Universität Stuttgart

Preprint 2014/009

Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints
ISSN 1613-8309
(C) Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

LATEX-Style: Winfried Geis, Thomas Merkle

HAUSDORFF DIMENSION OF RINGS

Dietmar Kahnert
Dedicated to Professor Dr. Bodo Volkmann on his 85. birthday

Abstract

In context with the problem of Volkmann whether a subfield K of \mathbb{R} exists with Hausdorff dimension $\operatorname{dim} K \in(0,1)$, Falconer has proven that there is no subring S with $1 / 2<\operatorname{dim} S<1$ which is an analytic set. We prove that $S=\mathbb{R}$ for every such subring S with $\operatorname{dim} S>0$.

1 A problem of Volkmann

A function $h:[0, \infty) \rightarrow[0, \infty]$ is called Hausdorff function if the following is valid: $h(0)=0$, $h(t)>0$ if $t>0, h(a) \leq h(b)$ if $a \leq b$ and $\lim _{t \rightarrow 0} h(t)=0$.
Let H be the set of all Hausdorff functions. For each $h \in H$ and every subset A of \mathbb{R}^{n} is the outer measure

$$
L_{h}(A)=\lim _{q \rightarrow 0} \inf \left\{\sum_{i=1}^{\infty} h\left(d\left(A_{i}\right): A=\bigcup_{i=1}^{\infty} A_{i}, d\left(A_{i}\right) \leq q \text { for all } i \in \mathbb{N}\right\}\right.
$$

defined. Let $d\left(A_{i}\right)$ be the diameter of A_{i}. Souslin sets (also called "analytic sets"), especially Borel sets, are L_{h}-measurable. If $h(t)=t^{\alpha}(\alpha>0), L_{\alpha}=L_{h}$ is the α-dimensional Hausdorff measure and

$$
\operatorname{dim} A=\sup \left\{\alpha: L_{\alpha}(A)>0\right\}
$$

the Hausdorff dimension of A.

The field problem of Volkmann [18]

Is there a subfield K of the field \mathbb{R} of real numbers with $0<\operatorname{dim} K<1$?
The problem still remains open.

Result of Falconer ([5] and [7])

No Souslin subring S of \mathbb{R} exists with $1 / 2<\operatorname{dim} S<1$.
The result of Falconer emerges from his theorems regarding the projections of subsets E of \mathbb{R}^{2} onto \mathbb{R} and over distance sets $D(E)=\{|x-y|: x, y \in E\}$. They were won with the help of Fourier transformations. The following generalization should be treated here (Theorem 2):

For each Souslin subring S of \mathbb{R} with $\operatorname{dim} S>0$ is $S=\mathbb{R}$.

2 Special subfields of \mathbb{R}

2.1 Small subfields

An uncountable F_{σ}-subfield K of \mathbb{R} with $L_{1}(A)=0$ is constructed in a paper of Souslin [17]. In measure-theoretical view one can win small subfields K of \mathbb{R} with help of the metric dimension of Wegmann [19]. Wegmann defines for subsets A of \mathbb{R}^{n} and $q>0$

$$
N(A, q)=\min \left\{k: \text { There are sets } A_{1}, \ldots, A_{k} \text { such that } \bigcup_{i=1}^{k} A_{i}=A ; d\left(A_{i}\right) \leq q \text { if } 1 \leq i \leq k\right\}
$$

and

$$
m-\operatorname{dim} A=\sup \left\{s: \text { If } \bigcup_{i=1}^{\infty} A_{i}=A \text {, then exists } i \in \mathbb{N} \text { with } \limsup _{q \rightarrow 0} N\left(A_{i}, q\right) q^{s}>0\right\}
$$

In the book of Mattila [14] m - $\operatorname{dim}=\overline{\operatorname{dim}}_{p}$ is called upper packing dimension. Clearly $\operatorname{dim} \leq m$-dim.
If A is a subset of \mathbb{R} and $K(A)$ the smallest subfield of \mathbb{R} containing A :
$m-\operatorname{dim} A=0 \rightarrow m-\operatorname{dim} K(A)=0$ (Kahnert [9]).
With the method used in [9] we can prove: If $g, h \in H$ and $\lim _{q \rightarrow 0} h(t) / g(t)^{n}=0$ for all $n \in \mathbb{N}$, then $\lim _{q \rightarrow 0} N(A, q) g(q)=0 \rightarrow L_{h}(K(A))=0$ for every compact subset A of \mathbb{R}.
An uncountable subset A of \mathbb{R} is called Lusin set, if every uncountable subset of A is of second category. For Lusin sets A is $L_{h}(A)=0$ for each $h \in H$.
With the help of the continuum hypothesis it is possible to get subfields of \mathbb{R} which are Lusin sets (Erdös [4]).

2.2 Big subfields

According to an idea of Zygmund, in the paper of Souslin [17], the existence of a non- L_{1-} measureable subfield K of $\mathbb{R}\left(L_{1}(K)>0, \operatorname{dim} K=1\right)$ can be proven with the help of the axiom of choice.
An uncountable subset A of \mathbb{R} is called Sierpinski set (dual to Lusin set), if every uncountable subset of A is of positive outer L_{1}-measure. With the help of the continuum hypothesis Erdös and Volkmann [3] proved the existence of fields which are Sierpinski sets.
In the latter mentioned paper Erdös und Volkmann constructed for each $\alpha \in(0,1)$ additive F_{σ}-subgroups $G(\alpha)$ of \mathbb{R} with $\operatorname{dim} G(\alpha)=\alpha(=m$ - $\operatorname{dim} G(a))$. This result led to the supposition that a corresponding statement could be true for subfields of \mathbb{R}.

3 Subfields K of the complex numbers \mathbb{C} of finite degree

A field E containing a field F can be regarded as an F-vector space. We write $E: F$ for the dimension. We refer in the following to the book of Hornfeck [8].

$3.1 \mathbb{C}$ is normal over K if $\mathbb{C}: K<\infty$

Let $G(\mathbb{C}: K)$ be the group of automorphism φ of \mathbb{C} with $\varphi(x)=x$ for all $x \in K$. The field \mathbb{C} is called normal over K if K is the fixed field of $G(\mathbb{C}: K)$ (other authors name in this case \mathbb{C}

Galois over K). There is $\alpha \in \mathbb{C}$ with $\mathbb{C}=K(\alpha)$ (Theorem 3a, 61.2). The minimal polynomial $f(x) \in K[x]$ of α splits in $\mathbb{C}[x]$:

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right), \quad\left(\alpha_{1}=\alpha\right)
$$

Therefore is $K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=K(\alpha)=\mathbb{C}$ a splitting field of $f(x)$ (Lemma in 58.1). \mathbb{C} is normal over K (Theorem $7,65.2$) and $|G(\mathbb{C}: K)|=\mathbb{C}: K$.
The field \mathbb{C} has two continuous automorphisms φ_{1} and φ_{2} with $\varphi_{1}(x)=x$ and $\varphi_{2}(x)=\bar{x}$ for all $x \in \mathbb{C}$. The field \mathbb{R} has only one automorphism.

3.2 Continuous additive functions

We shall prove Theorem 1 using the following special-case of a result of Ostrowski [15] and give the proof due to Kestelman [11].

Ostrowski's theorem If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is additive $(f(x+y)=f(x)+f(y))$ and bounded on a L_{n}-measurable set A with $L_{n}(A)>0$, then f is continuous.
Proof: Let $M=\sup \{|f(x)|: x \in A\}$. After a known result of Steinhaus, the set $A-A$ contains a ball around the origin with radius r. Every $x \in \mathbb{R}^{n}$ with $|x|<r$ can be written as $x=a-b$ $(a, b \in A)$ and therefore

$$
|f(x)|=|f(a)-f(b)| \leq 2 M
$$

For $n \in \mathbb{N}$ and $|x|<r / n$ is $|n x|<r,|f(n x)|=n|f(x)| \leq 2 M$ and $|f(x)| \leq 2 M / n$. Therefore f is continuous in the origin and consequently everywhere continuous.

3.3 Souslin subfields K of \mathbb{C} with $\mathbb{C}: K<\infty$

The properties of analytic sets mentioned here are treated for example in the book of Parthasarathy [16].

Theorem 1 Souslin subfields K of \mathbb{C} with $\mathbb{C}: K<\infty$ are only $K=\mathbb{R}$ and $K=\mathbb{C}$.

Proof: Let b_{1}, \ldots, b_{n} be a basis of \mathbb{C} over K :

$$
\mathbb{C}=b_{1} K+b_{2} K+\ldots+b_{n} K
$$

For $r>0$ we define

$$
\begin{aligned}
& A(r)=\left\{b_{1} z_{1}+b_{2} z_{2}+\ldots+b_{n} z_{n}:\left(z_{1}, \ldots, z_{n}\right) \in K^{n},\left|z_{1}\right|+\ldots+\left|z_{n}\right| \leq r\right\} \\
& B(r)=\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{1}\right|+\ldots+\left|z_{n}\right| \leq r\right\} \text { and } \\
& C(r)=B(r) \cap K^{n} .
\end{aligned}
$$

Then $B(r)$ is compact, K^{n} and $C(r)$ are Souslin sets in \mathbb{C}^{n}.
We show: $A(r)$ is analytic.
For $z=\left(z_{1}, \ldots, z_{n}\right)$ let

$$
\begin{aligned}
& f(z)=b_{1} z_{1}+\ldots+b_{n} z_{n} \quad\left(z \in \mathbb{C}^{n}\right) \text { and } \\
& g(z)=f(z) \quad(z \in C(r)) .
\end{aligned}
$$

Since f is continuous it follows that for every Borel set D in \mathbb{C}

$$
\begin{gathered}
f^{-1}(D) \text { is a Borel set in } \mathbb{C}^{n} \text { and } \\
g^{-1}(D)=f^{1}(D) \cap C(r) \text { is a Borel set in } C(r)
\end{gathered}
$$

Therefore g is Borel measurable and $A(r)=g(C(r))$ analytic.
For $\varphi \in G(\mathbb{C}: K)(\mathbb{C}$ is normal over $K)$ and $M=\max \{|b|, \ldots, b \mid\}$ is

$$
|\varphi(z)| \leq M r \text { if } z \in A(r)
$$

There is r with $L_{2}\left(A(r)>0\right.$. By Ostrowski's result φ is continuous, therefore $G(\mathbb{C}: K)=\left\{\varphi_{1}\right\}$ and $K=\mathbb{C}$, or $G(\mathbb{C}: K)=\left\{\varphi_{1}, \varphi_{2}\right\}$ and $K=\mathbb{R}$.
The analytic property of K is not required with the following result.

Artin's Theorem [1] For every subfield K of \mathbb{C} with $1<\mathbb{C}: K<\infty$ is $\mathbb{C}: K=2$. (Especially there exists no subfield K of \mathbb{R} with $1<\mathbb{R}: K<\infty$.)

The following special-case, that can be used in the Section 5 , can easily be proven. There is no subfield K of \mathbb{R} with $\mathbb{R}: K=2$.

Suppose that K is a subfield of \mathbb{R} and $\mathbb{R}: K=2$. Then there is a real number α with $\mathbb{R}=K(\alpha)$. Let $f(x)$ be the minimal polynomial of α and

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right), \quad\left(\alpha_{1}=\alpha\right)
$$

Then α_{2} must be a real number.
Thus is $K\left(\alpha_{1}, \alpha_{2}\right)=K(\alpha)=\mathbb{R}, K\left(\alpha_{1}, \alpha_{2}\right)$ a splitting field, \mathbb{R} normal over K and $|G(\mathbb{R}: K)|=2$. But \mathbb{R} has only one automorphism.

4 The Main Result

Let A be a non-empty subset of \mathbb{R} and $\mathbb{R}(A)$ the subring of \mathbb{R} generated by A.

Theorem 2 For every closed subset A of \mathbb{R} with $\operatorname{dim} A>0$ is $R(A)=\mathbb{R}$.

By results of Besicovitch and Davies [2] any Souslin subset A of \mathbb{R}^{n} with $L_{\alpha}(A)>0$ contains a closed subset B with $0<L_{\alpha}(B)<\infty$. For every Souslin subring S of \mathbb{R} with $\operatorname{dim} S>0$ is therefore $S=\mathbb{R}$.

We use the following theorems of Marstrand to prove $\mathbb{R}: K(A)<\infty$ for every set A of Theorem 2 . For subsets E of \mathbb{R}^{2} and $t \in \mathbb{R}$ be

$$
E(t)=\{x+t y:(x, y) \in E\}
$$

Projection theorem (Marstrand [12]) Let E be a Souslin subset of \mathbb{R}^{2} with $\operatorname{dim} E=\alpha$:
a) $\alpha \leq 1: \operatorname{dim} E(t)=\alpha$ for almost all $t \in \mathbb{R}$,
b) $\alpha>1: L_{1}(E(t))>0$ for almost all $t \in \mathbb{R}$.

A potential theoretic proof was given by Kaufmann [10]. Generalizations can be found in the books of Falconer [6] and Mattila [14].

Product theorem (Marstrand [13]) For any subsets A und B of \mathbb{R}^{n}

$$
\operatorname{dim} A \times B \geq \operatorname{dim} A+\operatorname{dim} B
$$

A generalization of the product formula for general metric spaces was proven by Wegmann [19].

Proof of Theorem 2.

1. With possibly multiple applications of the theorems of Marstrand one proves the following assertion:
There are real numbers b_{1}, \ldots, b_{n} with $L_{1}\left(b_{1} A+\ldots+b_{n} A\right)>0$.
Let $b_{1}=1$ and $A_{1}=A$. In the case $L_{1}(A)>0$ there is nothing to prove. May $A_{k}=$ $b_{1} A+\ldots+b_{k} A$ be defined and $L_{1}\left(A_{1}\right)=\ldots=L_{1}\left(A_{k}\right)=0$.
In the case $\operatorname{dim} A_{k} \times A>1$ exists by the projection theorem a real number b_{k+1} with $L_{1}\left(A_{k}+b_{k+1} A\right)>0$ and the assertion is verified.
In the case $\operatorname{dim} A_{k} \times A \leq 1$ there exists by the projection theorem a real number b_{k+1} with $\operatorname{dim} A_{k}+b_{k+1} A=\operatorname{dim} A_{k} \times A$. For $A_{k+1}=A_{k}+b_{k+1} A$ is by the product formula

$$
\operatorname{dim} A_{k+1} \geq \operatorname{dim} A_{k}+\operatorname{dim} A \geq(k+1) \operatorname{dim} A
$$

After finite steps, one arrives at the assertion.
2. If U is the additive subgroup of \mathbb{R} generated by A, then

$$
G=b_{1} U+\ldots+b_{n} U
$$

is a group, by the theorem of Steinhaus a neighborhood of 0 and therefore $G=\mathbb{R}$. For $S=R(A)$ and for the F_{σ}-field

$$
\begin{gathered}
K=\{s / t: s, t \in S, t \neq 0\}=K(A) \text { is } \\
b_{1} K+\ldots+b_{n} K=\mathbb{R}, \mathbb{R}: K \leq n
\end{gathered}
$$

and therefore $K=\mathbb{R}$ (Artin's theorem, Theorem 1).
Let $b_{1}=s_{1} / t_{1}, \ldots, b_{n}=s_{n} / t_{n}\left(s_{i}, t_{i} \in S ; t_{1} t_{2} \cdots t_{n} \neq 0\right)$.
Multiplying $b_{1} S+\ldots+b_{n} S=\mathbb{R}$ with $t_{1} t_{2} \cdots t$ we get

$$
\mathbb{R}=d_{1} S+\ldots+d_{n} S=S\left(d_{1}, \ldots, d_{n} \in S\right), \mathbb{R}=S
$$

5 A special case of Theorem 2

For every closed subset A of \mathbb{R} with $\operatorname{dim} A>1 / 2$ is $R(A)=\mathbb{R}$.
Proof: It is $\operatorname{dim} A \times A \geq 2 \operatorname{dim} A>1$. By the projection theorem (part b) there exists a real number t with

$$
L_{1}(A+t A)>0
$$

Let S be the F_{σ}-ring $R(A)$. Then $L_{1}(S+t S)>0$.

By the theorem of Steinhaus is the additive group

$$
S+t S=(S+t S)-(S+t S)
$$

neighborhood of 0 and therefore $S+t S=\mathbb{R}$.
For the field $K=K(A)=\{a / b: a, b \in S, b \neq 0\}$ is

$$
K+t K=\mathbb{R}, \quad \mathbb{R}: K \leq 2
$$

and therefore $K=\mathbb{R}(\mathbb{R}: K=2$ is not possible $)$.
Be $t=a / b(a, b \in S ; b \neq 0)$. Then $b S+a S=\mathbb{R}=S$.

6 Problems

- Is there a Souslin subfield K of \mathbb{C} with

$$
0<\operatorname{dim} K<2 \text { and } \operatorname{dim} K \neq 1 ?
$$

- Is there a subfield K of \mathbb{R} with $0<m$ - $\operatorname{dim} K<1$?
- Which possibilities are there for a subfield $K \neq \mathbb{R}$ of \mathbb{C} with $\mathbb{C}: K=2$ concerning $\operatorname{dim} K, m-\operatorname{dim} K$ and the Baire category of K ?

References

[1] E. Artin, Kennzeichnung des Körpers der reellen algebraischen Zahlen. Hamb. Abh. 3 (1924), 319-323.
[2] R.O. Davies, Subsets of finite measure in analytic sets. Indag. Math. 14 (1952), 488-489.
[3] P. Erdös, B. Volkmann, Additive Gruppen mit vorgegebener Hausdorffscher Dimension. J. Reine Angew. Math. 221 (1966), 203-208.
[4] P. Erdös, Some remarks on subgroups of real numbers. Colloq. Math. 42 (1979), 119-120.
[5] K.J. Falconer, Rings of fractional dimension. Mathematika 31 (1984), 25-27.
[6] K.J. Falconer, The Geometry of Fractal Sets. Cambridge University Press, 1985.
[7] K.J. Falconer, On the Hausdorff dimension of distance sets. Mathematika 32 (1985), 206212.
[8] B. Hornfeck, Algebra, Walter de Gruyter \& Co. Berlin 1969.
[9] D. Kahnert, Addition linearer Cantormengen, Czechosl. Math. Journ. 24 (1974), 563-572.
[10] R. Kaufmann, On the Hausdorff dimension of projections, Mathematika 15 (1968), 153-155.
[11] H. Kestelman, On the functional equation $f(x+y)=f(x)+f(y)$. Fund. Math. 34 (1947), 144-147.
[12] J.M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. (3) 4 (1954), 257-302.
[13] J.M. Marstrand, The dimension of Cartesian product sets. Proc. Cambridge Philos. Soc. (3) 50 (1954), 198-202.
[14] P. Mattila, Geometry of Sets and Measure in Euclidean Spaces, Cambridge University Press 1995.
[15] A. Ostrowski, Über die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen. Jahresber. Deutsch. Math. Verein. 38 (1929), 54-62.
[16] K.R. Parthasarathy, Probability measures on metric spaces. Probability and mathematical statistics, Vol. 3, New York, Academic 1967.
[17] M. Souslin, Sur un corps non dénombrable de nombres réels, Fund. Math. 4 (1922), 311-315.
[18] B. Volkmann, Eine metrische Eigenschaft reeller Zahlkörper, Math. Annalen 141 (1960), 237-238.
[19] H. Wegmann, Die Hausdorff-Dimension von kartesischen Produkten metrischer Räume, J. Reine Angew. Math. 246 (1971), 46-75.

Dietmar Kahnert
Universität Stuttgart
Fachbereich Mathematik
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: dikahnert@yahoo.de

Erschienene Preprints ab Nummer 2007/2007-001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints
2014-009 Kahnert, D.: Hausdorff Dimension of Rings
2014-008 Steinwart, I.: Measuring the Capacity of Sets of Functions in the Analysis of ERM
2014-007 Steinwart, I.: Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties
2014-006 Steinwart, I.; Pasin, C.; Williamson, R.; Zhang, S.: Elicitation and Identification of Properties
2014-005 Schmid, J.; Griesemer, M.: Integration of Non-Autonomous Linear Evolution Equations
2014-004 Markhasin, L.: $\quad L_{2}$ - and $S_{p, q}^{r} B$-discrepancy of (order 2) digital nets
2014-003 Markhasin, L.: Discrepancy and integration in function spaces with dominating mixed smoothness
2014-002 Eberts, M.; Steinwart, I.: Optimal Learning Rates for Localized SVMs
2014-001 Giesselmann, J.: A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity
2013-016 Steinwart, I.: Fully Adaptive Density-Based Clustering
2013-015 Steinwart, I.: Some Remarks on the Statistical Analysis of SVMs and Related Methods
2013-014 Rohde, C.; Zeiler, C.: A Relaxation Riemann Solver for Compressible Two-Phase Flow with Phase Transition and Surface Tension
2013-013 Moroianu, A.; Semmelmann, U.: Generalized Killling spinors on Einstein manifolds
2013-012 Moroianu, A.; Semmelmann, U.: Generalized Killing Spinors on Spheres
2013-011 Kohls, K; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for Control Constrained Optimal Control Problems
2013-010 Corli, A.; Rohde, C.; Schleper, V.: Parabolic Approximations of Diffusive-Dispersive Equations
2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau's Algorithm on Manifolds
2013-008 Bächle, A.; Margolis, L.: Rational conjugacy of torsion units in integral group rings of non-solvable groups
2013-007 Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras
2013-006 Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes
2013-005 Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.: A Two Scale Model for Liquid Phase Epitaxy with Elasticity: An Iterative Procedure
2013-004 Griesemer, M.; Wellig, D.: The Strong-Coupling Polaron in Electromagnetic Fields
2013-003 Kabil, B.; Rohde, C.: The Influence of Surface Tension and Configurational Forces on the Stability of Liquid-Vapor Interfaces
2013-002 Devroye, L.; Ferrario, P.G.; Györfi, L.; Walk, H.: Strong universal consistent estimate of the minimum mean squared error
2013-001 Kohls, K.; Rösch, A.; Siebert, K.G.: A Posteriori Error Analysis of Optimal Control Problems with Control Constraints
2012-018 Kimmerle, W.; Konovalov, A.: On the Prime Graph of the Unit Group of Integral Group Rings of Finite Groups II
2012-017 Stroppel, B.; Stroppel, M.: Desargues, Doily, Dualities, and Exceptional Isomorphisms

2012-016 Moroianu, A.; Pilca, M.; Semmelmann, U.: Homogeneous almost quaternion-Hermitian manifolds
2012-015 Steinke, G.F.; Stroppel, M.J.: Simple groups acting two-transitively on the set of generators of a finite elation Laguerre plane
2012-014 Steinke, G.F.; Stroppel, M.J.: Finite elation Laguerre planes admitting a two-transitive group on their set of generators
2012-013 Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.: Polar actions on complex hyperbolic spaces
2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces
2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs
2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces
2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations
2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces
2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors under censoring
2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily
2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian
2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group
2011-027 Griesemer, M.; Hantsch, F.; Wellig, D.: On the Magnetic Pekar Functional and the Existence of Bipolarons
2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression
2011-025 Felber, T.; Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent static forecasting of stationary and ergodic time series via local averaging and least squares estimates
2011-024 Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of stationary and ergodic time series
2011-023 Györfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional independence
2011-022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors
2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels
2011-020 Frank, R.L.; Geisinger, L.: Refined Semiclassical Asymptotics for Fractional Powers of the Laplace Operator
2011-019 Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain
2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks
2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
2011-016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines
2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function

2011-014 Müller, S.; Dippon, J.: k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis
2011-013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
2011-012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of characteristic two
2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy
2011-009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
2011-008 Stroppel, M.: Orthogonal polar spaces and unitals
2011-007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces
2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
2011-004 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part II -Gain-Scheduled Control
2011-003 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part I Robust Control
2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G_{2}-structures
2011-001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
2010-018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
2010-017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
2010-016 Moroianu, A.; Semmelmann,U.: Clifford structures on Riemannian manifolds
2010-015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group $S O(3)$
2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
2010-012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
2010-011 Györfi, L.; Walk, H.: Empirical portfolio selection strategies with proportional transaction costs
2010-010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function
2010-009 Geisinger, L.; Laptev, A.; Weidl, T.: Geometrical Versions of improved Berezin-Li-Yau Inequalities
2010-008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
2010-007 Grundhöfer, T.; Krinn, B.; Stroppel, M.: Non-existence of isomorphisms between certain unitals
2010-006 Höllig, K.; Hörner, J.; Hoffacker, A.: Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods
2010-005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems
2010-004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary

2010-003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
2010-002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
2010-001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
2009-007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems
2009-006 Demirel, S.; Harrell II, E.M.: On semiclassical and universal inequalities for eigenvalues of quantum graphs
2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
2009-004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator
2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation
2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
2009-001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^{3} and of the 3-torus
2008-006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
2008-005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems
2008-004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
2008-003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008-002 Hertweck, M.; Höfert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $\operatorname{PSL}(2, q)$
2008-001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a correction term
2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field
2007-004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger operators on metric trees
2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
2007-001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions

