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Abstract

We establish a Karhunen-Loève Expansion for generic centered, second order
stochastic processes. We further investigate in which norms the expansion con-
verges and derive exact rates of convergence for these norms. Moreover, we show
that these results can in some situations be used to construct reproducing kernel
Hilbert spaces (RKHSs) containing the paths of a version of the process. As an
application, we compare the smoothness of the paths with the smoothness of the
functions contained in the RKHS of the covariance function.

1 Introduction
Given a real-valued, centered stochastic process (Xt)t∈T with finite second moments,
the covariance function k : T × T → R defined by k(s, t) := EXsXt is positive
semi-definite. Consequently, there exists a reproducing kernel Hilbert space (RKHS)
H on T for which k is the (reproducing) kernel. It is well-known that there are intimate
relationships between H and the stochastic process.

One such relation is described by the classical Loève isometry Ψ : L2(X) → H
defined by Ψ(Xt) = k(t, ·), where L2(X) denotes the L2(P )-closure of the space
spanned by (Xt)t∈T . In particular, if (ei)i∈I is an arbitrary orthonormal basis (ONB)
of H , then the process enjoys the representation,

Xt =
∑
i∈I

ξiei(t) , (1)

where (ξi)i∈I is the family of uncorrelated random variables given by ξi := Ψ−1(ei),
and the convergence is, for each t ∈ T , unconditional in L2(P ).
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For Gaussian processes, the relationship between the process and its RKHS is, of
course, even closer, since the finite dimensional distributions of the process are com-
pletely determined by k. Moreover, the isometry Ψ can be used to define stochastic
integrals, see e.g. [16, Chapter 7]. In addition, if H is separable, the representation (1)
converges also P -almost surely for each t, and (ξi)i∈I is a family of independent, stan-
dard normal random variables, see e.g. [16, Theorem 8.22]. Last but not least, in some
cases we even have P -almost surely uniform convergence in t, see [2, Theorem 3.8].
Note that unlike the convergence in (1), uniform convergence in t makes it possible to
represent the paths of the process by a series expansion.

If T is a compact metric space, ν is a strictly positive and finite Borel measure
on T , and k is continuous, the famous Karhunen-Loève expansion allows to refine
the expansion (1). Indeed, in this case we can find an ONB (ei)i∈I of H that is also
orthogonal in L2(ν) and we additionally have

X(ω) =
∑
i∈I

ξi(ω)ei , (2)

where the series converges unconditionally in L2(ν) for P -almost all ω ∈ Ω. In ad-
dition, we have X =

∑
i∈I ξi ⊗ ei with unconditional convergence in L2(P ⊗ ν).

Like for the above mentioned example of certain Gaussian processes, the form of con-
vergence in (2) allows for a series expansion of the paths of the process, this time,
however, only with L2(ν)-convergence. However, the assumptions needed for (2) are
significantly more restrictive than those for (1), and thus a natural question is to ask for
weaker assumptions ensuring a path representation (2). In addition, L2(ν)-convergence
is a rather weak form of convergence so that is seems to be desirable to replace it by
stronger notions of convergence, e.g. by uniform convergence in t.

Another, rather different relationship between the process and its RKHS is in terms
of quadratic mean smoothness. For example, if T is a metric space, then the process
is continuous in quadratic mean, if and only if its kernel is continuous. Moreover, a
similar statement is true for quadratic mean differentiability. We refer to [4, p. 63] and
[44, p. 65ff] for details.

Of course, smoothness in quadratic mean is not related to the smoothness of the
paths of the process. However, considering the path expansion (2) it seems natural to
ask to which extend the paths inherit smoothness properties from H , or from the ONB
(ei)i∈I . Probably, the first attempt in this direction is to check whether the paths are
P -almost surely contained in H . Unfortunately, this is, in general not true. Indeed,
for Gaussian processes with infinite dimensional RKHS the paths are P -almost surely
not contained in H , see [22, Corollary 7.1] and also [25]. A natural next question is
to look for larger RKHSs H̄ that do contain the paths almost surely. The first result in
this direction goes back to Driscoll, see [11]. Namely, he essentially showed:

Theorem 1.1. Let (T, d) be a separable metric space and (Xt)t∈T be a centered and
continuous Gaussian process, whose kernel k is continuous. Then for all RKHS H̄ on
T having a continuous kernel, the following statements are equivalent:

i) Almost all paths of the process are contained in H̄ .

ii) We have H ⊂ H̄ and the embedding id : H → H̄ is Hilbert-Schmidt.
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Since being Hilbert-Schmidt is already a rather strong notion of compactness,
Driscoll’s theorem shows that possible spaces H̄ need to be significantly larger than
H , at least for Gaussian processes satisfying the assumptions above. In particular, if
we try to describe smoothness properties of the paths by a suitable RKHS H̄ , this result
suggests that the paths should be rougher than the functions in H .

More recently, Lukić and Beder have shown, see [22, Theorem 5.1], that for arbi-
trary centered, second-order stochastic process (Xt)t∈T condition ii) implies the ex-
istence of a version (Yt)t∈T whose paths are almost surely contained in H̄ , and for
generic Gaussian processes [22, Corollary 7.1] shows i)⇒ ii). Furthermore, they pro-
vide examples of non-Gaussian processes, for which the implication i)⇒ ii) does not
hold, and they also present modifications i’) and ii’) of i) and ii), for which we have i’)
⇒ ii”) in the general case, see [22, Theorem 3.1 and Corollary 3.1] for details.

Summarizing these results, it seems fair to say that we already have reasonably
good means to test whether a given RKHS H̄ contains the paths of our process almost
surely. Except for a couple of specific examples, however, very little is known whether
such an H̄ exists, or even how to construct such an H̄ , cf. [21, p. 255ff].

It turns out in this paper, that all these questions are related to each other by a
rather general form of Mercer’s theorem and its consequences, which has been recently
presented in [36]. Before we go into details in the next sections let us briefly outline our
main results. To this end let us assume in the following that we have a σ-finite measure
ν on T and a centered, second order process (Xt)t∈T withX ∈ L2(P ⊗ ν). It turns out
that for such processes, H is “contained” in L2(ν) and the “embedding” H → L2(ν)
is Hilbert-Schmidt, which makes the results from [36] readily applicable. Here we use
the quotation marks, since we actually need to consider equivalence classes to properly
define the embedding. As a matter of fact, the entire theory of [36] foots on the careful
differentiation between functions and their equivalence classes, and thus we need to
adopt the somewhat pedantic notation of [36] later in the paper. For now, however, let
us ignore these differences for the informal description of our main results:

• The Karhunen-Loève expansion (2) always holds for the process (Xt)t∈T . In
particular, no topological assumptions are needed.

• If the embedding H → L2(ν) is, in a certain sense, more compact than Hilbert-
Schmidt, then almost all paths of the process are contained in a suitable interpo-
lation space between L2(ν) andH . Moreover, (2) converges in this interpolation
space, too, and the average rate of this convergence can be exactly described. Fi-
nally, for Gaussian processes the results are sharp.

• Under even stronger compactness assumptions on the embedding H → L2(ν),
the interpolation space is an RKHS and there exists a version of the process
having almost all its paths in this RKHS.

• If T ⊂ Rd is a bounded and open subset with suitable boundary conditions, and
H is embedded into a (fractional) Sobolev space Wm(T ) with m > d/2, then
almost all paths are in the fractional Sobolev space Wm−d/2−ε(T ), where ε > 0
is arbitrary. Moreover, for Gaussian processes this is sharp. In other words, the
paths are about d/2-less smooth than the functions in H .

3



Besides other possible applications, these results are particularly interesting for
certain non-parametric statistical methods such as so-called Gaussian processes,
see [28, 27, 40, 39] and the references therein, as well as spatial statistical meth-
ods, see e.g. [34, 13, 33] and the references in these articles.

The rest of this paper is organized as follows: In Section 2 some concepts from [36]
are recalled and some additional results are presented. The generic Karhunen-Loève
expansion is established in Section 3 and Section 4 contains the results that are related
to stronger notions of convergence in the Karhunen-Loève expansion. In Section 5
we continue these investigations with the focus on instances, where the interpolation
spaces are RKHSs. The Sobolev space related results are presented as applications of
the general theory in Sections 4 and 5. All proofs as well as some auxiliary results can
be found in Section 6.

2 Preliminaries on Kernels
Let us begin by introducing some notations. To this end, let (T,B, ν) be a measure
space. Recall that B is ν-complete, if, for every A ⊂ T for which there exists an
N ∈ B such that A ⊂ N and ν(N) = 0, we have A ∈ B. In this case we say that
(T,B, ν) is complete.

For S ⊂ T we denote the indicator function of S by 1S . Moreover, for an f : S →
R we denote its zero-extension by f̂ , that is, f̂(t) := f(t) for all t ∈ S and f̂(t) := 0
otherwise.

As usual, L2(ν) denotes the set of all measurable functions f : T → R such that
‖f‖L2(ν) :=

∫
|f |2 dν <∞. For f ∈ L2(ν), we further write

[f ]∼ :=
{
g ∈ L2(ν) : ν({f 6= g}) = 0

}
for the ν-equivalence class of f . Let L2(ν) := L2(ν)/∼ be the corresponding quotient
space and ‖·‖L2(ν) be its norm. For an arbitrary, non-empty index set I and p ∈ (0,∞),
we denote, the space of all p-summable real-valued families by `p(I).

In the following, we say that a Banach space F is continuously embedded into a
Banach space E, if F ⊂ E and the identity map id : F → E is continuous. In this
case, we sometimes write F ↪→ E.

Let us now recall some properties of reproducing kernel Hilbert spaces (RKHSs),
and their interaction with measures from [36]. To this end, let (T,B, ν) be a measure
space and k : T × T → R be a measurable (reproducing) kernel with RKHS H , see
e.g. [4, 41, 35] for more information about these spaces. Recall that in this case the
RKHS H consists of measurable functions T → R. In the following, we say that H is
embedded into L2(ν), if all f ∈ H are measurable with [f ]∼ ∈ L2(ν) and the linear
operator

Ik : H → L2(ν)

f 7→ [f ]∼

is continuous. We write [H]∼ for its image, that is [H]∼ := {[f ]∼ : f ∈ H}. More-
over, we say that H is compactly embedded into L2(ν), if Ik is compact. For us, the
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most interesting class of compactly embedded RKHSs H are those whose kernel k
satisfies

‖k‖L2(ν) :=

(∫
T

k(t, t)dν(t)

)1/2

<∞ . (3)

For these kernels, the embedding Ik :→ H is actually Hilbert-Schmidt, see e.g. [36,
Lemma 2.3]. Finally note that ‖k‖L2(ν) < ∞ is always satisfied for bounded kernels
as long as ν is a finite measure.

Now assume that H is embedded into L2(ν). Then one can show, see e.g. [36,
Lemma 2.2], that the adjoint Sk := I∗k : L2(ν)→ H of the embedding Ik satisfies

Skf(t) =

∫
T

k(t, t′)f(t′)dν(t′) , f ∈ L2(ν), t ∈ T . (4)

We write Tk := Ik ◦ Sk for the resulting integral operator Tk : L2(ν) → L2(ν).
Clearly, Tk is self-adjoint and positive, and if H is compactly embedded, then Tk is
also compact, so that the classical spectral theorem for compact, self-adjoint operators
can be applied. In our situation, however, the spectral theorem can be refined, as we
will see in Theorem 2.1 below. In order to formulate this theorem, we say that an at
most countable family (αi)i∈I ⊂ (0,∞) converges to 0 if either I = {1, . . . , n} or
I = N := {1, 2, . . . } and limi→∞ αi = 0. Analogously, when we consider an at
most countable family (ei)i∈I , we always assume without loss of generality that either
I = {1, . . . , n} or I = N.

With these preparation we can now state the following spectral theorem for Tk,
which is an abbreviated version of [36, Lemma 2.12].

Theorem 2.1. Let (T,B, ν) be a measure space and k be a measurable kernel on
T whose RKHS H is compactly embedded into L2(ν). Then there exists an at most
countable family (µi)i∈I ⊂ (0,∞) converging to 0 with µ1 ≥ µ2 ≥ · · · > 0 and a
family (ei)i∈I ⊂ H such that:

i) The family (
√
µiei)i∈I is an ONS in H and ([ei]∼)i∈I is an ONS in L2(ν).

ii) The operator Tk enjoys the following spectral representation, which is conver-
gent in L2(ν):

Tkf =
∑
i∈I

µi
〈
f, [ei]∼

〉
L2(ν)

[ei]∼ , f ∈ L2(ν) . (5)

In addition, we have

µiei = Sk[ei]∼ , i ∈ I (6)
kerSk = kerTk (7)
ranSk = span{√µiei : i ∈ I} (8)

ranS∗k = span{[ei]∼ : i ∈ I} (9)

kerS∗k = (ranSk)⊥ (10)
ranS∗k = (kerSk)⊥ , (11)
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where the closures and orthogonal complements are taken in the spaces the objects are
naturally contained in, that is, (8) and (10) are considered in H , while (9) and (11) are
considered in L2(ν).

The following set of assumptions, which is frequently used throughout this paper,
essentially summarizes some notations from Theorem 2.1.

Assumption K. Let (T,B, ν) be a measure space and k be a measurable kernel on
T whose RKHS H is compactly embedded into L2(ν). Furthermore, let (µi)i∈I and
(ei)i∈I be as in Theorem 2.1.

With the help of these families (µi)i∈I and (ei)i∈I ⊂ H , some spaces and new
kernels were defined in [36], which we need to recall since they are essential for this
work. To begin with, [36, Equation (36)] introduced, for β ∈ (0, 1], the subspace

[H]β∼ =

{∑
i∈I

aiµ
β/2
i [ei]∼ : (ai) ∈ `2(I)

}
of L2(ν) and equipped it with the Hilbert space norm∥∥∥∑

i∈I
aiµ

β/2
i [ei]∼

∥∥∥
[H]β∼

:= ‖(ai)‖`2(I) . (12)

It is easy to verify that (µ
β/2
i [ei]∼)i∈I is an ONB of [H]β∼ and that the set [H]β∼ is

independent of the particular choice of the family (ei)i∈I ⊂ H in Theorem 2.1. In
particular, [36, Theorem 4.6] showed that

[H]β∼ =
[
L2(ν), [H]∼

]
β,2

= ranT
β/2
k , (13)

where T β/2k denotes the β/2-power of the operator Tk defined, as usual, by its spec-
tral representation, and [L2(ν), [H]∼]β,2 stands for the interpolation space of the stan-
dard real interpolation method, see e.g. [3, Definition 1.7 on page 299]. In addition,
[36, Theorem 4.6] showed that the norms of [H]β∼ and [L2(ν), [H]∼]β,2 are equiva-
lent. In other words, modulo equivalence of norms, [H]β∼ is the interpolation space
[L2(ν), [H]∼]β,2.

In [36, Section 4] it was shown that under certain circumstances [H]β∼ is actually
the image of an RKHS under [ · ]∼. To recall the construction of this RKHS, let us
assume that we have a measurable S ⊂ T with ν(T \ S) = 0 and∑

i∈I
µβi e

2
i (t) <∞ , t ∈ S (14)

We write êi := 1Sei for all i ∈ I . Clearly, this gives
∑
i∈I µ

β
i ê

2
i (t) < ∞. Based on

this and the fact that ([êi]∼)i∈I is an ONS of L2(ν), [36, Lemma 2.6] showed that

Ĥβ
S :=

{∑
i∈I

aiµ
β/2
i êi : (ai) ∈ `2(I)

}
(15)
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equipped with the norm ∥∥∥∑
i∈I

aiµ
β/2
i êi

∥∥∥
ĤβS

:= ‖(ai)‖`2(I) (16)

is a separable RKHS, which is compactly embedded into L2(ν). Moreover, the family
(µ
β/2
i êi)i∈I is an ONB of Ĥβ

S and the (measurable) kernel k̂βS of Ĥβ
S is given by the

pointwise convergent series representation

k̂βS(t, t′) =
∑
i∈I

µβi êi(t)êi(t
′) , t, t′ ∈ T . (17)

Note that [36, Proposition 4.2] showed that k̂βS and its RKHS Ĥβ
S are actually indepen-

dent of the particular choice of the family (ei)i∈I ⊂ H in Theorem 2.1, which justifies
the chosen notation. Recall that in general, k̂1

T does not equal k, and, of course, the
same is true for the resulting RKHSs Ĥ1

T and H . In fact, [36, Theorem 3.3] shows that
k = k̂1

T holds, if and only if Ik : H → L2(ν) is injective, and a sufficient condition for
the latter will be presented in Lemma 2.6. Finally, for α ≥ β, we have Ĥα

S ↪→ Ĥβ
S by

the definition of the involved norms, cf. also the proof of [36, Lemma 4.3].
In the following, we write kβS : S × S → R for the restriction of k̂βS onto S × S

and we denote the RKHS of kβS by Hβ
S .

Formally, the spaces Ĥβ
S , Hβ

S and [H]β∼ are different. Not surprisingly, however,
they are all isometrically isomorphic to each other via natural operators. The corre-
sponding results are collected in the following lemma.

Lemma 2.2. Let Assumption K be satisfied, β ∈ (0, 1], andR ⊂ S ⊂ T be measurable
subsets such that R satisfies ν(T \R) = 0 and (14). Then the following operators are
isometric isomorphisms:

i) The multiplication operator 1R : Ĥβ
S → Ĥβ

R defined by f 7→ 1Rf .

ii) The zero-extension operator ·̂ : Hβ
S → Ĥβ

S .

iii) The restriction operator ·|R : Ĥβ
S → Hβ

R.

iv) The equivalence-class operator [ · ]∼ : Ĥβ
S → [H]β∼.

Since in the following we need to investigate inclusions between RKHSs in more
detail, let us introduce some more notations. To this end, we fix two kernels k1, k2 on
T with corresponding RKHSs H1 and H2. Following [22] we say that k2 dominates
k1 and write k1 ≤ k2, if H1 ⊂ H2 and the natural inclusion operator Ik1,k2 : H1 →
H2 is continuous. In this case, the adjoint operator I∗k1,k2 : H2 → H1 exists and is
continuous. In analogy to our previous notations, we write Sk1,k2 := I∗k1,k2 . Moreover,
we speak of nuclear dominance and write k1 � k2, if k1 ≤ k2 and Ik1,k2 ◦ Sk1,k2 is
nuclear.

Let us now assume thatHβ
S exists for some β ∈ (0, 1). The preceding remarks then

show that the restriction operator ·|S : H1
T → Hβ

S is well-defined and continuous. The
next lemma shows that it is even compact and characterizes when it is Hilbert-Schmidt.

7



Lemma 2.3. Let Assumption K be satisfied. Then, for all β ∈ (0, 1) and all measurable
S ⊂ T satisfying ν(T \ S) = 0 and (14), the restriction operator ·|S : H1

T → Hβ
S is

compact, and the following statements are equivalent:

i) The operator ·|S : H1
T → Hβ

S is Hilbert-Schmidt.

ii) We have
∑
i∈I µ

1−β
i <∞.

iii) We have k1
S � kβS .

Let us now recall conditions, which ensure (14) for a set S of full measure. To
begin with, note that we find such an S if

∑
i∈I µ

β
i < ∞, since a simple calculation

based on Beppo Levi’s theorem shows∫
T

∑
i∈I

µβi e
2
i (t)dν(t) =

∑
i∈I

µβi

∫
T

e2
i (t)dν(t) =

∑
i∈I

µβi <∞ . (18)

Moreover, in this case we obviously have ‖k̂βS‖L2(ν) < ∞. Interestingly, the converse
implication is also true, namely [36, Proposition 4.4] showed that we have

∑
i∈I µ

β
i <

∞, if and only if (14) holds for a set S of full measure and the resulting kernel k̂βS
satisfies ‖k̂βS‖L2(ν) < ∞. Moreover, [36, Theorem 5.3] showed that (14) holds for a
set S of full measure, if ν is a σ-finite measure for which B is complete and

[H]β∼ ↪→ L∞(ν) . (19)

Note that this sufficient condition is particularly interesting when combined with (13),
since the inclusion [L2(ν), [H]∼]β,2 ↪→ L∞(ν) may be known in specific situations.
Finally, [36, Theorem 5.3] actually showed that the inclusion (19) holds, if and only if
(14) holds for a set S of full measure and the resulting kernel k̂βS is bounded.

Our next goal is to investigate under which conditions (14) even holds for S := T .
To this end, let us now assume that we have a topology τ on T . The following definition
introduces some notions of continuity.

Definition 2.4. Let (T, τ) be a topological space and k be a kernel on T with RKHS
H . Then we call k:

i) τ -continuous, if k is continuous with respect to the product topology τ ⊗ τ .

ii) separately τ -continuous, if k(t, ·) : T → R is τ -continuous for all t ∈ T .

iii) weakly τ -continuous, if all f ∈ H are τ -continuous.

Clearly, τ -continuous kernels are separately τ -continuous. Moreover, it is a well-
known fact that given a τ -continuous kernel k its canonical feature map Φ : T → H
defined by Φ(t) := k(t, ·) is τ -continuous, see e.g. [35, Lemma 4.29], and hence the
reproducing property f = 〈f,Φ(·)〉H , which holds for all f ∈ H , shows that k is also
weakly τ -continuous. Moreover, [35, Lemma 4.28] shows that bounded, separately
τ -continuous kernels are weakly τ -continuous, too. In this regard note that even on
T = [0, 1] not every bounded, separately τ -continuous kernel is continuous, see [20].
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Let us now introduce two topologies on T generated by k and its RKHS H . The
first one is the topology τk generated by the well-known pseudo-metric dk on T defined
by

dk(t, t′) := ‖Φ(t)− Φ(t′)‖H , t, t′ ∈ T.

Obviously, this pseudo-metric is a metric if and only if the canonical feature map Φ :
T → H is injective, and this is also the only case in which τk is Hausdorff. Less
known is another topology on T that is related to k, namely the initial topology τ(H)
generated by the set of functions H . In other words, τ(H) is the smallest topology on
T for which all f ∈ H are continuous, that is, for which k is weakly τ -continuous.
More information on these topologies can be found in Lemma 6.1.

In the following, we sometimes need measures ν that are strictly positive on all
non-empty τ(H)-open sets. Such measures are introduced in the following definition.

Definition 2.5. Let (T,B, ν) be a measure space and k be a kernel on T with RKHS
H such that τ(H) ⊂ B. Then ν is called k-positive, if, for all O ∈ τ(H) with O 6= ∅,
we have ν(O) > 0.

The notion of k-positive measures generalizes that of strictly positive measures.
Indeed, if (T, τ) is a topological space, and B := σ(τ) is the corresponding Borel
σ-algebra, then a measure ν on B is strictly positive, if ν(O) > 0 for all non-empty
O ∈ τ . Now assume that we have a (weakly)-τ -continuous kernel k on T . Then we
find τ(H) ⊂ τ ⊂ B, and thus ν is also k-positive.

Note that if H is separable and k is bounded and B ⊗ B-measurable, then every
f ∈ H is B-measurable, see e.g. [35, Lemma 4.25], and hence σ(H) ⊂ B. By part
iii) of Lemma 6.1 we thus find τ(H) ⊂ σ(H) ⊂ B. In other words, the assumption
τ(H) ⊂ B, which will occur frequently, is automatically satisfied for such H .

The following simple lemma gives a first glance at the importance of k-positive
measures.

Lemma 2.6. Let (T,B, ν) be a measure space and k be a kernel on T with RKHS H
such that τ(H) ⊂ B. If ν is k-positive, then Ik : H → L2(ν) is injective and k = k1

T .

Let us now collect a set of assumptions frequently used when dealing with k-
positive measures.

Assumption CK. Let (T,B, ν) be a σ-finite and complete measure space and k be
a kernel on T with RKHS H such that τ(H) ⊂ B and ν is k-positive. Furthermore,
Assumption K is satisfied.

With these preparations we are now in the position to improve the result on bounded
kβS from [36, Theorem 5.3].

Theorem 2.7. Let Assumption CK be satisfied. Furthermore, assume that for some
0 < β ≤ 1, we have [

L2(ν), [H]∼
]
β,2

↪→ L∞(ν) . (20)

Then, (14) holds for S := T , the resulting kernel kβT is bounded, and τ(Hβ
T ) = τ(H).
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Note that under the assumptions of Theorem 2.7 we also have
∑
i∈I µ

β
i < ∞

provided that ν is finite, see [36, Theorem 5.3]. In addition, there is a partial converse,
which does not need any continuity assumption. Indeed, if we have supi∈I ‖ei‖∞ <

∞, then a simple estimate shows that
∑
i∈I µ

β
i <∞ implies (14) for S := T , and the

resulting kernel kβT turns out to be bounded.
To illustrate the theorem above, let us assume that (T, τ) is a topological space. In

addition, let B be a σ-algebra on T and ν be a σ-finite and strictly positive measure
on B such that B is ν-complete and τ ⊂ B. If k is a weakly τ -continuous kernel on
T , we then obtain τ(H) ⊂ τ ⊂ B, where H is the RKHS of k. Consequently, if H
is compactly embedded into L2(ν), and, for some 0 < β ≤ 1, we have (20), then
the assumptions of Theorem 2.7 are satisfied, and hence kβT is defined and bounded.
Moreover, we have τ(Hβ

T ) = τ(H) ⊂ τ , that is, kβT is weakly τ -continuous. In other
words, modulo the technical assumptions of Theorem 2.7, the embedding (20) ensures
that kβT is defined and inherits the weak continuity from k.

Many of our results are formulated in terms of the eigenvalues (µi)i∈I , but deter-
mining these eigenvalues in a specific situation is often a very difficult task. For many
results, we need, however, only the asymptotic behavior of the eigenvalues. It is well-
known, see e.g. [7, 12], that this behavior can often be determined by entropy numbers.
Our next goal is to make this statement precise. To this end, recall that the i-th (dyadic)
entropy number of a compact, linear operator T : E → F between Banach spaces E
and F is defined by

εi(T ) := inf

{
ε > 0 : ∃ y1, . . . , y2i−1 ∈ F such that TBE ⊂

2i−1⋃
j=1

(yj + εBF )

}
.

Note that in the literature these numbers are usually denoted by ei(T ), instead. Since
this in conflict with our notation for eigenvectors, we departed from this convention.
For an introduction to these numbers we refer to the above mentioned books [7, 12].

Now the following result compares the eigenvalues (µi)i∈I with the entropy num-
bers of Ik. Note that the latter are often known, see (24) below for an example.

Lemma 2.8. Let Assumption K be satisfied. Then, for all i ∈ I , we have

µi ≤ 4ε2
i (Ik) . (21)

Moreover, for all β > 0, there exists a constant cβ > 0 such that

∞∑
i=1

ε2β
i (Ik) ≤ cβ

∑
i∈I

µβi (22)

In particular, for all β > 0 we have
∑
i∈I µ

β
i <∞ if and only if

∑∞
i=1 ε

2β
i (Ik) <∞.

Finally, to describe some some higher order smoothness properties of functions,
we fix a non-empty open and bounded T ⊂ Rd that satisfies the strong local Lipschitz
condition of [1, p. 83]. Note that the strong local Lipschitz condition is satisfied for
e.g. the interior of [0, 1]d or open Euclidean balls. We write L2(T ) for the L2-space
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with respect to the Lebesgue measure on T . For m ∈ N0 and p ∈ [1,∞] we denote the
Sobolev space of smoothness m by Wm,p(T ), that is

Wm,p(T ) :=
{
f ∈ Lp(T ) : D(α) exists and D(α)f ∈ Lp(T ) for all α ∈ Nd0 with |α| ≤ m

}
,

where, as usual, D(α)f denotes the weak α-partial derivative of f . For notational sim-
plicity, we further write Wm(T ) := Wm,2(T ). Recall Sobolev’s embedding theorem,
see e.g. [1, Theorem 4.12], which ensures Wm(T ) ↪→ C(T ) for all m > d/2, where
C(T ) denotes the space of continuous functions defined on the closure T of T . For
such m we can thus view Wm(T ) as an RKHS on T . Following tradition, we will,
however, not notationally distinguish between the cases in which Wm(T ) is viewed
as a space of equivalence classes or as a space of functions, since the meaning of the
symbol Wm(T ) will always be clear from the context.

We further need fractional versions of Sobolev spaces and generalizations of them.
To this end recall from [1, p. 230] that the Besov spaces of smoothness s > 0 are given
by

Bsp,q(T ) :=
[
Lp(T ),Wm,p(T )

]
s/m,q

, (23)

where m > s is an arbitrary natural number and p, q ∈ [1,∞].
Recall that for s > d/2, we again have a continuous embeddingBs2,2(T ) ↪→ C(T ),

see [1, Theorem 7.37]. Moreover, we have Bm2,2(T ) = Wm(T ) for all integers m ≥ 1,
see [1, p. 230], and for this reason we often use the notation W s(T ) := W s,2(T ) :=
Bs2,2(T ) for all s > 0. Note that with this notation, the equality in (23) with p = q = 2
actually holds for allm > s by the reiteration property of the real interpolation method,
see again [1, p. 230]. Finally, for 0 < s < 1 and p ∈ [1,∞], we have by [37, Lemma
36.1 and p. 170]

Bsp,p(T ) =
{
f ∈ Lp(T ) : ‖f‖T,s,p <∞

}
,

where

‖f‖pT,s,p :=

∫
T

∫
T

|f(r)− f(t)|p

|r − t|d+sp
dr dt

with the usual modification for p = ∞. Similarly, if s > 1 is not an integer, Bsp,p(T )
equals the fractional Sobolev-Slobodeckij spaces, i.e. we have

Bsp,p(T ) =
{
f ∈W bscp,p : ‖D(α)f‖T,s,p <∞ for all α ∈ Nd0 with |α| = bsc

}
.

We refer to [37, p. 156] and [9] for details. In particular, Bs∞,∞(T ) is the space of
s-Hölder continuous functions for all 0 < s < 1.

Let us finally recall some entropy estimates related to fractional Sobolev spaces.
To this end, let T ⊂ Rd be a bounded subset that satisfies the strong local Lipschitz
condition and T = intT , where intA denotes the interior of A. Then [12, p. 151]
shows that, for all s > d/2, there exist constants c1 and c2 such that

c1i
−s/d ≤ εi

(
id : W s(T )→ L2(T )

)
≤ c2i−s/d (24)

for all i ≥ 1, where we used the notation W s(T ) = Bs2,2(T ) introduced above.
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3 Karhunen-Loève Expansions For Generic Processes
The goal of this section is to establish a Karhunen-Loève expansion that does not re-
quire the usual assumptions such as compact index sets T or continuous kernels k. To
this end, we first show that under very generic assumptions the covariance function of
a centered, second-order process satisfies Assumption K, so that the theory developed
in Section 2 is applicable. We then repeat the classical Karhunen-Loève approach and
combine it with some aspects from Section 2.

In the following, let (Ω,A, P ) be a probability space and (T,B, ν) be a σ-finite
measure space. Given a stochastic process (Xt)t∈T on Ω, we denote the path t 7→
Xt(ω) of a given ω ∈ Ω by X(ω). Moreover, we call the process (A⊗B)-measurable,
if the map X : Ω × T → R defined by (ω, t) 7→ Xt(ω) is measurable. In this case,
each path is obviously B-measurable.

Let us assume thatX is centered, second-order, that isXt ∈ L2(P ) and EPXt = 0
for all t ∈ T . Then the covariance function k : T × T → R is given by

k(s, t) := EPXsXt , s, t ∈ T .

It is well-known, see e.g. [4, p. 57], that the covariance function is symmetric and
positive semi-definite, and thus a kernel by the Moore-Aronszajn theorem, see e.g. [35,
Theorem 4.16].

Let us now additionally assume that ν is suitably chosen in the sense of X ∈
L2(P ⊗ ν). For P -almost all ω ∈ Ω, we then have X(ω) ∈ L2(ν). For such X , the
following lemma collects some additional properties of the covariance function.

Lemma 3.1. Let (Ω,A, P ) be a probability space and (T,B, ν) be a σ-finite measure
space. In addition, let (Xt)t∈T ⊂ L2(P ) be a centered and (A ⊗ B)-measurable
stochastic process such that X ∈ L2(P ⊗ ν). Then its covariance function k : T ×
T → R is measurable and we have∫

T

k(t, t) dν(t) <∞ .

Consequently, the RKHS H of k is compactly embedded into L2(ν) and the corre-
sponding integral operator Tk : L2(ν)→ L2(ν) is nuclear.

The lemma above in particular shows that for a stochastic process X ∈ L2(P ⊗ ν)
the RKHS H of its covariance function k is compactly embedded into L2(ν). Con-
sequently, Theorem 2.1 applies. Thus, let us assume that we have fixed families
(ei)i∈I ⊂ H and (µi)i∈I that satisfy the assertions of Theorem 2.1. For i ∈ I we
then define Zi : Ω→ R by

Zi(ω) :=

∫
T

Xt(ω)ei(t) dν(t) (25)

for all ω ∈ Ω \N , where N ⊂ Ω is a measurable subset satisfying with P (N) = 0 and
X(ω) ∈ L2(ν) for all ω ∈ Ω \ N . For ω ∈ N we further write Zi(ω) := 0. Clearly,
each Zi is measurable and Zi(ω) = 〈[X(ω)]∼, [ei]∼〉L2(ν) for P -almost all ω ∈ Ω.

Having finished these preparations we can now formulate our assumptions on the
process X that will be used throughout the rest of this work.
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Assumption X. Let (Ω,A, P ) be a probability space and (T,B, ν) be a σ-finite mea-
sure space. In addition, let (Xt)t∈T ⊂ L2(P ) be a centered and (A⊗ B)-measurable
stochastic process such that X ∈ L2(P ⊗ ν). Moreover, let k be its covariance func-
tion and H be the RKHS of k. Finally, let (ei)i∈I ⊂ H and (µi)i∈I be as in Theorem
2.1 and (Zi)i∈I be defined by (25).

The following lemma, which is somewhat folklore, shows that for processes sat-
isfying Assumption X an expansion of the form (1) can be obtained if we replace
ξi := Ψ−1(

√
µiei) by µ−1/2

i Zi. The proof of this lemma does not deviate much from
the one needed for the classical Karhunen-Loève expansion, but since the traditional
assumptions for this expansion are more restricted and the lemma itself is the very
foundation of our following results we have included it for the sake of completeness.

Lemma 3.2. Let Assumption X be satisfied. Then, for all i, j ∈ I and t ∈ T , we have
Zi ∈ L2(P ) with EPZi = 0 and

EPZiZj = µiδi,j , (26)
EPZiXt = µiei(t) . (27)

Moreover, for all finite J ⊂ I and all t ∈ T we have∥∥∥Xt −
∑
j∈J

Zjej(t)
∥∥∥2

L2(P )
= k(t, t)−

∑
j∈J

µje
2
j (t) , (28)

and, for a fixed t ∈ T , the following statements are equivalent:

i) With convergence in L2(P ) we have

[Xt]∼ =
∑
i∈I

[Zi]∼ei(t) . (29)

ii) We have
k(t, t) =

∑
i∈I

µie
2
i (t) . (30)

Moreover, if, for some t ∈ T , we have (29), then the convergence in (29) is necessarily
unconditional in L2(P ) by (28). Finally, there exists a measurable N ⊂ Ω such that
for all ω ∈ Ω \N we have

[X(ω)]∼ ∈ (kerTk)⊥ = span{[ei]∼ : i ∈ I}
L2(ν)

. (31)

Recall that for continuous kernels k over compact metric spaces T and strictly
positive measures ν, Equation (30) is guaranteed by the classical theorem of Mercer for
all t ∈ T .. Moreover, since the convergence in (30) is also monotone and t 7→ k(t, t)
is continuous, Dini’s theorem shows in this case, that the convergence in (30), and by
(28) also in (29), is uniform in t. In the general case, however, (30) may no longer be
true. Indeed, the following proposition characterizes when (30) holds. In addition, it
shows that for separable H Equation (29) holds at least ν-almost everywhere.
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Proposition 3.3. Let Assumption X be satisfied. Then the following statements are
equivalent:

i) The family (
√
µiei)i∈I is an ONB of H .

ii) The operator Ik : H → L2(ν) is injective.

iii) For all t ∈ T we have (29).

Moreover, if H is separable, there exists a measurable N ⊂ T with ν(N) = 0 such
that (29) holds with unconditional convergence in L2(P ) for all t ∈ T \N .

Note that for k-positive measures ν the injectivity of Ik : H → L2(ν) is automati-
cally satisfied by Lemma 2.6, and thus we have (29) for all t ∈ T . Moreover note that
the injectivity of Ik must not be confound with the injectivity of Tk. Indeed, the latter
is equivalent to Ik : H → L2(ν) having a dense image, see (7) and (11). Moreover,
the injectivity of Tk is also equivalent to (|ei]∼)i∈I being an ONB of L2(ν), see (9).

Due to the particular version of convergence in (29), Proposition 3.3 is useful for
approximating the distribution of Xt at some given time t, but useless for approximat-
ing the paths of the process X . This is addressed by the following result, which is the
generic version of (2) and as such the first new result of this section.

Proposition 3.4. Let Assumption X be satisfied. Then there exists a measurableN ⊂ Ω
with P (N) = 0 such that for all ω ∈ Ω \N we have

[X(ω)]∼ =
∑
i∈I

Zi(ω)[ei]∼ , (32)

where the convergence is unconditionally in L2(ν). Moreover, for all J ⊂ I , we have∫
Ω

∥∥∥ [X(ω)]∼ −
∑
j∈J

Zj(ω)[ej ]∼

∥∥∥2

L2(ν)
dP (ω) =

∑
i∈I\J

µi . (33)

In particular, with unconditional convergence in L2(P ⊗ ν), it holds

[X]∼ =
∑
i∈I

[Zi]∼[ei]∼ .

Equation (32) shows that almost every path can be approximated using partial sums∑
j∈J Zj [ej ]∼ while (33) exactly specifies the average speed of convergence for such

an approximation. In particular, (33) shows that any meaningful speed of convergence
requires stronger summability assumptions on the sequence (µi)i∈I of eigenvalues.

Corollary 3.5. Let Assumption X be satisfied and Ψ : L2(X) → H be the Loève
isometry, where

L2(X) := span
{

[Xt]∼ : t ∈ T
}L2(P )

denotes the Cameron-Martin space. Then, for all i ∈ I , we have

[Zi]∼ =
√
µiΨ

−1(ei) ,

and the family (µ
−1/2
i [Zi]∼)i∈I is an ONS of L2(X). Moreover, it is an ONB, if and

only if (
√
µiei)i∈I is an ONB of H .
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Let us finally consider the case of Gaussian processes. To this end, let us recall
that a process (Xt)t∈T is called Gaussian, if, for all n ≥ 1, a1, . . . , an ∈ R, and
t1, . . . , tn ∈ T , the random variable

∑n
i=1 aiXti has a normal distribution.

The following lemma shows that for Gaussian processes, the Zi’s are independent,
normally distributed random variables.

Lemma 3.6. Let (Xt)t∈T be a Gaussian process for which Assumption X is satisfied.
Then the random variables ([Zi]∼)i∈I are independent and for all i ∈ I , we have
Zi ∼ N (0, µi).

Our final result in this section in particular shows that essentially all reasonable
sequences of coefficient variables (Zi)i∈I can occur in the class of processes satisfying
Assumption X.

Lemma 3.7. Let Assumption K be satisfied with
∑
i∈I µi < ∞, (Ω,A, P ) be a prob-

ability space, and (Zi)i∈I ⊂ L2(P ) be a sequence of centered random variables such
that

EPZiZj = µiδi,j

for all i, j ∈ I . For t ∈ T , we define

Xt :=
∑
i∈I

Ziei(t) , (34)

where the series convergences unconditionally in L2(P ). Then (Xt)t∈T ⊂ L2(P ) is a
centered, (A⊗ B)-measurable process with X ∈ L2(P ⊗ ν) and covariance function
k1
T . Moreover, the Zi satisfy (25), i.e. we have Zi(ω) = 〈[X(ω)]∼, [ei]∼〉L2(ν) for
P -almost all ω ∈ Ω and all i ∈ I .

4 Sample Paths Contained in Interpolation Spaces
In this section we first characterize when the paths of the process are not only contained
in L2(ν) but actually in an interpolation spaces between L2(ν) and H . In particular,
it turns out that stronger summability assumptions on the sequence (µi)i∈I imply such
path behavior, and in this case the average approximation error speed of the Karhunen-
Loève expansion measured in the interpolation space can be exactly described by the
behavior of (µi)i∈I . Moreover, we will see that for Gaussian processes, the summabil-
ity assumption is actually equivalent to the path behavior. Finally, we apply the devel-
oped theory to processes whose RKHS are contained in fractional Sobolev spaces.

Let us begin with the following theorem, which characterizes when a single path is
contained in a suitable interpolation space.

Theorem 4.1. Let Assumption X be satisfied, β ∈ (0, 1), and N ⊂ Ω be the measur-
able P -zero set we obtain from Proposition 3.4. Then for all ω ∈ Ω \N and all finite
J ⊂ I we have ∥∥∥∑

j∈J
Zj(ω)[ej ]∼

∥∥∥2

[H]1−β∼
=
∑
j∈J

µβ−1
j Z2

j (ω) . (35)

Moreover, for each ω ∈ Ω \N , the following statements are equivalent:
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i) We have
∑
i∈I µ

β−1
i Z2

i (ω) <∞.

ii) We have [X(ω)]∼ ∈ [H]1−β∼ .

iii) We have [X(ω)]∼ ∈ [L2(ν), [H]∼]1−β,2.

Moreover, if one and thus all statements are true for a fixed ω ∈ Ω\N , then (35) holds
for all J ⊂ I , and the convergence in (32) is actually unconditional in the interpolation
space [L2(ν), [H]∼]1−β,2.

By Theorem 4.1 we immediately see that almost all paths of the process X are
contained in the space [L2(ν), [H]∼]1−β,2, if and only if∑

i∈I
µβ−1
i Z2

i (ω) <∞ (36)

for P -almost all ω ∈ Ω. Moreover, in this case the convergence in (32) is P -
almost surely unconditional in the space [L2(ν), [H]∼]1−β,2. Note that in the case
of [L2(ν), [H]∼]1−β,2 ↪→ L∞(ν) the latter convergence implies L∞(ν)-convergence
of the Karhunen-Loève Expansion in (32) for P -almost all ω ∈ Ω. In Corollary 5.5,
where we will consider this embedding situation again, we will see that significantly
more can be said.

To further illustrate Theorem 4.1, let us fix an ω ∈ Ω for which [X(ω)]∼ ∈ [H]1−β∼
and (32) hold. Then, for all α ∈ [β, 1], we have both [X(ω)]∼ ∈ [H]1−α∼ and

[X(ω)]∼ =
∑
i∈I

Zi(ω)[ei]∼ =
∑
i∈I

µ
(α−1)/2
i Zi(ω)

[
µ

(1−α)/2
i ei

]
∼ .

Moreover, ([µ
(1−α)/2
i ei]∼)i∈I is an ONB of [H]1−α∼ , and thus we see that, for each

m ∈ I , the sum
m∑
j=1

Zj(ω)[ej ]∼

is the best approximation of [X(ω)]∼ in [H]1−α∼ for all α ∈ [β, 1] simultaneously.
Integrating (36) with respect to P and using (26) it is not hard to see that (36) is

P -almost surely satisfied, if
∑
i∈I µ

β
i < ∞. The following theorem characterizes this

summability in terms of the path behavior of the process.

Theorem 4.2. Let Assumption X be satisfied. Then, for 0 < β < 1, the following
statements are equivalent:

i) We have
∑
i∈I µ

β
i <∞.

ii) There exists anN ∈ Awith P (N) = 0 such that [X(ω)]∼ ∈ [L2(ν), [H]∼]1−β,2
holds for all ω ∈ Ω \N . Furthermore, Ω \N → [L2(ν), [H]∼]1−β,2 defined by
ω 7→ [X(ω)]∼ is Borel measurable and we have∫

Ω

∥∥∥ [X(ω)]∼

∥∥∥2

[L2(ν),[H]∼]1−β,2
dP (ω) <∞ .
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Moreover, there exist constants C1, C2 > 0 such that, for all J ⊂ I , we have

C1

∑
i∈I\J

µβi ≤
∫
Ω

∥∥∥[X(ω)]∼−
∑
j∈J

Zj(ω)[ej ]∼

∥∥∥2

[L2(ν),[H]∼]1−β,2
dP (ω) ≤ C2

∑
i∈I\J

µβi .

In general, almost sure finiteness in (36) is, of course, not equivalent to
∑
i∈I µ

β
i <

∞, since by (26) this summability describes P -integrability of the random variable
in (36). For Gaussian processes, however, we will see below that both conditions are
in fact equivalent. The following lemma, which basically shows the equivalence of
both notions under a martingale condition on (Z2

i )i∈I , is the key observation in this
direction.

Lemma 4.3. Let Assumption X be satisfied with I = N. In addition, assume that, for
all i ≥ 1, we have Zi ∈ L4(P ) and

EP (Z2
i+1|Fi) = µi+1 , (37)

where Fi := σ(Z2
1 , . . . , Z

2
i ). Finally, assume that there exist constants c > 0 and

α ∈ (0, 1) such that
VarZ2

i ≤ cµ2−α
i (38)

for all i ≥ 1. Then, for all β ∈ (α, 1), the following statements are equivalent:

i) We have
∑
i∈I µ

β
i <∞.

ii) There exists an N ∈ A with P (N) = 0 such that (36) holds for all ω ∈ Ω \N .

Combining the lemma above with Lemma 3.6 we now obtain the announced equiv-
alence for Gaussian processes. It further shows that either almost all or almost no paths
are contained in the considered interpolation space.

Corollary 4.4. Let (Xt)t∈T be a Gaussian process for which Assumption X is satisfied.
Then, for 0 < β < 1, the following statements are equivalent:

i) We have
∑
i∈I µ

β
i <∞.

ii) There exists an N ∈ A with P (N) = 0 such that (36) holds for all ω ∈ Ω \N .

iii) There exists an A ∈ A with P (A) > 0 such that [X(ω)]∼ ∈ [L2(ν), [H]∼]1−β,2
holds for all ω ∈ A.

Moreover, all three statements are equivalent to the part ii) of Theorem 4.2.

So far, the developed theory is rather abstract. Our final goal in this section is to
illustrate how our result can be used to investigate path properties of certain families
of processes. These considerations will be based on the following corollary, which,
roughly speaking, shows that the sample paths of a process are about d/2-less smooth
than the functions in its RKHS.
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Corollary 4.5. Let T ⊂ Rd be a bounded subset that satisfies the strong local Lipschitz
condition and T = intT . Moreover, let ν be the Lebesgue measure on T and (Xt)t∈T
be a stochastic process satisfying Assumption X. Assume that H ↪→ Wm(T ) for some
m > d/2. Then, for all s ∈ (0,m− d/2), we have

[X(ω)]∼ ∈ Bs2,2(T ) (39)

for P -almost all ω ∈ Ω. Moreover, there exists a constant C > 0 such that, for all
J ⊂ I , we have∫

Ω

∥∥∥[X(ω)]∼ −
∑
j∈J

Zj(ω)[ej ]∼

∥∥∥2

Bs2,2(T )
dP (ω) ≤ C

∑
i∈I\J

µ
1−s/m
i ,

and if H = Wm(T ), there exist constants C1, C2 > 0 such that for all i ∈ I we have

C1i
− 2(m−s)

d +1 ≤
∫
Ω

∥∥∥[X(ω)]∼ −
i∑

j=1

Zj(ω)[ej ]∼

∥∥∥2

Bs2,2(T )
dP (ω) ≤ C2i

− 2(m−s)
d +1 .

Finally, if (Xt)t∈T is a Gaussian process withH = Wm(T ), then the results are sharp
in the sense that (39) does not hold with strictly positive probability for s := m− d/2.

Note that for Gaussian processes with H = Wm(T ), Corollaries 4.5 and 4.4 show
that (39) holds with some positive probability, if and only if, it holds with probability
one, and the latter is also equivalent to m > s+ d/2.

For general processes with H = Wm(T ) the smoothness exponent s is also sharp
in the sense that (39) does not hold for s := m−d/2 and P -almost all ω ∈ Ω, provided
that the process satisfies the assumptions of Lemma 4.3 for some α ∈ (0, d

2m ). The
proof of this generalization is an almost literal copy of the proof of Corollary 4.5, and
thus we decided to omit it.

Corollary 4.5 provides analytic properties of the sample paths in terms of Bs2,2(T ),
whenever H ↪→ Wm(T ) is known. For weakly stationary processes the same result
has been recently shown in [32, Theorem 3 and Remark 1] by different techniques.

Fortunately, an inclusion of the form H ↪→ Wm(T ) is known for many classes
of processes, or kernels, respectively. The following, by no means complete, list of
examples illustrate this.

We begin with a class of processes which include Lévy processes.

Example 4.6. Let (Xt)t∈T be a stochastic process satisfying Assumption X for T =
[0, t0] and the Lebesgue measure ν on T . Furthermore, assume that the kernel is given
by

k(s, t) = σ2 ·min{s, t} , s, t ∈ [0, t0],

where σ > 0 is some constant. It is well-known, see e.g. [16, Example 8.19], that
the RKHS of this kernel is continuously embedded into W 1(T ). Consequently, for all
s ∈ (0, 1/2), we have

[X(ω)]∼ ∈ Bs2,2(T )
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for P -almost all ω ∈ Ω. Note that the considered class of processes include Lévy
processes, and for these processes, it has been shown in [15] by different means that
their paths are also contained in Bsp,∞(T ) for all s ∈ (0, 1/2) and p > 2 with sp < 1.
Interestingly, this is is equivalent to our result above.

Indeed, if we fix a pair of s and p satisfying the assumptions of [15], we have s0 :=
s−1/p+1/2 < 1/2. For ε > 0 with s0+ε < 1/2 we then obtain s0+ε−1/2 > s−1/p
and s0 + ε > s and thus Bs0+ε

2,2 (T ) ↪→ Bsp,∞(T ) by [30, p. 82]. Consequently, our
result implies that of [15]. Conversely, if we fix an s < 1/2, there is an ε > 0 with
s + 2ε < 1/2, and for s0 := s + ε and p0 := (s + 2ε)−1, we have s0 > s and
s0−1/p0 > s−1/2, so that Bs0p0,∞(T ) ↪→ Bs2,2(T ) by [30, p. 82]. Since we also have
s0 < 1/2, p0 > 2 and s0p0 < 1, we then see that the result of [15] implies ours.

Finally, for the Brownian motion, it is well-known that there exists a version whose
sample paths are contained in Bs∞,∞(T ) for all s ∈ (0, 1/2), and finer results can be
found in [29].

The following example includes the Ornstein-Uhlenbeck processes. Note that al-
though the kernel in this example look quite different to the one of Example 4.6 the
results on the smoothness properties of the paths are identical.

Example 4.7. Let (Xt)t∈T be a stochastic process satisfying Assumption X for T =
[0, t0] and the Lebesgue measure ν on T . Furthermore, assume that the kernel is given
by

k(t, t′) = ae−σ|t−t
′| , t, t′ ∈ [0, t0],

where a, σ > 0 are some constants. It is well-known, see e.g. [4, p. 316] and [24,
Example 5C], that the RKHS of this kernel equals W 1(T ) up to equivalent norms.
Consequently, for all s ∈ (0, 1/2), we have

[X(ω)]∼ ∈ Bs2,2(T ) (40)

for P -almost all ω ∈ Ω. Note that the considered class of processes include a specific
form of the Ornstein-Uhlenbeck process, see [16, Example 8.4].

By subtracting the one-dimensional C∞-kernel (t, t′) 7→ ae−σ(t+t′) from k, we see
that (40) also holds for processes having the kernel

k̃(t, t′) = ae−σ|t−t
′| − ae−σ(t+t′) , t, t′ ∈ [0, t0].

Recall that the classical Ornstein-Uhlenbeck processes belong to this class of pro-
cesses.

The following example considers processes on higher dimensional domains with
potentially smoother sample paths. It is in particular interesting for certain statistical
methods, see [34, 28, 27, 40, 13, 39, 33], since the considered family of covariance
functions allows for a high flexibility in these methods. Moreover, note that for d = 1
and α = 1/2 the previous example is recovered.

Example 4.8. Let T ⊂ Rd be an open and bounded subset satisfying the strong local
Lipschitz condition and ν be the Lebesgue measure on T . Furthermore, let (Xt)t∈T be
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a stochastic process satisfying Assumption X. Assume that its covariance is a Matérn
kernel of order α > 0, that is

k(s, t) = a
(
σ‖s− t‖2

)α
Hα

(
σ‖s− t‖2

)
, s, t ∈ T,

where a, σ > 0 are some constants and Hα denotes the modified Bessel function of the
second type of order α. Then up to equivalent norms the RKHS Hα,σ(T ) of this kernel
is Bα+d/2

2,2 (T ), see [41, Corollary 10.13] together with [31, Theorem 5.3], as well as
[6] for a generalization. Consequently, for all s ∈ (0, α), we have

[X(ω)]∼ ∈ Bs2,2(T )

for P -almost all ω ∈ Ω.
For d = 1 and α = k+ r with k ∈ N and r ∈ (1/2, 1], it was shown in [8], cf. also

[14], that there exists a version of the process with k-times continuously differentiable
paths. Our result improves this. Indeed, for d and α as above, we clearly find an s ∈
(0, α) with s−k > 1/2 and since, for this s, we have Bs2,2(T ) ↪→ Ck(T ), see e.g. [38,
Theorem 8.4], we see that P -almost all paths X(ω) equal ν-almost everywhere a k-
times continuously differentiable function. We will show in the next section that there
actually exist a version (Yt)t∈T of the process with Y (ω) ∈ Bs2,2(T ) almost surely, so
that our result does improve the above mentioned classical result in [8].

5 Sample Paths Contained in RKHSs
So far we have seen that, under some summability assumptions, the ν-equivalence
classes of the process are contained in a suitable interpolation space. Now recall from
Section 2 that these interpolation spaces can sometimes be viewed as RKHSs, too.
The goal of this section is to present conditions under which a suitable version of
the process has actually its paths in this RKHS. In particular, we will see that under
stronger summability conditions on the eigenvalues such a path behavior occurs, in a
certain sense, automatically.

Let us begin by fixing the following set of assumptions, which in particular ensure
that k1−β

S can be constructed.

Assumption KS. Let Assumption K be satisfied. Moreover, let 0 < β < 1 and S ⊂ T
be a measurable set with ν(T \ S) = 0 such that, for all t ∈ S, we have∑

i∈I
µie

2
i (t) = k(t, t) (41)∑

i∈I
µ1−β
i e2

i (t) <∞ . (42)

Note that if H is separable, we can always find a set S of full measure ν for which
(41) holds, see [36, Corollary 3.2]. For suchH , Assumption KS thus reduces to assum-
ing that we can construct k1−β

S , and the latter is possible, if, e.g.
∑
i∈I µ

1−β
i <∞, see

(18). Moreover, recall from Lemma 2.6 that (41) holds for S = T if Assumption CK
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is satisfied, and if, in addition, we have [L2(ν), [H]∼]1−β,2 ↪→ L∞(ν), then Theorem
2.7 shows that (42) also holds for S = T .

Our first result characterizes when a suitable version of our process (Xt)t∈T has its
paths in the corresponding RKHS H1−β

S .

Theorem 5.1. Let Assumptions X and KS be satisfied. Then the following statements
are equivalent:

i) There exists a measurable N ⊂ Ω with P (N) = 0 such that for all ω ∈ Ω \N
we have ∑

i∈I
µβ−1
i Z2

i (ω) <∞ . (43)

ii) There exists a (A ⊗ B)-measurable version (Yt)t∈T of (Xt)t∈T such that, for
P -almost all ω ∈ Ω, we have

Y (ω)|S ∈ H1−β
S . (44)

Moreover, if one and thus both statements are true, we have for P -almost all ω ∈ Ω

Y (ω)|S =
∑
i∈I

Zi(ω)(ei)|S , (45)

where the convergence is unconditional in H1−β
S .

If (43) isP -almost surely satisfied then Theorem 5.1 strengthens Theorem 4.1 in the
sense that [X(ω)]∼ ∈ [H]1−β∼ is replaced by Y (ω)|S ∈ H1−β

S . Moreover, unlike (35),
which only gives [H]1−β∼ -convergence of the Karhunen-Loève Expansion in (32), the
expansion (45) converges in H1−β

S , which in particular implies pointwise convergence
at all t ∈ S.

We already know that the Fourier coefficient condition (43) can be ensured by a
summability condition on the eigenvalues. Like in Theorem 4.2, this summability can
be characterized by the path behavior of the version (Yt)t∈T as the following theorem
shows.

Theorem 5.2. Let Assumptions X and KS be satisfied. Then the following statements
are equivalent:

i) We have
∑
i∈I µ

β
i <∞.

ii) We have k1
S � k1−β

S .

iii) There exists a (A ⊗ B)-measurable version (Yt)t∈T of (Xt)t∈T such that, for
P -almost all ω ∈ Ω, we have Y (ω)|S ∈ H1−β

S , and∫
Ω

‖Y (ω)|S‖2H1−β
S

dP (ω) <∞ . (46)
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Let us compare the previous two theorems in the case of S = T with the results
of Lukić and Beder in [22]. Their Theorem 5.1 shows that k1

T � k1−β
T implies (44),

and, their Corollary 3.2 conversely shows that (46) implies k1
T � k1−β

T . Clearly, the
difference between these two implications is exactly the difference between (46) and
(44), and this difference is exactly described by Theorems 5.1 and 5.2. While in this
sense, the latter two theorems completely clarify the situation for the space H1−β

T , it
seems fair to say that the less exact results in [22] are more general as arbitrary RKHS
H̄ satisfying H ↪→ H̄ are considered.

The following corollary, which considers the case of Gaussian processes, basically
recovers the findings of [22, Section 7]. We mainly state it here for the sake of com-
pleteness.

Corollary 5.3. Let (Xt)t∈T be a Gaussian process for which Assumptions X and KS
are satisfied. Then the following statements are equivalent:

i) We have
∑
i∈I µ

β
i <∞.

ii) We have k1
S � k1−β

S .

iii) There exists a (A ⊗ B)-measurable version (Yt)t∈T of (Xt)t∈T such that, for
P -almost all ω ∈ Ω, we have

Y (ω)|S ∈ H1−β
S .

iv) There exists a (A ⊗ B)-measurable version (Yt)t∈T of (Xt)t∈T and an A ∈ A
with P (A) > 0 such that, for all ω ∈ A, we have

Y (ω)|S ∈ H1−β
S .

For general processes satisfying the assumptions made in Lemma 4.3 for some
α ∈ (0, 1), the equivalences i) ⇔ ii) ⇔ iii) of Corollary 5.3 also hold for all β ∈
(α, 1). Indeed, the implication iii)⇒ i) can be shown by Lemma 4.3, and the remaining
implications actually do not require the Gaussian assumption at all.

If we wish to find an RKHS H̄ that contains the paths of a suitable version of the
process by the results presented so far, we need to know the eigenvalues and eigen-
functions as well as the interpolation spaces exactly. However, obtaining the exact
eigenvalues and -functions of Tk is often a very difficult, if not impossible, task, and
the interpolation spaces may not be readily available, either. The following two corol-
laries address this issue by presenting a sufficient condition for the existence of such
an RKHS H̄ .

Corollary 5.4. Let Assumption X be satisfied, H be separable, and H̄ be an RKHS
on T with kernel k̄ such that H ↪→ H̄ . Let us further assume that H̄ is compactly
embedded into L2(ν) and that

∞∑
i=1

εαi (Ik̄) <∞ (47)

for some α ∈ (0, 1]. Then, for all β ∈ [α/2, 1−α/2], there exists a measurable S ⊂ T
with ν(T \ S) = 0 such that the following statements are true:
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i) Both H1−β
S and H̄1−β

S exist, and we have H1−β
S ↪→ H̄1−β

S .

ii) There exists a (A ⊗ B)-measurable version (Yt)t∈T of (Xt)t∈T such that
Y (ω)|S ∈ H1−β

S for P -almost all ω ∈ Ω, and (46) holds.

Corollary 5.4 shows that in order to construct an RKHS containing paths on a set
S of full measure ν we do not necessarily need to know the eigenvalues and -functions
exactly. Instead, it suffices to have an RKHS H̄ withH ↪→ H̄ for which we know both,
entropy number estimates of the map Ik̄ and the interpolation spaces of H̄ with L2(ν).
Namely, if (47) is satisfied, then the version (Yt)t∈T obtained by Corollary 5.4 satisfies
Y (ω)|S ∈ H̄1−β

S for P -almost all ω ∈ Ω and combining this with H1−β
S ↪→ H̄1−β

S

we see that we have H̄1−β
S -convergence in (45). Similarly to Corollary 4.5 it is further

possible to upper bound the average speed of H̄1−β
S -convergence in (45) with the help

of the entropy numbers of Ik̄. We omit the details for the sake of brevity.
Moreover, Y (ω)|S ∈ H1−β

S ⊂ H̄1−β
S for P -almost all ω ∈ Ω shows that P -almost

all paths also enjoy a representation of the form

Y (ω)|S =
∑
j∈J

Z̄j(ω)ēj ,

where the convergence is unconditional in H̄1−β
S , (ēj)j∈J is the family obtained by

Theorem 2.1 for the operator Tk̄1S and (Z̄j)j∈J is a suitable family of random variables

such that
∑
j∈J µ̄

β−1
j Z̄2

j (ω) <∞ for P -almost all ω ∈ Ω. Following the logic above,
this representation may be easier at hand than the standard Karhunen-Loève expansion,
but its deeper investigation is beyond the scope of this paper.

The following corollary provides a result in the same spirit for the case S = T .
In particular, it provides two sufficient conditions under which there exists an RKHS
containing almost all paths of a suitable version. This answers a question raised in [21].

Corollary 5.5. Let Assumption X be satisfied, H be separable, and H̄ be an RKHS on
T with kernel k̄ such that both H ↪→ H̄ and H̄ is compactly embedded into L2(ν).
Furthermore, assume that (T,B, ν) and k̄ satisfy Assumption CK, and that, for some
β ∈ (0, 1/2], one of following assumptions are satisfied:

i) The eigenfunctions (ēj)j∈J of Tk̄ are uniformly bounded, i.e. supj∈J ‖ēj‖∞ <
∞, and we have

∞∑
i=1

ε2β
i (Ik̄) <∞, .

ii) We have [L2(ν), [H̄]∼]1−β,2 ↪→ L∞(ν).

The the following statements hold:

i) The kernels k1−β
T and k̄1−β

T exist, are bounded, and we have H1−β
T ↪→ H̄1−β

T .

ii) There exists a (A⊗B)-measurable version (Yt)t∈T of (Xt)t∈T such that Y (ω) ∈
H1−β
T for all ω ∈ Ω, and (46) holds.
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iii) All paths of Y are bounded and τ(H)-continuous.

iv) For P -almost all ∈ Ω, the expansion (45) converges uniformly in t on S = T .

v) If there is a separable and metrizable topology τ on T such that τ(H) ⊂ τ and
almost all paths of X are τ -continuous, then X(ω) = Y (ω) for P -almost all
ω ∈ Ω. In particular, this holds if almost all paths of X are τ(H)-continuous
and τ(H) is Hausdorff.

Note that in the situation of part iv) of Corollary 5.5 the Karhunen-Loève Ex-
pansion in (32) converges in `∞(T ) for P -almost all ω ∈ Ω. Moreover, note the
τ(H)-continuity of the paths obtained in iii) and iv) is potentially stronger than the
τ -continuity, where τ is a “natural” topology of T .

The last result of this section improves Corollary 4.5. Note that it directly applies
to the processes considered in Example 4.8.

Corollary 5.6. Let T ⊂ Rd be a bounded subset that satisfies the strong local Lipschitz
condition and T = intT . Moreover, let ν be the Lebesgue measure on T and (Xt)t∈T
be a stochastic process satisfying Assumption X. Assume that H ↪→ Wm(T ) for some
m > d. Then the following statements hold

i) For all s ∈ (d/2,m−d/2), there exists a (A⊗B)-measurable version such that,
for all ω ∈ Ω, we have

Y (ω) ∈ Bs2,2(T ) . (48)

Moreover, for P -almost all ω ∈ Ω we have with unconditional convergence in
Bs2,2(T ):

Y (ω) =
∑
i∈I

Zi(ω)ei . (49)

ii) If (Xt)t∈T is a Gaussian process with H = Wm(T ), then the results are sharp
in the sense that (48) does not hold with strictly positive probability for s :=
m− d/2.

By [1, Theorem 7.37], we immediately see that the convergence in (49) is uniform
in t. Moreover, if s > k+ 1/2 for some k ∈ N, then the convergence is also in Ck(T ),
see e.g. [38, Theorem 8.4].

Finally, like for Corollary 4.5, the sharpness result in ii) can be extended to a
broader class of processes. We refer to our remarks following Corollary 4.5.

6 Proofs

6.1 Proofs of Preliminary Results

Proof of Lemma 2.2: i). Let us pick an f ∈ Ĥβ
S . Then there exists a sequence

(ai) ∈ `2(I) such that f =
∑
i∈I aiµ

β/2
i 1Sei, where the convergence is in Ĥβ

S and
thus also pointwise. Consequently, we find

1Rf = 1R
∑
i∈I

aiµ
β/2
i 1Sei =

∑
i∈I

aiµ
β/2
i 1R1Sei =

∑
i∈I

aiµ
β/2
i 1Rei .
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Now the assertion easily follows from the definitions of the spaces Ĥβ
S and Ĥβ

R.
ii). Can be shown analogously to i).
ii). Again, this can be shown analogously to i).
iv). We obviously have [êi]∼ = [ei]∼ for all i ∈ I . Moreover, for (ai) ∈ `2(I) we

have [∑
i∈I

aiµ
β/2
i êi

]
∼

=
∑
i∈I

aiµ
β/2
i [êi]∼

with convergence in L2(ν) by the continuity of Ik̂βS : Ĥβ
S → L2(ν). Combining both

with the definition of the spaces Ĥβ
S and [H]β∼ yields the assertion.

For the proof of Lemma 2.3, we need to recall some basics on singular numbers.
To begin with, let us recall that for an arbitrary compact operator S : H1 → H2 acting
between two Hilbert spaces H1 and H2, the i-th singular number, see e.g. [5, p. 242] is
defined by

si(S) :=
√
µi(S∗S) , (50)

where µi(S∗S) denotes the i-th non-zero eigenvalue of the compact, positive and self-
adjoint operator S∗S. As usual, these eigenvalues are assumed to be ordered with
duplicates according to their geometric multiplicities. In addition, we extend the se-
quence of eigenvalues by zero, if we only have finitely many non-zero eigenvalues.
Now, for a compact, self-adjoint and positive T : H → H , this definition gives

si(T ) =
√
µi(T ∗T ) =

√
µi(T 2) = µi(T ) , i ≥ 1, (51)

where the last equality follows from the classical spectral theorem for such T , see
e.g. [17, Theorem V.2.10 on page 260] or [42, Satz VI.3.2]. For compact S : H1 → H2

and T := S∗S we thus find

s2
i (S) = µi(S

∗S) = µi(T ) = si(T ) (52)

for all i ≥ 1. Consequently, we have (si(S)) ∈ `2 if and only if (si(T )) ∈ `1.
Moreover, T is nuclear, if and only if (si(T )) ∈ `1, see e.g. [42, Satz VI.5.5] or [5,
p. 245ff], while S is Hilbert-Schmidt if and only if (si(S)) ∈ `2, see e.g. [5, p. 250],
[26, Prop. 2.11.17], or [42, p. 246].

Proof of Lemma 2.3: We first observe that, for i ∈ I , we have

·|S(µ
1/2
i ei) = µ

1/2
i ei|S = µ

(1−β)/2
i µ

β/2
i ei|S . (53)

Since (µ
1/2
i ei)i∈I and (µ

β/2
i ei|S)i∈I are ONBs of H1

T and Hβ
S , respectively, we obtain

the following commutative diagram

H1
T Hβ

S

`2 `2

-

?

6

-

·|S

Ψ1 Ψβ

D
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where Ψi denote the isometric isomorphisms that map each Hilbert space element to
its sequence of Fourier coefficients with respect to the ONBs above, and D is the
diagonal operator with respect to the sequence (µ

(1−β)/2
i )i∈I . Since the latter sequence

converges to zero, D is compact, and thus so is the restriction operator.
i)⇔ ii). We first observe that (53) yields∥∥ ·|S(

√
µiei)

∥∥2

HβS
= µ1−β

i , i ∈ I.

Since (
√
µiei)i∈I is an ONB ofH1

T , the equivalence i)⇔ ii) immediately follows from
the fact, see e.g. [43, p. 243f], that ·|S : H1

T → Hβ
S is Hilbert-Schmidt, if and only if∑

i∈I
‖ ·|S (

√
µiei)‖2ĤβS <∞ .

i)⇔ iii). The restriction operator admits the following natural factorization

H1
T Hβ

S

H1
S

-

@
@
@
@@R �

�
�
���

·|S

·|S Ik1S ,k
β
S

where there restriction operator ·|S : H1
T → H1

S is an isometric isomorphism. Conse-
quently, ·|S : H1

T → Hβ
S is Hilbert-Schmidt, if and only if Ik1S ,kβS is Hilbert-Schmidt.

In view of the desired equivalence, it suffices to show that Ik1S ,kβS is Hilbert-Schmidt,
if and only if Ik1S ,kβS ◦ Sk1S ,kβS is nuclear. However, since Sk1S ,kβS = I∗

k1S ,k
β
S

, this equiva-
lence is a simple consequence of the remarks on singular numbers made in front of this
proof, if we consider the compact operator Ik1S ,kβS : H1

S → Hβ
S for S∗.

Lemma 6.1. Let (T,B) be a measure space and k be a kernel on T with RKHS H and
canonical feature map Φ : T → H . Then the following statements are true:

i) The topology τk is the smallest topology τ on T for which k is τ -continuous.
Moreover, we have

τk = τ
(
Φ : T → (H, ‖ · ‖H)

)
,

where τ(Φ : T → (H, ‖ · ‖H)) denotes the initial topology of Φ with respect to
the norm-topology on H .

ii) The topology τ(H) is the smallest topology τ on T for which Φ is continuous
with respect to the weak topology w on H , that is

τ(H) = τ
(
Φ : T → (H,w)

)
.

In particular, we have τ(H) ⊂ τk, and in general, the converse inclusion is not
even true for T = [0, 1].
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iii) If H is separable and k is bounded, then there exits a pseudo-metric on T that
generates τ(H) and τ(H) is separable. Moreover, we have τ(H) ⊂ σ(H).

iv) If τ(H) ⊂ B, then all f ∈ H are B-measurable.

Proof of Lemma 6.1: i). Both assertions are shown in [35, Lemma 4.29].
ii). Let ι : H → H ′ be the Fréchet-Riesz isometric isomorphism. Then we have

f = (ιf)◦Φ for all f ∈ H by the reproducing property. Let us first prove the inclusion
“⊂”. To this end, we fix an f ∈ H and an open U ⊂ R. We define O := (ιf)−1(U).
Then we have O ∈ w and thus

f−1(U) =
(
(ιf) ◦ Φ

)−1
(U) = Φ−1

(
(ιf)−1(U)

)
= Φ−1(O) ∈ τ(Φ : T → (H,w)) .

The inclusion “⊂” then follows from the fact that the set of considered pre-images
f−1(U) is a sub-base of τ(H). To show the converse inclusion, we fix an O ∈ w for
which there exist an f ∈ H and an open U ⊂ R with O = (ιf)−1(U). Then we find

Φ−1(O) = Φ−1
(
(ιf)−1(U)

)
=
(
(ιf) ◦ Φ

)−1
(U) = f−1(U) ∈ τ(H) .

Since the set of such pre-images Φ−1(O) is a sub-base of τ(Φ : T → (H,w)) we
obtained the desired inclusion.

Finally, τ(H) ⊂ τk directly follows from combining part i) and ii) with the fact that
the norm topology on H is finer than the weak topology. To show that the converse
inclusion does not hold for T = [0, 1], we denote the usual topology on this T by τ .
Then [20] showed that there exists a bounded separately τ -continuous kernel k on T
that is not τ -continuous. This gives τ(H) ⊂ τ by [35, Lemma 4.28] and τk 6⊂ τ , and
thus τk 6⊂ τ(H).

iii). Since H ′ is separable, we know that for every bounded subset A′ ⊂ H ′ the
relative topology w∗|A′ on A′, where w∗ denotes the weak* topology on H ′, is induced
be a metric, see e.g. [23, Corollary 2.6.20]. Moreover, we have ι−1(w∗) = w, where
w is the weak topology on H . For all bounded A ⊂ H , the relative topology w|A on A
is thus induced by a metric. Now k is bounded by assumption, and hence A := Φ(T )
is bounded, see e.g. [35, p. 124]. Consequently, there exists a metric d on A that
generates w|A. Let us consider the map Φ̃ : T → A, defined by Φ̃(t) := Φ(t) for all
t ∈ T . By the already proven part ii) and the universal property of the initial topology
τ(id : A→ (H,w)) = w|A we then find

τ(H) = τ
(
Φ : T → (H,w)

)
= τ

(
Φ̃ : T → (A,w|A)

)
.

From this we easily derive that (t, t′) 7→ d(Φ(t),Φ(t′)) is the desired pseudo-metric.
To see that τ(H) is separable, we recall that closed unit ball BH′ of H ′ is w∗-compact
by Alaoglu’s theorem. Consequently, (BH′ , w

∗
|BH′

) is a compact metric space, and
thus separable. Arguing as above, and using that w|BH = ι−1(w∗|BH′

) is metrizable,
we see that w|A is separable for A := Φ(T ), and hence so is τ(H).

Finally, since τ(H) is the initial topology of H , the collection of sets f−1(O),
where f ∈ H and O ⊂ R open, form a sub-base of τ(H), and since open O ⊂ R are
Borel measurable, we also have f−1(O) ∈ σ(H) for all such f and O. Consequently,
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finite intersections taken from this sub-base are contained in σ(H), too, and the col-
lection of these intersections form a base of τ(H). Now every τ(H)-open set is the
union of such intersections. However, we have just seen that τ(H) is separable and
generated by a pseudo-metric, which by a standard argument shows that τ(H) is sec-
ond countable. Consequently, τ(H) is Lindelöf, see [18, p. 49], that is each open cover
has a countable sub-cover. Consequently, each τ(H)-open set is a countable union of
the above intersections, and thus contained in σ(H).

iv). From τ(H) ⊂ B we conclude that σ(H) ⊂ σ(τ(H)) ⊂ B, which shows the
assertion.

Proof of Lemma 2.6: Let us pick an f ∈ H with f 6= 0. Then {f 6= 0} is τ(H)-open
and non-empty, and thus we have ν({f 6= 0}) > 0, that is Ikf = [f ]∼ 6= 0. Now,
k = k1

T follows from [36, Theorem 3.1].

Lemma 6.2. Let (T, τ) be a topological space, I ⊂ N, and (gi)i∈I be a family of
continuous functions gi : T → R. Then, all t ∈ T , the following statements hold:

i) If
∑
i∈I g

2
i (t) =∞, then, for all M > 0, there exists an open O ⊂ T with t ∈ O

and ∑
i∈I

g2
i (s) > M , s ∈ O .

ii) If
∑
i∈I g

2
i (t) < ∞, then, for all ε > 0, there exists an open O ⊂ T with t ∈ O

and ∑
i∈I

g2
i (s) >

∑
i∈I

g2
i (t)− ε , s ∈ O .

Proof of Lemma 6.2: i). By assumption, there exists a finite J ⊂ I such that∑
i∈J

g2
i (t) > 2M .

Since the g2
i are continuous, there then exist, for all i ∈ J , an openOi ⊂ T with t ∈ Oi

and |g2
i (s)−g2

i (t)| < M/|J | for all s ∈ Oi. For the open setO :=
⋂
i∈J Oi and s ∈ O

we then obtain t ∈ O and∣∣∣∣∑
i∈J

g2
i (s)−

∑
i∈J

g2
i (t)

∣∣∣∣ ≤∑
i∈J
|g2
i (s)− g2

i (t)| < M .

This yields ∑
i∈I

g2
i (s) ≥

∑
i∈J

g2
i (s) >

∑
i∈J

g2
i (t)−M > M .

ii). Let us fix an ε > 0. Then there exists a finite J ⊂ I such that∑
i∈J

g2
i (t) >

∑
i∈I

g2
i (t)− ε .

This time we pick openOi ⊂ T with t ∈ Oi and |g2
i (s)−g2

i (t)| < ε/|J | for all s ∈ Oi.
Repeating the calculations above, we obtain the assertion for 2ε.
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Proof of Theorem 2.7: By our assumption and (13) we have [H]β∼ ↪→ L∞(ν), and
thus [36, Theorem 5.3] shows that there exist an N ∈ B and a constant κ ∈ [0,∞)
such that ν(N) = 0 and∑

i∈I
µβi e

2
i (t) ≤ κ2 , t ∈ T \N. (54)

Moreover, by the definition of τ(H) we know that all ei are τ(H)-continuous.
Let us first show that (14) holds for S := T . To this end, we assume the converse,

that is, there exists a t ∈ T with ∑
i∈I

µβi e
2
i (t) =∞ .

By Lemma 6.2 there then exists an O ∈ τ(H) with t ∈ O and∑
i∈I

µβi e
2
i (s) > κ2 , s ∈ O . (55)

Since ν is assumed to be k-positive, we conclude that ν(O) > 0, and hence there exists
a t0 ∈ O \ N . For this t0 we have both (54) and (55), and thus we have found a
contradiction.

To show that kβT is bounded, we again assume the converse. Then there exists a
t ∈ T such that ∑

i∈I
µβi e

2
i (t) > κ2 + 1 ,

so that by using ε := 1 in part ii) of Lemma 6.2 we again find anO ∈ τ(H) with t ∈ O
and (55). Repeating the arguments above we then obtain a contradiction.

Let us now show that τ(Hβ
T ) = τ(H). To this end, we first fix an f ∈ Hβ

T . Since
(µ
β/2
i ei)i∈I is an ONB of Hβ

T , see [36, Lemma 2.6 and Proposition 4.2], we then have

f =
∑
i∈I

〈
f, µ

β/2
i ei

〉
HβT
µ
β/2
i ei ,

where the convergence is unconditionally in Hβ
T . Since kβT is bounded, convergence in

Hβ
T implies uniform convergence, see e.g. [35, Lemma 4.23], and thus the above series

also converges unconditionally with respect to ‖ · ‖∞. Consequently, f is a ‖ · ‖∞-
limit of a sequence of τ(H)-continuous functions, and thus itself τ(H)-continuous.
From this we easily conclude that τ(Hβ

T ) ⊂ τ(H). To show the converse inclusion
τ(H) ⊂ τ(Hβ

T ) let us recall that the embedding Ik : H → L2(ν) is injective and
H = H1

T by Lemma 2.6. Now the inclusion τ(H) ⊂ τ(Hβ
T ) trivially follows from the

inclusion H1
T ⊂ H

β
T established in [36, Lemma 4.3].

Proof of Lemma 2.8: Let us denote the i-th approximation number of a bounded linear
operator T : E → F between Banach spaces E and F by ai(T ), that is

ai(T ) := inf
{
‖T −A‖

∣∣A : E → F bounded linear with rankA < i
}
.
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Moreover, we write si(Ik) for the i-th singular number of Ik, see (50). Since Ik is
compact, we actually have ai(Ik) = si(Ik) for all i ≥ 1, see [43, Theorem 7 on
p. 240], and using (51) and (52) we thus find

µi = µi(Tk) = si(Tk) = s2
i (Ik) = a2

i (Ik)

for all i ∈ I . Moreover, if |I| <∞, then we clearly have ai(Ik) = 0 for all i > |I| by
the spectral representation of Tk. From Carl’s inequality, see [7, Theorem 3.1.2], we
then obtain (22). Moreover, (21) follows from the relation

ai(R : H1 → H2) ≤ 2εi(R : H1 → H2)

that holds for all compact linear operators R between Hilbert spaces H1 and H2, see
[7, p. 120].

6.2 Proofs Related to Generic KL-Expansions
Proof of Lemma 3.1: SinceX isA⊗B-measurable, the map (ω, s, t) 7→ Xs(ω)Xt(ω)
isA⊗B⊗B-measurable. From this we easily conclude that k is measurable. Moreover,
a simple application of Tonelli’s theorem shows∫

T

k(t, t) dν(t) =

∫
T

EPX2
t dν(t) =

∫
Ω×T

X2 dP ⊗ ν <∞ .

The remaining assertions then follow from [36, Lemma 2.3].

Proof of Lemma 3.2: For i ∈ I and ω ∈ Ω, we define

Yi(ω) :=

∫
T

∣∣Xt(ω)ei(t)
∣∣ dν(t) ,

where we note that the measurability of (ω, t) 7→ Xt(ω)ei(t) together with Tonelli’s
theorems shows that Yi : Ω → [0,∞] is measurable. Moreover, since we have ei ∈
L2(ν) with ‖ei‖L2(ν) = 1 as well as X(ω) ∈ L2(ν) for P -almost all ω ∈ Ω, Cauchy-
Schwarz inequality implies

EPY 2
i =

∫
Ω

(∫
T

∣∣Xt(ω)ei(t)
∣∣ dν(t)

)2

dP (ω)

≤
∫

Ω

(∫
T

X2
t (ω) dν(t)

)(∫
T

e2
i (t) dν(t)

)
dP (ω) (56)

=

∫
Ω×T

X2 dP ⊗ ν

<∞ .

Since |Zi| ≤ |Yi|, we then obtain Zi ∈ L2(P ). Furthermore, we have Xei ∈
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L1(P ⊗ ν) since another application of the Cauchy-Schwarz inequality gives∫
Ω×T

∣∣Xei∣∣ dP ⊗ ν ≤ (∫
Ω×T

X2 dP ⊗ ν
)1/2(∫

Ω×T
e2
i dP ⊗ ν

)1/2

= ‖X‖L2(P⊗ν) (57)
<∞ .

Consequently, we can apply Fubini’s theorem, which yields

EPZi =

∫
Ω

∫
T

Xt(ω)ei(t) dν(t) dP (ω)

=

∫
T

∫
Ω

Xt(ω)ei(t) dP (ω) dν(t)

= 0 ,

where in the last step we used EPXt = 0. To show (26), we first observe that∫
Ω×T×T

∣∣Xs(ω)ei(s)Xt(ω)ej(t)
∣∣ dP ⊗ ν ⊗ ν(w, s, t)

=

∫
Ω

∫
T

∫
T

∣∣Xs(ω)ei(s)
∣∣ · ∣∣Xt(ω)ej(t)

∣∣ dν(s) dν(t) dP (ω)

=

∫
Ω

(∫
T

∣∣Xs(ω)ei(s)
∣∣ dν(s)

)(∫
T

∣∣Xt(ω)ei(t)
∣∣ dν(t)

)
dP (ω)

= EPY 2
i <∞ . (58)

where in the last inequality we used the arguments from (56). Using Fubini’s theorem,
we then obtain

EPZiZj =

∫
Ω

(∫
T

Xs(ω)ei(s) dν(s)

)(∫
T

Xt(ω)ej(t) dν(t)

)
dP (ω)

=

∫
Ω

∫
T

∫
T

Xs(ω)ei(s)Xt(ω)ej(t) dν(s) dν(t) dP (ω)

=

∫
T

∫
T

EP
(
XsXt

)
ei(s)ej(t) dν(s) dν(t)

=

∫
T

∫
T

k(s, t)ei(s)ej(t) dν(s) dν(t)

=

∫
T

Sk([ei]∼)(t) ej(t) dν(t) (59)

=

∫
T

µiei(t)ej(t) dν(t)

= µiδi,j ,

where in the second to last step we used (6).
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Let us now show (27). To this end, note that the already established Yj ∈ L2(P )
together with Xt ∈ L2(P ) and Tonelli’s theorem implies∫

Ω×T

∣∣Xt(ω)Xs(ω)ej(s)
∣∣ dP ⊗ ν(ω, s) =

∫
Ω

∣∣Xt(ω)Yj(ω)
∣∣ dP (ω) <∞

for all t ∈ T . Consequently, the map (ω, s) 7→ Xt(ω)Xs(ω)ej(s) is P ⊗ ν-integrable
for each t ∈ T , and by Fubini’s theorem we thus obtain

EPXtZj =

∫
Ω

Xt(ω)

∫
T

Xs(ω)ej(s) dν(s) dP (ω)

=

∫
T

ej(s)

∫
Ω

Xt(ω)Xs(ω) dP (ω) dν(s)

=

∫
T

ej(s)k(s, t) dν(s)

= Sk([ej ]∼)(t)

= µjej(t) ,

where in the last step we used (6).
Moreover, (28) immediately follows from∥∥∥Xt −

∑
j∈J

Zjej(t)
∥∥∥2

L2(P )

= EPX2
t − 2EPXt

∑
j∈J

Zjej(t) + EP
∑
i,j∈J

Ziei(t)Zjej(t)

= k(t, t)− 2
∑
j∈J

EPXtZjej(t) +
∑
i,j∈J

ej(t)ei(t)EPZiZj

= k(t, t)− 2
∑
j∈J

µje
2
j (t) +

∑
j∈J

µje
2
j (t) ,

where in the last step we used the already established (26) and (27).
i)⇔ ii). Follows directly from (28).
Finally, to show (31), we fix a measurable N ⊂ Ω with X(ω) ∈ L2(ν) for all

ω ∈ Ω \ N . Furthermore, we fix an f ∈ L2(ν) with [f ]∼ ∈ kerTk. Without loss of
generality we may assume that ‖f‖L2(ν) = 1. For ω ∈ N we now write Z(ω) := 0
and

Z(ω) :=

∫
T

Xt(ω)f(t) dν(t)

otherwise. Then, repeating (56) and (57) with ei replaced by f we obtain Z ∈ L2(P )
and Xf ∈ L1(P ⊗ ν). Moreover, repeating (58) and (59) in the same way, we obtain

EPZ2 =

∫
T

Sk([f ]∼)(t)f(t) dν(t) = 0

since [f ]∼ ∈ kerTk = kerSk by (7). This shows that 〈[X(ω)]∼, [f ]∼〉L2(ν) = Z(ω) =
0 for all ω ∈ Ω \N and all f ∈ L2(ν) with [f ]∼ ∈ kerTk, and thus we have found the
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first part of (31). The second part of (31), namely,

(kerTk)⊥ = span{[ei]∼ : i ∈ I}
L2(ν)

,

follows from combining (7) with (11) and (9).

Proof of Proposition 3.3: Recall that [36, Theorem 3.1] showed that both i) and ii) are
equivalent to

k(t, t′) =
∑
i∈I

µiei(t)ei(t
′) . (60)

for all t, t′ ∈ T . In view of (28) it thus suffices to show that iii) ⇒ i). To show this
implication we assume that (29) holds for all t ∈ T , but (

√
µiei)i∈I is not an ONB

of H . Let (ẽj)j∈J be an ONS of H such that the union of (
√
µiei)i∈I and (ẽj)j∈J is

an ONB of H . By assumption we know that J 6= ∅, so we can fix a j0 ∈ J . Since
‖ẽj0‖H = 1, there further exists a t ∈ T with ẽj0(t) 6= 0. Now, it is well-known that
the kernel k can be expressed in terms of our ONB, see e.g. [35, Theorem 4.20], and
hence we obtain

k(t, t) =
∑
i∈I

µie
2
i (t) +

∑
j∈J

ẽ2
j (t) ≥

∑
i∈I

µie
2
i (t) + ẽ2

j0(t)

>
∑
i∈I

µie
2
i (t)

= k(t, t) ,

where the last equality follows from the equivalence of (29) and (30). In other words,
we have found a contradiction, and hence iii)⇒ i) is true.

Let us finally consider the case in which H is separable. By [36, Corollary 3.2 and
Theorem 3.3] we then see that there exists a measurable N ⊂ T with ν(N) = 0 such
that

k(t, t′) = k1
T (t, t′) , t, t′ ∈ T .

Consequently, (30) holds for all t ∈ T \N , and we obtain the assertion by (28).

Proof of Proposition 3.4: Equation (31) shows that there exists a measurable N1 ⊂ Ω
with P (N1) = 0 such that for all ω ∈ Ω \ N1 the path [X(ω)]∼ is contained in the
space spanned by the ONS ([ei]∼)i∈I . Moreover, by the definition of Zi there exists
another measurable N2 ⊂ Ω with P (N2) = 0 and

Zi(ω) = 〈[X(ω)]∼, [ei]∼〉L2(ν) (61)

for ω ∈ Ω \N2. Let us define N := N1 ∪N2. For ω ∈ Ω \N we then obtain (32).
To show (33), we again pick an ω ∈ Ω \N . Using Parseval’s identity and (61), we

obtain ∥∥∥ [X(ω)]∼ −
∑
j∈J

Zj(ω)[ej ]∼

∥∥∥2

L2(ν)
=
∑
i∈I\J

Z2
i (ω)

Furthermore, Lemma 3.2 implies

EP
∑
i∈I\J

Z2
i =

∑
i∈I\J

EPZ2
i =

∑
i∈I\J

µi . (62)
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Combining both equations then yields (33) and the last assertion is a trivial conse-
quence of (33).

Proof of Corollary 3.5: Our first goal is to show that [Zi]∼ ∈ L2(X) for all i ∈ I .
To this end, recall from e.g. [4, p. 65] and [16, Chapter 8.4] that the Loève isometric
isomorphism Ψ : L2(X) → H is the unique continuous extension of the well-defined
linear map Ψ0 : span{[Xt]∼ : t ∈ T} → span{k(t, ·) : t ∈ T} described by

Ψ0

( n∑
i=1

ai[Xti ]∼

)
:=

n∑
i=1

aik(ti, ·) .

Now let (ẽj)j∈J be an ONS in H such that (
√
µiei)i∈I ∪ (ẽj)j∈J is an ONB of H . For

an arbitrary t ∈ T and all i ∈ I and j ∈ J , we then find 〈k(t, ·),√µiei〉H =
√
µiei(t)

and 〈k(t, ·), ẽj〉H = ẽj(t) and thus we obtain

k(t, ·) =
∑
i∈I

µiei(t)ei +
∑
j∈J

ẽj(t)ẽj ,

where the series converge unconditionally in H . Applying Ψ−1 on both sides yields

[Xt]∼ = Ψ−1
(
k(t, ·)

)
=
∑
i∈I

µiei(t)Ψ
−1(ei) +

∑
j∈J

ẽj(t)Ψ
−1(ẽj) ,

where the series converge unconditionally in L2(P ). Let us fix ξi, ξ̃j ∈ L2(P ) with
[ξi]∼ = µiΨ

−1(ei) and [ξ̃j ]∼ = Ψ−1(ẽj). Then our constructions ensures

[Xt]∼ =
∑
i∈I

[ξi]∼ei(t) +
∑
j∈J

[ξ̃j ]∼ẽj(t) , (63)

where, for all t ∈ T , the series converge unconditionally in L2(P ). For some fixed
finite sets I0 ⊂ I and J0 ⊂ J , we further have∫

Ω

∥∥∥ [X(ω)]∼ −
∑
i∈I0

ξi(ω)[ei]∼

∥∥∥2

L2(ν)
dP (ω)

=

∫
Ω

∫
T

∣∣∣Xt(ω)−
∑
i∈I0

ξi(ω)ei(t)
∣∣∣2 dν(t)dP (ω)

=

∫
T

∥∥∥ [Xt]∼ −
∑
i∈I0

µiei(t)Ψ
−1(ei)

∥∥∥2

L2(P )
dν(t)

=

∫
T

∥∥∥ k(t, ·)−
∑
i∈I0

µiei(t)ei

∥∥∥2

H
dν(t)

=

∫
T

( ∑
i∈I\I0

µie
2
i (t) +

∑
j∈J

ẽ2
j (t)

)
dν(t)

=
∑
i∈I\I0

µi
∥∥ [ei]∼

∥∥2

L2(ν)
+
∑
j∈J

∥∥ [ẽj ]∼
∥∥2

L2(ν)

=
∑
i∈I\I0

µi ,
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where in the last step we used Theorem 2.1, which implies

ẽj ∈ span{√µiei : i ∈ I}
⊥

= (ranSk)⊥ = kerS∗k = ker Ik .

Consequently, there exists a measurable N ⊂ Ω with P (N) = 0 such that for all
ω ∈ Ω \N we have

[X(ω)]∼ =
∑
i∈I

ξi(ω)[ei]∼ ,

where the series converges in L2(ν). By Proposition 3.4 we may assume without loss
of generality that (32) also holds for ω ∈ Ω \N . Since ([ei]∼)i∈I is an ONS, we then
see that

ξi(ω) = 〈[X(ω)]∼, [ei]∼〉L2(P ) = Zi(ω)

for such ω, and thus we finally obtain [Zi]∼ = [ξi]∼ ∈ L2(X).
Now, (26) shows that (µ

−1/2
i [Zi]∼)i∈I is an ONS of L2(X), and (28) together with

Proposition 3.3 shows that it is an ONB, if and only if (
√
µiei)i∈I is an ONB ofH .

Proof of Lemma 3.6: By Lemma 3.2 we know that the random variables (Zi)i∈I
are mutually uncorrelated and centered with VarZi = µi for all i ∈ I . Moreover,
by Corollary 3.5 we know

∑n
i∈I0 aiZi ∈ L2(X) for all finite I0 ⊂ I and ai ∈ R.

Since L2(X) consists of normally distributed random variables, which can be easily
checked by Lévy’s continuity theorem, we conclude that (Zi)i∈I are jointly normal.
Consequently, they are independent, and Zi ∼ N (0, µi) becomes obvious.

Proof of Lemma 3.7: Let us first show that the series defining each Xt does converge.
To this end, we fix a finite J ⊂ I . Then an easy calculation shows∫

Ω

(∑
j∈J

Zj(ω)ej(t)

)2

dP (ω) =

∫
Ω

∑
i,j∈J

Zi(ω)Zj(ω)ei(t)ej(t)dP (ω)

=
∑
i,j∈J

ei(t)ej(t)EPZiZj

=
∑
j∈J

µje
2
j (t) . (64)

Since the latter series converges, its sequence of partial sums is a Cauchy sequence, and
hence the sequence of partial sums of the right-hand side of (34) is a Cauchy sequence
in L2(P ). Consequently, it converges, and by repeating the argument above we see
that the series also converges unconditinally. Now using, the L2(P )-convergence, we
find

EPXsXt = 〈Xs, Xt〉L2(P ) =
∑
i,j∈J

ei(s)ej(t)EPZiZj = k1
T (s, t)

for all s, t ∈ T . The (A⊗B)-measurability of X is obvious, and integrating (64) with
respect to ν yields∫

T

∫
Ω

(∑
j∈J

Zj(ω)ej(t)

)2

dP (ω)dν(t) =

∫
T

∑
j∈J

µje
2
j (t)dν(t) =

∑
j∈J

µj (65)

35



for all finite J ⊂ I . By Beppo Levi’s theorem we then conclude that (65) holds for
all J ⊂ I , so that Tonelli’s theorem and the assumed

∑
i∈I µi < ∞ show X ∈

L2(P ⊗ ν). Moreover, essentially the same argument gives∫
Ω

∫
T

(
Xt(ω)−

∑
j∈J

Zj(ω)ej(t)

)2

dν(t)dP (ω)

=

∫
T

∫
Ω

(
Xt(ω)−

∑
j∈J

Zj(ω)ej(t)

)2

dP (ω)dν(t)

=
∑
j∈I\J

µj ,

and hence we conclude that, for P -almost all ω ∈ Ω, we have[
X(ω)

]
∼ =

∑
i∈I

Zi(ω)[ei]∼

with convergence in L2(ν). For these ω, we then find (25) since ([ei]∼)i∈I is an ONS
in L2(ν).

6.3 Proofs Related to Almost Sure Paths in Interpolation Spaces
Proof of Theorem 4.1: Let us begin by some preliminary remarks. To this end, we
define, for all i ∈ I , random variables ξi : Ω→ R by

ξi(ω) := µ
(β−1)/2
i Zi(ω) , ω ∈ Ω. (66)

This definition immediately yields Zi(ω)[ei]∼ = ξi(ω)µ
(1−β)/2
i [ei]∼ for all ω ∈ Ω.

Let us begin by proving (35). To this end, we simply note that the definition of the
norm of [H]1−β∼ gives∥∥∥∑

j∈J
Zj(ω)[ej ]∼

∥∥∥2

[H]1−β∼
=
∥∥∥∑
j∈J

ξi(ω)µ
(1−β)/2
i [ej ]∼

∥∥∥2

[H]1−β∼
=
∑
j∈J

ξ2
j (ω)

=
∑
j∈J

µβ−1
i Z2

j (ω) ,

which shows the assertion.
i) ⇔ ii). This immediately follows from (35), the definition of [H]1−β∼ , and the

equality [X(ω)]∼ =
∑
i∈I Zi(ω)[ei]∼.

ii)⇔ iii). This is a trivial consequence of (13).
Let us now fix an ω ∈ Ω \ N for which we have

∑
i∈I µ

β−1
i Z2

i (ω) < ∞.
For an arbitrary J ⊂ I , we then have

∑
j∈J µ

β−1
j Z2

j (ω) < ∞, and hence we find∑
j∈J Zj(ω)[ej ]∼ ∈ [H]1−β∼ by using the fact that (µ

(β−1)/2
j Zj(ω))j∈J is the se-

quence of Fourier coefficients of
∑
j∈J Zj(ω)[ej ]∼ in [H]1−β∼ . The definition of the

norm of [H]1−β∼ then yields (35). Finally, the unconditional convergence is a direct
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consequence of (35) and the fact that [H]1−β∼ and [L2(ν), [H]∼]1−β,2 have equivalent
norms.

Proof of Theorem 4.2: i)⇒ ii). By our assumptions, Lemma 3.2, and Beppo Levi’s
theorem we obtain

EP
∑
i∈I

µβ−1
i Z2

i =
∑
i∈I

µβ−1
i EPZ2

i =
∑
i∈I

µβi <∞ . (67)

Consequently, there exists a measurable Ñ ⊂ Ω with P (Ñ) = 0 such that for all
ω ∈ Ω \ Ñ we have

∑
i∈I µ

β−1
i Z2

i (ω) <∞. By Theorem 4.1, we then obtain

[X(ω)]∼ ∈ [H]1−β∼ = [L2(ν), [H]∼]1−β,2

for all w ∈ Ω \ (N ∪ Ñ), which shows the first assertion. Moreover, choosing J := I
in (35), we find∫

Ω

∥∥∥ [X(ω)]∼

∥∥∥2

[H]1−β∼
dP (ω) =

∫
Ω

∑
i∈I

µβ−1
i Z2

i (ω) dP (ω) =
∑
i∈I

µβi <∞ , (68)

where we note that measurability is not an issue as the right-hand side of (35) is
measurable. Since the norms of [L2(ν), [H]∼]1−β,2 and [H]1−β∼ are equivalent as
discussed around (13), it thus remains to show that the map Ω \ N → [H]1−β∼ de-
fined by ω 7→ [X(ω)]∼ is Borel measurable. To this end, we consider the map
ξ : Ω \ (N ∪ Ñ)→ `2(I) defined by

ξ(ω) :=
(
µβ−1
i Z2

i (ω)
)
i∈I

for all ω ∈ Ω \ (N ∪ Ñ). Note that our previous considerations showed that ξ indeed
maps into `2(I). Consequently, 〈a, ξ〉`2(I) : Ω \ (N ∪ Ñ) → R is well-defined for all
a ∈ `2(I). In addition, this map is clearly measurable, and since `2(I) is separable, the
combination of Petti’s measurability theorem, cf. [10, p. 9], with [10, Theorem 8 on
p. 8] shows that ξ is Borel measurable. Using the isometric relation (12) we conclude
that the map Ω \ (N ∪ Ñ)→ [H]1−β∼ defined by

ω 7→
∑
i∈I

ξi(ω)µ
(1−β)/2
i [ei]∼ = [X(ω)]∼

is Borel measurable.
ii)⇒ i). Let N ⊂ Ω be a P -zero set with [X(ω)]∼ ∈ [L2(ν), [H]∼]1−β,2 for all

ω ∈ Ω \ N . By Proposition 3.4 we may again assume without loss of generality that
(32) is also satisfied for all ω ∈ Ω\N . Using Beppo Levi’s theorem and the discussion
around (13), as well as Lemma 3.2 and (35), we then obtain∑

i∈I
µβi = EP

∑
i∈I

µβ−1
i Z2

i =

∫
Ω

∥∥∥ [X(ω)]∼

∥∥∥2

[H]1−β∼
dP (ω) <∞ .

Let us finally assume that i) and ii) are true. By Proposition 3.4 there then exists a
measurable N ⊂ Ω with P (N) = 0 such that

∑
i∈I Zi(ω)[ei]∼ = [X(ω)]∼ in L2(ν),
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and [X(ω)]∼ ∈ [L2(ν), [H]∼]1−β,2 for all ω ∈ Ω \ N . For these ω, Theorem 4.1
immediately yields ∑

i∈I
µβ−1Z2

i (ω) <∞ . (69)

Now, to show the stronger [L2(ν), [H]∼]1−β,2-convergence in (32) we observe that
for all J ⊂ I and for all ω ∈ Ω \ N we have (35) by (69). By (69) and (35) we
then conclude that the sequence of partial sums of

∑
i∈I Zi(ω)[ei]∼ is a Cauchy se-

quence in [H]1−β∼ and thus convergent in [H]1−β∼ . Moreover, since [H]1−β∼ ↪→ L2(ν)
and

∑
i∈I Zi(ω)[ei]∼ = [X(ω)]∼ in L2(ν), its limit is [X(ω)]∼, which shows the

[H]1−β∼ -convergence in (32). Finally, because of (69), the formula (32) equals the ONB
representation of [X(ω)]∼ with respect to the ONB (µ

(1−β)/2
i [ei]∼)i∈I of [H]1−β∼ ,

and hence the convergence is also unconditionally. Now using that [H]1−β∼ and
[L2(ν), [H]∼]1−β,2 have equivalent norms, we see that the convergence in (32) is in-
deed unconditionally in

[
L2(ν), [H]∼

]
1−β,2.

To show the last assertion, we combine (35) with the just established [H]1−β∼ -
convergence in (32) and a calculation that is analogous to (68) to obtain∫

Ω

∥∥∥ [X(ω)]∼ −
∑
j∈J

Zj(ω)[ej ]∼

∥∥∥2

[H]1−β∼
dP (ω) =

∑
i∈I\J

µβj .

Again, using that [H]1−β∼ and [L2(ν), [H]∼]1−β,2 have equivalent norms, we then ob-
tain the assertion.

Lemma 6.3. Let (ξ)i≥1 be a sequence of R-valued random variables on some proba-
bility space (Ω,A, P ) and (µi)i≥1 ⊂ (0,∞) be a monotonically decreasing sequence.
We define Fi := σ(ξ2

1 , . . . , ξ
2
i ) and assume that EP ξ2

1 = 1 and both ξi ∈ L4(P ) and

EP (ξ2
i+1|Fi) = 1 (70)

for all i ≥ 1. Furthermore, assume that, for some β ∈ (0, 1), we have

∞∑
i=1

µ2β
i Var ξ2

i <∞ . (71)

Then, the following statements are equivalent:

i) We have
∑∞
i=1 µ

β
i <∞.

ii) There exists an N ∈ A with P (N) = 0 such that for all ω ∈ Ω \N we have

∞∑
i=1

µβi ξ
2
i (ω) <∞ . (72)

Proof of Lemma 6.3: Before we begin with the actual proof we note that, for all
i ≥ 1, we have EP ξ2

i+1 = EPEP (ξ2
i+1|Fi) = 1 by (70). Moreover, for i > j + 1 an

elementary calculation shows

EP (ξ2
i |Fj) = EP

(
EP (ξ2

i |Fi−1)|Fj
)

= 1 , (73)
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and by (70) we thus have EP (ξ2
i |Fj) = 1 for all i > j.

i)⇒ ii). This simply follows from

EP
∞∑
i=1

µβi ξ
2
i =

∞∑
i=1

µβi EP ξ
2
i =

∞∑
i=1

µβi <∞ .

ii)⇒ i). For i, n ≥ 1, we write Xi := µβi (ξ2
i − 1) and Yn :=

∑n
i=1Xi. Then, our first

simple observation is that, for i > j, we have

EP (Xi|Fj) = µβi EP (ξ2
i − 1|Fj) = 0 (74)

by our preliminary considerations. Moreover, for all n ≥ 1, the random variable Yn is
Fn-measurable and satisfies Yn ∈ L2(P ). In addition, we have

EP (Yn+1|Fn) = EP (Xn+1|Fn) + Yn = Yn

by (74), and thus (Yn)n≥1 is a martingale with respect to the filtration (Fn)n≥1. Our
next goal is to show that it is uniformly bounded in L2(P ). To this end, we first observe
that for i > j we have

EP (XiXj) = EPEP (XiXj |Fj) = EP
(
XjEP (Xi|Fj)

)
= 0

since Xj is Fj-measurable and (74). Consequently, we obtain

EPY 2
n =

n∑
i=1

EPX2
i + 2

n∑
i=1

i−1∑
j=1

EP (XiXj) =

n∑
i=1

µ2β
i EP (ξ2

i − 1)2

≤
∞∑
i=1

µ2β
i Var ξ2

i ,

which by (71) shows that (Yn)n≥1 is indeed uniformly bounded in L2(P ). By mar-
tingale convergence, see e.g. [19, Theorem 11.10], there thus exists a random variable
Y∞ ∈ L2(P ) such that Yn → Y∞ in L2(P ) and P -almost surely. In particular, there
exists an ω ∈ Ω with Y∞(ω) ∈ R such that we have both (72) and Yn(ω) → Y∞(ω),
where the latter simply means that

∑∞
i=1Xi(ω) converges. For this ω, we thus obtain

∞∑
i=1

µβi =

∞∑
i=1

µβi
(
ξ2
i (ω)− ξ2

i (ω) + 1
)

=

∞∑
i=1

µβi ξ
2
i (ω)−

∞∑
i=1

µβi
(
ξ2
i (ω)− 1

)
=

∞∑
i=1

µβi ξ
2
i (ω)− Y∞(ω) ,

and since the last difference is a real number we have proven the assertion.

Proof of Lemma 4.3: i)⇒ ii). Follows from a literal repetition of (67).
ii)⇒ i). Our first goal is to show that the random variables ξi := µ

−1/2
i Zi satisfy

the assumptions of Lemma 6.3. Indeed, we clearly, have ξi ∈ L4(P ) and the definition
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of the σ-algebras Fi is consistent with Lemma 6.3. Moreover, (37) implies (70), and,
for all β ∈ (0, 1), condition (36) implies (72). Furthermore, our definitions yields

Var ξ2
i = µ−2

i VarZ2
i ≤ cµ−αi (75)

for all i ≥ 1, and consequently, we find

∞∑
i=1

µ2β
i Var ξ2

i ≤ c
∞∑
i=1

µ2β−α
i <∞

whenever 2β ≥ α + 1, i.e. (71) is satisfied for such β. Using Lemma 6.3, we then see
that the implication ii)⇒ i) is true for all β ∈ [β1, 1), where β1 := (α+ 1)/2. To treat
the case β ∈ (α, β1), we define a sequence (βn)n≥1 by βn+1 := (α + βn)/2 for all
n ≥ 1. By induction and the definition of β1, we then see that

βn = 2−n + α

n∑
i=1

2−i

for all n ≥ 1. Consequently, we have both βn ∈ (α, 1) for all n ≥ 1 and βn ↘ α.
Our next goal is to show that the implication ii) ⇒ i) is true for all βn. To this

end, we first observe that we have already seen that the implication is true for β1. To
proceed by induction, we now assume that the implication is true for βn, so that our
goal is to show that it is also true for βn+1. To this end, let us assume that there exists
a measurable N ⊂ Ω with P (N) = 0 such that (36), and thus (72), holds for βn+1 and
all ω ∈ Ω\N . Here we note that in the absence of such an N there is nothing to prove.
Now, since µi → 0 and βn > βn+1, it is easy to see that (36) also holds for βn and all
ω ∈ Ω \ N , and hence our induction hypothesis yields

∑∞
i=1 µ

βn
i < ∞. This in turn

shows
∞∑
i=1

µ
2βn+1

i Var ξ2
i =

∞∑
i=1

µα+βn
i Var ξ2

i ≤ c
∞∑
i=1

µα+βn
i µ−αi <∞ (76)

by (75). Consequently, applying Lemma 6.3 gives
∑∞
i=1 µ

βn+1

i < ∞, which finishes
the induction.

Finally, let us fix a β ∈ (α, β1) for which there exists a measurable N ⊂ Ω with
P (N) = 0 such that (36) holds for β and all ω ∈ Ω \N . By the construction of (βn),
there then exists an n ≥ 1 such that β ∈ [βn+1, βn). Using the same arguments as
above, we then see that (36) also holds for βn and all ω ∈ Ω \ N , and hence we find∑∞
i=1 µ

βn
i <∞ by our preliminary result. Repeating (76), we find

∞∑
i=1

µ2β
i Var ξ2

i ≤
∞∑
i=1

µ
2βn+1

i Var ξ2
i ≤

∞∑
i=1

µα+βn
i µ−αi <∞ ,

and consequently Lemma 6.3 gives
∑∞
i=1 µ

β
i <∞.

Proof of Corollary 4.4: Clearly, if I is finite, there is nothing to prove, and hence we
solely focus on the case I = N.
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i) ⇔ ii). By Lemma 3.6 we know that the (Zi)i∈I are independent, and thus we
find EP (Z2

i+1|Fi) = EPZ2
i+1 = µi+1 by Lemma 3.2. Consequently, (37) is satisfied.

Moreover, since we have Zi ∼ N (0, µi) for all i ∈ I by Lemma 3.6 there exists a
constant c > 0 such that

µ−2 VarZ2
i = Var(µ

−1/2
i Zi)

2 ≤ c

for all i ∈ I . This shows that (38) holds for all α ∈ (0, 1). Applying Lemma 4.3 then
yields the assertion.

ii)⇒ iii). trivial.
iii) ⇒ ii). Assume that there exists an A ∈ A with P (A) > 0 such that

[X(ω)]∼ ∈ [L2(ν), [H]∼]1−β,2 holds for all ω ∈ A. Without loss of general-
ity we may additionally assume that A ⊂ Ω \ N , where N ⊂ Ω is the measur-
able P -zero set obtained from Proposition 3.4. By Theorem 4.1 we then know that∑
i∈I µ

β−1Z2
i (ω) <∞ for all ω ∈ A, and hence

P
({∑

i∈I
µβ−1Z2

i <∞
})

> 0 .

However, the (Zi)i∈I are independent by Lemma 3.6 and hence we conclude by Kol-
mogorov’s zero-one law that

∑
i∈I µ

β−1Z2
i (ω) < ∞ actually holds for P -almost all

ω ∈ Ω.

Proof of Corollary 4.5: Let us write I for the embedding H ↪→ Wm(T ). Using (24)
and the multiplicativity of the dyadic entropy numbers, see [7, p. 21], we then find

εi
(
Ik : H → L2(ν)

)
≤ ‖I‖ · εi

(
id : Wm(T )→ L2(ν)

)
≤ c i−m/d ,

where c > 0 is a suitable constant. Lemma 2.8 then gives µi ≤ 4c i−2m/d for all i ≥ 1,
and hence we have

∑
i∈I µ

β
i < ∞ for all β > d

2m . Let us fix an 0 < s < m − d/2.
For β := 1− s/m, we then have β ∈ ( d

2m , 1), and by Theorem 4.2 we conclude that

[X(ω)]∼ ∈ [L2(T ), [H]∼]1−β,2 ⊂
[
L2(T ),Wm(T )

]
1−β,2 = B

(1−β)m
2,2 (T ) = Bs2,2(T )

for P -almost all ω ∈ Ω. Moreover, the first norm estimate, including the implicitly
assumed measurability of the integrand, also follows from Theorem 4.2. The second
norm estimate follows by combining Theorem 4.2 with (24) and Lemma 2.8, which is
possible by the assumed H = Wm(T ).

Finally, let us assume that (Xt)t∈T is a Gaussian process with H = Wm(T ) but
(39) does hold for s := m− d/2 with strictly positive probability P . Then we have

[X(ω)]∼ ∈ Bs2,2(T ) =
[
L2(T ),Wm(T )

]
s/m,2

=
[
L2(T ),Wm(T )

]
1−β,2 ,

where β := d
2m . By Corollary 4.4 we then see that

∑
i∈I µ

β
i <∞, and thus∑

i∈I
ε
d/m
i

(
id : Wm(T )→ L2(T )

)
=
∑
i∈I

ε2β
i

(
Ik : H → L2(T )

)
<∞

by Lemma 2.8. However, this contradicts (24).
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6.4 Proofs Related to Almost Sure Paths in RKHSs
Lemma 6.4. Let (Ω,A, P ) be a probability space, (T,B, ν) be a measure space, and
(Xt)t∈T ⊂ L2(P ) be a (A⊗B)-measurable stochastic process with X ∈ L2(P ⊗ ν).
Then, for every (A ⊗ B)-measurable version (Yt)t∈T of (Xt)t∈T , we have both
(Yt)t∈T ⊂ L2(P ) and Y ∈ L2(P ⊗ ν), and, for P -almost all w ∈ Ω, we further
have

[Y (ω)]∼ = [X(ω)]∼ .

Proof of Lemma 6.4: Since (Yt)t∈T ⊂ L2(P ) is a version of (Xt)t∈T ⊂ L2(P ), we
have

P (Yt = Xt) = 1 , t ∈ T,

and thus we find both (Yt)t∈T ⊂ L2(P ) and ‖Yt −Xt‖L2(P ) = 0 for all t ∈ T . Using
the measurability of Y : Ω× T → R and Tonelli’s theorem, we thus find∫

P

∥∥ [Y (ω)]∼ − [X(ω)]∼
∥∥2

L2(ν)
dP (ω) =

∫
P

∫
T

∣∣Yt(ω)−Xt(ω)
∣∣2 dν(t)dP (ω)

=

∫
T

∫
P

∣∣Yt(ω)−Xt(ω)
∣∣2 dP (ω)dν(t)

= 0 .

This shows [Y (ω)]∼ = [X(ω)]∼ for P -almost allw ∈ Ω, and since another application
of Tonelli’s theorem yields∫

Ω×T

∣∣Yt(ω)−Xt(ω)
∣∣2 dP ⊗ ν(ω, t) =

∫
T

∫
P

∣∣Yt(ω)−Xt(ω)
∣∣2 dP (ω)dν(t) = 0 ,

we also obtain Y ∈ L2(P ⊗ ν).

Proof of Theorem 5.1: i) ⇒ ii). As in the proof of Theorem 4.1, we define, for all
i ∈ I , random variables ξi : Ω→ R by

ξi(ω) := µ
(β−1)/2
i Zi(ω) , ω ∈ Ω.

For t ∈ S, we further define Yt by

Yt(ω) :=
∑
i∈I

ξi(ω)µ
(1−β)/2
i ei(t) , ω ∈ Ω \N (77)

and Yt(ω) := 0 otherwise. Moreover, for t ∈ T \ S we simply write Yt := Xt.
Obviously, this construction guarantees the (A⊗B)-measurability of Y : Ω×T → R.

Let us first show that (Yt)t∈T is a version of (Xt)t∈T . Clearly, it suffices to show
that

P
(
Xt = Yt

)
= 1

for all t ∈ S. However, this immediately follows from∥∥Xt − Yt
∥∥2

L2(P )
=
∥∥∥Xt −

∑
i∈I

Ziei(t)
∥∥∥2

L2(P )
= k(t, t)−

∑
i∈I

µie
2
i (t) = 0 ,
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where we used both (28) and (41).
Let us now show that all paths of Y restricted to S are contained in H1−β

S . Clearly,
for ω ∈ N our definition yields Y (ω)|S = 0, and hence there is nothing to prove for
such ω. Moreover, in the case ω ∈ Ω \N , we first observe that the family of functions
((µ

(1−β)/2
i êi)|S)i∈I forms an ONB of H1−β

S since the restriction operator

·|S : Ĥ1−β
S → H1−β

S

is a isometric isomorphism by Lemma 2.2. Using (µ
(1−β)/2
i êi)|S = (µ

(1−β)/2
i ei)|S

and (ξi(ω))i∈I ∈ `2(I), where the latter follows from (43), we then find Y (ω)|S ∈
H1−β
S by the definition (77) of the random variables Yt for t ∈ S.

ii)⇒ i). By Lemma 6.4 we find a measurable N1 ⊂ Ω with P (N1) = 0 such that
Y (ω)|S ∈ H1−β

S and
[Y (ω)]∼ = [X(ω)]∼

for all ω ∈ Ω \N1. Let us fix an ω ∈ Ω \N1. Since Y (ω)|S ∈ H1−β
S there then exists

a sequence (ai)i∈I ⊂ `2(I) such that

Y (ω)|S =
∑
i∈I

aiµ
(1−β)/2
i (ei)|S , (78)

where the convergence is in H1−β
S . Let us write Ŷ (ω) := 1SY (ω). Then we find

Ŷ (ω) ∈ Ĥ1−β
S and

Ŷ (ω) =
∑
i∈I

aiµ
(1−β)/2
i êi ,

where the convergence is in Ĥ1−β
S . Since Ĥ1−β

S is compactly embedded into L2(ν),
the operator [ · ]∼ : Ĥ1−β

S → L2(ν) is continuous, which in turn yields

[X(ω)]∼ = [Y (ω)]∼ = [Ŷ (ω)]∼ =
∑
i∈I

aiµ
(1−β)/2
i [êi]∼ =

∑
i∈I

aiµ
(1−β)/2
i [ei]∼ ,

where the convergence is in L2(ν). On the other hand, Proposition 3.4 showed that
there exists a measurable N2 ⊂ Ω with P (N2) = 0 such that for all ω ∈ Ω \ N2 we
have

[X(ω)]∼ =
∑
i∈I

Zi(ω)[ei]∼ ,

where again the convergence is in L2(ν). Using that ([ei]∼) is an ONS in L2(ν), we
thus find Zi(ω) = aiµ

(1−β)/2
i for all ω 6∈ N1 ∪N2. Now (45) follows from (78), and

since (ai)i∈I ∈ `2(I) we also obtain i) for N := N1 ∪N2.

Proof of Theorem 5.2: i)⇔ ii). This has already been shown in Lemma 2.3.
Before we prove the remaining implications, let us assume that we have an (A⊗B)-

measurable version (Yt)t∈T of (Xt)t∈T such that Y (ω)|S ∈ H1−β
S for P -almost all

ω ∈ Ω. By Lemma 6.4 we then conclude that

[Ŷ (ω)|S ]∼ = [Y (ω)]∼ = [X(ω)]∼
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for P -almost all ω ∈ Ω, where Ŷ (ω) denotes the zero-extension of Y (ω)|S to T . In
addition, we have ‖Y (ω)|S‖H1−β

S
= ‖[Ŷ (ω)|S ]∼‖[H1−β

S ]∼
by Lemma 2.2. Together,

this yields∫
Ω

∥∥Y (ω)|S
∥∥2

H1−β
S

dP (ω) =

∫
Ω

∥∥ [X(ω)]∼
∥∥2

[H]1−β∼
dP (ω) =

∑
i∈I

µβi (79)

where the last identity follows by a repetition of (68). Moreover, note that all three
quantities may simultaneously be infinite.

i)⇒ iii). We have∫
Ω

∑
i∈I

µβ−1
i Z2

i (ω)dP (ω) =
∑
i∈I

µβ−1
i

∫
Ω

Z2
i (ω)dP (ω) =

∑
i∈I

µβi <∞ ,

and hence we find a measurable N ⊂ Ω with P (N) = 0 such that for all ω ∈ Ω \ N
we have (43). Now the assertion follows from Theorem 5.1 and (79).

iii)⇒ i). Follows directly from (79).

Proof of Corollary 5.3: i)⇔ ii). This has already been shown in Lemma 2.3, see also
Theorem 5.2.

i)⇒ iii). Repeating (67), we see yet another time that (43) holds for P -almost all
ω ∈ Ω. Applying Theorem 5.1 then yields the assertion.

iii)⇒ iv). trivial
iv)⇒ i). For ω ∈ A we have [X(ω)]∼ = [Ŷ (ω)|S ]∼ ∈ [H1−β

S ]∼ = [H]1−β∼ and
hence i) follows by Corollary 4.4.

Proof of Corollary 5.4: Before we begin with the actual proof, let us first note that the
factorization

H L2(ν)

H̄

-

@
@
@
@@R �

�
�
���

Ik

id Ik̄

together with the multiplicativity of the dyadic entropy numbers, see [7, p. 21], yields

εi(Ik) ≤ ‖ id : H → H̄‖ εi(Ik̄)

for all i ≥ 1, and therefore we find
∑∞
i=1 ε

α
i (Ik) < ∞. Applying Lemma 2.8 then

shows both
∑
j∈J µ̄

α/2
j <∞ and

∑
i∈I µ

α/2
i <∞, where (µ̄j)j∈J is the sequence of

non-zero eigenvalues of Tk̄ obtained by Theorem 2.1.
Moreover, for β ∈ [α/2, 1 − α/2], we have α/2 ≤ 1 − β, and thus we find both∑
j∈J µ̄

1−β
j < ∞ and

∑
i∈I µ

1−β
i < ∞. Analogously, β ≥ α/2 implies

∑
j∈J µ̄

β
j <

∞ and
∑
i∈I µ

β
i <∞.
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i). Let us pick a β ∈ [α/2, 1− α/2]. Then, our preliminary considerations showed
both

∑
j∈J µ̄

1−β
j < ∞ and

∑
i∈I µ

1−β
i < ∞. By (18) we then see that we find a

measurable S0 ⊂ T with ν(T \ S0) = 0 such that both H1−β
S0

and H̄1−β
S0

exist.
Our next goal is to find a subset S of S0 with ν(T \ S) = 0 and H1−β

S ⊂ H̄1−β
S .

To this end, note that (13) together with [H]∼ ⊂ [H̄]∼ ⊂ L2(ν) and the definition of
interpolation norms shows

[H]1−β∼ =
[
L2(ν), [H]∼

]
1−β,2 ↪→

[
L2(ν), [H̄]∼

]
1−β,2 = [H̄]1−β∼ ,

and hence the inclusion operator I : [H]1−β∼ → [H̄]1−β∼ is continuous. Now consider
the situation

H1−β
S0

[H]1−β∼ [H̄]1−β∼ H̄1−β
S0

- - �
[ ·̂ ]∼ I [ ·̂ ]∼

where the operators [ ·̂ ]∼ are isometric isomorphisms by Lemma 2.2. Consequently,
for all f ∈ H1−β

S0
there exists a unique gf ∈ H̄1−β

S0
such that [f̂ ]∼ = [ĝf ]∼, and the

map f 7→ gf is linear and continuous. In other words, for all f ∈ H1−β
S0

, there exists a
a measurable Nf ⊂ S0 with ν(Nf ) = 0 and f(t) = gf (t) for all t ∈ S0 \Nf .

Let us find such a ν-zero set N that is an independent of f . To this end, we fix a
countable dense D ⊂ H1−β

S0
and define N :=

⋃
f∈DNf , where we note that such a D

exists since H1−β
S0

is separable by construction. Now the definition of N immediately
yields N ⊂ S0 and ν(N) = 0, as well as

f(t) = gf (t) , t ∈ S0 \N (80)

for all f ∈ D. To show the latter for all f ∈ H1−β
S0

, we fix such an f and a sequence
(fn) ⊂ D with fn → f in H1−β

S0
. Then we have gfn → gf in H̄1−β

S0
by the above

mentioned continuity of f 7→ gf , and since both spaces are reproducing kernel Hilbert
spaces, we obtain fn(t) → f(t) and gfn(t) → gf (t) for all t ∈ S0. Using fn(t) =
gfn(t) for all t ∈ S0 \ N and n ≥ 1, we thus find (80). Defining S := S0 \ N then
gives H1−β

S ⊂ H̄1−β
S and the continuity of this embedding follows from the continuity

of I and Lemma 2.2.
ii). Our goal is to apply Theorem 5.2. To this end, we first observe that (41)

holds for a set S̃ ⊂ T with ν(T \ S̃) = 0 by the assumed separability of H and
[36, Corollary 3.2]. Consequently, we may assume without loss of generality that (41)
holds for the set S found in part i). Moreover, we have already seen in part i) that we
have

∑
i∈I µ

1−β
i < ∞, which in turn implies (42) by (18). Finally, our preliminary

considerations showed that β ≥ α/2 implies
∑
i∈I µ

β
i < ∞, and thus Theorem 5.2 is

applicable.

Proof of Corollary 5.5: We first show that assumption i) implies assumption ii), so
that in the remainder of this proof is suffices to work with the latter. To this end, note
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that ∑
j∈J

µ̄1−β
j ē2

j (t) ≤ sup
j∈J
‖ēj‖∞

∑
j∈J

µ̄1−β
j ≤ sup

j∈J
‖ēj‖∞

∑
j∈J

µ̄βj

≤ 4 sup
j∈J
‖ēj‖∞

∞∑
i=1

ε2β
i (Ik̄) <∞ ,

where we used 1− β ≤ β and Lemma 2.8. Consequently, k̄1−β
T exists and is bounded,

and from the latter we immediately obtain [L2(ν), [H̄]∼]1−β,2 = [H̄1−β
T ] ↪→ L∞(ν).

i). We first note that H ⊂ H̄ implies τ(H) ⊂ τ(H̄), and hence Assump-
tion CK is satisfied for k, too. Moreover, the continuity of the inclusion operator
I : [H]1−β∼ → [H̄]1−β∼ considered in the proof of part i) of Corollary 5.4 implies
[L2(ν), [H]∼]1−β,2 ↪→ L∞(ν). By Theorem 2.7, we then see that both H1−β

T and
H̄1−β
T do exist. Moreover, the kernels k1−β

T and k̄1−β
T are bounded by Theorem 2.7.

To show that H1−β
T ⊂ H̄1−β

T , we consider the map f 7→ gf from the proof of
part i) of Corollary 5.4. Then we have seen above that (80) holds for S0 = T and
all f ∈ H1−β

T . Let us assume that there exists an f ∈ H1−β
T and a t ∈ T such that

f(t) 6= gf (t). Then we have {|f − gf | > 0} 6= ∅ and {|f − gf | > 0} ∈ τ(H̄),
which together imply ν({|f − gf | > 0}) > 0, since ν is assumed to be k̄-positive.
In other words, (80) does not hold for f , which contradicts our earlier findings. This
shows f = gf for all f ∈ H1−β

T and thus H1−β
T ⊂ H̄1−β

T . The continuity of the
corresponding embedding again follows from the continuity of I .

ii). Considering the proof of part ii) of Corollary 5.4, we easily see that it suffices
to check that (41) holds for S := T . The latter, however, follows from Lemma 2.6.

iii). All f ∈ H1−β
T are bounded since the kernel k1−β

T is bounded. Moreover, all
f ∈ H1−β

T are τ(H1−β
T )-continuous by the very definition of this topology, and since

Theorem 2.7 showed τ(H1−β
T ) = τ(H), they are also τ(H)-continuous. Now the

additional assertions on the paths of Y follow from Y (ω) ∈ H1−β
T for all ω ∈ Ω.

iv). Since k̄1−β
T is bounded, we have H̄1−β

T ↪→ `∞(T ), see e.g. [35, Lemma 4.23].
Now the `∞(T )-convergence of (45) follows from the H̄1−β

T -convergence established
in Theorem 5.1.

v). Let us fix a countable, τ -dense subset D ⊂ T . Since Y is a version of X , we
then have P ({Yt 6= Xt}) = 0 for all t ∈ D, and hence there exists a P -zero setN ∈ A
such that Xt(ω) = Yt(ω) for all t ∈ D and ω ∈ Ω \N . Without loss of generality we
may also assume that X(ω) is τ -continuous for all ω ∈ Ω \ N . and since τ(H) ⊂ τ ,
we further see by part iii) that all paths of Y are τ -continuous, too. Now the assertion
follows by a simple limit argument.

By Lemma 2.6 the operator Ik̄ is injective, and thus [36, Theorem 3.1] shows that
(ēj)j∈J is an ONB of H̄ . Consequently, H̄ is separable and Lemma 6.1 shows that
τ(H̄) is separable and generated by a pseudo-metric. If τ(H) is Hausdorff, this pseudo-
metric becomes a metric and the assertion follows from the first part.

Proof of Corollary 5.6: i). Let us consider Corollary 5.4 for H̄ = Wm(T ). Then (24)
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shows that
∞∑
i=1

εαi (Ik̄) <∞

holds for all α > d/m. Let us pick an s ∈ (d/2,m− d/2) and define β := 1− s/m.
This gives d

2m < β < 1 − d
2m , and hence β satisfies the assumptions of Corollary 5.4

for a suitable α ∈ (d/m, 1] with β ∈ [α/2, 1− α/2]. Moreover, we have

[L2(T ), [H]∼]1−β,2 ↪→
[
L2(T ),Wm(T )

]
1−β,2 = B

(1−β)m
2,2 (T ) = Bs2,2(T ) ↪→ L∞(ν)

by Sobolev’s embedding theorem for Besov spaces, see e.g. [1, Theorem 7.34], and
hence we can apply part iii) of Corollary 5.4 and Theorem 5.1.

ii). This follows from Corollary 4.5 since (48) implies (39).
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2013-005 Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.: A Two Scale Model for Liquid Phase
Epitaxy with Elasticity: An Iterative Procedure

2013-004 Griesemer, M.; Wellig, D.: The Strong-Coupling Polaron in Electromagnetic Fields

2013-003 Kabil, B.; Rohde, C.: The Influence of Surface Tension and Configurational Forces
on the Stability of Liquid-Vapor Interfaces

2013-002 Devroye, L.; Ferrario, P.G.; Györfi, L.; Walk, H.: Strong universal consistent estimate
of the minimum mean squared error
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