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Measuring the Capacity of Sets of Functions in
the Analysis of ERM

Ingo Steinwart

Abstract Empirical risk minimization (ERM) is a fundamental learning principle
that serves as the underlying idea for various learning algorithms. Moreover, ERM
appears in many hyper-parameter selection strategies. Not surprisingly, the statisti-
cal analysis of ERM has thus attracted a lot of attention during the last four decades.
In particular, it is well-known that as soon as ERM uses an infinite set of hypotheses,
the problem of measuring the size, or capacity, of this set is central in the statistical
analysis. We provide a brief, incomplete, and subjective survey of different tech-
niques for this problem, and illustrate how the concentration inequalities used in the
analysis of ERM determine suitable capacity measures.

1 Introduction

Given a data set D := ((x1,y1), . . . ,(xn,yn)) sampled from some unknown distri-
bution P on X ×Y , the goal of supervised learning is to find a decision function
fD : X → R whose L-risk

RL,P( fD) :=
∫

X×Y
L
(
x,y, fD(x)

)
dP(x,y)

is small. Here, L : X×Y ×R→ [0,∞) is a loss function e.g. the binary classification
loss or the least squares loss. However, other choices, e.g. for quantile regression,
weighted classification, classification with reject option, are important, too. To for-
malize the concept of “learning”, we also need the Bayes risk R∗L,P := infRL,P( f ),
where the infimum runs over all f : X → R. If this infimum is attained we denote a
function that achieves R∗L,P by f ∗L,P. Clearly, no algorithm can construct a decision
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2 Ingo Steinwart

function fD whose risk is smaller than the R∗L,P. On the other hand, having an fD
whose risk is close to the Bayes risk is certainly desirable.

To formalize this idea, let us fix a learning method L , which assigns to every
finite data set D a function fD. Then L learns in the sense of L-risk consistency for
P, if

lim
n→∞

Pn
(

D ∈ (X×Y )n : RL,P( fD)≤R∗L,P + ε

)
= 1 (1)

for all ε > 0. Moreover, L is called universally L-risk consistent, if it is L-risk
consistent for all distributions P on X ×Y with, e.g. R∗L,P < ∞. Recall that the first
results on universally consistent learning methods were shown by Stone [40] in a
seminal paper. Since then, various learning methods have been shown to be univer-
sally consistent. We refer to the books [15] and [21] for binary classification and
least squares regression, respectively.

Clearly, consistency does not specify the speed of convergence in (1). To address
this, we fix a sequence (εn)⊂ (0,1] converging to 0. Then L learns with rate (εn),
if there exists a family (cτ)t∈(0,1] such that, for all n≥ 1 and all τ ∈ (0,1], we have

Pn
(

D ∈ (X×Y )n : RL,P( fD)≤R∗L,P + cτ εn

)
≥ 1− τ . (2)

Recall that unlike consistency, learning rates usually require assumptions on P by
famous the no-free-lunch theorem of Devroye, see [17] and [15, Thm. 7.2]. In other
words, no quantitative, distribution independent a-priori guarantee against the Bayes
risk can be made for any learning algorithm. The aim of learning rates is thus to
understand for which distributions a learning algorithm learns sufficiently fast.

An important class of learning methods are empirical risk minimizers (ERMs).
Motivated by the law of large numbers, the idea of ERM is to minimize the empirical
risk

RL,D( f ) :=
1
n

n

∑
i=1

L
(
xi,yi, f (xi)

)
instead of the unknown risk RL,P( f ). Unfortunately, if this is done in a naı̈ve way,
for example, by minimizing the empirical risk over all functions f : X→R, then the
resulting learning method memorizes the data, but is, in general, not able to learn.
Therefore, ERM methods fix a “small” set F of functions f : X →R over which the
empirical risk is minimized, that is, the resulting decision functions are given by

fD ∈ argmin
f∈F

RL,D( f ) .

Here we note that in general such a minimizer does not need to exist. In the fol-
lowing, we therefore assume that it does exist. The possible non-uniqueness of the
minimizer will not be a problem, so that no extra assumptions are required.

Clearly, ERM only produces decision functions contained in F , and hence it is
never able to outperform the relatively best risk

R∗L,P,F := inf
{
RL,P( f )

∣∣ f ∈ F} .
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In particular, if we have a non-zero approximation error, that is R∗L,P,F −R∗L,P > 0,
then the corresponding ERM cannot be L-risk consistent for this P.

In the same spirit as L-risk consistency, it is an interesting question for ERM to
ask for oracle inequalities, that is, for meaningful lower bounds of the probabilities

Pn
(

D ∈ (X×Y )n : RL,P( fD)≤R∗L,P,F + ε

)
. (3)

Clearly, if these probabilities converge to 1 for n→∞, then the corresponding ERM
is L-risk consistent, if R∗L,P,F−R∗L,P = 0. Moreover, if F =Fn changes with the num-
ber of samples, then bounds on (3) can be used to investigate L-risk consistency and
convergence rates. Indeed, for ERM over such Fn, the analysis can be split into the
deterministic approximation error R∗L,P,Fn

−R∗L,P and an estimation error described
by bounds of the form (3). From a statistical point of view, oracle inequalities are
thus a key element for determining a-priori guarantees such as L-risk consistency
and learning rates. Note that for determining learning rates, the right-hand side of
oracle inequalities may depend, up to a certain degree, on properties of P, since
learning rates are always distribution dependent by the no-free-lunch theorem.

Another interesting task in the analysis of ERM is to seek generalization error
bounds, which provide meaningful lower bounds of

inf
P

Pn
(

D ∈ (X×Y )n : RL,P( fD)≤RL,D( fD)+ ε

)
,

where the infimum runs over all distributions P on X×Y . Unlike oracle inequalities,
generalization error bounds are provide a-posteriori guarantees by estimating the
risks RL,P( fD) in terms of the achieved training error without knowing P. The latter
explains why they need to be independent of P.

2 Prelude: ERM for Finite Hypothesis Classes

The simplest case, in which one can analyze ERM is the case of finite F . Although,
this may seem be a rather artificial setting in view of e.g. consistency, it is of high
practical relevance for hyper-parameter selection schemes that are based on a em-
pirical validation error.

In the following, we restrict our considerations to bounded losses, i.e. losses L
that satisfy L(x,y, f (x))≤ B for all (x,y)∈ X×Y and f ∈ F . Here one can show, see
e.g. [45, p. 95] or [36, Prop. 6.18] that

Pn
(

D ∈ (X×Y )n : RL,P( fD)< R∗L,P,F +B

√
2τ +2ln |F |

n

)
≥ 1−2e−τ (4)

holds for all distributions P on X ×Y , and all τ > 0, n≥ 1. For later use, recall that
the proof of this bound first employs the ERM property to establish
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RL,P( fD)−R∗L,P,F ≤ 2 sup
f∈F

∣∣RL,P( f )−RL,D( f )
∣∣ . (5)

Then the union bound together with Hoeffding’s inequality is used to show

Pn
(

D ∈ (X×Y )n : sup
f∈F

∣∣RL,P( f )−RL,D( f )
∣∣≥ B

√
τ

2n

)
≤ 2 |F |e−τ . (6)

Since RL,P( fD)−RL,D( fD) ≤ sup f∈F |RL,P( f )−RL,D( f )|, it becomes clear that
bounds on the probability of the right-hand side of (5) can also be used to obtain
generalization bounds. For example, in the case above, we immediately obtain

Pn
(

D ∈ (X×Y )n : RL,P( fD)< RL,D( fD)+B

√
τ + ln |F |

2n

)
≥ 1−2e−τ .

There are situations in which the O(n−1/2)-bound (4) does not provide the best
rate of convergence. For example, if there exists an f ∈ F with RL,P( f ) = 0, then
we obviously have R∗L,P,F = R∗L,P = 0, and one can show, see e.g. [36, p. 241f],

Pn
(

D ∈ (X×Y )n : RL,P( fD)<
8B(τ + ln |F |)

n

)
≥ 1− e−τ (7)

for all τ > 0, n ≥ 1. Note that (7) gives an O(n−1) convergence rate, which is sig-
nificantly better than the rate O(n−1/2) obtained by (4). Unfortunately, however, the
approach above does not improve our a-posteriori guarantees. Indeed, to estimate
the risk RL,P( fD) after training with the help of (7), we would need to know that
our unknown data-generating distribution at hand satisfies R∗L,P,F = 0.

Since the proof of (7) is somewhat archetypal for later results, let us briefly rec-
ollect its main steps, too. The basic idea is to consider functions of the form

g f ,r :=
EPh f −h f

EPh f + r
, f ∈ F, (8)

where h f is defined by h f (x,y) := L(x,y, f (x)) and r > 0 is chosen later in the proof.
This gives EPg f ,r = 0, and using

EPh2
f ≤ BEPh f , (9)

which holds by the non-negativity of h f , we find both EPg2
f ,r ≤

B
2r and ‖g f ,r‖∞ ≤ B

r .
Consequently, Bernstein’s inequality together with a union bound gives

Pn

(
D ∈ (X×Y )n : sup

f∈F
EDg f ,r ≥

√
Bτ

nr
+

2Bτ

3nr

)
≤ |F |e−τ .
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Now, using RL,D( fD) = 0, we find (7) by setting r := 4Bτ

n . Note that the key idea in
the proof above is the variance bound (9), which led to a non-trivial variance bound
for g f ,r, which in turn made it possible to apply Bernstein’s inequality.

Interestingly, for functions of the form h f (x,y) := L(x,y, f (x))−L(x,y, f ∗L,P(x))
we may still have a variance bound of the form (9). For example, for the least
squares loss and Y ⊂ [−M,M] it is well-known that (9) holds for all functions
f : X → [−M,M], if B is replaced by 16M2, and for some other losses and certain
distributions P we may have at least

EPh2
f ≤V ·

(
EPh f

)ϑ (10)

for some constants ϑ ∈ (0,1] and V ≥B2−ϑ , see e.g. [42, 7, 4, 39, 6, 36, 37]. In these
cases, it can then be shown by a technical but conceptionally simple modification of
the argument above that

RL,P( fD)−R∗L,P < 6
(
R∗L,P,F −R∗L,P

)
+4
(

8V
(
τ + ln(1+ |F |)

)
n

) 1
2−ϑ

(11)

holds with probability Pn not less than 1− e−τ . We refer to e.g. [36, Thm. 7.2].
The drafts of the proofs we presented above indicate that the full proofs are rather

elementary. Moreover, all proofs relied on a concentration inequality for quantities
of the form EDg−EPg, that is, on a quantified version of the law of large numbers.
In fact, as soon as we have such a concentration inequality we can easily apply the
union bound and repeat the remaining parts of the proof of (4) to obtain a bound in
the spirit of (4). Moreover, if our concentration inequality has a dominating variance
term like Bernstein’s inequality does, then improvements are possible by using the
ideas that led to (7) and (11), respectively. These insights are in particular applicable
when analyzing ERM for non-i.i.d. data, since for many classes of stochastic pro-
cesses for which we have a law of large numbers, we actually have concentration
inequalities, too. This has been used in e.g. [46, 49, 50, 35, 38, 22].

3 Binary Classification and VC-Dimension

Clearly, the union bound argument used above falls apart, if F is infinite, and hence
a natural question is to ask for infinite sets F for which we can still bound the
probability in (6). Probably the most classical result in this direction considers the
binary classification loss L. In this case, each function L◦ f defined by L◦ f (x,y) :=
L(x, f (y)) is an indicator function, so that one has to bound the probability of D
satisfying

sup
g∈G

∣∣EDg−EPg
∣∣≥ ε , (12)

where G := L ◦F := {L ◦ f : f ∈ F} is a set of indicator functions. Note that, for
indicator functions, the set G|D := {g|D : g ∈ G} of restrictions onto D is always
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finite, independently of whether G is finite or not. Indeed, we have |G|D| ≤ 2n, where
n is the length of the data set D. Writing

H (G,n) := lnED∼Pn
∣∣G|D∣∣

for the so-called annealed entropy, it can then be shown, see e.g. [45, Thm. 4.1] that

Pn

(
D ∈ (X×Y )n : sup

g∈G

∣∣EDg−EPg
∣∣≥√τ +H (G,2n)

n
+

1
n

)
≤ 4e−τ . (13)

The proof of this inequality is rather complex but classical, and hence we only men-
tioned that it consists of: a) symmetrization by a ghost sample, b) conditioning and
subsequent use of |G|D|, and c) application of Hoeffding’s inequality. Now, replac-
ing (6) by (13) and using (5), we obtain the bound

Pn
(

D∈(X×Y )n : RL,P( fD)<R∗L,P,F +2

√
τ +H (G,2n)

n
+

2
n

)
≥ 1−4e−τ (14)

for ERM with the binary classification loss over arbitrary F . Note that the con-
ceptional difference to (4) is the replacement of ln |F | by the annealed entropy
H (G,2n), which may provide non-trivial bounds even for infinite hypotheses sets
F . Namely, it is not hard to conclude from (14) that RL,P( fD)→ R∗L,P,F holds in
probability, if H (G,n)n−1→ 0. The latter holds, if, on “average” we have a signif-
icantly better bound than |G|D| ≤ 2n.

The natural next question is to ask for sets G satisfying H (G,n)n−1→ 0 for all
distributions P on X×Y . To this end, let us consider the so-called growth-function

G (G,n) := ln sup
D∈(X×Y )n

∣∣G|D∣∣ .
Since H (G,n) ≤ G (G,n), we can always replace H (G,2n) by G (G,2n) in (13)
and (14). Now the first fundamental combinatorial insight of VC-theory, see e.g. [45,
Thm. 4.3], is that we either have G (G,n) = ln2n for all n ≥ 1, or there exists an
n0 ≥ 0 such that for all n > n0 we have G (G,n) < ln2n. This leads to the famous
Vapnik-Chervonenkis dimension

VC-dim(G) := max
{

n≥ 0 : G (G,n) = ln2n
}
.

In the case of VC-dim(G)<∞, we thus have G (G,n)< ln2n for all n>VC-dim(G),
while in the case VC-dim(G) = ∞ we never have a non-trivial bound for the growth
function. Now, the second combinatorial insight is that in the first case, i.e. d :=
VC-dim(G)< ∞, we have by Sauer’s lemma

G (G,n)≤ d
(

1+ ln
n
d

)
(15)
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for all n > d, see again [45, Thm. 4.3], and also [15, Ch. 13], [18, Ch. 4], and [16,
Chapter 4]. Of course, the latter can be plugged into (14), which leads to

Pn
(

D ∈ (X×Y )n : RL,P( fD)< R∗L,P,F +2

√
τ +d +d ln 2n

d
n

+
2
n

)
≥ 1−4e−τ

for ERM with the binary classification loss over hypotheses sets F with d :=
VC-dim(L◦F)< ∞. In this case, we thus obtain RL,P( fD)→R∗L,P,F in probability,
and the rate is only by a factor of

√
lnn worse than that of (4) in the case of finite F .

Conversely, if VC-dim(L ◦F) = ∞, then the probability of (12) cannot be bounded
in a distribution independent way. Namely, for all ε > 0, there exists a distribution
P such that (12) holds with probability one, see [45, Thm. 4.5] for details.

The above discussion shows that the VC-dimension is fundamental for under-
standing ERM for binary classification and i.i.d. data. For this reason, the VC-
dimension has been bounded for various classes of hypotheses sets. We refer to
[45, 3, 18, 16, 8, 43] and the many references mentioned therein. Finally, some
generalizations to non i.i.d. data can be found in e.g. [1, 48].

4 Covering Numbers and Generalized Notions of Dimension

The results of Section 3 only apply to ERM with a loss L for which the induced set
L ◦F of functions consists of indicator functions. Unfortunately, the only common
learning problem for which this is true is binary classification. In this section, we
therefore consider more general losses.

One of the best-known means for analyzing ERM for general losses are covering
numbers. To recall their definition, let us fix a set G of functions Z → R, where Z
is an arbitrary, non-empty set. Let us assume that G is contained in some normed
space (E,‖ · ‖E), so that ‖g‖E is explained for all g ∈ G. Then, for all ε > 0, the
‖ · ‖E -covering numbers of G are defined by

N (G,‖ · ‖E ,ε) := inf
{

n≥ 1 : ∃g1, . . . ,gn ∈ G such that G⊂
n⋃

i=1

(gi + εBE)

}
,

where inf /0 := ∞ and BE := {g ∈ E : ‖g‖E ≤ 1} denotes the closed unit ball of E.
One way to bound the probability of (12) with the help of covering numbers is

inspired by the proof of (13) and goes back to Pollard, see [32, p. 25ff] and [21,
Thm. 9.1]. It leads to a bound of the form

Pn

(
D ∈ (X×Y )n : sup

g∈G

∣∣EDg−EPg
∣∣> 8ε

)
≤ 8ED∼PnN (G,‖ · ‖L1(D),ε)e

− nε2

2B2 ,

where ‖g‖L1(D) := 1
n ∑

n
i=1 |g(xi,yi)| denotes the empirical L1-norm of g ∈ G.
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To illustrate how to use this inequality let us assume for simplicity, that the loss
L is Lipschitz with constant 1, that is |L(x,y, t)−L(x,y, t ′)| ≤ |t− t ′| for all x ∈ X ,
y ∈Y , and t, t ′ ∈ { f (x) : f ∈ F}. Then, for G := L◦F , a simple consideration shows

N (G,‖ · ‖L1(D),ε)≤N (F,‖ · ‖L1(DX ),ε) , (16)

where DX :=(x1, . . . ,xn). Now assume that F is contained in the unit ball BE of some
d-dimensional normed space (E,‖ · ‖E) of functions on X for which the identity
map id : E→ L1(DX ) is continuous for all DX ∈ Xn. Let us additionally assume that
‖ id : E → L1(DX )‖ ≤ M for a suitable M and all DX ∈ Xn. Then using a volume
comparison argument, see e.g. [12, Prop. 1.3.1], one finds

N (F,‖ · ‖L1(DX ),ε)≤ 2
(

4M
ε

)d

(17)

for all 0 < ε ≤ 4M, and consequently, the concentration inequality above becomes

Pn

(
D ∈ (X×Y )n : sup

g∈G

∣∣EDg−EPg
∣∣> 8ε

)
≤ 8e−

nε2

2B2 +d ln 8M
ε

for all 0 < ε ≤ 4M. Setting ε := B
√

(τ+1+2ln8M)d lnn
n we then obtain

Pn

(
D ∈ (X×Y )n : sup

g∈G

∣∣EDg−EPg
∣∣> 8B

√
(τ +1+2ln8M)d lnn

n

)
≤ 8e−τ

for all n ≥ 8 satisfying n
lnn ≥

(τ+1+2ln8M)dB2

16M2 and from the latter it is easy to find a
bound for ERM over F , which is only by a factor of

√
lnn worse than that of (4).

Now note that this derivation did not actually need the assumptions on F made
above, except the covering number bound (17). In other words, as soon as we have
a polynomial covering number bound of the form (17), we get the same rate for
ERM over F . Such polynomial bounds cannot only be obtained by the simple func-
tional analytic approach taken above, but also by some more involved, combinatorial
means. To briefly discuss some of these, recall that a D = {(z1), . . . ,(zn)} ⊂ Z is ε-
shattered, by a class G of functions on Z, if there exists a function h : D→ R such
that, for all subsets I ⊂ {1, . . . ,n}, there exists a function g ∈ G such that

g(zi)≤ h(zi)− ε i ∈ I

g(zi)≥ h(zi)− ε i ∈ {1, . . . ,n}\ I .

Moreover, D is shattered by G, if it is ε-shattered by G for some ε > 0. Now, for
ε > 0, the ε-fat-shattering dimension of G is defined to be size of the largest set D
that can be ε-shattered by G, i.e.

fat-dim(G,ε) := sup
{
|D| : D⊂ X×Y is ε-shattered by G

}
.
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Analogously, Pollard’s pseudo-dimension, see [33, Sec. 4], is defined to be size of
the largest set D that can be shattered by G. Clearly, for all ε > 0, the ε-fat-shattering
dimension is dominated by the pseudo-dimension. Moreover, [30] shows that there
exist absolute constants K and c such that

N (G,‖ · ‖L2(D),ε)≤
(

2
ε

)K·fat-dim(G,cε)

(18)

for all 0 < ε < 1 provided that ‖g‖∞ ≤ 1 for all g ∈G. In particular, since ‖ ·‖L2(D)-
covering numbers dominate ‖·‖L1(D)-covering numbers, we easily see that the anal-
ysis based on (17) remains valid, if G, or F , have finite pseudo-dimension, and the
same is true if fat-dimG(ε), or fat-dim(F(ε), are bounded by cε−p for some con-
stants c > 0 and p > 0 and all sufficiently small ε > 0.

A bound for the ‖·‖L∞(D)-norms that is conceptionally similar to (18) was shown
in [2] and later improved in [29], and the latter paper also contains several historical
notes and links. Also, note that for sets G of indicator functions (15) always yields

N (G,‖ · ‖L∞(D),ε)≤ eG (G,n) ≤
( en

VC-dim(G)

)VC-dim(G)
.

Historically, one of the main motivations for considering the dimensions above is the
characterization of uniform Glivenko-Cantelli classes G, that is, classes for which

lim
n→∞

sup
P

Pn
(

D : sup
m≥n

sup
g∈G

∣∣EDg−EPg
∣∣≥ ε)

)
= 0 (19)

holds, where the outer supremum is taken over all probability measures P on
the underlying space. For sets of indicator functions, (19) holds, if and only if
VC-dim(G) < ∞, see e.g. [2, Thm. 2.1] which, however, attributes this result to
Assouad and Dudley, while general sets G of bounded functions satisfy (19), if and
only if, fat-dim(G,ε)< ∞ for all ε > 0, see [2, Thm. 2.5].

So far all our estimates on the expected covering numbers are based on the im-
plicit, intermediate step

ED∼PnN (G|D,‖ · ‖L1(D),ε)≤ sup
D∈(X×Y )n

N (G|D,‖ · ‖L1(D),ε) , (20)

which, from a conceptional point of view, is not that surprising, since both (19) and
generalization bounds require a sort of worst-case analysis. In addition, there is also
a technical reason for this intermediate step, namely the plain difficulty of directly
estimating the expectation on the left-hand side of (20). Now assume again that G
consist of bounded functions. Then we can continue the right-hand side of (20) by

sup
D∈(X×Y )n

N (G,‖ · ‖L1(D),ε)≤ sup
D∈(X×Y )n

N (G,‖ · ‖L∞(D),ε)≤N (G,‖ · ‖∞,ε) .

In general, estimating the expected covering numbers on the left-hand side of (20)
by N (G,‖ · ‖∞,ε), is, of course, horribly crude. Indeed, N (G,‖ · ‖∞,ε) may not
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even be finite although the expected covering numbers are. A classical example for
such a phenomenon are the reproducing kernel Hilbert spaces H of the Gaussian
kernels on Rd , since for these id : H → `∞(Rd) is not compact and thus N (H,‖ ·
‖∞,ε) =∞ for all sufficiently small ε > 0, see [36, Examp. 4.32], while the expected
covering numbers can e.g. be bounded by an approach similar to [36, Thm. 7.34].
On the other hand, there are also some advantages of considering ‖ · ‖∞-covering
numbers: first, if F is the unit ball of a Banach space, then the asymptotic behavior
of N (F,‖ · ‖∞,ε) may be exactly known, see e.g. [19], and second, ‖ · ‖∞-covering
numbers can be directly used to bound the probability of (12) by an elementary
union bound argument in combination with a suitable ε-net of F and Hoeffding’s
inequality, cf. [36, Prop. 6.22] and its proof. More precisely, we have

sup
f∈F

∣∣RL,P( fD)−RL,D( f )
∣∣< B

√
τ + lnN (F,‖ · ‖∞,ε)

2n
+2ε (21)

with probability Pn not less than 1− 2e−τ . Note that this inequality holds for all
ε > 0, and hence we can pick an ε that minimizes the right-hand side of (21). Finding
such an ε is feasible, as soon as we have a suitable upper bound on the covering
numbers, e.g. a bound that behaves polynomially in ε . Moreover, it is not hard to
see that the inequality yields both oracle inequalities and generalization bounds.

While (21) is, in general, looser than our previous estimates, its proof is more
robust, when it comes to modifying it to non i.i.d. data. Indeed, as soon as we have
a Hoeffding type inequality, we can easily derive a bound of the form (21). For
some examples, when such an inequality holds, we refer to [20, 25, 14, 13] and the
references therein. As a consequence, it seems fair to say that such bounds of the
form (21) are certainly not useful for obtaining sharp learning rates, but they may
be good enough for deriving “quick-and-dirty” generalization bounds and learning
rates in situations, in which non-experts for the particular data-generating stochastic
processes are otherwise lost. Moreover, if even Bernstein type inequalities such as
the one in [31, 47] are available then ‖ ·‖∞-covering numbers of F can still be used,
we refer to [22] for one of the sharpest known results for regularized ERM and the
references mentioned therein.

5 More Sophisticated Inequalities: McDiarmid and Talagrand

So far, all of the results presented relied directly or indirectly on either Hoeffding’s
or Bernstein’s inequality in combination with a union bound. In the last twenty
years, this credo has been slowly shifted towards the use of concentration inequal-
ities that do not require the union bound. The first of these inequalities is McDi-
armid’s inequality [26], see also [16, Ch. 2], which states, in a slightly simplified
version, that

Pn
(

D ∈ Zn : h(D)−EPnh(D)≥ ε

)
≤ e−

2nε2

c2 (22)
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holds for all functions h : Zn→ R satisfying the bounded difference assumption∣∣h(z1, . . . ,zn)−h(z1, . . . ,zi−1,z′,zi+1, . . .zn)
∣∣≤ c

n
(23)

for all z1, . . . ,zn,z′ ∈ Z and i = 1, . . . ,n. The example most interesting for our pur-
poses is the function h : Zn→ R defined by

h(D) := sup
g∈G

∣∣EDg−EPg
∣∣ ,

where G consists of non-negative, bounded functions. It is easy to verify that h
satisfies (23) for c := supg∈G ‖g‖∞, and plugging this into (22) shows that

sup
g∈G

∣∣EDg−EPg
∣∣≤ ED′∼Pn sup

g∈G

∣∣E′Dg−EPg
∣∣+ c

√
τ

2n

holds with probability Pn not less than 1− e−τ . Consequently, it remains to bound
the expectation on the right-hand side of this inequality. Fortunately, bounding such
an expectation is a rather old problem from empirical process theory, and hence a
couple of different techniques do exist. Usually, the first step in any attempt to bound
such an expectation is symmetrization

ED∼Pn sup
g∈G

∣∣EDg−EPg
∣∣≤ 2ED∼PnEε∼νn sup

g∈G

∣∣∣1
n

n

∑
i=1

εig(zi)
∣∣∣=: 2ED∼Pn RadD(G) ,

where ν is the probability measure on {−1,1} defined by ν({−1}) = ν({1}) =
1/2. Therefore, it suffices to bound the expectations of the empirical Rademacher
averages ED∼Pn RadD(G), and for this task there are several results available, so
that we only highlight a few. For example, for singletons, Khintchine’s inequality,
see e.g. [24, Lem. 4.1] gives universal constants c1,c2 > 0 such that

c1‖g‖L2(D) n−1/2 ≤ RadD({g})≤ c2‖g‖L2(D) n−1/2 (24)

for all functions g and all D ∈ Zn. Moreover, if G is finite, then an application of
Hoeffding’s inequality, see e.g. [8, Thm. 3.3], gives

RadD(G)≤
√

2ln |G|
n

max
g∈G
‖g‖L∞(D) ≤ c

√
2ln |G|

n

under the assumptions made above. Similarly, if G is a set of indicator functions
with finite VC-dimension d := VC-dim(G), then we have both

RadD(G)≤
√

2d ln(n+1)
n

and RadD(G)≤ 36

√
d
n
,

where the latter holds for n ≥ 10. The first result, which is rather classical, can
be found in e.g. [8, p. 328], and the second result, with 36 replaced by universal
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constant, is also well-known, see e.g. [16, p. 31], [28, Cor. 2.32], and [8, Thm. 3.4].
We obtained the constant 36 by combining a variant of Dudley’s integral, see [16,
Thm. 3.2], with the bound

N (G,L2(D),k/n)≤ e(d +1)
(2en2

k2

)d
, k = 1, . . . ,n,

proven by Haussler [23], but we admit that the value 36 is not very sharp, in partic-
ular not for larger values of d and n. Since Dudley’s integral is also important for
bounding Rademacher averages for real-valued function classes, let us recall, see
e.g. [44, Ch. 2.2] and [18, Ch. 2], that it states

RadD(G)≤ K√
n

∫
∞

0

√
lnN (G,L2(D),ε)dε , (25)

where K is a universal constant, whose value can be explicitly estimated by a close
inspection of the proof. In particular, for indicator functions we have K ≤ 12, see
[16, Thm. 3.2], and the same is true for general sets G, see [10, Cor. 3.2]. Moreover,
(25) is almost tight, since Sudakov’s minorization theorem gives

C√
n

sup
ε>0

ε
√

lnN (G,L2(D),ε)≤
√

ln
(

2+
1

c1‖G‖L2(D)

)
RadD(G) , (26)

where C is a universal constant, c1 is the constant appearing in (24), and ‖G‖L2(D) :=
supg∈G ‖g‖L2(D). Here, we note that (26) was obtained by combining [24, Cor. 4.14]
with (24). For a slightly different version we refer to [11, Cor. 1.5].

In view of (25) and (26), we are back to estimating empirical covering num-
bers, and hence the results from Section 4 can be applied. For example, if we have
fat-dim(G,ε) ≤ cε−p for some constants c, p > 0 with p 6= 2 and all ε > 0, then
combining (25) with (18) shows, cf. [28, Thm. 2.35] and [5, Thm. 10], that

RadD(G)≤Cp lnc
√

cn−
1

2∧p , n≥ 1,

where Cp is a constant only depending on p, and for p = 2 the same is true with an
additional (lnn)2-factor.

Since for ERM we are interested in classes of the form G = L◦F , a natural next
question is, whether one can relate the Rademacher averages of F to those of G. In
some cases, see e.g. [7], this can addressed by the so-called contraction principle
[24, Thm. 4.12], which shows

RadD(ϕ ◦G)≤ 2RadD(G) (27)

for all 1−Lipschitz functions ϕ : R→ R with ϕ(0). In other cases, combining (25)
with (16) does the better job, see e.g. [36, Ch. 7].

Let us recall that we are actually interested in bounding expected Rademacher
averages, so that by (25) it suffices find upper bounds for
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ED∼Pn
√

lnN (G,L2(D),ε) .

Like for the expected covering numbers in Section 4, the latter task is, in general,
very difficult, and the arguments used so far, implicitly used a step analogous to (20).
Another way to bound the expected covering numbers above is to follow the steps
discussed after (20). Of course, in doing so, all issues regarding loose bounds can
be expected here, too. There is, however, one case, in which these loose steps can be
avoided. Indeed, [36, Thm. 7.13] shows that Dudley’s entropy integral can also be
expressed in terms of entropy numbers, which are, roughly speaking, the functional
inverse of covering numbers. Then, instead of bounding expected covering numbers,
the task is to bound expected entropy numbers. While in general, this seems to be
as hopeless as the former task, for RKHS, it turns out to be possible, see [34].

Let us finally have a brief look at Talagrand’s inequality [41]. Recall that in its
improved version due to Bousquet [9], see also [36, Thm. 7.5 and A.9] for a com-
plete and self-contained proof, it shows, for every γ > 0, that

sup
g∈G

∣∣EDg−EPg
∣∣≤ (1+ γ)ED′∼Pn sup

g∈G

∣∣E′Dg−EPg
∣∣+√2τσ2

n
+

(
2
3
+

1
γ

)
τB
n

holds with probability Pn not less than 1−e−t , where ‖G‖L2(P) ≤ σ and ‖G‖∞ ≤ B.
One way of applying Talagrand’s inequality in the analysis of ERM in the

presence of a variance bound (10) is to consider functions of the form (8) with
h f := L◦ f −L◦ f ∗L,P. Then the first difficulty is to bound

ED∼Pn sup
f∈F

∣∣∣EDh f −EPh f

EPh f + r

∣∣∣ .
This is resolved by the so-called peeling argument, that estimates this expectation
with the help of suitable upper bounds ϕ(r) for the following, localized expectations

ED∼Pn sup
f∈F

EPh f≤r

∣∣EDh f −EPh f
∣∣≤ ϕ(r) .

Using the variance bound (10), the localization EPh f ≤ r can then replaced by the
variance localization EPh2

f ≤V rϑ , and hence the problem reduces to finding suitable
upper bounds for the localized Rademacher averages RadD(Gr), where

Gr := {h f : EPh2
f ≤ r} .

In turn, these localized Rademacher averages can be estimated by a clever com-
bination of the contraction principle and Dudley’s entropy integral, see e.g. [27,
Lem. 2.5]. A resulting, rather generic oracle inequality for (regularized) ERM can
be found in [36, Thm. 20].

Finally, we note that there is another way to use Talagrand’s inequality in the
analysis of ERM, see e.g. [28, 4]. We decided to present the above one, since the
approach can be more easily adapted to regularized empirical risk minimization, as
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it can be illustrated by comparing the analysis on support vector machines in [39]
and [36, Ch. 8].
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