 0, and hence we have found a contradiction.
Consequently, we have z′r = −z′|H .

Our next goal is to show that there exists a measurable selection of the minimizers of the function
Ψ. To this end, we first need to show that the inner supremum is measurable. To show this, let us
now consider the functions Φn : I × E′ → R, n ∈ N ∪ {∞} defined by

Φn(r, z′) := sup
x∈{Γ=r}∩nBE

∣∣〈z′, x〉∣∣ , (r, z′) ∈ I × E′ .

The following lemma shows that Φn is continuous in the second variable.
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Lemma 36 Assume that G1 to G5 are satisfied. Then, for all n ∈ N and r ∈ I , the map Φn(r, · ) :
E′ → R is continuous.

Proof [Lemma 36] For z′1, z
′
2 ∈ E′ the triangle inequality for suprema yields∣∣Φn(r, z′1)− Φn(r, z2)

∣∣ =

∣∣∣∣∣ sup
x∈{Γ=r}∩nBE

∣∣〈z′1, x〉∣∣− sup
x∈{Γ=r}∩nBE

∣∣〈z′2, x〉∣∣
∣∣∣∣∣

≤ sup
x∈{Γ=r}∩nBE

∣∣〈z′1, x〉 − 〈z′2, x〉∣∣
≤ ‖z′1 − z′2‖E′ · n .

Now the assertion easily follows.

The next lemma shows that the function Φn is measurable in the first variable, provided that
some technical assumptions are met.

Lemma 37 Assume that G1 to G7 are satisfied and E is separable. Then, for all n ∈ N and
z′ ∈ E′, the map Φn( · , z′) : I → R is B̂(I)-measurable.

Proof [Lemma 37] Let us write B0 := Γ−1(I) ∩ nBE . Note that nBE is closed and thus B(E)-
measurable. Since Γ−1(I) is B(E)-measurable by G6, we conclude that B0 is B(E)-measurable.
Consequently, 1E\B0

: E → R is B(E)-measurable, and the extension Γ̂ : E → R defined by

Γ̂(z) :=

{
Γ(z) if z ∈ B0

0 otherwise.

is also B(E)-measurable. Consequently, the map h : I × E → R2 defined by

h(r, z) :=
(
Γ̂(z)− r, 1E\B0

(z)
)
, (r, z) ∈ I × E

is B(I)⊗ B(E)-measurable. Moreover, note that the definition of h yields

{z ∈ E : h(r, z) = 0} = {z ∈ B0 : Γ(z) = r} = {Γ = r} ∩ nBE .

For F : I → 2E defined by

F (r) :=
{
z ∈ E : h(r, z) ∈ {0}

}
,

we thus find F (r) = {Γ = r} ∩ nBE for all r ∈ I . Finally, ξ : I × E → R defined by ξ(r, z) :=
|〈z′, z〉| is continuous and thus B(I×E)-measurable. Moreover, we have B(I×E) = B(I)⊗B(E)
by (Bogachev, 2007b, Lemma 6.4.2) since I and E are both separable, and thus ξ is B(I)⊗ B(E)-
measurable. Since separable Banach spaces are Polish spaces, (Castaing and Valadier, 1977, Lemma
III.39 on p. 86) then shows that the map

r 7→ sup
z∈F (r)

ξ(r, z)

is B̂(I)-measurable. From the latter we easily obtain the assertion.

With the help of the two previous results, the next result now establishes the desired measurabil-
ity of Φ. Unfortunately, it requires a stronger separability assumption than the preceding lemmas.
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Corollary 38 Assume that G1 to G8 are satisfied. Then Φ∞ : I × E′ → R is B̂(I) ⊗ B(E′)-
measurable.

Proof [Corollary 38] Let us first recall, see e.g. (Megginson, 1998, Theorem 1.10.7), that dual
spaces are always Banach spaces. Consequently, E′ is a Polish space. Moreover, the separability
of E′ implies the separability of E, see e.g. (Megginson, 1998, Theorem 1.12.11), and hence the
map Φn( · , z′) : I → R is B̂(I)-measurable for all z′ ∈ E′ and n ∈ N by Lemma 37. Since
Φn(r, · ) : E′ → R is continuous for all r ∈ I and n ∈ N by Lemma 36, we conclude that
Φn is a Carathéodory map. Moreover, E′ is Polish, and thus Φn is B̂(I) ⊗ B(E′)-measurable
for all n ∈ N, see e.g. (Castaing and Valadier, 1977, Lemma III.14 on p. 70). Finally, we have
Φ∞(r, z′) = limn→∞Φn(r, z′) for all (r, z′) ∈ I × E′, and hence Φ∞ is also B̂(I) ⊗ B(E′)-
measurable.

The next result shows that we can find the minimizers of the infimum used in the definition of
Ψ : I → [0,∞) in a measurable fashion.

Theorem 39 Assume that G1 to G8 are satisfied. Then there exists a measurable map ζ : (I, B̂(I))→
(E′,B(E′)) such that, for all r ∈ I , we have ζ(r) ∈ S+ and

Ψ(r) = sup
x∈{Γ=r}

|〈ζ(r), x〉| .

Proof [Theorem 39] Let us first show that S+ is closed. To this end, we pick a sequence (z′n) ⊂ S+

that converges in norm to some z′ ∈ E′. Then 〈z′n, x?〉 ≥ 0 immediately implies 〈z′, x?〉 ≥ 0. To
show that ‖z′|H‖E′ = 1 we first observe that, for x ∈ H with ‖x‖E ≤ 1, we easily find

|〈z′, x〉| = lim
n→∞

|〈z′n, x〉| ≤ 1 ,

and thus ‖z′|H‖E′ ≤ 1. To show the converse inequality, we pick, for all n ≥ 1, an xn ∈ H with
‖xn‖E ≤ 1 such that 1− 1/n ≤ |〈z′n, xn〉| ≤ 1. Then we obtain∣∣〈z′, xn〉 − 1

∣∣ ≤ ∣∣〈z′ − z′n, xn〉∣∣+
∣∣〈z′n, xn〉 − 1

∣∣ ≤ ‖z′ − z′n‖E′ + 1/n ,

and since the right hand-side converges to 0, we find ‖z′|H‖E′ ≥ 1. Consequently, we have shown
z ∈ S+, and therefore, S+ is indeed closed. From the latter, we conclude that 1E′\S+ : E′ → R
is B(E′)-measurable. Moreover, Corollary 38 showed that Φ∞ : I × E′ → R is B̂(I) ⊗ B(E′)-
measurable, and consequently, the map h : I × E′ → R2 defined by

h(r, z) :=
(
1E′\S+(z′), Φ∞(r, z′)

)
, (r, z′) ∈ I × E′,

is also B̂(I)⊗ B(E′)-measurable. We define F : I → 2E
′

by

F (r) :=
{
z′ ∈ E′ : h(r, z′) = 0

}
, r ∈ I.

Note that our construction ensures

F (r) = {z ∈ S+ : Φ∞(r, z′) = 0} =

{
z′ ∈ S+ : Ψ(r) = sup

x∈{Γ=r}
|〈z′, x〉|

}
, (56)
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where in the last step we used the equality Ψ(r) = 0 established in Lemma 35. Moreover, the latter
lemma also showed F (r) 6= ∅ for all r ∈ I , and since E′ is Polish, Aumann’s measurable selection
principle, see (Steinwart and Christmann, 2008, Lemma A.3.18) or (Castaing and Valadier, 1977,
Theorem III.22 on p. 74) yields a a measurable map ζ : (I, B̂(I))→ (E′,B(E′)) with ζ(r) ∈ F (r)
for all r ∈ I . Then (56) shows that ζ is the desired map.

With these preparations, we can finally prove Theorem 34. The basic idea behind this proof is
to combine Lemma 35 and Theorem 39.

Proof [Theorem 34] Since z′r is a bounded linear functional on (H, ‖ · ‖E), and H is dense in E
by G9, the existence of the unique extension follows from e.g. (Megginson, 1998, Theorem 1.9.1).
Moreover, this theorem also shows that ‖Z(r)‖E′ = ‖ẑ′r‖ = ‖z′r‖ = 1.

Let us now consider the measurable selection ζ : I → E′ from Theorem 39. Furthermore, we
fix an r ∈ I . If r > Γ(x?), then Lemma 35 shows that ζ(r)|H = −z′r, and thus ζ(r) = −ẑ′r.
Analogously, r < Γ(x?) implies ζ(r) = ẑ′r, and in the case r = Γ(x?) we have either ζ(r) = −ẑ′r
or ζ(r) = ẑ′r. From these relations it is easy to obtain the desired measurability of Z : (I, B̂(I))→
(E′,B(E′)).

Since the image Z(I) is separable by the separability of E′, we further see by (Dinculeanu,
2000, Theorem 8, page 5) that Z is an E-valued measurable function in the sense of Bochner in-
tegration theory. Finally, we have already seen that ‖Z(·)‖E′ is bounded and hence Z is indeed
Bochner ν-integrable for all finite measures ν on B̂(I).
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2011-016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines

2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance
Function



2011-014 Müller, S.; Dippon, J.: k-NN Kernel Estimate for Nonparametric Functional
Regression in Time Series Analysis

2011-013 Knarr, N.; Stroppel, M.: Unitals over composition algebras

2011-012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of
characteristic two

2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes

2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds
with special holonomy

2011-009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential
Equations

2011-008 Stroppel, M.: Orthogonal polar spaces and unitals

2011-007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe
Gruppenalgebra

2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic
spaces

2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
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